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Abstract. The focus of work on information flow security has primar-
ily been on definitions of security in asynchronous systems models. This
paper considers systems with schedulers, which require synchronous vari-
ants of these definitions. In particular, it studies the dependence of these
variant definitions of security on implementation details of the sched-
uler. Such independence is shown to hold for synchronous variants of
trace-based definitions, but not for a bisimulation-based definition. An
approach to the latter problem is proposed that preserves the attractive
computational properties of the bisimulation-based definition.

Information flow security is concerned with the ability of agents in a system
to make deductions about the activity of others, or to cause information to flow
to other agents. Since the seminal work of Goguen and Meseguer [GM82], which
introduced the notion of noninterference in a deterministic state machine model,
a significant body of literature has developed on this topic, dealing with how non-
interference should be defined in nondeterministic state machines [McC88,BY94]
and in richer semantic models such as the process algebras CCS [FG95] and
CSP [Ros95]. Until recently, however, most work in this area confined itself to
asynchronous models of computation, assuming that agents do not have access
to a system clock, which is too strong in many applications.

Notably, this is the case in the original motivation for the notion of noninter-
ference, operating systems separation kernels [Rus81,Rus82,Rus00]. The function
of this class of software system is to separate security domains in order to pre-
vent information flow and clashes of shared resource usage. In particular, in a
uni-processor system this involves scheduling the activity of the agents in the sys-
tem. In the presence of scheduling, many of the assumptions of the asynchronous
systems models used in the literature break down. For example, a common as-
sumption is that the system is “input enabled” in the sense that each action
may be performed at any state. This is patently not the case in the presence of
scheduling, which enables one agent’s actions while simultaneously disabling the
actions of others. Similarly, knowledge of the schedule may permit Low to deduce
the number of actions that High has taken, whereas the asynchronous definitions
of security would classify this as insecure. A correct treatment of systems such
as separation kernels therefore requires different definitions of security.
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In this paper, we undertake a study of the impact of schedulers on some of
the asynchronous definitions of security from the literature. We ask how these
definitions should be modified, and study the relationships between the revised
definitions. One question of particular concern is the extent to which these defini-
tions are sensitive to how the scheduler is implemented. Intuitively, the function
of a scheduler is only to make decisions as to when each agent in the system
should be enabled. Schedulers may be nondeterministic, and the nondetermin-
ism may be resolved early (e.g., by flipping a set of coins before their outcome is
needed) or late (e.g., by flipping coins only at decision points). However, as the
private state of the scheduler should be invisible to the agents in the system (al-
though they may know the scheduler being used), such implementation details
should not affect the security of the system. Independence of scheduler imple-
mentation also gives desirable flexibility to the implementer of the scheduler. We
show that modified versions of trace-based definitions of security are indepen-
dent of the scheduler implementation, but this is not the case for a definition
motivated by McCullough’s notion of restrictiveness [McC87,McC88] (which is
also closely related to one of Focardi and Gorrieri’s bisimulation based definitions
of security [FG95]). Fortunately, in this case, we show that only the existence of
a secure implementation makes the security definition sufficiently strong, which
further yields feasible verification of this property.

The structure of the paper is as follows. In Section 1 we introduce the se-
mantic framework within which we work, a type of labelled transition system
with observations. Section 2 defines schedulers and their representation within
this model. Section 3 deals with trace-based definitions of security for systems
with schedulers. Section 4 considers bisimulation-based definitions, where inde-
pendence of the scheduler implementation becomes a non-trivial issue. Section 5
concludes by discussing related work and future directions.

1 A Discrete-Time System Model

We take as the basic semantic model an enrichment of the well-established la-
belled transition system semantics for process algebra, adding to it a notion of
observation on states. This provides a framework that seems better able to cap-
ture the fact that in synchronous systems, agents may observe state changes
even when not participating in an action.

A signature is a tuple (A, D, dom) consisting of a set of actions A, a set of
domains (or agents) D and a function dom : A → D associating a domain with
each action. We define a state-observed labelled transition system (SOLTS) for
such a signature to be a tuple of the form 〈S, S0,→, O, obs〉 where

– S is a set of states (with elements denoted by s, t, t1, etc.),
– S0 ⊆ S represents the set of initial states,
– →⊆ S × A × S is a transition relation,
– O is a set of observations,
– obs : D×S → O is a function representing the observation made in each state

by each agent. For readability, we ‘curry’ the function obs (or its variants)
by writing obsu(s) for obs(u, s).

Write L
o for the set of all such systems. We write s

a
−→ t when (s, a, t) ∈→, and

s
a

−→ when there exists t such that s
a

−→ t. More generally, we write s0
α

−→ sn



when s0
a1−→ s1

a2−→ . . .
an−→ sn and α = a1a2 . . . an. A run of a SOLTS is a

sequence of the form s0
a1−→ s1

a2−→ . . .
an−→ sn with s0 ∈ S0. We write R(M)

for the set of all runs of M . We denote the sequence of actions in a run r by
Act(r) = a1a2 . . . an, and for each agent u write Actu(r) for the subsequence of
Act(r) consisting of actions a with dom(a) = u. A SOLTS is deterministic if for

s, t1, t2 ∈ S and a ∈ A, if s
a

−→ t1 and s
a

−→ t2 then t1 = t2. It is input enabled
if s

a
−→ for all s ∈ S and a ∈ A.
Given two SOLTS L = 〈S, S0,→, O, obs〉, L′ = 〈S′, S′

0,→
′, O′, obs′〉 with

the same signature, define the parallel composition L ‖ L′ to be the SOLTS

〈S×S′, S0×S′
0,→

′′, O×O′, obs′′〉 where →′′= {((s1, s
′
1), a, (s2, s

′
2)) | s1

a
−→ s2∧

s′1
a

−→ s′2} and obs′′u((s, s′)) = (obsu(s), obs′u(s′)) for all u ∈ D. This corresponds
to the lock-step execution of the two systems with synchronisation on actions.

Like most of the literature, we confine our attention to systems with two
security domains High (H) and Low (L) and the security policy L ≤ H , which
prohibits information flow from H to L. However, in order to deal with scheduling
and passage of time, it is convenient to include a third agent Sys that may
act when both H and L are waiting. The agent Sys can be understood as
corresponding to the scheduler activity as well as system internal actions. For
the remainder of this paper, we let D = {H, L, Sys}. For u ∈ D we define
Au = {a ∈ A | dom(a) = u}, and assume that ASys = {τ}. (The effect of
Sys actions may be nondeterministic, but we assume that there is not a need
to distinguish specific Sys events. Whereas AH and AL can be thought of as
representing inputs provided by the agents, Sys provides no inputs, but only
represents the automatic evolution of the state over time.) Write M for the set
of all input-enabled SOLTS with D = {H, L, Sys} and ASys = {τ}, and refer to
these systems as machines. In addition, we assume that actions take unit time
and that time continues to flow, so that agents cannot halt the system by failing
to act when scheduled. If failure to act is a possibility in an application, it can
be accommodated by including a “null” action for each agent, after which the
scheduler may schedule another agent.

2 Schedulers

Machines can be given an asynchronous semantics, but in this paper we will
study a semantics in which machines execute under the control of a scheduler,
which selects an agent at each moment of time. Our definition of scheduler differs
from others in the literature (such as that of [SS00]) in that a scheduler only
partially resolves the system’s nondeterminism. We give an agent free will to
choose which action to perform when it is scheduled.

Formally, a nondeterministic scheduler is a function σ : A∗ → P(D). Intu-
itively, given a history of actions α ∈ A∗, one of the agents in the set σ(α) will
be scheduled next. Compatibility of a finite sequence of actions with a scheduler
σ is defined by the following induction: the empty sequence ǫ is compatible with
σ, and αa is compatible with σ iff α is compatible with σ and dom(a) ∈ σ(α),
where α ∈ A∗ and a ∈ A. A run r of a machine is defined to be compatible
with a scheduler σ if Act(r) is compatible with σ. Given a machine M , we write
R(M, σ) for the set of all runs of M compatible with σ.

We henceforth assume some well-formedness conditions on schedulers. First,
we assume that schedulers do not terminate, so that if α is compatible with
σ, then σ(α) 6= ∅. Second, we assume that if α is not compatible with σ, then



σ(α) = ∅. (This simplifies the discussion of scheduler implementations below.)
A scheduler σ is deterministic if σ(α) is a singleton for all compatible α ∈ A∗. A
schedule is a finite or infinite sequence ς = u0u1u2u3 . . . where each ui ∈ D. For
α = a0a1a2 . . ., we write ς(α) for the schedule dom(a0) dom(a1) dom(a2) . . .. If
r is a run we also write ς(r) for ς(Act(r)).

In order to prevent the scheduler being a channel for information flow, we
define a notion that captures that the decisions of the scheduler are independent
of the actions of an agent. For the definition, we need an operation on actions
that masks actions of agent u: define µu(a) = a when a ∈ A\Au and µu(a) = ⊥u

when a ∈ Au. For a sequence α = a1a2 . . . ∈ A∗ define µu(α) = µu(a1)µu(a2) . . ..
Define a scheduler σ to be u-oblivious if µu(α) = µu(α′) implies σ(α) = σ(α′) for
all α, α′ ∈ A∗. Intuitively, this says that scheduling decisions do not depend on
the actions performed by agent u. We may therefore view a u-oblivious scheduler
σ as a function from (µu(A))∗ to P(D), where µu(A) = (A \ Au) ∪ {⊥u}.

Example 1. Consider a scheduler σ in which H and L are allocated alternate
blocks of time of length k, except that L may relinquish some of its share to H

by performing a yield operation. More precisely:

– σ(α) = {H}, if |α| div k is odd or |α| div k is even and the rightmost action
of domain L in α is yield,

– σ(α) = {L} otherwise.

Then σ is an H-oblivious scheduler. Here |x| denotes the length of a sequence x

and div denotes integer division. ⊓⊔

Schedulers may be represented as SOLTS. A scheduler SOLTS is a SOLTS
of the form 〈Q, Q0,→, {⊥}, obs〉 that satisfies

1. there is a transition from each state,
2. all transitions from a state are from the same domain, and all actions from

that domain are enabled, i.e., if s
a

−→ and s
b

−→ then dom(a) = dom(b), and

s
c

−→ for all c ∈ Adom(a), and
3. obsu(s) = ⊥ for all states s and domains u.

(Note that (3) means that agents do not obtain information about the scheduled
agents from their observations on any state of a scheduler SOLTS.)

We say that a scheduler SOLTS is u-oblivious for u ∈ D if for all states s, t

and actions a, if s
a

−→ t and dom(a) = u then s
c

−→ t for all actions c ∈ Au. A
scheduler or scheduler SOLTS is oblivious if it is u-oblivious for all u ∈ D.

Given a scheduler SOLTS A = 〈Q, Q0,→, {⊥}, obs〉, define a scheduler σA by

σA(α) = {sched(q) | q0
α

−→ q, q0 ∈ Q0}, where sched(q) is the unique domain
that has its actions enabled at q. Now say A represents σ if σ = σA. Interestingly,
a scheduler SOLTS representing a u-oblivious scheduler is not necessarily u-
oblivious. Therefore we decide to restrict to the u-oblivious scheduler SOLTSs
representing σ when a u-oblivious scheduler σ is refered to, and we justify the
existence of such u-oblivous implementations as follows.

Definition 1. For all u-oblivious σ, define the (infinite state) characteristic
scheduler SOLTS Aσ = 〈W, W0,→, {⊥}, obs〉 by

1. W = (µu(A))∗ × D,



2. W0 = {(ǫ, u) | u ∈ σ(ǫ)},
3. (γ, u)

a
−→ (γ′, v) iff dom(a) = u and γ′ = γ · µu(a) and v ∈ σ(γ′),

4. obs(u, w) = ⊥ for all u ∈ D and w ∈ W .

It can be readily shown that Aσ represents σ. Since µu(a) = ⊥u for all a ∈ Au, it
is also clear that Aσ is u-oblivious. If we drop the condition that σ be u-oblivious
we can give a similar definition by removing all occurrences of the operator µu.
This yields the following result, in which we also note that the set of runs of a
SOLTS compatible with a scheduler can be understood as being obtained via
parallel composition with a scheduler SOLTS representing the scheduler:

Proposition 1.

1. Every (well-formed) scheduler has a scheduler SOLTS that represents it.
2. A (well-formed) scheduler is u-oblivious iff it is represented by some u-

oblivious SOLTS.
3. If A is a scheduler SOLTS that represents σ and M is a machine, then

R(M, σ) is the set of runs s0
a1−→ s1

a2−→ s2 . . .
an−→ sn of M such that there

exists states q0, . . . , qn of A with (s0, q0)
a1−→ (s1, q1)

a2−→ (s2, q2) . . .
an−→

(sn, qn) being a run of M ‖ A.

We will be interested in definitions of security that classify a machine M as
secure or insecure when it is scheduled according to a scheduler σ. We assume
agents have a synchronous view of the machine, making an observation at each
moment of time and being aware of clock ticks. We permit that the agents
are aware of the scheduler being used, but may not have complete information
concerning the schedule in a particular run.

As already mentioned, we confine ourselves to the policy L ≤ H , which per-
mits information to flow from L to H but not vice-versa. To prevent the scheduler
providing a channel for the prohibited information flow, we need to ensure that
the schedules obtained, which may be observable to L, do not provide informa-
tion to L about H ’s activity. To this end, we focus on H-oblivious schedulers,
in which schedules do not carry any information about H actions.

Now, as implemented, the compound machine will have the form M ‖ A
where A is some scheduler SOLTS representing σ, so on first principles, we
should define security as a predicate on these composite systems. This raises
a concern: is the security of the scheduled machine sensitive to the choice of
implementation A? Intuitively, this should not be the case: the role of the sched-
uler is only to enable and disable agent activity, and its internal state is made
invisible to the agents H and L, so what matters is the set of possible schedules,
not the implementation details of how these schedules are generated. We say
that a security property X is implementation independent if for all H-oblivious
schedulers σ and all H-oblivious scheduler SOLTS A1,A2 representing σ, the
machine M ‖ A1 satisfies X iff M ‖ A2 satisfies X . We seek properties for which
this is the case. In this case, we may view X as a set of pairs (M, σ), where M

is a machine and σ is a scheduler. Sometimes for readability we also write X(σ)
for the set of machines M such that (M, σ) ∈ X .

3 Trace-based Security Definitions

In this section, we present a number of definitions of security that adapt some
notions of security from the literature on asynchronous systems. The common



feature of these definitions is that they can be defined using a trace-based se-
mantics of machines.

3.1 A Trace Set Semantics

All of the trace-based definitions we give can be stated with respect to a weaker
notion of semantics than SOLTS, in a way that easily leads to the property of
scheduler independence. To clarify this, we define the notion of system, which is
a tuple I = (R, {viewu}u∈D) consisting of a set R and functions viewu : R → V

where V is some set. Intuitively, R represents the set of possible states of the
world, and viewu(r) for r ∈ R represents the information u has about r. We say
β is a possible view for u ∈ D in I if there exists r ∈ R with viewu(r) = β.

Systems can be generated both from SOLTS and from pairs consisting of a
SOLTS and a scheduler. In particular, given a SOLTS M , we define the system
I(M) = (R(M), {viewu}u∈D) where the functions viewu : R(M) → O(Au+O)∗

are inductively defined by viewu(s0) = obsu(s0), and

viewu(α · a · s) =

{

viewu(α) · a · obsu(s) if a ∈ Au

viewu(α)· a ·obsu(s) otherwise

where α ∈ R(M) and Au+ = Au ∪ {a}. Intuitively, this says that an agent’s
view of a run is the log of all its observations as well as its own actions in the
run, and “a” is where an action not from u is performed.

The scheduling of an agent’s own actions are visible in its view, but this may
leave the agent uncertain as to the scheduling of the other agents. Say that u is
schedule aware in (M, σ) if for all runs r, r′ ∈ R(M, σ) with viewu(r) = viewu(r′)
we have ς(r) = ς(r′). In particular, every u is schedule aware in (M, σ) with
deterministic σ. For a pair (M, σ), the definition is given similarly by I(M, σ) =
(R(M, σ), {viewu}u∈D), with the identical definition of the view functions except
that the domain is now R(M, σ).

All of the trace based security definitions we give can be stated as properties
X of a system I. The definitions satisfy the following condition:

Let M be a machine, let σ be a (H-oblivious) scheduler and let A be a
scheduler SOLTS representing σ. Then I(M ‖ A) satisfies X iff I(M, σ)
satisfies X .

This leads immediately to the implementation independence of the definitions
with respect to the schedulers. As the above condition is straightforward to check
for each of the definitions, we give the statements directly in terms of (M, σ)
and leave the verification of the above property to the reader.

3.2 Nondeducibility On Inputs

For asynchronous systems, the notion of nondeducibility on inputs [Sut86] states
that a system is secure if L cannot deduce from its view any information about
the sequence of H actions that have been performed. We would like to formulate
a similar definition for systems that are subject to a scheduler. There are a
number of subtleties that lead us to state several different definitions.

One difference in the synchronous case is that, using its knowledge of the
scheduler, L can make deductions about the number of H actions that may have
been performed. It may also be able to deduce when these actions occurred. The
following definition abstracts from these concerns by focussing on the possible
infinite sequences of H actions that are consistent with L’s information.



Definition 2. (M, σ) ∈ tNDI1 if for all possible L views β in I(M, σ) and H

sequences α ∈ Aω
H , there is a run r ∈ R(M, σ) such that viewL(r) = β and

ActH(r) is a prefix of α.

Intuitively, this definition says that L is never able to rule out α as the sequence of
actions that will be performed by H over time. This definition does not take into
account the fact that L may be able to determine from its view some constraints
on the number of H actions that have been performed in the run. Plainly, the
number of H actions cannot be more than the number of observations in the
view. However, knowledge of the scheduler may enable L to further restrict this
set of possibilities, or even to determine the exact number of H actions. Given
a possible view β of I(M, σ), define the set of possible numbers of H actions
PnaH(M, σ, β) to be the set of numbers n such that there exists r ∈ R(M, σ)
with viewL(r) = β and |ActH(r)| = n. The intuition for the next definition is
that the possible numbers of H actions should be all that L knows about the H

actions.

Definition 3. (M, σ) ∈ tNDI2 if for all possible L views β in I(M, σ) and
sequences of H actions α ∈ A∗

H with |α| ∈ PnaH(M, σ, β), there exists r in
R(M, σ) such that ActH(r) = α and viewL(r) = β.

The above definition says that we may change the sequence of H actions in a
run to a sequence of the same length without changing the L view. However, the
fact that there is nondeterminism in the scheduler leaves open the possibility
that the new sequence of H actions may need to be scheduled in a different way
in order to preserve the L view. The following definition says that the change
may be made without changing how the H actions are scheduled.

Definition 4. (M, σ) ∈ tNDI3 if for all r ∈ R(M, σ), and α ∈ A∗
H with |α| =

|ActH(r)|, there exists a run r′ with ς(r) = ς(r′) and viewL(r′) = viewL(r) and
Act(r′) = α.

The following result gives some relationships between these definitions.

Proposition 2.

1. tNDI3 ⊆ tNDI2 ⊆ tNDI1.
2. (M, σ) ∈ tNDI1 iff (M, σ) ∈ tNDI2 iff (M, σ) ∈ tNDI3, given L schedule

aware in M .

3.3 Nondeducibility on Strategies

Nondeducibility represents an attack model in which it is assumed that L is
the attacker and H is a trusted agent that may engage in any of its possible
behaviours. A stronger attack model is to consider situations where H may be
a Trojan horse or insider that is attempting to pass information to L. By en-
gaging in specific behaviour, known to L, it may be possible for the insider
to pass information to L. Wittbold and Johnson [WJ90] showed by example
that nondeducibility is too weak for this type of attack, and proposed an alter-
native definition called nondeducibility on strategies. In asynchronous systems,
nondeducibility on strategies turns out to be equivalent to nondeducibility on
inputs [FG95,vdMZ06]. However, Wittbold and Johnson’s example concerns syn-
chronous systems with simultaneous actions. It is therefore of concern to check
how this notion behaves on scheduled synchronous systems.



Define an H strategy to be a function π : O(AH+O)∗ → AH . Intuitively, given
a view β, the action π(β) is the action that H would perform if it is scheduled

after making view β. A run r = s0
a1−→ s1

a2−→ . . .
an−→ sn is consistent with π

if dom(ai) = H implies ai = π(viewH(ri−1)) for all i. Write R(M, σ, π) for the
set of runs in R(M, σ) that are consistent with π. Similarly, write I(M, σ, π) for
(R(M, σ, π), {viewu}u∈D).

Definition 5. (M, σ) ∈ tNDS1 if for all r ∈ R(M, σ) and H strategy π, there
exists r′ ∈ R(M, σ, π) such that viewL(r) = viewL(r′).

As above, it is also of interest to consider the security of a system when L

may learn the schedule producing a particular run. This leads to the following
stronger definition.

Definition 6. (M, σ) ∈ tNDS2 if for all r ∈ R(M, σ) and H strategy π, there
exists r′ ∈ R(M, σ, π) such that viewL(r) = viewL(r′) and ς(r) = ς(r′).

The following result gives some relationships between these notions and those
of the previous section.

Proposition 3.

1. tNDS2 ⊆ tNDS1.
2. If L is schedule aware in (M, σ), then (M, σ) ∈ tNDS1 iff (M, σ) ∈ tNDS2.
3. tNDS1 ⊆ tNDI1 and tNDS2 ⊆ tNDI3.

The containment tNDS2(σ) ⊆ tNDI3(σ) is strict even on deterministic schedulers.
Consider the example in Fig. 1(a) with AH = {h, h′}, AL = {l}, and the deter-
ministic scheduler σ with schedule (L · H)ω. It is obvious that the system is in
tNDI3(σ) but not in tNDS2(σ) if H can distinguish s1 and s2.

0

s0

0

s1

0

s2

0

s3

1

s4

l

l

h

h

h’h

Fig. 1. (a) (M, σ) in tNDI3 but not in tNDS1 (b) (M, σ) in tNDS1 but not in tNDI2

The statement tNDS1 ⊆ tNDI2 does not hold in general. Consider the system M

in Fig. 1(b), controlled by a nondeterministic scheduler σ producing schedules
(H + Sys)Sys(H + L)ω. Any L observation is compatible with any H strategy,
because the schedules SysSys(H+L)ω produces all possible L views independent
of any action by H . However, the system is not in tNDI3 because if L learns that
the schedule is among HSys(H +L)ω, it can determine from the view 0 a 0 a 0
that the first H action was h. Moreover, it is not in tNDI2 because there does
not exist a run r with viewL(r) = 0 a 0 a 0 and ActH(r) = h′, although
|h′| ∈ PnaH(M, σ, 0 a 0 a 0). Together with the witness of Fig. 1(a) which is a
machine in tNDI2(σ) but not in tNDS1(σ), we have the following result.



Proposition 4. tNDS1 6⊆ tNDI2 and tNDI2 6⊆ tNDS1.

4 Bisimulation-based Definitions

Restrictiveness (RES) is a security property introduced by McCullough [McC88].
In state-observed systems, it can be characterised by the existence of an unwind-
ing relation, which is a binary relation ≈ on the set of reachable system states
[vdMZ07]. In asynchronous systems, the unwinding relation is essentially a bisim-
ulation relation treating L’s inputs as external actions, and H actions do not
cause changes distinguishable by L. The conditions are as follows:

(OC) if s ≈ s′ then obsL(s) = obsL(s′)

(SC) if s ≈ s′ and s
a

−→ t for a ∈ AL, then there exists a state t′ such that

s′
a

−→ t′ and t ≈ t′; and if s ≈ s′ and s′
a

−→ t′ for a ∈ AL, then there exists
a state t such that s

a
−→ t and t ≈ t′

(LRa) for all reachable states s, t and actions a ∈ AH , if s
a

−→ t then s ≈ t.

We would like to formulate a similar notion in scheduled systems. Since we allow
that L is aware that an H action has been scheduled, the condition LRa is too
strong. We reformulate the definition so as to permit L to distinguish that H

(or Sys) has performed an action, but masks which action has been performed.
We have two different variants of LRa, corresponding to the assumptions that L

may or may not know the schedule.

Definition 7. Given a SOLTS M = 〈S, S0,→, O, obs〉 ∈ L
o,

1. A insensitive synchronous unwinding relation is a relation ≈ ⊆ S × S sat-
isfying OC, SC and LR, where LR is defined as: for all reachable states s, s′

with s ≈ s′ and actions a, b ∈ AH ∪ ASys, if s
a

−→ t and s′
b

−→ then there

exists s′
b

−→ t′ such that t ≈ t′; if s′
b

−→ t′ and s
a

−→ then there exists
s

a
−→ t such that t ≈ t′.

2. A sensitive synchronous unwinding relation is a relation ≈ ⊆ S×S satisfying
OC, SC, LRH and LRSys, where LRH(LRSys) is defined as: for all reachable

states s, s′ with s ≈ s′ and actions a, b ∈ AH(ASys), if s
a

−→ t then there

exists s′
b

−→ t′ such that t ≈ t′; if s′
b

−→ t′ then there exists s
a

−→ t such
that t ≈ t′.

One major difference between RES and NDI/NDS is that the definition of RES
requires an explicit representation of states and transitions, which is more dis-
criminative than the notion of sets of runs required for NDI/NDS. In order to
formulate a version of RES for a scheduled system (M, σ) we need to apply the
notion of unwinding relation to the SOLTS (M ‖ A) where A represents σ. An
apparent problem is that whereas unwinding is sensitive to bisimilarity, different
scheduler SOLTS representing the scheduler σ need not be bisimilar.

Fig. 2 is an example which shows that there exists a machine M and a
scheduler σ such that for different implementations of σ, the composed system
may have different results with respect to the existence of an insensitive syn-
chronous unwinding relation. The two scheduler SOLTS above give the schedules
H(H + Sys)(H + L)ω, (we omit the states with heights greater than 2 since the
first two steps suffice for our purpose) with each state labelled by the name of
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Fig. 2. A system composed with two scheduler SOLTS representing a same scheduler

the scheduled domain. The states of the machine are labelled by L observations.
One may easily observe that there is an insensitive synchronous unwinding re-
lation on M ‖ A1, in particular we have (s0, q0) ≈ (s0, q0), (s1, q1) ≈ (s2, q2)
and (s1, q2) ≈ (s2, q1); however, there is no insensitive synchronous unwinding
relation on M ‖ A2. An example for sensitive unwinding relation can be created
in a similar way.

The dependence on scheduler implementation suggests that in order to ob-
tain an implementation-independent, bisimulation-based definition of security,
we should quantify over scheduler implementations. We could do this either by
a universal or by an existential quantification over scheduler implementations.
Which is preferred depends on one’s attitude to bisimulation based definitions
of security. One attitude is that the property most of interest is given by a
trace-based definition, but bisimulation-based definitions provide a useful proof
technique. In this case, an existential quantification is appropriate. On the other
hand, if one adheres to an understanding in which existence of an unwinding
is what makes a system secure, then it is necessary to quantify universally over
scheduler implementations in order to obtain an implementation-independent
notion of security. We define both variants:

Definition 8. 1. (M, σ) ∈ tRES∀1(tRES∃1) if there exists an insensitive syn-
chronous unwinding relation on the SOLTS M ‖ A for all (some) H-oblivious
A representing σ.

2. (M, σ)) ∈ tRES∀2(tRES∃2) if there exists a sensitive synchronous unwinding
relation on the SOLTS M ‖ A for all (some) H-oblivious A representing σ.

As is the case on the asynchronous systems [vdMZ07], the tRES
Q
i (for Q = ∀, ∃)

are the strongest of the security properties we have discussed so far, with the
following relations holding.

Proposition 5. 1. tRES∀i ⊆ tRES∃i ⊆ tNDSi for i = 1, 2.

2. tRES
Q
2 ⊆ tRES

Q
1 for Q = ∀, ∃.

That the containments of tRES∀i ⊆ tRES∃i are proper follows from the failure
of implementation independence shown above. To show the containments of
tRES∃i ⊆ tNDSi are proper, we present the system in Fig. 3 where AH = {h, h′},
AL = {l}, and the deterministic scheduler σ contains the schedule (HL)ω. If



“≈” were a (in)sensitive synchronous unwinding, we would have that the states
at level 2 are related by “≈”. However, these states are not bisimilar, as they
do not satisfy the LRH(LR) property if we relate any two of them. We may also
observe there is no H strategy to pass information to L regardless of H and L’s
observational power.
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Fig. 3. (M, σ) in tNDS1 and tNDS2, but not in tRES∃1 or tRES∃2

5 Conclusion and Related Work

Our focus has been on the interaction of schedulers with notions of information
flow security. There appears to be relatively little literature on this topic.

One related set of papers is Rushby’s work on separability [Rus81,Rus00],
which aims to define a security property for operating systems security kernels. A
separation kernel provides each user the abstraction of a local abstract machine,
which is unaffected by the behaviour of other users. Rushby’s definitions assume
that agent’s views are defined in an asynchronous fashion, but his machine model
is based on a notion of “colours” that amounts to scheduling of the processes. The
information flow policy for separability is stronger than that we have considered
(since it prohibits information flow in both directions). It would be interesting
to revisit his work in the light of our results in this paper.

Another work in which schedulers are explicitly considered is that of Sabelfeld
et al. [SS00], who present an elegant formulation of language based security
properties with dynamic thread handling by schedulers, with a probabilistic
bisimulation-based definition of security. Their schedulers make decisions either
deterministically or probabilistically, but they consider only a single input and
output, and treat timing as unobservable to Low (but observable to the sched-
uler). Their definition of security is independent of all schedulers, compared with
our focus on independence on implementation for a known scheduler. Russo et
al, in a sequence of papers (a recent one is [RS06]) have studied a similar setting
for non-probabilistic bisimulation-based definitions of security.

In addition to the focus on schedulers, our work differs from much of the lit-
erature in the use of a synchronous rather than asynchronous notion of process
view. A number of recent works have also considered this direction. Focardi et al.
extended the asynchronous definitions of security of [FG95] from the CCS-like
setting of the process algebra SPA into a timed version in the framework called
tSPA, based on a discrete timed weak bisimulation [FGM00]. They consider



bisimulation based definitions of security that are based on NDS-like intuitions.
In [HA06], Huang et al. restated a set of failure-divergence based and low de-
terminism based definitions [Ros95] in a version of timed CSP. The underlying
model of timed CCS and timed CSP seems to be essentially more general than
ours, in the sense that every SOLTS can be cast into a timed LTS with every
action followed by a single tick. However, the SOLTS model is technically more
suitable to express the effect of a system being controlled by a scheduler via a
lock-step synchronization with a scheduler SOLTS, assuming each step taking
unit time.

We intend to conduct a more detailed technical comparison between these
works and our definitions in future work. We also intend to study the complexity
of verification the notions of security we have introduced above.
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