End-to-End Enforcement of Erasure and Declassification

Stephen Chong Andrew C. Myers
Department of Computer Science
Cornell University
{schong,andrp@cs.cornell.edu

Abstract enforcement of erasure requirements, and none has consid-
ered both declassification and erasure together. In this pa-
Declassificatioroccurs when the confidentiality of infor- per, we enforce both erasure and declassification require-
mation is weakenedarasureccurs when the confidentiality ments end-to-end in a language-based setting. The erasure
of information is strengthened, perhaps to the point of com- policies we enforce are significantly more expressive than
pletely removing the information from the system. any previously enforced.

This paper shows how to enforce erasure and declassifi- Consider, as an example of erasure requirements, a med-
cation policies. A combination of a type system that controls ica| information website. The website offers (among other
information flow and a simple runtime mechanism to over- functionality) a diagnostic application, where a user may
write data ensures end-to-end enforcement of policies. Weenter information about symptoms, and the application will
prove that well-typed programs satisfy the semantic security present information about possible diseases consistent with
conditionnoninterference according to policy the symptoms. The website’s privacy policy states that

We extend the Jif programming language with erasure symptoms the user enters are private, and no record of them
and declassification enforcement mechanisms and use theyill be kept after the user has finished using the diagnos-
resulting language in a large case study of a voting system.tic application. The provider of this website needs to en-

force an erasure requirement: when the user has finished

using the diagnostic application, the symptom data that the
1 Introduction user has entered must be erased. Note that the information

the user has entered may need to persist over several user

Enforcing information security is an important require- requests, but also might need to be erased before the ses-
ment of many systems. However, often information secu- sion has finished. Thus, the lifetime of the information does
rity changes over time, complicating enforcemebéclas- not necessarily match that of any web server resource. An-
sificationanderasureare two common ways in which the other subtlety is that the diagnoses the system has produced
security enforced on information changes. Declassification Must also be erased, as the diagnoses may reveal informa-
occurs when the confidentiality enforced on information is tion about the symptoms entered.
weakened, for example, by allowing more people to read Information security is an end-to-end requirement: ap-
the information. Erasure [2] is the opposite phenomenon, propriate security must be enforced on information from
occurring when the confidentiality enforced on information when it enters the system until it leaves. Appropriate secu-
is strengthened, perhaps to the point of removing the infor- rity should also be enforced on data derived from sensitive
mation from the system entirely. information, since the derived data may allow the original

Much work in recent years has considered how to pro- information to be deduced. In the diagnostic application
vide end-to-end enforcement of declassification require- described above, learning diagnoses may reveal symptoms,

ments. (See Sabelfeld and Sands [22] for a recent survey.Wwhich are sensitive.

Comparatively little work [12] has considered end-to-end |nformation-flow controis a way to achieve end-to-end
This work was supported by National Science Foundation grant 0430161. enfor(_:ement' quormatlon-flow control techn'que§ enforce
The views and conclusions contained herein are those of the authors angecurity by restricting the flow, or propagation, of informa-
should not be interpreted as necessarily representing the official policiestion in a system. Conceptually, information-flow control
or endorsements, either express or |mpl|eq, of thes_e organizations or thetechniques!abel data with security levels: as data are up-
U.S. Government. The U.S. Government is authorized to reproduce and .
distribute reprints for Governmental purposes notwithstanding any copy- dated and created, th? security |abe!s are also updated to re-
right notation thereon. flect data dependencies. The security labels can be used to

prevent confidential data from being output on public chan- a, b Conditions

nels. Static approaches [21] have been successful in conp, ¢ = Policies

trolling information flow without incurring the performance 14 Lattice policy

overheads of representing the security labels at runtime. JANY'! Declassification policy
In this paper, we use static information-flow control to Prq Erasure policy

enforce erasure and declassification requirements end-to-
end. Erasure and declassification requirements are specified
in a policy language that can express when information may
be declassified, and when information must be erased. Sec-
tion 2 reviews this policy language, which was introduced 2.1 Syntax
in earlier work [2] without any enforcement mechanism.

Section 3 presents a simple imperative language that has - gecyrity policies describe what confidentiality level is
a runtime mechanism for overwriting memory locations. A currently enforced on information, and how this may and
type system controls information flow, ensuring that infor- ,,st change in the future. Figure 1 shows the syntax of
mation that needs to be erased is placed only in memorypjicies. Lattice policy! € £ means that the confiden-
locations that will be overwritten at appropriate times. tiality level ¢ (or a more restrictive confidentiality level)

Noninterference [7] is an end-to-end semantic security must be enforced on information now and at all times in
condition. It is well-known that noninterference is t00 the future. Declassification policgy\¢q means that pol-
strong in the presence of declassification, which intention- |Cy pis Currenﬂy enforced on information, and when con-
ally makes sensitive information public. However, nonin- dition « is satisfied, information may be declassified, after
terference is too weak in the presence of erasure—it can-which policy ¢ must be enforced (regardless of the subse-
not express erasure requirements, which restrict observaguent satisfaction or non-satisfactiona@f Erasure policy
tion of public information. Section 4 proves that well-typed ¢~; means that policy is currently enforced on informa-
programs satisfynoninterference according to polid], tion, and when condition is satisfied, information must be
a generalization of noninterference that precisely expressesnade more restricted, by enforcing both poligieandg on
the information flows permitted by declassification and era- the information (regardless of the subsequent satisfaction or
sure. non-satisfaction of).

Section 5 describes how we incorporated declassification The satisfaction of conditions controls when declassifi-
and erasure policies into the decentralized label model [17]cation may occur, and when erasure must occur. Condition
and extended the Jif programming language [18] with the satisfaction is specific to the condition language used. We
new label model. We have used this extended version of Jifassume the condition satisfaction depends only on the cur-
to implement a large, security-intensive system: Civitas [4], rent system state (which may include the history of the
a secure voting service. Section 6 describes how the policiessystem), and write E « if condition is satisfied in state
are useful in its implementation. Section 7 reviews related s, ands ¥ a if a is not satisfied in state
work, and Section 8 concludes. For example, if we are enforcing polidy \¢ L on infor-
mation, then we must enforce the confidentiality leebn
the information; however, when conditians satisfied, we
are permitted to change the confidentiality level enforced
on the information td_. If we are enforcing erasure policy

The declassification and erasure policy framework intro- L ¢ H on information, then we must enforce the confiden-
duced in previous work [2] assumes there is a lattite") tiality level L on the information, and if and when condi-
of confidentiality levelsand a language for specifyirgn- tion a is satisfied, we must change the confidentiality level
ditions, which indicate when declassification may occur and we are enforcing to be at least as restrictive as ldodnd
when erasure must occur. To instantiate the policy frame- H—sinceL C H, it suffices to enforce the confidentiality
work, lattice £ and the condition language must be speci- level H.
fied. Appropriate security lattices include the two-point lat- Consider enforcing policy H\¢ L) ¥"H on informa-
tice {L,H} whereL C H andH [Z L, and the lattice tion. Initially policy H\¢ L is enforced on information,
of security principals ordered by atts-forrelation [17]. meaning that the confidentiality levél must be enforced,
(In Section 5 we use the lattice of security principals when and if conditiona is satisfied (beforéis satisfied) then con-
extending the decentralized label model [17].) We assumefidentiality level L can be enforced on information. How-
there is a clear notion of enforcement of confidentiality level ever, once condition is satisfied, we must enforce policy
¢ € L oninformation. Many condition languages are possi- H on information, meaning that confidentiality levélwill
ble; Section 3 uses program expressions as conditions. be enforced then and at all times in the future.

Figure 1. Syntax of policies

2 Policies

reqErase(p, s) reqErase(p,s) ors F a (s',¢') € [p]s, then by the time the system reaches state
reqErase(p\2p’, s) reqErase(p ¥"p’, s) s’ (in zero or more steps), confidentiality lew&Imay be
enforced on the information.

Figure 2. Definition of regErase(p, s)
[]s ={(s,0)]| s—*s and¢ C '}

To see how these policies can capture the security re-[p\¢q], = [p]s U U{MS’ | s —* s’ ands’ E a}
quirements of applications, let us revisit the medical in-
formation website example from the introduction. A suit- [P ¥"a]s = [p]s N ({(s’,é) € [pls | [s, 8" ¥ a} U
able policy for symptoms entered by the user could be
session PPE"L T wheresession is a confidentiality level U{[[q]]s/' | s =" s" and[s, s") ¥ a})
allowing only the session client and server to read the infor-
mation, T is a confidentiality level so restrictive that it pre-
vents the server from storing the information, ang End
is a condition that is satisfied when the user has finished
using the diagnosis application. Thus, the data entered by Figure 3 defines the semantifs],. We assume that the
the user will initially have the confidentiality levekssion relation — over system states describes atomic transitions
enforced on it. Once conditioipp End is satisfied, the con- of the system, and denote the reflexive transitive closure of
fidentiality level T must be enforced, implying that the data this relation as—*.
will be removed completely from the system. End-to-end 1he semantics for confidentiality levélallow any con-
enforcement of the policies will ensure that information de- fidentiality level at least as restrictive 4$0 be enforced at
rived from the user's symptoms will have the same policy, all times in the future.
session “PPEnd T enforced on it, or something more re- The semantics of declassification poliey® g is a super-
strictive. Thus, any diagnoses derived from the user’s symp-Set of the semantics of poligy. The semantics capture the
toms must also have the confidentiality leVeenforced on intuition that when the condition is satisfied, the informa-
them oncesppEnd is satisfied. tion may be declassified, and after declassification, policy

Condition satisfaction determines when policies man- ¢ is enforced on the declassified information.plpermits
date erasure. Since condition satisfaction is determinegenforcing confidentiality in states’, thenp™\{ ¢ also per-
solely by the system state, we say that policyequires mits it, and in addition, permits policy to be enforced on
information erasuren states (or simply, requires erasure information, starting in any staté such that’ F a.

Figure 3. Semantics for policies [p]s

in states), denotedreqErase(p, s), if there is a currently By contrast, the semantics of erasure pojicy'q in state
enforced erasure policy whose condition is satisfied. Fig-$ iS @ subset of the semantics pfin s. The intuition is
ure 2 gives inference rules definimggErase(p, s). Lat- that policyp is enforced while conditiom is not satisfied,

tice policy ¢ never requires erasure. Declassification policy @nd once conditiom is satisfied, the information is made
p\“q requires erasure if subpoligy (the policy currently ~ more restricted by enforcing both pollcmandq...We_wnte
enforced) requires erasure. Erasure poficy’q requires |, §'] ¥ a, wheres —* ', to mean that condition is not
erasure if subpolicy requires erasure, aris satisfied. If satisfied in any state fromto s’ inclusive:

policy p is enforced on information, then we must ensure
that in any state such thap requires erasure i) the infor-
mation either is removed from the system, or has a suitably
restrictive policy enforced on it.

[s,8|EFa2Vs" (s =*s"Ns" =*5)=5"Fa.

Similarly, we usds, s") ¥ a, to mean that conditioa is not
satisfied in any state fromup to but not including, stat€:

2.2 Semantics [s,8) Fa2Vs" (s =% s"Ns" =* N #£5') = 5" ¥ a.

Intuitively, the policies describe how the confidentiality 2.3 Relabeling judgment
of information may and must change as the system exe-

cutes. We formalize this intuition by providing a semantics ~ We can define &labeling judgmenty, ...,ar - p < ¢
for policies. such that ifag, ..., ax F p < ¢ then, assuming conditions
The semantics of policy in states, denotedp], is a set ag, - - -, aj are all satisfied, information labeled with policy

of pairs of system states and confidentiality levels that de-p can safely be relabeled with poligy That is, enforcing
scribes what confidentiality levels may be enforced on in- ¢ on the information is consistent with poligy Any such
formation labeled in states as the system evolves from relabeling judgment should be sound with respect to the se-
states. If policy p is enforced on information in state and mantics, and we require the following property to hold.

Property 1 (Soundness)If ag, . ..,a; F p < ¢ then for all value. For example, if policyZ *+3 L is enforced on in-
statess, such thatvi € 0..k. s F a;, we havdq]s C [p]s. formation, that information may be declassified when ex-
pressionz + 3 is non-zero.

A sound relabeling judgment serves as a syntactic ap- The commands are standard, with the exception of de-
proximation of the policy semantics. Inference rules for a classification. Thguarded declassificatiocommandr :=
relabeling judgment, and a proof of soundness, are given indeclassifye, p; to p; using e, ..., e;) evaluates expres-
the companion technical report [3]. In the following sec- Sione, and assigns the result to variablgprovided that ex-
tion, we use the relabeling judgment in the type system to pressiore; evaluates to a non-zero value, for@ik i < k.

enforce policies syntactically, without reference to policy If there is somee; that evaluates to zero, then declassifi-
semantics. cation fails. The expressions are conditions that must

Other sound syntactic approximations of the policy se- be satisfied for the declassification to occur. The guarded
mantics are possible. In earlier work [2] we introduced a declassification command allows the type system to check
sound relabeling relation parameterized on the current statéhat, assuming all conditions are satisfied, information
of the system. This permits reasoning about the subsequeni@beledp; can safely be relabeleg,, and allows the op-

execution of the system, in addition to the conditions satis- erational semantics to ensure that conditienare indeed
fied in the current system state. satisfied when declassification occurs. The type system and

runtime mechanisms for enforcing declassification are dis-
cussed further in Sections 3.2 and 3.3.
3 Language
3.2 Operational semantics
In this section we present a simple imperative language,
IMP 5, that incorporates declassification and erasure poli- A memorys is a map from variables to integers, and
cies. The language has runtime mechanisms for erasure ang thus a function fromVars to Z. We write o(e) for the
declassification, and a type system to control the flow of in- result of evaluating expressieanusing memoryo, that is,
formation. In Section 4, we show that these together suffice usinge(z) as the value of each variabtethat occurs ire.

to enforce declassification and erasure policies. We write o[« — o] for the memory that maps variabieto
integerv, and otherwise behaves exactlysadoes.
3.1 Syntax A configurationis a pair of a command and mem-

ory o, written (¢, o). A configuration fully describes the
system state. Since policy conditions are expressions, the
satisfaction of a condition depends only on the memory

e = Expressions .) . .
n Integer literal of the current _conflguratlon. For brevity, we thus write
" Variable reqErase(p, o) msteaq ofre_qErase(p, {c, o_>)..

0 ® €1 Binary operation We assume there istgiping cqntexthgt indicates yvhat
e Commands poll_cy should b_e enforced on mforma_ltlon stored in each
skip No-op var_la_ble. A typln_g contex_l“ is a function from Vars to_

I e Assignment pohme;, and’(x) is the_pohcy that must be enforced onin-
Co; €1 Sequence formation st_ored in va_rlable. Th_e typing context does not
if ¢ then ¢, elsec; Selection cha_mge during executlorj: a variahlealways has the same
while e do ¢ Iteration policy I'(z) enforced on it. _ _

x := declassifye, p; t0 p; usingeo, .. ., ex) Figure 5 presents the operational semantics for JMP

showing how configurations are updated as commands ex-
ecute. The enforcement of policies relies on two runtime
mechanisms, embodied in the operational semantics. The
Figure 4. Syntax of IMPg first is runtime overwriting of variables to enforce erasure;
the second is runtime checking of conditions for declassi-
Figure 4 presents the syntax of IMPWe assume there fication. Except for these two mechanisms, the operational
is a countable set of variabld&rs. Language expressions Semantics of the language are standard.
include integer literals: € Z, and variabless € Vars.

The metavariabled ranges over total binary operations on Overwriting variables. IMPg enforces erasure by set-
integers. ting the contents of a variable to zero whenever the pol-
Conditions of policies in IME; are simply expressions. icy for the variable requires information erasure. Policy

A condition is satisfied when it evaluates to a non-zero requires information erasure wheeqErase(p, o) holds,

Guarded declassification

OS-Xip OS-ASSIGN OS-SQUENCE
o' = update(o,z,0(e)) (co, o) — (g, ')
(skip; ¢, o) — (c, o) (z:=e, o) — (skip, o’) (cosc1,) = (cpicr, o)
OS-IF OS-WHILE
)0 ifo(e) #0
)1 ifo(e)=0

(if ethencg elsecy, o) — (¢;, o)

OS-DECLASSIFY

~Jole)
~]o

if Vi € 0..k.
if 3i € 0..k.

(while edo ¢, o) — (if ethen ¢; while e do ¢ else skip o)

o(e;)) #0

o' = update(o,x,v
o(e) =0 pdate(o, 2, v)

(x := declassifye, ps to p; usingeg, . . .

Figure 5. Operational semantics of

erasure(o)
update(o, x,v) = ,
erasure(o[z — v]) otherwise
erasure(o) = |_| o;
S
wheresy = o, and
0 if reqErase(T" i
i1 = Ax € Vars. a , ([(), 0:)
o;(x) otherwise

and| |, o;: denotes the least upper bound of the chain
0po103 ... under the ordering@, where

o' Co" &Vx € Vars. o' (z) = 0" (z) Vo' (z) =0

Figure 6. update(o,z,v) and erasure(o)

where o is the current memory. For example, policies
L=*29H and (L *=3%"H)\Y L both require information

,€k), o) — (skip, o)

IMPg

and it provably overwrites variables as requiredif =

if reqErase(I'(z), o) erasure(o) then for all variablesr, reqErase(T'(z), o’)

implieso’(z) = 0.

Runtime mechanism for declassification. Declassifica-
tion of information can occur only when appropriate condi-
tions are satisfied. For example, poli¢y*>0 [, allows
information to be declassified th when the expression
x > 0 is non-zero, that is, when is positive. The oper-
ational semantics for a guarded declassification command,
x = declassifye, py to p; using e,...,ex), evaluates

e and assigns the result to variahleprovided the expres-
sionsey, ..., e, all evaluate to non-zero values. If one or
more expressions; evaluate to zero, then declassification
fails, and variable: is updated with the constant value zero.
(Other reasonable semantics include leaving the value of
unchanged, or stopping execution.)

For example, if the policyd \t2*>0 [, is enforced on

erasure ifr(z) = 3. Since conditions are expressions, a Variablefoo , then the command

condition may become satisfied when the memory is up-

dated. The operqtional semantics for_c.om.mands that UP- quux := declassifyfoo, H >0 L to L usingbar > 0)
date memory (assignment and declassification) use the util-

ity function update(o, x, v) to overwrite variables, defined
in Figure 6. The functiomipdate(o, z, v) takes memory,
variablez, and integew, and, provided policy'(z) does
not require erasure, returesasure(c[x — v]). The util-
ity function erasure(o) checks for each variablgif policy
I'(y) requires erasure given the memaeryif so, it over-
writes variabley with the value zero. Overwritingchanges

will successfully declassify the contentsfob only if the
expressiorbar > (evaluates to a non-zero value. This

The use of runtime mechanisms to aid in the enforce-
ment of declassification and erasure policies allows sim-
pler static enforcement mechanisms. The policies can be
enforced without these runtime mechanisms, but would re-

the memory, and thus may trigger the overwriting of other quire either more complex static enforcement, or less ex-

variables.
The functionerasure(o) is defined for all memories,

pressive conditions. See Section 7 for more discussion on
this trade-off.

3.3 Type system atinge is bounded above by poligyy (I' - e : p; exp).
There is a flow of information from the conditions

The runtime mechanisms of IMPensure that declas- €05 ---:€k to the variabler. The operational semantics for
sification only occurs if appropriate conditions are satis- & guarded declassification will assign the result of evalu-
fied, and that variables are overwritten when their policies &ting e into = only if all conditionsey, .. . , ¢, evaluate to
require erasure. However, the runtime mechanisms along'on-zero values. Thus, the value of the variablefter
are not sufficient to ensure that erasure and declassificatiorihe declassification command may reveal information about
policies are enforced. What prevents information with era- the value of the conditions. The typing rule for declassi-
sure policyL ¢ H from being stored in a variable that fication, T-DECLASSIFY, tracks this information flow by
has policyL enforced on it? Information in variablehas ~ réquiring I'(z) to be an upper bound on the information
low security enforced on it, and is not necessarily overwrit- that may be gained by knowing if conditian was satis-
ten when conditior: is satisfied. Similarly, what prevents fied " e; : T'(z) exp).
information with policy H from being stored in a variable
yvith policy H\¢ L gqforced on it, and subsequently (and 331 \Well-formed contexts
incorrectly) declassified?

The type system of IMR restricts information flow A variablez is overwritten wher'(x), the policy enforced
within a program, ensuring that appropriate policies are en-on z, requires erasure. Thus, if satisfaction of condition
forced on information at all times. The type system restricts can cause policy'(x) to require erasure, there is informa-
both explicit flows, where information flows from direct as- tion flow frome to z. To track and control this information
signments to variables, and implicit flows [5], where infor- flow, we restrict the typing contexts that may be used.
mation flows via the program’s control structure. The type For all variablesr, we require that policy’(x) is well-
system does not restrict timing or termination channels. typed, writtenI' = I'(z) pol. Any policy that is used as a

The typing judgmenpe,I’ - ¢ com means that com- program counter policy in the proof of a typing judgment
mandc is well-typed under typing context and program pc,I' = c com must also be well-typed. The inference rule
counter policype. The program counter policy is used to re- for well-typed policies is given in Figure 7. It requires that
strict implicit flows. It is an upper bound on the policies of if condition e may cause policy to require erasure, then
information that may have influenced the value of the pro- is an upper bound on the information that may be obtained
gram counter, and so is an upper bound on the informationby evaluating: (I' - e : p exp).
that may be gained by knowing that commarisl executed. The recursively defined functioeraseConds(p) re-
The typing judgment’ - ¢ : p exp means that under typ- turns the set of expressions that may cause pglitty re-
ing contextl’, policy p is an upper bound on the policies of quire erasure. That isggErase(p, o) if and only if there
information that may be gained by evaluating expression is some conditiors € eraseConds(p) such thaw(e) # 0.

Figure 7 presents inference rules for these typing judg- In addition, typing contexts are restricted to prevent infi-
ments. The rules track and restrict the flow of information nite chains of variableso, =1, ..., such that the overwrit-
within a program. For example, the rule Ts8ignfor an ing of variabler; depends on the value of variablg, ;. For
assignment: := e ensures that information that may be example, this restriction prevents a variableaving policy
revealed by evaluating expressieris allowed to flow to L *=9"H. This restriction makes it easier to track informa-
variablez (- p. < I'(z)), and that information that may tion flows that occur due to overwriting, and simplifies both
be revealed by learning the assignment is executed is als@ecurity proofs and implementation of variable overwriting.
allowed to flow to variable: (- pc < T'(x)). We define theoverwrite dependenaglation<r over vari-

All the inference rules for the judgments, T" - ¢ com ables such that <r y if changing the value of may cause
andT + e : p exp are standard for information-flow policy I'(y) to require erasure. More formally, <r y if
security type systems, with the exception of the rule for there is an expressiansuch that € eraseConds(I'(y))
guarded declassification, THZLASSIFY. A guarded de- andz appears ire.
classification command := declassify(e, p; to p; using

¢, .. . ex,) declassifies information with poligy, to policy ~ Pefinition 1 (Well-formed typing context) Typing ~ con-
p;. Rule T-DECLASSIFY requires thap; can be relabeled textI" is well-formedif the overwrite dependency relation
p, assuming conditions conditions, . .., e, are satisfied ~ ~r 1S well-founded and for alt: € Vars, I' - I'(z) pol.
(ao,...,ar F eo,...,ex < prp:). Rule T-DECLASSIFY

also requires that the declassified information is allowed 3-4 Example

to be stored i (+ p; < T'(x)), that the information

gained by knowing the declassification occurred can flowto Figure 8 shows a fragment of IMPcode that could be

x (F pec < T'(z)), and that the information gained by evalu- used to process a client request to the medical information

T-SKIP T-ASSIGN T-SEQUENCE
'+ pepol ke :T(x)exp Fpc<I(z) Tk pcpol pe,I'Fcgcom pc,T'F ¢; com
pc, I' - skip com pe,I' F o :=ecom pe, '+ ¢g; ¢1 com
T-IF T-WHILE
ke :p.exp pcd,T'Fcocom pcd,T'F c; com I'ke: p.exp pd,T'Fccom
Fpc<pd Fop.<pd T pcpol I'tpepol Fpc<pd +pe<pd
pe, T = if e then ¢q elsec; com pc, T = while e do ¢ com
T-DECLASSIFY
I'te:prexp Fpe<T(z) Fp <T(z) TF pcpol
Vie0.k.T'Fe; : I'(z) exp ao,...,ak Feo, ... e < prpy
pe,I' F o .= declassifye, py to p; usingey, . . ., ex) com
T-VAL T-VAR T-Op
T'Fey:poexp T'kep : ppexp
Fl(@) <p Fpo<p Fpi<p
I'En : pexp 'z : pexp IF'Feyder : pexp
T-PoL eraseConds(¢) £ ()
Ve € eraseConds(p). T'e : pexp

I'F ppol

Figure 7. Inference rules for typing judgments

if (userReqExit) then
appEnd = 1; exit()

else
/I get user's symptoms
symp := getUserSymptoms();

/I diagnosis

if (contains(symp, ‘fever) &&
contains(symp, ‘malaise’) && ...) then
diag := ‘Influenza’

else if ...

© 0N O A WN P

=
~ O

I'(symp) = session *PPER/ T

I'(diag) = session PP T T'(userReqExit) = session

I'(appEnd) = session

Figure 8. Medical information website exam-
ple

eraseConds(p\2¢) £ eraseConds(p)
eraseConds(p %"q) £ {a} U eraseConds(p)

pe,I'Fccom, T'+e : pexp,and I' - ppol

website described in the introduction. For ease of presenta-
tion, we assume the existence of functions and strings.

The code first checks if the user has requested to exit the
diagnosis application, and if so, sets variabfeEnd and
exits. Otherwise, the code gets the user’s symptoms and
uses them to produce a diagnosis, which would then be dis-
played to the user. Modulo the use of strings and functions,
the code is well-typed, and the relevant parts of the typing
contextI™ are also shown in Figure 8.

The policy enforced on the user symptorfi¢symp), is
session 2PPERA*T - As described in Section Zession is
a confidentiality level allowing only the session client and
server to read the information, and is a confidentiality
level so restrictive that it prevents the server from storing
the information. There is an implicit flow of information
from symp to diag, assymp is used in the conditional test
on lines 8-9, andiiag is assigned to in the body of the
conditional. By typing rule T+, the program counter pol-
icy for the conditional’s body must be at least as restrictive
asI'(symp). Similarly, by rule T-AssIGN I'(diag) must
be as restrictive as that program counter policy. These con-
straints are satisfied by using poli€Y{symp) as the pro-
gram counter policy for the body of the conditional, since
I'(symp) = I'(diag).

The value of variableappEnd can cause policy

session ®PPERYT to require erasure. Indeed, when vari- obs(¢) £ ¢

able appEnd is set (line 2), variablesymp anddiag are obs(p™eq) 2 obs(p)
overwritten. There is thus information flow froappEnd to a

symp anddiag. The requirement for a well-formed typing obs(p ¢"q) = obs(p)

context tracks this flow, and requires thaf’(appEnd) <
I'(symp) and I'(appEnd) < I'(diag), which are satisfied,

as Figure 9. Observation level

['(appEnd) = session, if obs(I'(z)) C ¢ theno(x) = o'(z). Intuitively, if

[(symp) = T'(diag) = session *PPE3/T, (e, o) =~ (¢, '), then a user with security clearaneés
unable to distinguish these two configurations by examining
the contents of the memory. However, a user may be able
to distinguish two executions of the program starting from
(e, o) and{c, o), by observing the sequences of config-
urations that each execution produces. This motivates the
definition of traces, and correspondences between traces.

A trace 7 is a (finite or infinite) sequence of configura-
tionst = <CQ, O‘o><01, 0’1> ... such tha’[<0i,1, O’i,1> —
(¢;, 0;) for all i € N such tha) < i < |7|, where|r| de-
notes the length of trace We write7[¢] to refer to theith
configuration in the trace.

We usecorrespondencefl] between traces to indicate
which states appear equivalent to an observer that sees first

and
F session < session 2PPERI/ T

4 Security

The type system and runtime mechanisms of pviior-
rectly enforce the security policies of Section 2.

4.1 Noninterference

Noninterference [7] is a well-known end-to-end seman-
tic security condition which requires that secret inputs do one trace, then the other. A correspondelices a rela-

not influence public outputs. A formal statement of non- tion over the natural numbers. K is a correspondence for
interference depends on the definitions of secret input andtracesn and,, and(i, j) € R, we will use it to mean that
public output. In this paper, we consider the secret input 71[i] andr,[] look the same to a given observer. Formally,

to be the contents of a smglg variable at the start of pro- a correspondenca between traces, andr, is a subset of
gram execution, and the public output to be the values ofN % N such that

some subset of variables during execution. To state non-
interference formally, we define notions of observational 1. (Completeness) eithéi | (i,7) € R} = {i e N|i <
equivalence of configurations, execution traces, and corre- |r|}or{j | (i,j) € R} ={j e N|j < |7'|}; and
spondences between traces. N _ _)

The observation levedf variabler is determined by the 2 (Initial configurations) if 2| > 0 then(0, 0) € R; and

policy I'(z) enforced on information stored in For policy 3. (Monotonicity) for all(i, j) € R and(i’,j') € R, if

p, 0bs(p) € L is the confidentiality level that is currently i < i thenj < j'; and, symmetrically, iff < j/ then
enforced on information labelad defined in Figure 9. The i< - ’ '

observation level of variable is obs(I'(x)). Note that the

observation level of a variable does not change during exe- This definition ensures that a correspondence covers all
cution. The intuition is that a user with security clearafice configurations in at least one aefor 7/, and if both traces

is only able to see the contents of variables with an obser-are non-empty, then the initial configurations in the traces
vation level bounded above iy For example, if variable correspond to each other. The monotonicity requirement
x has policy(H* L) ¥ H enforced on it, the observation implies that the observer observes each trace as it executes,
level of z is H, and a user with clearande could not ob- and time moves only forward.

serve the contents af The policy(H\2 L) " H describes Correspondences are both timing and termination insen-
how the confidentiality of information stored inmay and sitive, implicitly assuming that an observer cannot directly
must change as conditions are satisfied, but does not changebserve atomic transitions, and cannot detect if an execution

the observability of the variable itself. has terminated. The definition can be refined to provide tim-
Two configurationgc, o) and(c’, ¢’) areobservation- ing and/or termination sensitivity. Termination sensitivity is
ally equivalent at level, written (c, o) ~, (¢, o'}, if achieved by strengthening completeness to require that the

all variables that are observable at le¥ehave the same correspondence covers all configurations in bodnd 7/,
value in both memories. Observational equivalence is im- and that no configuration in or 7/ corresponds to an infi-
plicitly parameterized on the typing contekt More for- nite set of configurations. Timing sensitivity is achieved by
mally, (¢, o) =, (¢, ¢’) if and only if for all z € Vars, strengthening the definition so that every configuration in

andr’ corresponds to exactly one other configuration. Tim- program. However, whereas noninterference required all
ing sensitivity implies an observer is able to observe eachcorresponding configurations to be observationally equiva-
time step, and entails termination sensitivity. lent at a fixed level, noninterference according to policy is

Having defined traces, correspondences, and observamore precise, and requires corresponding configurations to
tional equivalence of configurations, we can now state non-be observationally equivalent at confidentiality levels deter-
interference. A command is noninterfering at le¥efor mined by the semantics of the policy enforced on the input.
variablez, if input supplied in the variable at the begin- Thus, noninterference according to policy reflects how the
ning of the program has no observable effect for a user with observability of input may change during the execution of
security clearancé watching the execution of the system: the system, as declassifications and erasures occur.

Noninterference according to policy generalizes nonin-
terference. In particular, if the policy enforced on a vari-
ablez indicates that information will never be observable at
a confidentiality leve¥, then noninterference according to
policy for variablex implies noninterference at levélfor
variablex. For example, a program that is noninterfering
according to policy and takes input in variablevith pol-

The definition of noninterference relies on a typing con- icy A enforced on it, will never declassify the input to level
textI', used in the definition of observational equivalence. 1, and thus is noninterfering at levElfor z. The following
For brevity, we omit mention df when clear from context. theorem states this formally.

Noninterference is too strong in the presence of declassi- i
fication, which intentionally makes secret information pub- The_orem 1 I_:or ?‘" commandgc, typing C_O”teXtSFa and
lic. Noninterference cannot express erasure requirements‘,’ar!ablesx’ if cis nonlnter_ferln_g z_iccordmg to policy for
which make publicly observable information less observ- varlablex,. then for all confu?entlahty levelé such that .for
able. Motivated by these shortcomings of noninterference, &/l memoriess, £ & {¢" | (s, ') € [I'(z)](c, o)}, ¢ is nonin-
we defined noninterference according to policy. terfering at level’ for variable .

Definition 2 (Noninterference) A command: with typing
contextl” is noninterfering at levef for variablex if for all
integersvy, vy, € Z, all memoriess, and all tracesr; and
7o such thatr;[0] = (c, update(o, z,v;)) for i € {1,2},
there exists a correspondené&efor 71 and > such that for
all (i,j) € R, mi[i] =¢ 12[j].

. . . The central result of this paper is that the type system
4.2 Noninterference according to policy and runtime mechanisms of IMPsuffice to enforce erasure
and declassification policies. Thus, any well-typed IMP

Noninterference according to polidp] is a semantic program is noninterfering according to policy.

security condition that generalizes noninterference, and al-
lows precise reasoning about the observability of informa- Theorem 2 For all typing contextd” and commandes, if I
tion as it undergoes declassification and erasure. is well-formed, angbc, I' = ¢ com for some policyc, then
Noninterference according to policy is defined in terms for all variablesz € Vars, c is noninterfering according to
of the policy semantics, presented in Section 2. The in- policy for variablex.
tuition behind the policy semantics is that if information
in states has policyp enforced on it, then when the sys-
tem enters state’, the information (or anything derived
or influenced by it) should be observable at le¢@nly if
(s',¢) € [p]s- Noninterference according to policy makes .
this intuition precise. Here, we specialize the definition of © 10 Jif and beyond
noninterference according to policy for IMPprograms.

The proof of Theorem 2 is given in the companion te-
chinical report [3]. It uses Pottier and Simonet’s noninter-
ference proof technique [20].

The Jif programming language [18] extends Java [8] with
information-flow control, allowing security policy annota-
tions on program variables and method signatures. In this
section, we describe how we extended Jif with declassifica-
tion and erasure policies, and mechanisms to enforce these
policies. The resulting language is calledglif

Definition 3 (Noninterference according to policy) A
command: with typing context” is noninterfering accord-
ing to policy for variablez if for all integersv;, vy € Z,

all memorieso, memorieso; = wupdate(o,x,v;) and
o9 = update(o,x,v9), and all tracesr; and > such that
7:10] = (¢, 0;) fori € {1, 2}, there exists a correspondence
R for 7, andr, such that for all(é, j) € R, forall £ € L, if
(r1[i], ©) & [P(@)]e, 01y @nd (7[5, €) & [D()] e, then
71[i] = 72[].

5.1 Decentralized label model

Security policies in Jif are from théecentralized label
Like noninterference, noninterference according to pol- model(DLM) [17]. In DLM labels, security principals de-
icy places restrictions on whether information input in vari- clare confidentiality and integrity restrictions on informa-

ablex is observable by a user during the execution of the tion. Thereader policyo —» r means that the principal

owns the policy, and allows principal to learn, or read, is of type conditon . The expression is evaluated
information; thewriter policy o < w is also owned by prin- by first evaluatinge to a valuew, then evaluating each
cipal o, who allows principatv to influence, or write, infor- ¢; in turn; if any e; evaluates tofalse , then an
mation! A label consists of conjunctions) and disjunc- UnsatisfiedConditionException is thrown; oth-
tions () of reader and writer policies. Within a label, dif- erwise, the expression evaluatesvtolf the evaluation of
ferent principals may declare different restrictions, making e or anye; results in an exception, the declassification ex-
the DLM suitable for reasoning about security in the pres- pression also results in the exception. As in the typing rule
ence of mutual distrust between principals. Variable types for declassification in Figure 7, type checking ensures that
and method signatures in Jif may be annotated with labels.L; may be relabeled., under the assumption that all con-
A labeled typés a pair of a base type (a primitive type or ditionse; are satisfied.
class) and a label. Note that Jif already provides a mechanismdelective

We extended the DLM to allow principals to specify con- declassificatiofl6, 15, 19], whereby a declassification that
fidentiality restrictions using declassification and erasure weakens or removes a policy owned by principaéquires
policies. That is, declassification and erasure policies mayo’s authority. By contrast, guarded declassification does not
now appear in reader policies on the right of the arrow. require the authority of any principal, since given a reader

The base lattice of confidentiality levels is the set of policy o— (p\2¢), the principab has already stated that in-
security principals, which is closed under conjunctio) (formation may be declassified when conditiois satisfied.
and disjunction) [14, 24], and so forms the necessary In Jifg, selective declassification and guarded declassifica-
lattice structure. For example, the reader polityce — tion coexist as separate and independent mechanisms.
(BobV Chuck) & Bob is owned by Alice, who requires the To enforce erasure policies, difensures that a variable
erasure policy Bob V Chuck) & Bob to be enforced. The or location that has label enforced on it is overwritten
erasure policy initially allows Bob or Chuck to read infor- whenever any erasure policy inrequires it. For example,
mation, but once is satisfied, only Bob may read it. if a location has the labdlAlice — (Bob ®™is-£” Chuck) M

Instead of security principals, we could have used the de- Dave — (Alice *™is->-47T)} enforced on it, then the loca-
centralized labels as the base lattice. This would allow la- tion is overwritten whenever eithéris.f orthis.o.d
bels such a$Alice - Bob)\¢ (Chuck — Dave). However, evaluates torue . When a location or variable is overwrit-
this approach runs counter to the decentralized philosophyiten, its contents are replaced with an appropriate default
different principals cannot declare different declassification value. Thus, numeric locations are overwritten with zero,

and erasure requirements. and reference locations are overwritten withll . Sec-
For the condition language, we allow a restricted class of tion 5.4 describes the runtime mechanisms used to achieve
expressionsaccess path expressiooktype condition this. This erasure mechanism is analogous to the erasure

and negations of these access path expressions. The typmechanism of IME, which overwrites variables if the pol-
condition is a new primitive type with two values: icy enforced on the variable requires erasure.

true andfalse . Expressions of typeondition may

be cast tdboolean , and vice versa. An access path ex- 521
pression is an expression of the fomy;..... fn, Where o
r is a local variable, the special varialifeis , or a class Jifis intended for practical information-flow control. It sup-
name; eacly; is a field; and all path elements other than ports a large subset of Java’s language features, and pro-

Interaction with Java and Jif features

the last are declardihal . Immutability of path elements vides additional features such as dynamic labels, constant
is needed for sound reasoning about conditions within thearrays, and class and method polymorphism, needed for
type system. building real applications. The erasure enforcement mech-

anism of IMPz needs careful adaptation for these language
5.2 Syntax and semantics features.

Jif extends Jif's syntax and runtime system to incorpo- Fing| fields and variables. In Java, fields, local variables,
rate the guarded declassification syntax and runtime erasur@nq formal arguments can be markal , meaning their

mechanisms of Section 3. o value will not change after initialization. To respect the
Jifp contains the new guarded declassification ex- finality of variables and locations, Jifrequires that final
pressiondeclassifye, Ly to L; using eo,...,ex), variables and fields cannot be overwritten. The labeh-

where Ly and L; are labels, and each expressien forced on a final field or variable must not contain any era-

1The mnemonic for arrow direction in reader and writer policies is that sure pOIICIeS, an.d iL, contains a dynamlc. label (See below)’.
in a reader policy — r, information may flowto principalr, whereas in a then the. dynamic label must not Comam any erasure poli-
writer policy o < w, information may flowfrom principalw. cies. This ensures that labklnever requires erasure.

10

Arrays. Jif allows different labels to be enforced on the 5.3 Information flow
elements of an array and the array itself. If the label en-
forced on the elements of an array requires erasure, the array Jif's existing type-system tracks information flow. As
is overwritten with appropriate default values; the length of discussed in Section 3, condition satisfaction can itself be
the array is not altered. Jif suppoasnstant arrayswhose used as a covert storage channel. Xtends Jif's type
elements cannot be modified after initialization. As with system to soundly track this potential information flow.
final fields, labels on elements of constant arrays must ~ Condition satisfaction affects whether the expression
never require erasure. declassify(e, Ly to L, using eo,...,ex) declassifieg or
throws anUnsatisfiedConditionException Jifg

)]) requires that the label of eaehis no more restrictive than
Dynamic labels. Jif can represent labels at runtime and label L,.
treat labels as first-class values. The primitive tigieel Condition satisfaction may also cause variables and loca-
is the type of runtime labels, and Jif permits runtime com- yjons to be overwritten. Jif tracks these information flows
parisons of dynamic labels. gifextends the runtime rep- analogously to the IMP policy typing judgment - p pol.
resentation of labels to permit declassification and erasureyit, . requires that whenever a labglis declared in a pro-
policies to also be represented at runtime. We introduce agram, for any erasure poligys” ¢ that occurs irL, the label
new kind of label, to reason about runtime labels that may o ey nressior must be no more restrictive than Jif; also
require erasure. The primitive typdabel is used for dy- o ires thatifbl is a dynamic label that occurs i then
namic labels that may require erasure. Only Qynam|c la- the valuelbl must be no more restrictive thdn So, if e
bels of typeelabel may contain erasure policies; a dy- s 5 condition that appears Inl , then the label of is no

namic label of typelabel ~ cannot contain erasure poli- e restrictive thatbl , and thus no more restrictive than
cies. Thus, the labels of final fields, final variables, and

elements of constant arrays, may refer to dynamic labels of

type label , but may not refer to dynamic labels of type .
elabel. The typelabel can be cast telabel, but not 5.4 Translation
vice versa. The restriction that onélabels may contain

erasure policies also simplifies backwards compatibility of The.Jif compiler [18] is a sogrce-to-source compiler,
Jif with Jif. producing Java code as output. Jif programs rely on a small

trusted runtime library, implemented in Java, that provides
functionality such as runtime comparisons of labels. We

Polymorphism. Jif provides polymorphism for the labels extended the runtime library, and modified the source-to-
of method arguments. For example, the method signatureSource translation, to provide runtime support for erasure.
double{a} sine(double{Alice - Bob} a) states that the The key idea is that if a variable or location may need to
label on the value returned is the same as the label of theP€ overwritten depending on the satisfaction of a condition
actual argumené, which can be no more restrictive than @ then a listener is registered with conditionthe listener
{ Alice - Bob} . In Jif method bodies, the label of a for- is notified whenever the value afchanges, and the listener
mal argument is a polymorphic label, representing the la- will overwrite the variable or location if necessary.
bel of actual argument, and bounded above by the argument If @ local variable may need to be overwritten, then the
label specified in the signature. However, because actuafranslation moves the local variable to the heap, to allow a
arguments may require erasure during the method body excondition listener to access it, and overwrite it as needed.
ecution, we need to know what label to enforce on formal ~ Assignments to fields and local variables are translated
arguments in the method body. Thus, inglifnethod bod- to check that the variable or field does not currently require
ies assume that the label of a formal argument is simply €rasure. The combination of condition listeners and assign-
the argument label bound specified in the signature. This isment checks ensures that whenever the label enforced on the
sound, but not as permissive as Jif, and effectively removesvariable or location requires erasure, the variable or location
argument label polymorphism. However, it is not overly re- Will be zero orull as appropriate.
strictive: we successfully implemented a remote voting sys- ~ Overwriting a variable or location of typeondition
tem in 14,000 lines of Jjf code, as discussed in Section 6. may trigger the overwriting of other variables and locations.
Jif also supports polymorphic classes, permitting classesTo ensure that updating a condition does not cause an infi-
to be parameterized on labels and principalif; extends ~ Nite cascade of listener invocations, the type system gf Jif

the class parameters to allow parameters of tpel. requires that for all conditions, the value ofz cannot (di-
rectly or indirectly) control whether needs to be overwrit-

23if as of version 3.1 does not support Java generics, another form of t€N. This is_analogous to_ ensqring that the overwrite depen-
class parameterization for polymorphism. dency relation<r of Section 3 is well-founded.

11

6 Case study: Civitas

Using Jifz, we implemented Civitas [4], a practical, se-
cure, remote voting system. The use of declassification and
erasure policies in the implementation of Civitas help en-
sure that the system’s security requirements are satisfied.
This section discusses the experience of using thfim-
plement Civitas.

Civitas guarantees strong security properties in the pres-
ence of a strong adversary. The design of Civitas refines a
cryptographic voting scheme by Juels, Catalano, and Jakob-
sson [13]. The entities involved in a Civitas election in-
clude an election supervisor, voters, aldction authori-
ties which are mutually distrusting entities that collaborate
to run an election. A Civitas election has several phases.

1. Setup.The electoral roll is established and shared keys
are generated.

2. Registration.Voters retrieve credentials from election
authorities.

3. \Voting. Voters vote using their credentials.

4. Tabulation. Election authorities tabulate the election
results.

More details of the design and security assurances of Civitas
are available in a recent publication [4].

Civitas is implemented in 14,000 lines of gi€ode, with
about 8,000 additional lines of Java code to perform I/O and
implement cryptographic operations. Declassification and
erasure policies are used in four distinct places.

e Generation of a shared key by authoritieuring
setup, authorities engage in a protocol to generate a
shared El Gamal key pair. Each authority generates a
share of the key pair, and publishes a commitment to
it. Each authority publishes its share of the public key,
but only after all commitments are published.

The label {Al - Ai\(‘lllCommPosted J—§Ai - Az}

is used for authorityA;’s public key share. The
declassification policy requires that initially the in-
formation is readable only by election authority,

and may be declassified to be readable by every-
one (represented by the bottom principa) when
condition allCommPosted is satisfied. Condition
allCommPosted is a field of typecondition . It

is easy to check that this field is only updated orge

published, each authority reveals its bits, which can be
combined to form a sequence of bits that all authorities
agree are random.

Similar to the key shares, the labeld; -

A \aUBitsPosted | - A, A;} is used for authorityd;’s
random bits. ConditiomallBitsPosted is a field of type
condition , and it is easy to check that this field is
only updated oncel; has been able to successfully re-
trieve all bit commitments.

Management of credential shares by authoritiBsir-

ing registration, each authority generates a credential
share for each voter. Each voter contacts each authority
to retrieve his shares, combining them into a credential
that can be used to vote. After delivering the share
to the voter, the authority removes the share from the
system. This helps ensure that the voter's anonymity is
not violated should4; be subsequently compromised.
Authority A; enforces the label {4; N

(Az delivered/T)\(‘ieliveryReq J—aAz P Az} on each
voter credential share. ConditieleliveryReq is satis-

fied when the voter has requested his credential share,
and has authenticated himself to the authority. The
satisfaction of this condition allows the declassifica-
tion of the sharé. Any copies of the information that
were not declassified must be erased when condition
delivered is satisfied upon successful retrieval by the
voter.

Management of voter credential shares by voting
clients. After voter V; has retrieved all credential
shares from the authorities, he combines them into a
single credential, which he then uses to vote, publish-
ing it together with his ballot. After combining the
shares, the voter deletes them, to remove any record of
which authority provided which share.

The voter enforces on each credential share the label
{‘/J N (‘/J postCombined/‘T)\?ombined J_} Upon com-
bining the shares into a credential, conditi@mbined

is satisfied, and the voter can declassify the creden-
tial to allow it to be published with his ballot. After
combining shares, conditiopostCombined is satis-
fied, and undeclassified copies of the shares (or of in-
formation derived from them) are erased.

Jif z allows complex declassification and erasure security
requirements to be clearly and unambiguously declared on
the data. In addition to stating what security must currently

has successfully retrieved all key commitments. The be enforced on the data, the policies limit how the data may

writer policy A; <+ A; indicates that the key share was
influenced only byA;.
e Commit-reveal protocol by authoritieBuring tabula-

S|deally, the declassification policy should allow the share to be read-
able only by the vote#/; it is intended for. In the protocol between au-
thority A; andVj}, each authenticates to the other, and they establish a

tion, the authorities jointly generate random bits, and shared key; the credential share is sent encrypted withk. The rea-

each authority must believe that the bits are random.

soning supported by the DLM is not powerful enough to determine that
information encrypted witlk is readable only byd; andV;;. Extending it

Each ?—Uthority selects . random bits, and PUb"SheS 8to reason about the subtleties of cryptography would allow a more precise
commitment to these bits. Once all commitments are declassification policy, but is largely orthogonal to this work.

12

be used in the future. The information flow analysis en- that simple erasure is straightforward to enforce.

sures that uses of the data conform to the declared security Hansen and Probst [9] have also used erasure policies
policies. This provides additional assurance that the Civi- in secure dynamic program repatrtitioning. Secure program
tas implementation is correct. The policy annotations servepartitioning [26] is a technigue to split data and code across
as a form of documentation, making complex information a set of mutually distrusting hosts while guaranteeing secu-

security requirements visible in the code itself. rity. Hansen and Probst consider repartitioning a program
when the set of hosts changes dynamically, and use era-
7 Related work sure policies to ensure that old copies of data are removed

from the system when repartitioning occurs. Hansen and
Probst do not describe how to enforce the erasure policies.
Sgndergaard’s subsequent master’s thesis [23] discusses the
trusted runtime components required to enforce these era-
sure policies, but does not implement them.

The most closely related work is that of Hunt and
Sands [12]. Concurrently with this work, they consider the
enforcement of simple erasure policies of the faipi?’,

where erasure 1S requwed_ at th_e end_of_ a lexical SCOPE. oobelfeld and Sands [22] consider different aspects
These policies are a restricted instantiation of the policy

framework used here, where policies cannot be nested ant?lc declassification, and propose four semantic principles

o L e or declassification, three of which are applicable to era-
the condition language is limited to specifying the end of : . . e
. . . . sure. Noninterference according to policy satisieman-
lexical scopes. Using flow-sensitive typing contexts [11], .. . - .
tic consistencyandconservativity but does not satisfgon-
Hunt and Sands present an elegant type system to enforce . d .
N . . . Occlusionprecisely because, as Hunt and Sands [12] point
erasure policies; their system requires no runtime erasure o . L
. out, the policies addresghen but notwhat, information is
mechanism. erased and declassified
Comparing our work to Hunt and Sands’ highlights a '
tension between expressiveness of erasure conditions and _
ease of enforcement. Simpler condition languages are eas8 Conclusion

ier to reason about statically, and thus easier to enforce stati-

Ca”y. Hunt and Sands’ conditions are tied to lexical scopes, In this paper we have shown how to enforce erasure re-
and itis straightforward to reason statically about when con- quirements end-to-end in language-based settings. Erasure
ditions are satisfied. By contrast, the condition language requirements are specified in a flexible and powerful pol-
used in this work is program expressions: flexible, but dif- jcy framework [2] that can also express declassification re-
ficult to reason about statically. Because it is difficult or guirements. The policies express when information may be
impossible to know the value of an arbitrary expression at declassified, and when information must be erased.
a given program point prior to execution, it is difficult ©© \we have proved that an information-flow control type
determine statically whether a policy will require erasure system, in conjunction with a runtime mechanism for era-
at that program point, and thus difficult to enforce erasure gyre, can enforce the erasure and declassification policies
statically. Instead, we use a simple runtime mechanism toj,, IMP, a simple imperative language. Well-typed IMP
enforce erasure, an approach similar in spirit to hybrid type programs satisfyoninterference according to poli¢g].
checking [6]. _ The end-to-end enforcement of erasure and declassifica-
Although runtime mechanisms are used to help enforcetjon policies is also practical: we have extended the Jif pro-
erasure and declassification, information flow control in gramming language [18] with erasure and declassification
IMP; is static, using a type system to track and restrict o|icies and enforcement mechanisms, and used the result-
the flow of information. Starting with Volpano, Smith and ing language to implement a secure remote voting system.
Irvine [25], type systems have proven successful in provid- The yitimate goal of this work is to make it easy for pro-
ing information flow control without the overhead of rep- grammers to write secure programs, and to have assurance
resenting security labels at runtime; many of these typenat these programs are secure. This work, by providing
systems are surveyed by Sabelfeld and Myers [21], andproyably secure enforcement of expressive erasure and de-

Sabelfeld and Sands [22] discuss some of the recent typ&|assification policies, brings us closer to that goal.
systems that consider declassification.

Hansen and Probst [10] consider information flow secu-
rity in Java Card bytecode, and identify the utility of era- ACknowledgments
sure policies in providing security assurance. They consider

“simple erasure policies” of the forrh 4" H, whereend We thank Michael Clarkson for comments on an earlier
is a condition indicating the end of execution of the current draft, Fred Schneider for discussions on how best to present
program. They define a correspondisignple erasurese- this material, and Eric Breck for suggesting the medical di-

curity condition. They conjecture, but do not demonstrate, agnosis application.

13

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

A. Banerjee, D. A. Naumann, and S. Rosenberg. Expres-
sive declassification policies and modular static enforce-
ment. Technical Report CS Report 2007-04, Stevens Insti-
tute of Technology, Nov. 2007.

S. Chong and A. C. Myers. Language-based information
erasure. IfProc. 18th IEEE Computer Security Foundations
Workshop pages 241-254, June 2005.

S. Chong and A. C. Myers. End-to-end enforcement of era-
sure and declassification. Technical Report 2008-XXXX,
Cornell University, Apr. 2008.

M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: A
secure voting system. Froc. IEEE Symposium on Security
and Privacy May 2008.

D. E. Denning and P. J. Denning. Certification of programs
for secure information flowComm. of the AC\M20(7):504—
513, July 1977.

C. Flanagan. Hybrid type checking. Froc. 33rd ACM
Symp. on Principles of Programming Languages (PQPL)
pages 245-256, 2006.

J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy
pages 11-20, Apr. 1982.

J. Gosling, B. Joy, G. Steele, and G. Brachihe Java Lan-
guage Specification Addison Wesley, 2nd edition, 2000.
ISBN 0-201-31008-2.

R. R. Hansen and C. W. Probst. Secure dynamic program
repartitioning. InProc. Nordic Workshop on Secure IT-
SystemsOct. 2005.

R. R. Hansen and C. W. Probst. Non-interference and era-
sure policies for Java Card bytecode. Rroc. 6th Interna-
tional Workshop on Issues in the Theory of Secuiitgr.
2006.

S. Hunt and D. Sands. On flow-sensitive security types. In
Proc. 33rd ACM Symp. on Principles of Programming Lan-
guages (POPL)pages 79-90, 2006.

S. Hunt and D. Sands. Just forget it—the semantics and
enforcement of information erasure.Rmnoc. 17th European
Symposium on Programminiglar. 2008.

A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant
electronic elections. IWorkshop on Privacy in the Elec-
tronic Societypages 61-70, Nov. 2005.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
In Proc. 13th ACM Symp. on Operating System Principles
(SOSP) pages 165-182, October 199Dperating System
Review 253(5).

A. C. Myers. JFlow: Practical mostly-static information
flow control. InProc. 26th ACM Symp. on Principles of Pro-
gramming Languages (POPLpages 228-241, Jan. 1999.

A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. IProc. 17th ACM Symp. on Operating
System Principles (SOSRages 129-142, 1997.

A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label modelACM Transactions on Software
Engineering and Methodolog9(4):410-442, Oct. 2000.

14

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software release,
http://www.cs.cornell.edu/jif , July 2001.

F. Pottier and S. Conchon. Information flow inference for
free. InProc. 5th ACM SIGPLAN International Conference
on Functional Programming (ICFRpages 46-57, 2000.

F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Program-
ming Languages (POPLpages 319-330, 2002.

A. Sabelfeld and A. C. Myers. Language-based information-
flow security.|EEE Journal on Selected Areas in Communi-
cations 21(1):5-19, Jan. 2003.

A. Sabelfeld and D. Sands. Dimensions and principles of de-
classification. IrProc. 18th IEEE Computer Security Foun-
dations Workshoppages 255-269, June 2005.

D. Sgndergaard. Secure program partitioning in dynamic
networks. Master’s thesis, Technical University of Denmark,
2006. IMM-M.Sc-2006-92.

S. Tse and S. Zdancewic. Designing a security-typed lan-
guage with certificate-based declassificationPtac. 14th
European Symposium on Programmji2@§05.

D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysigournal of Computer Security
4(3):167-187, 1996.

S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Un-
trusted hosts and confidentiality: Secure program partition-
ing. InProc. 18th ACM Symp. on Operating System Princi-
ples (SOSR)pages 1-14, Oct. 2001.

