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Abstract

In this paper we consider service oriented architectures
where many components interact with one another using a
wireless network. We are interested in questions like:

• Can I be sure that I do not get unsolicited information
from some service? — unless I give my permission?

• Can I be sure that information I send to some service
never is leaked to another service? — unless I give my
permission?

We shall develop a static program analysis for the π-
calculus and show how it can be used to give privacy guar-
antees like the ones requested above. The analysis records
the explicit information flow of the system and keeps track
of, not only the potential configurations of the system, but
also the order in which they may be encountered.

1. Introduction

In recent years, static program analyses techniques have
been developed for analysing security properties for sys-
tems expressed in process calculi. The focus has been on
analysing the configurations of the systems and control flow
analyses techniques have played a major role. They have
been flow-insensitive as well as context-insensititive and
thus, from a static analysis point of view, the techniques
have been fairly simple. Nonetheless, from a security point
of view, surprisingly powerful results have been obtained.
Examples include analyses of classical access control mech-
anisms [3], confidentiality [12], information flow [6, 13],
firewalls in mobile settings [8] and security protocols [1, 2].

It is characteristic for these analyses that they produce a
single abstract configuration approximating all the concrete
configurations of a given system. The security property of
interest has then been validated with respect to this abstract
configuration: if the abstract configuration could not exhibit

the unwanted behaviour, then none of the concrete configu-
rations could exhibit it either.

However, there are cases where this is not enough. To pro-
vide guarantees like the ones hinted at in the Abstract, it
seems that several abstract configurations are needed in or-
der to distinguish between whether or not certain actions
have been performed; also, it seems that we would need
information about the order in which these configurations
might be encountered when the system is running.

In this paper we develop such an analysis for the π-calculus
[4]: given a process it will construct a finite automaton,
where the states abstract the potential configurations of the
system, and the transitions of the automaton faithfully re-
flect the semantics of the process. We shall show how our
analysis can be used to validate privacy properties like the
ones mentioned in the Abstract.

The scenario. To illustrate the development of the analy-
sis we shall consider the scenario of Figure 1. It is inspired
by a communication device developed for military purposes
by the Danish company Mærsk Data Defence [14]; we have
reformulated it in a civilian setting and it captures now the
essence of one of the case studies of the SENSORIA project1.

A car is equipped with an info-system consisting of a gps
device and a message board. The gps device continuously
emits the position of the car on the channel gps; this may be
for use by a car rental company or an insurance company.
At the same time the driver can register with a news agent
and obtain information (news, ads, etc.) on the info channel.
The registration is performed by sending a password over
the login channel. To be a little more concrete, let us specify
the processes as follows in the π-calculus:

gps device: GPS , (ν pos) gps!pos. GPS

message board: MB , login!pwd. info?x. MB

The service centre has a gps logger and a news agent. The
gps logger does nothing but receive car positions on the

1SENSORIA is an EU Integrated Project (IST-2005-016004) funded as
part of the 6’th Framework Programme.
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Figure 1. Info-system.

channel log. We shall consider different versions of the
news agent; the one specified below requires that the user
goes through a login process using the pop channel before
any messages are transmitted to him on the msg channel:

gps logger: LOG , log?y. LOG

news agent: NA , pop?z.
(ν news) msg!(news, z). NA

The car and the service centre are connected using a wire-
less network; both the car and the service centre have a mul-
tiplexer facilitating this. We shall specify it as follows:

multiplexer: MP , gps?u. wifi!(log, u). MP
+ login?u. wifi!(pop, u). MP
+ msg?(u, v). wifi!(info, u). MP

MP′ , wifi?(u, v). u!v. MP′

The process MP specifies how a message received from one
of the services in the car or the service centre are transmit-
ted over the wifi channel by encoding the intended recip-
ient by a unique name in the first component of the mes-
sage. The process MP′ shows how a message received on
the wifi channel is redirected to the intended recipient us-
ing the first part of the message as a channel over which the
second component of the message is transmitted. Thus the
overall system illustrated on Figure 1 can be specified by:

GPS | MB | MP | MP′ | LOG | NA

The security problems. The driver of the car will be in-
terested in protecting his privacy:

• P1: He does not want to receive unsolicited ads from
the news agent; in particular, he only want to obtain
messages after he has logged in at the agent.

• P2: He only wants his position to be communicated
to the gps logger; in particular, it should never be re-
vealed to the news agent (where it may be misused by,
e.g., paparazzi photographers).

• P3: He might, however, choose to disclose his posi-
tion to the news agent in order to obtain certain bene-
fits (e.g., local news); then he wants to ensure that his
position is only used for that purpose.

Thus the security of the system relies not only on the cor-
rect encoding and subsequent separation and redirection of
the information in the multiplexer but also on the order in
which the individual actions are performed. The analyses
mentioned previously will not be able to capture this. The
analysis introduced in this paper presents a first step in rec-
tifying this.

Our results. For inspiration we shall look to data flow
analysis [7] where control flow analysis is only a minor
and preparatory step in obtaining the information of interest.
Flow-sensitivity is often modelled using Monotone Frame-
works, where each basic block will kill some of the infor-
mation of interest, while at the same time it will generate
some new information. Traditionally formulated for bit-
vectors it applies equally well to complete lattices. Accord-
ing to Tarski’s fixed point theorem, termination is ensured
if the complete lattice satisfies the ascending chain property
but there are techniques that apply even if this is not the
case: termination can be ensured by utilising the framework
of Abstract Interpretation and defining a suitable widening
operator; this is an upper approximation to the least upper
bound operation on the complete lattices that additionally
ensures that no infinite ascending chains can be constructed.

The aim of our analysis is to construct a finite automaton
that faithfully models the potential infinite transition system
of the π-calculus process of interest. Each of the states in
the automaton will capture two aspects of a configuration of
the process:

• a multiset of actions ready for execution, and

• the potential bindings of the names.

The transitions of the automaton approximate the potential
transitions of the process, so in particular the analysis will
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States using the wifi channel :

boxes : u 7→ log
v 7→ pos

triangles : u 7→ pop
v 7→ pwd

polygons : u 7→ info
v 7→ news

Figure 2. Analysis of the info-system: MB | GPS | MP | MP′ | LOG | NA.

be flow-sensitive. It will also be context-sensitive because
information about the bindings is localised in the states.

To illustrate this consider the automaton of Figure 2 con-
structed for the process MB | GPS | MP | MP′ | LOG | NA
specified above. It shows that the system can be in sixteen
different abstract states. The edges connecting the states
represent the potential transitions of the system; each edge
is annotated with pairs of labels referring to the actions tak-
ing part in the actual transition. The initial state q0 corre-
sponds to the overall process itself. As we shall see later
it records that any of the eight actions login!pwd, gps!pos,
gps?u, login?u, msg?(u, v), wifi?(u, v), log?y and pop?z are
ready to be executed. The two outgoing edges from q0 show
that only two transitions are indeed possible from the state:
The edge labelled (1,6) captures that the action login!pwd
(to be labelled 1 later) of MB may interact with the action
login?u (to be labelled 6) of MP and the resulting state will
be q1. Similarly, the edge labelled (3,4) captures that the
action gps!pos (to be labelled 3) of GPS may interact with
the action gps?u (to be labelled 4) of MP and the resulting
state will be q2. The states captures not only which actions
that are ready to be executed but also the potential bindings
to the names so as a result of the communication the state
q1 will record that u might be bound to pwd whereas q2 will
record that u might be bound to pos.

We shall use the automaton to validate the security proper-
ties of interest. Property P1 is concerned with the order in
which some actions are performed and it amounts to check-

ing whether all the paths in the automaton satisfy a certain
property. Property P2 is concerned with the flow of in-
formation and it amounts to checking that all the abstract
states disallow certain bindings of names. Finally, property
P3 requires that certain actions are performed before a spe-
cific flow of information is possible and thus amounts to a
combination of checking the paths of the automaton and the
bindings captured in some of the states. Due to the way the
automaton is constructed, the security analysis will only be
concerned with explicit information flow.

Overview of the paper. After having reviewed the π-
calculus and its semantics in Section 2 we shall present our
analysis in three stages. The actions of the π-calculus are
going to play the role of the basic blocks in classical data
flow analysis, so in Section 3 we start by introducing the
complete lattice of the properties of interest, namely ex-
tended multisets of exposed actions. The next step is then
to specify how this information is modified when an action
is executed; in the classical setup this is given by transfer
functions of the form

transferblock(E) = (E \ killblock) ∪ genblock

where killblock is the information that is no longer valid af-
ter the block has been executed and genblock is the informa-
tion that becomes valid upon execution of the block. We
shall need analogues of the kill and generate functions in
our setup; in doing so we shall under-approximate the infor-
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mation to be killed and over-approximate the information to
be generated.

In the second stage, to be presented in Section 4, we con-
struct the appropriate transfer functions corresponding to
the individual actions. The transfer functions are concerned
with not only the extended multisets of exposed actions but
also the bindings of the names. Obviously, these have to be
modified in the case of communication but further precision
can be gained when names are matched against one another.

In Section 5 we present the final stage of the analysis, the
construction of the automaton. We shall use a simple work-
list algorithm that, starting from the initial state of the au-
tomaton, gradually extends it with more states and tran-
sitions. Finiteness of the automaton is achieved using an
appropriate widening operator together with a granularity
function that additionally can be used to control the preci-
sion of the analysis.

In Section 6 we shall use our analysis to validate a number
of interesting security properties for variations of the sce-
nario above.

• P1: Sometimes it must be ensured that certain mes-
sages are only received after a certain login activity
has taken place. — Our analysis will be flow sensitive
and will therefore correctly model the sequential order
of the actions.

• P2: Sometimes it must be ensured that messages only
reach the intended recipients. — Our analysis will be
context sensitive and will therefore correctly track the
flow of information.

• P3: Sometimes it is allowed to “declassify” informa-
tion for a certain purpose. — Our analysis will be
both flow sensitive and context sensitive and will there-
fore accurately model that a certain flow of information
takes place after a given action.

Finally, in Section 7 we give our concluding remarks.

2. Review of the π-calculus

The syntax of processes P and actions α is given by [4]:

P ::= (ν x)P | P1 | P2 | Σi∈Iαi.Pi | A

α ::= τ | [x= y] | x!~y | x?~y

Here (ν x)P introduces the new name x with scope P , par-
allel composition is modelled using the construct P1 | P2

whereas summations are of the form Σi∈Iαi.Pi. Here I is
a finite index set and αi takes one of four forms: either it
is a silent action, a match of two names, a polyadic out-
put action or a polyadic input action. If the index set I is

• If Q is obtained from P by alpha-renaming then P ≡ Q.

• The Abelian monoid laws hold for parallel:

– P | Q ≡ Q | P ,

– (P | Q) | R ≡ P | (Q | R) and

– P | 0 ≡ P .

• Summands can be permuted in Σi∈Iαi.Pi.

• Recursion can be unfolded.

• The scope extension laws:

– (ν x) 0 ≡ 0.

– (ν x) (P | Q) ≡ P | (ν x) Q if x 6∈ fn(P ).

– (ν x) ([y= z]P ) ≡ [y= z]((ν x) P ) if x /∈ {y, z}.

– (ν x) (ν y) P ≡ (ν y) (ν x) P .

Table 1. Structural congruence P ≡ Q.

P →α
˜̀ Q

P | P ′ →α
˜̀ Q | P ′

P →x!~y
`1

Q P ′ →x?~z
`2 Q′

P | P ′ →τ
`1`2 Q | Q′[~y/~z]

if bn(α) ∩ fn(P ′) = ∅ if |~y |=|~z |

P →α
˜̀ P ′

(ν x) P →α
˜̀ (ν x) P ′

P ≡ P ′ P ′ →α
˜̀ Q′ Q′ ≡ Q

P →α
˜̀ Q

if x 6∈ fn(α)

Σi∈Iα`i
i .Pi →αi

`i
Pi [x= x]`P →τ

` P

Table 2. Operational semantics P →α
˜̀ Q.

empty the summation is simply written as 0. The construct
A allows us to refer to an instance of a recursively defined
process of the form A , P . Finally, a program consists
of a sequence A1 , P1, · · · , Ak , Pk of such definitions
together with the main process P?.

To facilitate the analysis we shall annotate the syntax in two
ways: each action will be labelled by an element ` ∈ Lab
(as in α`) and each (defining and applied) occurrence of a
name will get an index ı ∈ Index (as in xı) that identifies
its defining occurrence. It is important to stress that the an-
notations only serve as pointers into the syntax; they have
no semantic significance whatsoever but will play a major
role in the analysis. For the sake of simplicity we shall as-
sume that the annotations of the initial program are unique:
all actions are uniquely labelled and similarly all free names
and all defining occurrences of names have unique indices.
This assumption simplifies the development although it will
not be preserved by the semantics.

Following [4, 5] the semantics is specified by a structural
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congruence and a transition relation. The structural congru-
ence P ≡ Q is defined as the least congruence generated
from the axioms of Table 1. We shall arrange that the in-
dices are left unchanged by the structural congruence — re-
flecting that they are nothing but pointers into the syntax. In
particular this means that alpha-renaming does not modify
the indices and neither do substitutions. Similarly, the la-
bels are left unchanged by rearrangements of the structural
congruence.

The transition relation takes the form P →α
˜̀ Q where ˜̀lists

the labels of the actions involved in the step (which may be
one or two depending on the step). The details are given
in Table 2. Some of the finer details of the semantics are
motivated by the analysis we want to perform, in particular
we want the analysis to track silent actions as well as match
actions so they are visible actions in the semantics.

3. Step 1: Exposed actions

An exposed action is an action that may participate in the
next interaction. To illustrate this consider the following
versions of the message board of the running example:

MB1 , login!pwd1. MB1 + info?x2. MB1

MB2 , login!pwd1. info?x2. MB2

MB3 , MB2 | MB2

MB4 , (login!pwd1. info?x2. 0) | MB4

MB1 can engage in communications over the login chan-
nel as well as the info channel and we shall say that one
occurrence of each of the actions labelled 1 and 2 are ex-
posed. MB2, on the other hand, may only engage in com-
munications over the login channel so it has one exposed
occurrence of the action labelled 1 and none of the action
labelled 2. Also MB3 is willing to communicate over the
login channel but it can do so in two different ways; hence
we shall record that two occurrences of label 1 are exposed.
Finally MB4 will have infinitely many exposed occurrences
of label 1 since it can be unfolded into any number of par-
allel compositions of the process login!pwd1. info?x2. 0.

To capture this we define an extended multiset M as an ele-
ment of:

M = Lab → N ∪ {∞}

The idea is that M(`) records the number of occurrences of
`; there may be a finite number in which case M(`) ∈ N
or an infinite number in which case M(`) = ∞. We shall
equip M with a partial ordering ≤M defined by M ≤M

M ′ iff ∀` : M(`) ≤ M ′(`) ∨ M ′(`) = ∞. This
turns (M,≤M) into a complete lattice with least element
⊥M given by ∀` : ⊥M(`) = 0 and largest element >M

given by ∀` : >M(`) = ∞. The least upper bound and
greatest lower bound operators of M are denoted tM and
uM, respectively, and they are defined by a pointwise ex-
tension of the generalised maximum and minimum opera-
tors on N∪{∞}. Note that (M,≤M) has infinite ascending
chains.

In the following we write M [` 7→ n] for the extended multi-
set that is as M except that ` is mapped to n ∈ N∪{∞} and
we write dom(M) for the set {` | M(`) 6= 0}. In examples
we shall often write an extended multiset M by listing the
elements of its domain with their counts as superscripts; as
an example, we write {`1, `′∞} for ⊥M[` 7→ 1, `′ 7→ ∞].
Finally, the pointwise addition and subtraction operators of
extended multisets are denoted +M and −M, respectively.

To formalise the notion of exposed actions of processes dis-
cussed above we now introduce the function:

E? : Proc → M

In the case of non-recursive processes it is defined by:

E?[[(ν x)P ]] = E?[[P ]]

E?[[P | P ′]] = E?[[P ]] +M E?[[P ′]]

E?[[Σi∈Iα
`i
i .Pi]] = +Mi∈I⊥M[`i 7→ 1]

Here we use the addition operator +M to add up the indi-
vidual contributions from subprocesses both in the case of
parallel composition and in the case of sums. In the lat-
ter case we simply record that one occurrence of each of the
actions α`i

i is exposed while we ignore the continuation pro-
cesses Pi. The definition is extended to recursive processes
using a fixed point formulation.

Example 1 Consider the following labelling of the running
example2:

MB , login!pwd1. info?x2. MB

GPS , (ν pos)gps!pos3. GPS

MP , gps?u4. wifi!(log, u)5. MP
+ login?u6. wifi!(pop, u)7. MP
+ msg?(u, v)8. wifi!(info, u)9. MP

MP′ , wifi?(u, v)10. u!v11. MP′

NA , pop?z12. (ν news)msg!(news, z)13. NA

LOG , log?y14. LOG

The main program is MB | GPS | MP | MP′ | LOG | NA.

The exposed actions are {11, 31, 41, 61, 81, 101, 121, 141}.
If we replace MB with MB4 as discussed above we get
{1∞, 31, 41, 61, 81, 101, 121, 141} instead.

2For the sake of readability, we have omitted the indices on names as
they will not be used in this section; they will be inserted in Example 4.
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The set of exposed labels gives a finite handle on a process
that is somewhat similar to the set of observable names of
a process [5, 11]. To be specific, the set of exposed labels
indicate all inputs, outputs or tests that might be involved in
the next reduction; the set of observable names on the other
hand indicate all the names of channels over which input or
output could take place in the next reduction.

3.1. Generated actions

Once an action has been executed, some other actions will
become exposed and others will cease to be exposed. As
an example, consider the process MP of Example 1. Once
action 4 has been executed, neither it nor actions 6 or 8 will
be exposed any longer but action 5 will become exposed.
We shall say that actions 4, 6 and 8 are killed whereas action
5 is generated. Similarly, when action 5 is executed it will
kill itself but the actions 4, 6 and 8 will be generated.

The aim now is to construct an over-approximation of the
(extended multiset of) actions generated by an action and (in
Subsection 3.2) an under-approximation of the (extended
multiset of) actions killed by an action. The killed actions
will be removed from the current multiset of exposed ac-
tions and when we have an under-approximation we ensure
that we err on the safe side. The generated actions will be
added to the current multiset of exposed actions so here we
shall ensure that we have an over-approximation in order to
err on the safe side.

The domain of interest has the functionality:

T = Lab → M

The ordering ≤ on T is defined as the pointwise extension
of ≤M and similarly the other binary operators on M are
extended to T. The least element⊥ and the greatest element
> of Lab → M are defined as expected. As usual we shall
write t and u for the least upper bound and greatest lower
bound operations.

Let us now focus on the actions generated when a single
action is executed just once. First consider the process
α`1

1 .P1 | α`2
2 .P2. When `i is selected for execution all

the actions exposed in Pi will be possible candidates for
the next interaction; that is, they are generated by `i. The
situation is slightly more complicated in the case where
`1 and `2 happen to be equal and we shall then take the
least upper bound (or maximum) of the two generated mul-
tisets — thereby making clear that we construct an over-
approximation to the actual set of generated labels. The
situation is similar if the two processes are combined using
the sum construct rather than the parallel construct.

To formalise this, we shall define the function

G? : Proc → T

that, in the case of non-recursive processes, is defined by:

G?[[(ν x)P ]] = G?[[P ]]

G?[[P | P ′]] = G?[[P ]] t G?[[P ′]]

G?[[Σi∈Iα
`i
i .Pi]] = ti∈I(⊥[`i 7→ E?[[Pi]]] t G?[[Pi]])

We are now collecting information for the complete pro-
cess, i.e. for all actions, so in the case of sums we will have
contributions from the actions α`i

i as well as the continua-
tions Pi. The definition is generalised to recursive processes
using a fixed point construction.

In the definition of G we make use of the function E? thereby
making sure that the exposed actions are computed relative
to the complete program of interest. It is worth pointing
out that the construction implicitly performs a reachability
analysis and only reports on actions that are reachable from
the main process.

Example 2 Returning to Example 1 we get the following
generated actions for the MP process:

` 4 5 6 7 8 9
G?[[MP]](`) {51} G {71} G {91} G

where G = {41, 61, 81}.

3.2. Killed actions

We now turn our attention to the actions that are killed
when a single action is executed. We go for an under-
approximation as it always will be safe to kill too few ac-
tions.

Let us first consider a process of the form P | P ′ and as-
sume that some action labelled ` is executed. It may be
that both P and P ′ contain an action labelled `, and since
we cannot distinguish between the two, we have to be con-
servative and only kill the actions that definitely would be
killed regardless of whether it was the action from P or the
one from P ′ that was executed. Assuming that K and K ′

(in T) are mappings with the relevant information for P and
P ′, respectively, we see that it is only safe to kill the ac-
tions of K(`) uM K ′(`). Actually, if ` only occurs in one
of the two branches then we can still use the uM operation
provided that we make sure that the default value for a label
not occurring in a process is >M.

The case of summation Σi∈Iα
`i
i .Pi is considerably more

complex. As a simple example consider α`.α`.0 + α′`
′
.0.

When the first occurrence of α` is executed it will kill one
occurrence of ` (namely itself) and one occurrence of `′.
However, when the second occurrence of α` is executed it
will kill only one occurrence of ` (namely itself) as the oc-
currence of `′ has already been killed previously. Hence in
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order to provide an under-approximation we must limit our-
selves to claim that when α` executes there is one copy of `
that is killed (namely itself) and nothing else.

To formalise this, we shall define the function

K? : Proc → T

that, for the non-recursive processes, is defined by:

K?[[(ν x)P ]] = K?[[P ]]

K?[[P | P ′]] = K?[[P ]] u K?[[P ′]]

K?[[Σi∈Iα
`i
i .Pi]] = ui∈I(>[`i 7→ M ] u K?[[Pi]])

where M = +Mj∈I⊥M[`j 7→ 1]

Since we are constructing an under-approximation there is a
number of differences compared to the previous tables. As
discussed above we use the greatest lowest bound operation
u in the case of parallelism and sums; note that the clause
for sum specialises to > in case the index set is empty. The
definition is generalised to recursive processes using a fixed
point construction.

Example 3 Returning to Example 1 we get the following
killed actions for the MP process:

` 4 5 6 7 8 9
K?[[MP]](`) K {51} K {71} K {91}

where K = {41, 61, 81}.

3.3. Semantic properties

The functions E?, G? and K? enjoy the following semantic
properties:

Lemma 1 If P ≡ Q then E?[[P ]] = E?[[Q]], G?[[P ]] =
G?[[Q]] and K?[[P ]] = K?[[Q]].

Lemma 2 If P →α
˜̀ Q then ˜̀ ∈ dom(E?[[P ]]), G?[[P ]] ≥

G?[[Q]] and K?[[P ]] ≤ K?[[Q]].

Writing T (˜̀) as a shorthand for T (`1) +M T (`2) when ˜̀=
`1`2 we have:

Proposition 3 If P →α
˜̀ Q then

E?[[Q]] ≤M (E?[[P ]]−M K?[[P ]](˜̀)) +M G?[[P ]](˜̀)

This result provides the key insight for constructing the au-
tomaton of interest: Whenever we have a state qs in the au-
tomaton it will be described by some extended multiset Es

of exposed actions. Assume now that actions ˜̀ of Es may

q E[q]

q0 {11, 31, 41, 61, 81, 101, 121, 141}
q1 {21, 31, 71, 101, 121, 141}
q2 {11, 31, 51, 101, 121, 141}
q3 {21, 31, 41, 61, 81, 111, 121, 141}
q4 {11, 31, 41, 61, 81, 111, 121, 141}
q5 {21, 31, 51, 111, 121, 141}
q6 {21, 31, 41, 61, 81, 101, 131, 141}
q7 {21, 31, 51, 101, 131, 141}
q8 {21, 31, 91, 101, 121, 141}
q9 {21, 31, 41, 61, 81, 111, 131, 141}
q10 {21, 31, 41, 61, 81, 111, 121, 141}
q11 {21, 31, 51, 111, 131, 141}
q12 {21, 31, 91, 111, 121, 141}
q13 {21, 31, 71, 111, 121, 141}
q14 {11, 31, 51, 111, 121, 141}
q15 {21, 31, 51, 111, 121, 141}

Table 3. The exposed actions of the states of the au-
tomaton on Figure 2.

interact. Then this should be reflected in the automaton by
a transition (i.e. an edge) from qs to some state qt labelled ˜̀
and the extended multiset Et of exposed actions associated
with qt should satisfy:

Et ≤M (Es −M K?[[P?]](˜̀)) +M G?[[P?]](˜̀) (1)

where P? is the overall process of interest.

The algorithm to be constructed in Section 5 will use a data
structure E to record the association of exposed multisets to
states and it is listed in Table 3 for the automaton of Figure
2. It is straightforward to verify that (1) holds for each of
the transitions of the automaton: for the transition from q0

to q1 we e.g. have:

E[q1] = (E[q0]−M K?[[· · · ]](1, 6)) +M G?[[· · · ]](1, 6)

because K?[[. . . ]](1, 6) = {11, 41, 61, 81} (see Example 3)
and G?[[· · · ]](1, 6) = {21, 71} (see Examples 2).

Validating security property P1. With this understand-
ing of the automaton of Figure 2 we can now have a closer
look at property P1 from the Introduction: Here we want to
guarantee that the car never receives unsolicited messages
from the news agent. We can rephrase this as: is it possible
that the action info?x2 of the message board MB could be
performed before the action login!pwd1. Surely, the answer
is obvious from the specification of the process MB but to
illustrate our approach let us also validate it using the au-
tomaton: does there exist a path in the graph where an edge
labelled 2 precedes one labelled 1? It is easy to see that
this is not the case and hence the property will be satisfied.
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In Section 6 we shall return to this property for a scenario
where the answer is less obvious.

4. Step 2: Bindings of names

We shall now turn our attention to the bindings. Recall that
each (defining as well as applied) occurrence of a name has
an index that identifies its defining occurrences; the indices
are merely pointers into the program and thus are neither
affected by alpha-renaming nor communication of names.

We shall record the binding using mappings R of the do-
main:

R = Index → P(Index)

The idea is that R(ı) approximates which names may occur
at the applied occurrences of names annotated with ı; these
names will be represented by the indices of their defining
occurrence. This level of indirection is introduced because
the structural congruence allows alpha-renaming of bound
names and hence the names themselves cannot be used to
carry analysis information; on the other hand, the indices
record the positions of the names and they will be stable
under alpha-renaming. Actually, the bindings R ∈ R to be
constructed in the analysis will all satisfy that R(ı) = {ı}
whenever ı is an index of a free name or a constant name
introduced by the construct (ν xı) P .

We shall equip R with a partial ordering ≤R that is the
pointwise extension of the subset ordering on P(Index);
this turns it into a complete lattice with least element ⊥ and
least upper bound operation t.

4.1. Exposed bindings

Initially, the bindings of the indices will determined by a
function:

R? : Proc → R

For non-recursive processes it is defined by the clauses:

R?[[(ν xı) P ]] = R?[[P ]]

R?[[P | P ′]] = R?[[P ]] tR[[P ′]]

R?[[Σi∈Iαi.Pi]] = ti∈I([[αi]] tR[[Pi]])

Here the auxiliary operation [[α]] extracts the relevant infor-
mation from the action α and it is defined by:

[[τ ]] = ⊥
[[[xı = y]]] = ⊥[ı 7→ {ı}] t ⊥[ 7→ {}]

[[xı?~y~]] = ⊥[ı 7→ {ı}]
[[xı!~y~]] = t{⊥[ 7→ {}] |  ∈ {~}} t ⊥[ı 7→ {ı}]

Note that we only have contributions from applied occur-
rences of names. The defition ofR? is extended to recursive
processes using a fixed point definition.

Example 4 For the running example we shall now add in-
dices as follows (and omit the labels for the sake of read-
ability):

MB , login1!(pwd2). info3?(x9). MB

GPS , (ν pos10)gps4!(pos10). GPS

MP , gps4?(u11). wifi5!(log6, u11). MP
+ login1?(u12). wifi5!(pop7, u12). MP
+ msg8?(u13, v14). wifi5!(info3, u13). MP

MP′ , wifi5?(u15, v16). u15!(v16). MP′

NA , pop7?(z17). (ν news18)msg6!(news18, z17). NA

LOG , log6?(y19). LOG

Since all the defining occurrences of names have unique in-
dices the result produced by R? will simply map each index
occurring in an applied position to the singleton set con-
taining the index itself.

4.2. The transfer function

We shall now define functions

transfer ˜̀ : M×R ↪→ M×R

for each potential interaction ˜̀; recall that ˜̀will be a single
label in the case of a τ -action or a match action and it will
be a pair (`1, `2) of labels in the case of a communication.
The functions will be partial functions since the interaction
might not be possible. However, if it could occur, then the
result of the function will describe how the multiset of ex-
posed actions and the bindings will be updated as a result of
the interaction.

In the following, we shall give the definition of
transfer ˜̀(E,R); there are three cases:

• First assume that ` is the label of a τ -action. The func-
tion will only succeed if E(`) > 0 and it will then
return a pair (E′, R′) recording that the action took
place:

E′ = E −M K[[P?]](`) +M G[[P?]](`)

R′ = R

• Next assume that ` is the label of a match [xı = y].
This action is only possible if E(`) > 0 and further-
more it must be possible for x and y to denote the same
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name, that is, it must be the case that R(ı)∩R() 6= ∅.
In this case the function will return the pair (E′, R′)
where:

E′ = E −M K[[P?]](`) +M G[[P?]](`)

We can simply take R′ = R but since we know that
the match was successful we can refine the bindings of
ı and  to be:

R′ = R[ı 7→ I][ 7→ I] where I = R(ı) ∩R()

• Finally, assume that ` is the label of an output action
xı!~y~ and `′ is the label of an input action x′ı

′
?~y′~

′
.

The action is only possible if E(`) > 0 and E(`′) > 0
and furthermore it must be possible for x and x′ to
denote the same name; that is, it must be the case that
R(ı) ∩ R(ı′) 6= ∅. If these conditions are fulfilled the
function will return the pair (E′, R′) where:

E′ = E −M K[[P?]](``′) +M G[[P?]](``′)

Since we know that the communication was success-
ful, we can refine the bindings of ı and ı′ in R′ as we
did in the case of matching, and additionally we have
to record that the new potential bindings of names in
the input positions ~′ = ′1 · · · ′n are obtained from
those of the output positions ~ = 1 · · · n:

R′ = R[ı 7→ I][ı′ 7→ I][′1 7→ J1] · · · [′n 7→ Jn]

where I = R(ı) ∩R(ı′)
and Ji = R(i) for 1 ≤ i ≤ n

The analysis presented above can be made more precise by
eliminating bindings that are no longer feasible or that are
no longer relevant. A basic observation is that after having
executed the prefix α of α.P , then only the values bound
to the free names of P will be interesting – all other names
will be dead in the terminology of data flow analysis – and
hence they can be removed. Due to lack of space we shall
refrain from exploring these possibilities in this paper.

4.3. Semantic properties

To conclude, we shall list the correctness property for the
transfer function:

Lemma 4 If P ≡ Q then R?[[P ]] = R?[[Q]]. If P →α
˜̀ Q

and xı ∈ fn(α) then ı ∈ R?[[P ]](ı).

Let us define the ordering v on M × R in a pointwise
manner: (E,R) v (E′, R′) if and only if E ≤M E′ and
R ≤R R′. Then:

q R[q](ı) \ {ı}
q0 [ ]
q1 [u12 7→ {pwd2}]
q2 [u11 7→ {pos10}]
q3 [u15 7→ {pop7}, v16 7→ {pwd2, u12}]
q4 [u15 7→ {log6}, v16 7→ {pos10, u11}]
q5 [u11 7→ {pos10}, u15 7→ {pop7}, v16 7→ {pwd2, u12}]
q6 [z17 7→ {pwd2, u12, v16}]
q7 [u11 7→ {pos10}, z17 7→ {pwd2, u12, v16}]
q8 [u13 7→ {news18}]
q9 [u15 7→ {log6}, v16 7→ {pos10, u11},

z17 7→ {pwd2, u12, v16}]
q10 [u15 7→ {info3}, v16 7→ {news18, u13}]
q11 [u11 7→ {pos10}, u15 7→ {log6}, v16 7→ {pos10, u11},

z17 7→ {pwd2, u12, v16}]
q12 [u13 7→ {news18}, u15 7→ {log6}, v16 7→ {pos10, u11}]
q13 [u12 7→ {pwd2}, u15 7→ {log6}, v16 7→ {pos10, u11}]
q14 [u11 7→ {pos10}, u15 7→ {log6}, v16 7→ {pos10, u11}]
q15 [u11 7→ {pos10}, u15 7→ {info3}, v16 7→ {news18, u13}]

Table 4. The bindings of the states of the automaton
on Figure 2.

Proposition 5 If P →α
˜̀ Q then

(E?[[Q]],R?[[Q]]) v transfer ˜̀(E?[[P ]],R?[[P ]])

This result is exploited in the construction of the automaton
in the next section. For each state qs we will have infor-
mation about not only the exposed actions Es but also the
exposed bindings Rs. When the actions ˜̀of Es interact we
will, as mentioned earlier obtain a transition to some state
qt; it will have exposed actions Et and bindings Rt satisfy-
ing:

(Et, Rt) v transfer ˜̀(Es, Rs) (2)

Note that this does not contradict equation (1).

It shall use a data structure R to associate bindings with
the individual states; Table 4 lists the bindings associated
with the states of the automaton of Figure 2. We have only
listed the interesting part of the binding information, that
is, entries where R[q](ı) 6= {ı}; to ease the readability we
have also included the names corresponding to the indices
in the initial program. It is straightforward to verify that the
bindings are correctly captured in the states: as an exam-
ple the pair (1,6) of labels records that login!(pwd2)1 and
login?(u12)6 communicate with one another and as a result
pwd2 should be bound to u12 exactly as is recorded in state
q1 (and q13).

Validating security property P2. Let us now have a
closer look at property P2 from the Introduction: We are

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00  © 2007

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 09:26 from IEEE Xplore.  Restrictions apply. 



concerned with the flow of information and want to ensure
that the gps position of the driver never is revealed to the
news agent. The knowledge of the news agent is repre-
sented by the name z17 so we may ask whether there exists
a state in the automaton where the position pos10 of the car
is bound to z17. A simple inspection of Table 4 shows that
this is not the case.

Actually, it is only possible to validate this property because
the analysis is able to analyse the use of the multiplexed
channel wifi fairly precisely. The channel is used for com-
munication the gps position in the states q4, q9, q11, q12,
q13 and q14 (boxes in Figure 2) and from Table 4 we can se
that u15 and v16 will be bound to log and pos, respectively.
The wifi channel is used in the login procedure in the states
q3 and q5 (triangles in Figure 2) and here u15 and v16 will
be bound to pop and pwd, respectively. Finally, it is used
for the news in states q10 and q15 (polygons in Figure 2)
and here u15 and v16 are bound to info and news, respec-
tively. An analysis that is not able to distinguish between
these three situations will not be able to validate security
property P2.

5. Step 3: The finite automaton

For a process P?, the extended multiset E?[[P?]] identi-
fies the exposed actions and the mapping R?[[P?]] identi-
fies the exposed bindings. The functions transfer ˜̀ speci-
fies how this information is modified when actions are exe-
cuted. We shall now use this to construct a finite automaton
(Q?, δ?, q?) abstracting the overall behaviour of P?.

Each state q ∈ Q? will describe a potential configuration of
P? by an extended multisets of exposed actions, E[q] ∈ M,
and an approximation of the relevant name bindings R[q] ∈
R.

A transition (qs, ˜̀, qt) ∈ δ? then reflects a potential transi-
tion from qs to qt by the action(s) labelled ˜̀; here ˜̀may be
a single label (corresponding to a silent action or a match)
or it may be a pair of labels corresponding to a communica-
tion.

The automaton will be constructed using the worklist algo-
rithm shown in Table 5. In line (1) it records that the initial
state q? has E[q?] = E?[[P?]] and R[q?] = R?[[P?]]. This
information may be updated as more states and transitions
are added by the algorithm. The algorithm uses the data
structures Q and ∆ to hold the accumulated version of the
automaton (the set of states and the transition relation, re-
spectively) while the worklist W keeps track of the states
that still have to be processed; Q, ∆ and W are initialised in
line (2).

Line (3) contains the classical loop inspecting the contents

E[q?] := E?[[P?]];R[q?] := R?[[P?]]; (1)

W := {q?};Q := {q?};∆ := ∅; (2)

while W 6= ∅ do (3)

select q from W;W := W \ {q}; (4)

for each ˜̀∈ enabled(E[q]) do (5)

case transfer ˜̀(E[q],R[q]) (6)

of (E′, R′) : update(qs, ˜̀, (E′, R′)) (7)

Table 5. Worklist algorithm.

of the worklist. A state q is selected and removed from
the worklist in line (4) and the set of enabled transitions
are constructed using the function enabled(E[q]) in line
(5). For each ˜̀ in this set, the function transfer ˜̀(E[q],R[q])
is called in line (6). If it fails then no further action is
taken as this means that the transition was not possible af-
ter all. If the function succeeds then it determines a possi-
ble new state by returning a pair (E′, R′), and the function
update(qs, ˜̀, (E′, R′)) will be called in line (7) to update
the automaton to reflect this.

The main challenge in the construction of the worklist algo-
rithm is to ensure that it terminates. As we shall see shortly,
judicious choices in the definition of the update function
will take care of this; however let us first have a closer look
at the details of the function enabled.

5.1. Enabled actions

Based on the exposed actions the operation enabled(E) will
return a set of potential interactions. Motivated by the defi-
nition of transfer ˜̀ in Section 4 we may simply take:

• if E(`) ≥ 1 and ` is the label of a τ action or a match
action then ` ∈ enabled(E), and

• if E(`) ≥ 1 and E(`′) ≥ 1 and ` and `′ are labels
of an output and an input action, resp., then (`, `′) ∈
enabled(E).

The assumption that the initial program is uniquely labelled
ensures that each label is associated with exactly one kind
of action (and this property is preserved by the semantics).

However, we may do slightly better by observing that that
parallelism and choice behave differently: for P | P ′ we
have the possibility of an action from P interacting with one
from P ′ whereas this situation never will occur for P + P ′.
We omit the details.
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if some q′′ ∈ Q with H(E[q′′],R[q′′]) = H(E,R) (1)

then q′ := q′′ (2)

else select q′ from outside Q; (3)

Q := Q ∪ {q′};E[q′] := ⊥M;R[q′] := ⊥; (4)

if ¬(E ≤M E[q′] ∧R ≤R R[q′]) (5)

then E[q′] := E[q′]∇ME; R[q′] := R[q′] tR; (6)

W := W ∪ {q′}; (7)

∆ := ∆\{(q, ˜̀, q′′) | q′′ ∈ Q} ∪ {(q, ˜̀, q′)}; (8)

clean-up(Q,W,∆) (9)

Table 6. Processing enabled actions:
update(q, ˜̀, (E,R)).

5.2. Updating the automaton

The function transfer ˜̀ will inspect all the candidate interac-
tions discovered by enabled and, if it succeeds, the function
update will update the automaton with the new transition.
This function will decide whether it is possible to reuse an
existing state. If it is, then its description should be updated
and otherwise a new state will have to be created. In both
cases, the data structures must be updated to reflect the ex-
tension of the automaton.

The procedure update(q, ˜̀, (E,R)) is specified in Table 6.
Recall that (E,R) describes the new state to which there
should be a transition labelled ˜̀ that emerges from q. In
line (1) it is checked whether or not there already exists a
state q′′ in Q that should be used for describing (E,R), in
which case we shall reuse it as indicated in line (2); other-
wise, in lines (3-4) we introduce a new state and initialise
the corresponding entries in E and R to be the least elements
of M and R, respectively.

Line (1) makes use of a granularity function:

H : M×R → H

The most obvious choice might be the identity function, i.e.
H(E,R) = (E,R), but it turns out that this choice may
lead to non-termination of the worklist algorithm. Some
more interesting choices that all will lead to termination are:

Hdom(E,R) = dom(E)

Hdom∩L(E,R) = dom(E) ∩ L for L ⊆fin Lab

Hdom
id (E,R) = (dom(E), R)

As an example, Hdom expresses that only the domain of the

extended multiset is of interest – and in this case it is en-
sured that all the states will have distinct domains for their
extended multisets and hence that there is at most one can-
didate for q′ in line (2).

In line (5) it is then checked whether q′ already captures the
required information given by the parameters E and R. If
not, the entries in the tables E and R must be updated as
shown in line (6) and furthermore q′ will have to be put on
the worklist (line (7)) so that it can be processed again. If
q′ is a new state then the test of line (5) is likely to succeed
and lines (6-7) will be executed. However, it may be that
the test of line (1) succeeded in finding a suitable old state
q′ except that it does not capture the information required
and then lines (6-7) will also have to be executed — this
is for example likely to occur frequently when H(E,R) =
dom(E).

The widening operator ∇M of line (6) makes sure to com-
bine the old and the new extended multiset in such a way
that termination of the overall algorithm is ensured; it is de-
fined by

(M1∇MM2)(`) =


M1(`) if M2(`) ≤ M1(`)

M2(`) if M1(`) = 0 ∧M2(`) > 0

∞ otherwise

In a similar way the least upper bound operation t com-
bines the old and the new binding information in a point-
wise manner.

Finally, line (8) expresses that the transition relation is up-
dated and that all previous ˜̀ transitions from state q are re-
moved; the reason is that their destination may no longer be
correct. As a consequence the automaton may contain un-
reachable parts and the procedure clean-up(Q,W,∆) will
remove those parts of Q, W and ∆ that cannot be reached
from the initial state q?.

5.3. Semantic properties

We now develop the simulation result showing the correct-
ness of the automaton constructed by Table 5. A state de-
noting the pair (E,R) is said to represent the process P ,
written P B (E,R), which is defined by

P B (E,R) iff E?[[P ]] ≤M E ∧R?[[P ]] ≤R R

Lemma 6 If P ≡ Q then P B (E,R) if and only if Q B
(E,R).

We can now establish the main result which is independent
of the choice of the granularity function H : M × R →
H. It only requires that it is finitary, meaning that for all
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choices of finite sets Labf ⊆ Lab and Indexf ⊆ Index,
H specialises to

H : (Labf → N∪{∞})×(Indexf → P(Indexf)) → Hf

for some finite subset Hf ⊆ H.

Theorem 7 In the granularity function is finitary, then the
algorithm of Table 5 terminates and produces a finite au-
tomaton (Q, q?,∆) together with the tables E and R. If

P B (E[q],R[q]) and P →τ
˜̀ Q

then there exists a unique q′ ∈ Q such that

Q B (E[q′],R[q′]) and (q, ˜̀, q′) ∈ ∆

The choice of granularity function is the main parameter
controlling the complexity of the algorithm and thereby the
size of the resulting automaton. Indeed, the number of states
of the automaton will be dominated by the cardinality of the
range of the granularity function, that is, the size of Hf .

6. Worked examples

The analysis has been implemented and used to analyse a
number of variants of the scenario presented in the Intro-
duction. We have already discussed the properties P1 and
P2 for the scenario:

MB | GPS | MP | MP′ | LOG | NA

We shall now consider variants of the scenario, in particular
we shall focus on the formulation of the news agent.

6.1. An intrusive news agent

In the scenario considered so far the message board of the
car as well as the news agent insist on the login procedure to
be completed before the news can be exchanged. We shall
now study more relaxed versions of these processes where
neither the message board nor the news agent insist on the
sequentialisation:

MB1 , login!pwd1. MB1 + info?x2. MB1

NA1 , (ν news)(pop?z12. NA1

+msg!(news, ·)13. NA1)

The main program is MB1 | GPS | MP | MP′ | LOG | NA1

where GPS, MP, MP′ and LOG are exactly as before.

The resulting automaton is shown in Figure 3. The path
from q0 to q3, q5 and then q0 clearly shows that the mes-
sage board may receive news from the news agent before

the driver has logged in: the news agent succeeds in send-
ing the message to the multiplexer which then forwards it to
the car. Thus property P1 is not fulfilled.

Turning our attention to property P2 it turns out that it is
fulfilled: the news agent will never get hold of the position
of the car. As in Section 4 we inspect the bindings of the
states in order to validate this property. Again the analysis
is able to distinguish between the different uses of the mul-
tiplexer channel; the shape of the states of the automaton in
Figure 3 provides the interesting information: in the states
q4, q6, q7 and q8 (boxes) the multiplexer channel is used for
communication the gps position, in the states q12, q13, q14

and q15 (triangles) it is used for communicating the pass-
word and in the states q5, q9, q10 and q11 (polygons) it is
used for forwarding the news.

6.2. A news agent with ads

Let us replace the news agent with an agent that issues un-
solicited ads so the overall process becomes MB | GPS |
MP | MP′ | LOG | NA2 where

NA2 , pop?z12. (ν news)msg!(news, z)13. NA2

+ msg!(ad, ·)14.NA2

and all the other processes are as before (except that the
labelling of LOG is changed to LOG , log?y15. LOG).

The resulting automaton is displayed in Figure 4. The upper
right part of the automaton corresponds to the system dis-
played in Figure 2. The interactions labelled (14,8) records
that the news agent successfully has interacted with the mul-
tiplexer channel and after a few more transitions the ads
may reach the car.

The automaton suggests that the system may have a number
of deadlock states. Since the automaton represents an over
approximation of the behaviour of the system we cannot be
sure that the system indeed will be able to reach a deadlock
but in this particular setting it is possible as evidenced by
this derivation sequence:

MP | MP′ | NA2 | · · ·
→τ

14,8 wifi!(info, ad). MP | MP′ | NA2 | · · ·
→τ

9,10 MP | info!ad. MP′ | NA2 | · · ·
→τ

14,8 wifi!(info, ad). MP | info!ad. MP′ | NA2 | · · ·

The process of the last line above have no next step since the
message board MB is not ready to receive on the channel
info yet. A more sophisticated coding of the message board
is needed to overcome this problem.

As before property P1 is concerned with the order in which
the actions occur and we have to inspect the paths in the au-
tomaton. This shows that the condition is indeed fulfilled so
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States using the wifi channel :

boxes : u 7→ log
v 7→ pos

triangles : u 7→ pop
v 7→ pwd

polygons : u 7→ info
v 7→ news

Figure 3. Analysis of the info-system with an intrusive news agent: MB1 | GPS | MP | MP′ | LOG | NA1.

the analysis guarantees that the car will never get messages
from the news agent before it has registered. However, the
analysis result also shows that after having completed the
login process the car may receive news as well as ads.

Just as in the previous versions of the system the analysis
guarantees that the the location of the car is not revealed to
the news agent.

6.3. A news agent with local news

As the final variation of the scenario we shall consider a
news agent that provides general news as well as local news;
it is specified as follows and further explained below:

MB5 , login!pwd1. info?x2. MB5

+ gps?x3. login!x4. info?x5. MB5

GPS1 , gps!pos6. GPS1

MP , gps?u7. wifi!(log, u)8. MP
+ login?u9. wifi!(pop, u)10. MP
+ msg?(u, v)11. wifi!(info, u)12. MP

MP′ , wifi?(u, v)13. u!v14. MP′

NA3 , pop?z15.

[z = pwd]16(ν news)msg!(news, z)17. NA3

+[z = pos]18(ν local) msg!(local, z)19. NA3

LOG , log?y20. LOG

In order to obtain the local news the car must send its gps
position to the news agent; it will obtain that directly from
its gps device as shown in the process MB5. The news
agent will, once it receives a password, determine whether
or not it contains gps information and then either send gen-
eral news or local news. In order not to make the example
overly complex we shall simply check whether or not the re-
ceived message z equals pwd or pos. The resulting process
is called NA3 above.

The automaton constructed by the analysis when applied to
the system MB5 | GPS1 | MP | MP′ | LOG | NA2 is shown
in Figure 5. It basically consists of three parts, the leftmost
part corresponding to handling the local news, the rightmost
part corresponding to handling the general news and an up-
per part where the news agent is not involved. With this
understanding it is not surprising that the left and the right
part of the graph are almost symmetric. As in the previous
scenarios the shape of the nodes indicate which messages
might be communicated over the multiplexer channel in the
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States using the wifi channel :

boxes : u 7→ log
v 7→ pos

triangles : u 7→ pop
v 7→ pwd

polygons : u 7→ info
v 7→ news

diamonds : u 7→ info
v 7→ ad

Figure 4. Analysis of the info-system with a news agent with ads: MB | GPS | MP | MP′ | LOG | NA2.

various states: In the rightmost part of the automaton the
states q18 and q20 (triangles) record that the password pwd
is communicated over wifi and the states q37 and q39 (poly-
gons) that the general news news is communicated over wifi.
The states drawn as boxed record that the gps position is be-
ing communicated over wifi but we cannot directly see who
is going to receive it; in most cases it will be the gps log-
ger but closer inspection of the labels on the edges of the
graph shows that in the states q8 and q9 it will indeed be
received by the news agent. The states q36 and q38 (dia-
monds) then records that local news are communicated on
the multiplexer channel.

The security property P1 requires that the driver only re-
ceives news after he has logged into the news agent. There
are two ways to log into the system so we have to ensure
that independently of which one is chosen it is not possible
to get any news (general or local); a closer inspection of the
automaton on Figure 5 shows that this is indeed the case.
Thus property P1 can be validated.

Security property P2 insists that the news agent never will
learn the position of the car. This does not hold for the
simple reason that it is sent to the news agent and a closer
inspection of the bindings associated with the states q9 and

q10 show that here the name z used in NA3 might indeed be
bound to pos.

In order for property P3 to be fulfilled we have to ensure
that only after the news agent has received the gps position
from the car it has knowledge it and thereby that this is the
only way the news agent can obtain this information. To
validate this we need to combine the techniques we have
used before: First we have to inspect the transitions of the
automaton to determine whether or not the car has submit-
ted its position to the news agent; this is recorded by the
presence of a transition labelled (4,9). The left most part
of the automaton will then be reachable and as noted above
the local news may be received by the car. The news agent
forgets the knowledge of the position of the car as soon as
the local news is sent to the multiplexer (cf. the recursive
formulation of the process NA3) and hence in the state q19

this information is no longer available and as we already
have mentioned in states q36 and q38 the local news is ready
to be forwarded to the car.

We now have to inspect the part of the automaton that can
be reached without the message board of car transmitting
the gps position to the multiplexer. This is the topmost and
the rightmost part of the automaton of Figure 5. We have
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States using the wifi channel :

boxes : u 7→ log
v 7→ pos

triangles : u 7→ pop
v 7→ pwd

polygons : u 7→ info
v 7→ news

diamonds : u 7→ info
v 7→ local

Figure 5. Analysis of the info-system with a news agent with local news: MB5 | GPS2 | MP | MP′ | LOG | NA2.

to ensure that the news agent does not have any information
about the gps position in these states and as in the previous
cases this amounts to a simple inspection of whether pos
can be bound to the name z occurring in NA3. Since this is
not the case the property P3 has been validated.

7. Conclusion

We have presented an analysis of the π-calculus that is flow
sensitive as well as context sensitive. This has allowed us
to validate a number of interesting properties related to pri-
vacy:

• P1: Sometimes it must be ensured that certain mes-
sages are only received after a certain login activity
has taken place. — Our analysis is flow sensitive and
can therefore correctly model the sequential order of
the actions.

• P2: Sometimes it must be ensured that messages only
reach the intended recipients. — Our analysis is con-
text sensitive and can therefore correctly track the flow
of information.

• P3: Sometimes it is allowed to “declassify” informa-
tion for a certain purpose. — Our analysis is both flow
sensitive and context sensitive and can therefore accu-

rately model that a certain flow of information takes
place after a given action.

As shown in the worked examples it is rather straightfor-
ward to validate the properties by inspecting the transitions
of the automaton as well as information associated with the
states.

More generally, our approach will scale to determine ap-
proximations to safety properties; because of the nature of
the over-approximation performed during the development
we cannot deal with properties that falls outside this class.

Our analysis is guaranteed to terminate for all processes,
even those with an infinite state space. By carefully select-
ing the granularity function used in the analysis, it is possi-
ble to control the size of resulting automaton – and thereby
both the complexity of the analysis and the precision of the
analysis result. The resulting automata, as displayed in this
paper, are generated in a fully automatic manner by our
analysis engine programmed in Standard ML.

The analysis problem for the original military communica-
tion device, which inspired the development of the present
scenario, was formulated in terms of a mandatory security
policy to be validated against the Common Criteria: Two
sources (corresponding to GPS and MB) are emitting data
classified as high and low, respectively, and it is commu-
nicated over a multiplexed channel and must be correctly
separated to a high and a low agent (corresponding to LOG

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00  © 2007

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 09:26 from IEEE Xplore.  Restrictions apply. 



and NA). The security problem is thus to guarantee that the
low data only is received by the low agent and similarly the
high data is only received by the high agent. The analysis
technique developed in this paper surely is powerful enough
to provide the required guarantees; further work it needed
to develop it for hardware programming language VHDL,
in which the original system was developed.

Our contribution. Some of the basic ideas behind the
analysis have previously been developed for CCS [9]. Our
work substantially generalises the language primitives that
can be dealt with: rather than only dealing with synchroni-
sation we can deal with full polyadic communication.

Previous attempts [10] at dealing with communication have
used a global control flow analysis for providing the bind-
ings that may occur as the result of communications. Our
work substantially improves the presision of this informa-
tion by developing a transfer function that not only applies
to exposed actions but also exposed bindings thereby es-
sentially providing a localised control flow analysis in each
state of the automaton.
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