
In Proceedings of21 st IEEE Computer Security Foundation Symposium(CSF’08). IEEE Computer Society

Language Based Secure Communication

Michele Bugliesi and Riccardo Focardi
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
{bugliesi,focardi}@dsi.unive.it

Abstract

Secure communication in distributed systems is notori-
ously hard to achieve due to the variety of attacks an ad-
versary can mount, based on message interception, mod-
ification, redirection, eavesdropping or, even more subtly,
on traffic analysis. In the literature on process calculi, tra-
ditional solutions to the problem either draw on low-level
cryptographic primitives, as in the spi or applied-pi calculi,
or rely on very abstract, and hard-to-implement, mecha-
nisms to hide communication by means of private channels,
as in the pi-calculus. A more recent line of research follows
a different approach, aimed at identifying security primi-
tives adequate as high-level programming abstractions, and
at the same time well-suited for security analysis and ver-
ification in adversarial settings. The present paper makes
a step further in that direction. We develop a calculus
of secure communication based on core abstractions that
support concise, high-level programming idioms for dis-
tributed, security-sensitive applications, and at the same
time are powerful enough to express a full-fledged adver-
sarial setting. Drawing on this calculus, we investigate rea-
soning methods for security based on the long-established
practice by which security properties are defined in terms of
behavioral equivalences. We give a co-inductive character-
ization of behavioral equivalence, in terms of bisimulation,
and develop powerful up-to techniques to provide simple co-
inductive proofs. We illustrate the adequacy of the model
with several security laws for secrecy and authentication.

1 Introduction

Security in pi-calculus and related process algebraic for-
malisms is based on a conceptually simple but powerful
mechanism: communication over private channels. Data
can be created and circulated among the components of a
system (the principals of a protocol), and the scope rules
guarantee that the environment of the system (the attacker
of the protocol) cannot access any piece of data that is ex-

changed over a private channel. The scope rules are thus
the basis for security. Unfortunately, however, the security
guarantees they convey are often hard to realize in practice,
for several reasons some of which we discuss next (the fol-
lowing observations are not ours, but due to [1]).

Protection from traffic analysis. The observational theory
of the pi-calculus validates equations like the one displayed
below:

νn(n〈m〉 |n(x).P) ∼= P{m/x}

Mimicking this behavior in an implementation is costly,
as it requires communication protocols resilient to attacks
based on traffic analysis.

Message delivery.Another problem with the previous equa-
tion is that it presupposes that messages sent on private
channels will indeed be delivered to the intended recipi-
ents (and to no-one else). While that is convenient at the
specification level, implementing a corresponding behavior
in a low-level environment requires enough redundancy to
compensate for the potential of packet loss and message in-
terception.

Forward Secrecy. The use of private channels for secrecy
yields behavioral equivalences that are even more problem-
atic. For instance, the equation

νn(n〈m〉 |n(x).p〈n〉) ∼= νn(n〈m′〉 |n(x).p〈n〉)

guarantees the secrecy of the exchange on the private chan-
neln, even thoughn is made public after the exchange. In
a distributed environment, wheren might be though as an
encrypted channel, an adversary may learn the message sent
on n by buffering it and waiting until the key associated to
n is finally made public.

In sum, scoping is convenient in pi calculus as a mech-
anism for writing security specifications, but tends to be
too abstract (when applied to channels), hence stronger than
what can be achieved in practice. In fact, distributed appli-
cations often rely on lower-level cryptographic constructs

to enforce security properties like secrecy and authentica-
tion, and have weaker barriers available to protect against
attacks.

The invention of the spi-calculus [6] was motivated by
the desire to fill this gap and give more adequate founda-
tions for network security. The spi calculus introduces ex-
plicit constructs for encryption and decryption, an idea later
generalized in the applied-pi calculus [2]. In both cases, this
approach succeeds in providing a formal basis for the anal-
ysis specification of network security applications. In fact,
the development of tools such asProVerif [9] has greatly
enhanced our ability to reason on the security properties of
applied-pi system specifications. On the other hand, such
specifications are specifically targeted at cryptographic pro-
tocols, hence they tend to be be somewhat low-level, and not
always adequate for reasoning on higher, application-level
protocols and their security and functional properties.

In the present paper we investigate an alternative ap-
proach in the attempt to strike a new balance between the
formal simplicity deriving from high-level abstractions and
the flexibility and expressive power required for the spec-
ification and implementation of realistic network applica-
tions. Drawing on previous attempts in the literature (e.g.
[17, 4, 7]) we isolate a core library of communication ab-
stractions designed around the high-level security guaran-
tees they are meant to convey. We inject these abstrac-
tions into a variant of the asynchronous pi-calculus, whose
semantics we extend to include reductions that make it
possible to reason on attacks based on message intercep-
tion, forwarding and replication. Remarkably, in the result-
ing semanticsall exchanges are observable, as the scop-
ing rules do not guarantee complete hiding for communi-
cation over private channels. As a result, the semantics of
the new calculus breaks the problematic equations we dis-
cussed earlier on, easing the implementation task. At the
same time, the abstractions are flexible enough to establish
useful and interesting security properties. We characterize
behavioral equivalence for the calculus co-inductively, in
terms of bisimulation, and exploit that characterization to
provide very simple co-inductive proofs of security. We il-
lustrate the adequacy of the model by means of a number of
security laws for secrecy and authentication, and one more
elaborate example.

Contents. Section 2 gives an overview of the high-level
communication abstractions, while Section 3 introduces the
corresponding network and opponent models. Section 4
formalizes the semantics of networks and their behavioral
theory, in terms of an observational equivalence. Section
5 exemplifies the behavioral theory on some distinguishing
equations for communication. Section 6 gives an alternative
semantics for networks, based on labelled transitions, and
shows that bisimilarity characterizes observational equiva-
lence. Section 7 develops a set of useful proof techniques

for bisimilarity, and Section 8 applies such techniques to
prove some relevant equations for secrecy and authentica-
tion. Section 9 outlines a cryptographic implementation of
the abstraction primitives. Section 10 concludes with final
remarks and a discussion of related work.

2 Secure Channel Abstractions

We presuppose two countable setsN andV of names
and variables, respectively, and leta − q range over names,
w, x, y, z over variables andt, u, v overN∪V when the dis-
tinction does not matter. Names enable communication, but
they are intended asidentitiesrather than channels. In fact,
our channels are more structured than customary in name-
passing calculi, as they are associated with the names, or
identities, of the two end-points they connect. Thus, for in-
stanceb〈a : . . . 〉 indicates an output directed tob and origi-
nating froma; dually,b(a : . . .) denotes an input performed
by b of a message originated bya. Overall, we provide for
various communication modes, conveying different security
guarantees and requiring different capabilities.

We define the communication primitives as part of a
high-level process calculus, defined below. To ease the no-
tation, we introduce a distinguished name, noted−, to stand
for an anonymousidentity, and we leta, b, . . . range over
N ∪ {−}.

H, K ::= u〈a : ṽ〉◦ (Output)
| a(v : ỹ)◦.H (Input)
| 0 (Null)
| H |K (Parallel)
| if u = v then H else K (Conditional)
| A〈ũ〉 (Definition)
| (νa)K (Restriction)

Most of the productions are largely standard. The pro-
cess forms for0, parallel compositionH |K and conditional
if u = v then H else K are just as in the pi-calculus.A〈ũ〉
denotes a process defined via a (possibly recursive) defini-
tion A(x̃)

def
= P , wherex̃ contains all the variables that ap-

pear free inP , |ũ| = |x̃| andA may only occur guarded in
P ; whenx̃ is the empty tuple we writeA in place of both
A() andA〈〉. The restriction(νa)H has the familiar pi-
calculus syntax but weaker scoping rules due to a different
interaction with the synchronization rules (see below).

The remaining productions define the primitives for re-
mote communication. Following [17], our calculus encom-
passes two fundamental mechanisms for security, based on
secrecy and authentication, and includes the communica-
tion modes that result from their possible combinations.
The secrecy mode is indicated by the symbol◦: secret
when◦ is •, plain when◦ is missing. The authentication
mode, in turn, is signaled by the presence of a distinguished

identity that specifies the source of the message exchanged;
the identity is anonymous in case the transmission is non-
authentic. Below, we give the intuitions on the semantics of
the primitives and modes leaving the formal definitions to
Section 4. In particular,

• u〈− : ṽ〉 denotes aplain output, a communication
primitive that conveys no security guarantee;

• u〈a : ṽ〉 denotes a public, butauthenticoutput, which
provides the receiver with a guarantee on the origin of
the message, and ensures that the message cannot be
replayed;

• u〈− : ṽ〉• denotes asecret transmission, providing
guarantees that only the intended receiver will be ex-
posed to the message payload: an intruder may be-
come aware of the existence of an output, but not of
the message contents;

• finally, u〈a : ṽ〉• denotes asecuretransmission, com-
bining the guarantees of the authentic and secret
modes.

In sum, the various output modes protect from message dis-
closure, replication and forging. On the other hand, an op-
ponent may intercept all outputs, and then selectively for-
ward them back to the network.

The input forms have dual interpretations.

• a(u : ỹ)◦.H denotes an authentic input, which con-
sumes a message sent ona from u, binding ỹ to the
tuple of names that form the payload. The input pre-
fix is a binder for the variables̃y, whose scope is the
continuationH : instead,u must be instantiated at the
time the input prefix is ready to fire. As in the output
process,◦ signals the secrecy mode: a public authen-
tic input, noteda(u : ỹ).P , synchronizes only with
public authentic outputs, whereas secure inputs such
asa(u : ỹ)•.P only synchronize with secure outputs.

• a(− : ỹ)◦.H is the corresponding input for the non-
authentic mode. It consumes a message sent ona,
binding the payload tõy: as in the authentic mode,
a non authentic input only synchronizes with a non-
authentic output, of the same secrecy mode (as sig-
naled by◦).

As in some dialects of the pi-calculus, notably in thelocal
pi-calculus [16], we make a clear distinction between the
input and output capabilities for communication, and we
disallow the transmission of the former. Note, to this re-
gard, that input prefixes are built around names (not vari-
ables) in the channel position. Similarly, we are careful
in requiring the use of names (again, not variables) in the
sender position of authentic messages. Taken together, the

syntactic constraints imposed on the input and output prim-
itives guarantees that a processH never gets to dynamically
impersonatea new identity, in the sense defined below.

Definition 2.1 (Impersonation). We say that a processH
impersonates an identitya iff H usesa as the subject of an
input, as in a(u : ỹ)◦.H , or as the source of an authentic
(public or secret) output, as inu〈a : ṽ〉◦.

Notice that disallowing the transmission of the input capa-
bilities makes it impossible for an adversary to block mes-
sages directed to any restricted identity (being secret, the
adversary may not input on those identities). To compen-
sate for that, in the next section we introduce a special, low-
level primitive, available to the opponent, that provides the
capability to intercept any message sent on the network, in-
dependently of the scope of the identities of the originator
and/or the recipient.

We now put forward an example that illustrates the cal-
culus at work on the specification of a simple protocol for
establishing a session between two communication parties.
The specification is given by the following definitions:

D(m)
def
= (A(m) | B)

A(y)
def
= (νk)(b〈a : k〉 | a(b : x).x〈k : y〉•)

B
def
= (νh)b(a : y).(a〈b : h〉 |h(y : z)•.H(z))

The two parties,A andB, exchange two fresh names,h
andk, that are subsequently used for a secret and authentic
exchange of the messagem. The two fresh namesh and
k are thus employed to establish a new session betweenA
andB: we will return to this example in Section 8, to give
proofs of the security guarantees it conveys on the secrecy
and authentication of the messagem.

3 Network Abstractions

The high-level calculus provides an idealized set of
primitives for programming secure distributed interactions
among mutually trusted peers. While that is convenient
for programming, an analysis of the security guarantees
conveyed by the primitives must necessarily be tested
against/conducted within adversarial settings in which an
opponent is given full control of the underlying network.
To account for that, we introduce a more concrete calculus,
of Networks, that provides all the low-level capabilities that
must be assumed available to the adversary1. The produc-

1Previous experiments in the literature have explored two directions:
either provide for an explicit formalization of the attacker by way of cryp-
tographic calculus (as in the spi/applied pi calculus), or formalize the at-
tacker implicitly [7]. Here we explore an alternative solution: we give
an explicit formalization of the attacker, but without resorting to explicit
(formal or computational) cryptography

tions of the low-level calculus are defined below.

M, N::= u〈a : ṽ ‖ t̃〉◦ (Low Output)
| a(u : ỹ ‖ z̃)◦.M (Low Input)

| 0 | M |N | A〈ũ〉 | (νa)N | if u=v thenMelseN
| ?z(x : ỹ ‖ w̃).M (Intercept)
| !u〈ṽ〉.M (Forward/Replay)

Before discussing the new syntactic forms, an important re-
mark must be made about the use of names and identities.
When reasoning at the network level, it is convenient (and
at all reasonable) to have precise ways to include the trusted
components of a network and to tell them apart from the ad-
versarial components. To help formalize that distinction,we
make a further assumption of the set of namesN and parti-
tion it into two setsNt andNu that identify thetrustedand
untrustedidentities, respectively. We also assume thatα-
renaming respects this partition, so that bound names drawn
from either set may only be renamed within that set.

We move on with a commentary of the the network spe-
cific constructs.

3.1 Input and output forms

The first two productions introduce the network-level
primitives for input and output. They are best understood as
the low-level counterpart of the programming-level abstrac-
tions defined in Section 2. More precisely,u〈a : ṽ ‖ t̃〉◦ de-
notes a (secret or plain, depending on◦) output ofṽ directed
to u and originated froma: the message is authentic from
a if a = a, otherwise no assumption can be made about
its actual source. The novelty with respect to the high-level
calculus is thẽt component of the message, which repre-
sents the network-level view of the message payload (more
on this below). The input prefixa(u : ỹ ‖ z̃).M has a
dual interpretation: it binds the variables̃y and z̃ to the
payload and its network-level view, respectively. As in the
high-level calculus, the identity componentu must be in-
stantiated (to ‘−’ or a proper identity) at the time the pre-
fix is ready to fire. Similarly, the required use of names in
the source position of authentic outputs and in the channel
position of inputs rules out undesired impersonations (the
notion of impersonation from Definition 2.1) extends as ex-
pected to the new calculus).

To motivate the format of the network-level messages,
and specifically the role of thẽt component, we introduce
the following definition that connects the high-level abstrac-
tions of Section 2 with their network-level counterparts: we
call the latter, thetrusted network processes, or trusted pro-
cessesfor short.

Definition 3.1 (Trusted processes). Given any high-level
principalH , we note[H] the correspondingtrusted network
process, i.e. the term that representsH as a network-level

process. Below we give the clauses of the mapping[·] for
input and output (where|ṽ| = |c̃| and|x̃| = |ỹ|):

[u〈− : ṽ〉] , u〈− : ṽ ‖ ṽ〉

[u〈a : ṽ〉] , (ν c̃)u〈a : ṽ ‖ c̃〉

[u〈a : ṽ〉•] , (ν c̃)u〈a : ṽ ‖ c̃〉•

[b(u : x̃)◦.H] , b(u : x̃ ‖ ỹ)◦.[H] (ỹ ∩ fv(H) = ∅)

The remaining clauses are defined homomorphically.
Throughout, we assume that trusted processes only imper-
sonate identities in the setNt and only create fresh names in
the same set. We reserve the lettersP andQ to range over
the class of trusted processes, and their run-time deriva-
tives.

As the mapping shows, the network-level view of a mes-
sage depends on the transmission mode: specifically, it
coincides with the payload in plain outputs, while it is a
fresh tuple of names that gets associated with each authentic
and/or secret output. It is easily seen that this presentation
creates an injective map from payloads to their network-
level view. For that reason, we often refer to the latter com-
ponent as the payload (or message)index. The chosen for-
mat of network-level messages has a natural counterpart in
the cryptographic implementation of networks we outline in
Section 9. Specifically, it provides an abstraction of the bit-
stream obtained by the randomized encryption of the pay-
load by which we implement secret outputs, and similarly,
an abstraction of the time-variant signature employed to cer-
tify the freshness of an authentic transmission. Throughout,
we assume that the two componentsṽ andt̃ in all messages
have the same arity, and that they coincide on public out-
puts: we make this assumption formal in Definition 3.3.

3.2 Adversarial forms

The last two productions define the primitives that en-
able an adversary to intercept and subsequently forward,
or replay, any message circulating on the network. All
network messages may be intercepted by firing the prefix
?z(x : ỹ ‖ w̃).M which is a binder for all its compo-
nent variables, with scopeM : when intercepting the output
b〈a : m̃ ‖ ñ〉◦, z gets bound to the targetb, x to a and w̃
to the index̃n. As to ỹ, the binding depends on the secrecy
mode of the message and on the trust status of the identityb.
In particular, if the message is secret andb ∈ Nt thenỹ gets
bound toñ, otherwisẽy is bound tom̃. Thus, intercepting a
secret message directed to a trusted principal does not break
the secrecy of the payload. Interestingly, a message can be
intercepted even if it is directed to a restricted identity,as in
(νb)b〈a : m̃ ‖ ñ〉◦. Thus the presence of the intercept pre-
fix weakens the effect of the restriction operator substan-
tially, as it makes it impossible to create private/invisible

channels. As such, the intercept prefix is central to our net-
work and opponent models, as it enables observations that
are typically available in distributed application, and would
otherwise be impossible by means of input.

In addition to this binding effect, intercepting a message
also creates a copy of the intercepted message that may sub-
sequently be accessed by the replay/forward form!b〈c̃〉 to
forward the message back to the network, or produce an
arbitrary number of replicas in case the original messages
was not authenticated. Notice that this mechanism of for-
ward/replay only depends on the message indexes, and not
on the payload.

Throughout the paper, we are interested in reasoning on
the behavior of the trusted components of a network in the
presence of an adversarial component. Intuitively, the ad-
versarial component may be formed as an arbitrary network
process, with the only limitation that it may not impersonate
any trusted identity. We define it formally below.

Definition 3.2 (Opponent). A network processN is adver-
sarial/untrusted iff it only impersonates identities in the set
Nu and only creates fresh names in the same set. Anoppo-
nentis an adversarial/untrusted process.

Our last definition formalizes the very mild assumption we
anticipated on the format of messages in a network.

Definition 3.3 (Well-formed Networks). We say that plain
outputu〈− : ṽ ‖ t̃〉 is well-formed iff̃v = t̃; a secret/secure
u〈a : ṽ ‖ t̃〉• or authenticu〈a : ṽ ‖ t̃〉 output is well-formed
iff is well-formed iff|ṽ| = |t̃|. A networkN is well-formed
iff it is closed (has no free variable) and all of its outputs
are well-formed.

Notice that closed trusted processes are well-formed by
construction: well-formed networks require opponents to
be well-formed as well.

4 Semantics of Networks

To formalize the dynamics of networks, we need fur-
ther notation and definitions to characterize the semantics
of message interception. As we said, intercepting a message
also caches a copy of the message: the copy is not directly
available as an output message, but may be employed by the
adversary to later push the intercepted message back to the
network (possibly replicating it).

As a result, to formalize the dynamics of a network we
also need a special form to represent the cached messages
that arise as a result of an interception. We introduce the
new form below as part of what we may call run-time net-
work configurations, defined as follows:

M, N ::= . . . as in Section 3. . .| b〈a : m̃ ‖ c̃〉◦∗

Now, the dynamics of the calculus is given in terms of re-
duction and structural congruence, as shown in Table 1.
Structural congruence is almost standard, with the excep-
tion of the rule (Struct Cache), which states that the du-
plicates of a non-authentic cached messages may safely be
dispensed with. Notice that the equivalence only holds for
non-authentic copies: indeed, an inspection of the reduction
rules shows that neither authentic messages nor their cached
copies are ever duplicated.

The reduction relation follows the intuitions we have
given in the previous section. The (Comm) rule is the coun-
terpart of the familiar synchronization rule of the (asyn-
chronous) pi-calculus. The (Intercept) rule, instead, is spe-
cific of our calculus and characterizes the semantics of inter-
ception. The bindings created upon interception depend on
the structure of the intercepted message, as explained ear-
lier on (cf. the side condition in Table 1). In addition this
reduction caches a copy of the intercepted message. The
remaining axioms, (Forward) and (Replay), provide an ad-
versary with the ability to forward an intercepted message
back to the network, and/or to produce new replicas of the
message in case the message was not authentic. We note
with =⇒ the reflexive and transitive closure of the reduc-
tion relation.

Observational EquivalenceThe behavioral semantics of
the calculus is based on a notion of contextual equality de-
fined in terms of reduction barbed congruence [13]. We first
define the observation predicate, as usual in terms of barbs.

Definition 4.1 (Barb). We write N↓b wheneverN ≡
(νñ)(b〈. . . 〉◦|N ′) andb 6∈ ñ

Based on that, we introduce the following notion of equiva-
lence. We writeM ⇓ n iff M =⇒ N ↓ b for someN .

Definition 4.2 (Observational Equivalence). A symmetric
relation R on (run-time) networks is

• barb preserving ifM R N andM ↓ b implyN ⇓ b.

• reduction closed ifM R N and M −→ M ′ imply
N =⇒ N ′ with M ′ R N ′.

• contextual ifM R N implies M |O R N |O for all
(closed) opponentsO and (νñ)M R (νñ)N for all
names̃n ∈ Nu

Observational equivalence∼=O is the largest equivalence
relation that is reduction closed, barb-preserving and con-
textual.

Notice that we focus attention to what is sometimes referred
to asstatic contexts, thus disregarding closure by guarded
forms, conditionals and recursion. While this is becoming
a common practice in formalizations of distributed systems
(cf. [11]) what is special about our definition is that we

Table 1Reduction Semantics

Structural congruence

(Struct Par Comm) M |N ≡ N |M

(Struct Par Assoc) (N |N ′)|N ′′ ≡ N |(N ′|N ′′)

(Struct Par Zero) N |0 ≡ N

(Struct Res Zero) (νa)0 ≡ 0

(Struct Res Comm) (νa)(νb)N ≡ (νb)(νa)N

(Struct Res Par) M |(νa)N ≡ (νa)(M |N) whena 6∈ fn(M)

(Struct Rec) A〈w̃〉 ≡ N{w̃/x̃} if A(x̃)
def
= N and|w̃| = |x̃|

(Struct If True) if a = a then M else N ≡ M

(Struct If False) if a = b then M else N ≡ N whena 6= b

(Struct Equiv) M ≡ M, M ≡ N impliesN ≡ M,
N ≡ N ′ andN ′ ≡ N ′′ imply N ≡ N ′′

(Struct Cong) N ≡ N ′ implies(νn)N ≡ (νn)N ′ andN |N ′′ ≡ N ′ |N ′′

(Struct Cache) b〈− : m̃ ‖ ñ〉◦∗ | b〈− : m̃ ‖ ñ〉◦∗ ≡ b〈− : m̃ ‖ ñ〉◦∗

Reduction In the (Intercept) rule, thẽp are as follows: if◦ = • andb ∈ Nt thenp̃ = c̃ elsep̃ = m̃

(Comm) b〈a : m̃ ‖ c̃〉◦ | b(a : ỹ ‖ z̃)◦.N −→ N{m̃/ỹ, c̃/z̃}

(Intercept) b〈a : m̃ ‖ c̃〉◦ | ?z(x : ỹ ‖ w̃).N −→ b〈a : m̃ ‖ c̃〉◦∗ | N{b/z, a/x, p̃/ỹ, c̃/w̃}

(Forward) b〈a : m̃ ‖ c̃〉◦∗ | !b〈c̃〉.N −→ b〈a : m̃ ‖ c̃〉◦ | N

(Replay) b〈− : m̃ ‖ c̃〉◦∗ | !b〈c̃〉.N −→ b〈− : m̃ ‖ c̃〉◦∗ | b〈− : m̃ ‖ c̃〉◦ | N

Contextual reduction

(Struct)

M ≡ M ′ M ′ −→ N ′ N ′ ≡ N

M −→ N

(Res)

N −→ N ′

(νa)N −→ (νa)N ′

(Par)

M −→ M ′

M |N −→ M ′|N

further restrict toadversarialcontexts. That reflects our
initial intention to find a reasoning method specifically tar-
geted at the analysis of security centric properties. As a
consequence, we are not interested in a full-blown notion of
equivalence, but rather on a notion of equivalence that en-
ables us to analyze the interactions among the trusted princi-
pals of a network in terms of the observations that are avail-
able to an opponent. When tested on two trusted processes,
as inP ∼=O Q, that is exactly what our notion of equiv-
alence captures. We discuss this issue further in the next
section.

5 Observing Communication

We discuss few equational laws that characterize the be-
havior of our communication primitives and provide in-
sight into the their distinctive properties. The proofs of

some of these equations will be given in Section 8 exploit-
ing the coinductive characterization of behavioral equiva-
lence developed there. By an abuse of notation, we present
the equations on the terms of the high-level calculus of
Section 2 rather than on their corresponding network pro-
cesses. In other words we writeH ∼=O K as shorthand for
[H] ∼=O [K].

The first equation corresponds to the familiar equation of
the asynchronous pi-calculus:

b(− : x̃).b〈− : x̃〉 ∼=O 0

Just as in the asynchronous pi-calculus, this equation shows
that there is no way to test the presence of an input prefix.
Here, the equation is also a consequence of the input/output
primitives being in plain mode. In fact, it does not extend to
the secret version of the forms.

b(− : x̃)•.b〈− : x̃〉• 6∼=O 0

The failure is due to the structure of the index of the mes-
sage exchanged. Indeed, re-packaging the same message in
a secret output always gives a different index (correspond-
ing, in an implementation, to the randomness of encrypted
messages).

Authentic communication is resistant to impersonation
and replay attacks. To illustrate, leta ∈ Nt be a trusted
identity. The first equation, below, shows that it is never
possible to impersonatea: messages expected froma must
indeed be sent bya.

b(a : x)◦.H ∼=O 0

The second equation shows that it is never possible to re-
ceive two authentic messages from a trusted identity, if that
identity has sent just one authentic message.

b〈a : m〉◦ | b(a : x)◦.b(a : y)◦.H
∼=O b〈a : m̃〉◦ | b(a : x)◦.0

Again, the equation is a consequence of the opponent not
being able to impersonatea ∈ Nt. Similar guarantees hold
in more general situations. In particular, a messagem sent
once bya is always received once, even in the presence of
an arbitrary trusted processP that may output other mes-
sages asa.

(νm)(b〈a : m〉◦

| b(a : x)◦.b(a : y)◦.if (x = y = m) then H) | P
∼=O

(νm)(b〈a : m〉◦

| b(a : x)◦.b(a : y)◦.0) | P

Notice, on the other hand, that if the output were non-
authentic, the message could be replayed (by an opponent),
andH executed, thus breaking the equivalence.

Our next example motivates and clarifies the nature of
our notion of contextuality. As we observed, the definition
of observational equivalence requires closure under adver-
sarial contexts only: indeed,∼=O is not in general preserved
by composition of equivalent trusted processes. To illus-
trate, letb ∈ Nt be a trusted identity and consider the equa-
tion

b〈− : m〉• ∼=O b〈− : m′〉•

Once more, given that trusted identities may not be imper-
sonated, the only interaction an opponent may try with the
process is by intercepting the messages, but again, sinceb
is trusted, the actual message content is not leaked. On the
other hand, given

H
def
= b(− : x)•.if x = m then ok〈〉 else 0

it is easily seen that

b〈− : m〉• | H 6∼=O b〈− : m′〉• | H

There is no contradiction here, becauseH is not an oppo-
nent (as it impersonatesb, a trusted identity). We thus have a
weaker form of compositionality on trusted processes com-
position, formalized by the following result (cf. Section 6
for a proof sketch).

Theorem 5.1. Let P , Q be trusted processes.P ∼=O Q
implies

• (νn)P ∼=O (νn)Q, for all n ∈ Nt;

• P |R ∼=O Q|R, for all trusted processesR which do
not impersonates identities infn(P) ∪ fn(Q).

Thus applying the theorem twice on the previous equation,
we obtain:

(νb)(b〈− : m〉•) | H ∼=O (νb)(b〈− : m′〉•) | H

6 LTS and Bisimilarity

We give an alternative, compositional formulation of the
semantics of networks, based on labelled transitions. The
new semantics constitutes the basis for the proof methods
we introduce later in this section, and refine in Section 7.

The labelled transitions are organized in two sets. A first
set, in Tables 2 and 3, collects the transitions that corre-
spond to the reduction semantics of Section 4. In most
cases the transitions are either standard, or constitute the
direct counterpart of the corresponding reductions in Table
1. The two (Output Intercepted) transitions deserve more
attention. First notice that in neither transition the label ex-
hibits the secrecy mode: that is to match the semantics of
the intercept primitive that synchronizes with all outputs,
irrespective of their secrecy. On the other hand, the label
does exhibit different information depending on the secrecy
mode of the output. Secondly, observe that the transitions
leave in their residual a cached copy of the message emitted:
this reflects the effect of an interaction with a surrounding
context that tests the presence of an output by intercepting
it. A further remark is in order on the difference between
the two rules that govern scope extrusion. The difference
is best understood if we take the view that a channel name
comprises the two identities of the end-points it connects:
the source and the destination. Under this interpretation the
(Open) rule states that the channel name is not extruded, as
in the pi-calculus, while the (Open Intercepted) opens the
scope in accordance with the reduction semantics by which
intercepting a message discloses the identity of the receiver
(as well of the sender) even though restricted. The follow-
ing, standard result connects the reductions with the silent
actions in the labelled transition semantics.

Table 2Labelled Transitions - Input, output, interception and re-emission

(Input)

b(a : ỹ ‖ w̃)◦.N
b(a:m̃‖c̃)◦

−−−−−−−→ N{m̃/ỹ, c̃/w̃}

(Output)

b〈a : m̃ ‖ c̃〉◦
b〈a:m̃‖c̃〉◦

−−−−−−−→ 0

(Open)

N
(p̃)b〈a:m̃‖c̃〉◦

−−−−−−−−−→ N ′ n ∈ {m̃, c̃} − {b, a, p̃}

(νn)N
(n,p̃)b〈a:m̃‖c̃〉◦

−−−−−−−−−−→ N ′

(Open Intercepted)

N
(p̃)?b〈a:m̃‖c̃〉

−−−−−−−−−→ N ′ n ∈ {b, a, m̃, c̃} − {p̃}

(νn)N
(n,p̃)?b〈a:m̃‖c̃〉

−−−−−−−−−−→ N ′

(Secret Output Intercepted)

b ∈ Nt

b〈a : m̃ ‖ c̃〉•
?b〈a:c̃‖c̃〉
−−−−−−→ b〈a : m̃ ‖ c̃〉•∗

(Output Intercepted)

b 6∈ Nt or ◦ 6= •

b〈a : m̃ ‖ c̃〉◦
?b〈a:m̃‖c̃〉
−−−−−−−→ b〈a : m̃ ‖ c̃〉◦∗

Interception and re-emission

(Replay/Forward)

!b〈c̃〉.N
!b〈c̃〉
−−→ N

(Intercept)

?z(x : ỹ ‖ w̃).N
?b(a:p̃‖c̃)

−−−−−−→ N{b/z, a/x, p̃/ỹ, c̃/w̃}

(Co-forward)

b〈a : m̃ ‖ c̃〉◦∗
!b(c̃)

−−→ b〈a : m̃ ‖ c̃〉◦

(Co-replay)

b〈− : m̃ ‖ c̃〉◦∗
!b(c̃)

−−→ b〈− : m̃ ‖ c̃〉◦∗ | b〈− : m̃ ‖ c̃〉◦

Lemma 6.1(Harmony).

• If M
α

−→M ′ andM ≡N thenN
α

−→N ′ andM ′≡N ′

• N −→ N ′ if and only ifN
τ

−→≡ N ′.

The second set of rules is given in Definition 6.2. and pro-
vide the observational counterpart of the labelled transitions
of Tables 2 and 3. The format of the observational transi-
tions is best understood if we keep in mind that, as we men-
tioned earlier, we are only interested in characterizing a very
specific set of network observations, those available to an
opponent. As a result, the observational LTS is obtained by
the LTS in Table 2 by filtering away all the transitions that
involve the adversarial forms (intercept and forward/reply)
as well all the transitions that may not be observed by an
opponent by virtue of the restriction the opponent suffers
on the use of the trusted identities of a network. In addi-
tion (following e.g. [12]) we include a new input transition
to capture the observations of an input in an asynchronous
setting as the one we have assumed.2

2We prefer this presentation at this stage as it simplifies thedefinition
of bisimilarity. As in the asynchronous pi calculus, an equivalent presen-

Definition 6.2 (Observational LTS). We say that a network

has an observational transition, notedN ⊢
α
−→ N ′, if and

only if it may be derived by the following rules:

N
α

−−→ N ′ α 6∈







b(a : m̃ ‖ c̃)◦ | a ∈ Nt

(p̃)b〈a : m̃ ‖ c̃〉◦ | b ∈ Nt

?b(a : m̃ ‖ c̃), !b〈c̃〉







N ⊢
α
−→ N ′

a = − or a 6∈ Nt

N ⊢
b(a:m̃‖c̃)◦

−−−−−−−→ N | b〈a : m̃ ‖ c̃〉◦

Notice that, by definition,N ⊢
α
−→ N ′ implies N

α
−−→ N ′,

for α 6= b(a : m̃ ‖ c̃)◦, andN ⊢
τ

−→ N ′ iff N
τ

−−→ N ′. It is
trivial to see that the new transition forb(a : m̃ ‖ c̃)◦ does

tation results from dropping the additional input transition and relying on
asynchronous bisimilarity [8] instead. That presentation, in turn, is useful
to control the size of the candidate relations used in equivalence proofs. We
take the liberty of using the two formulations interchangeably, favouring
the one that best suits our needs in the situation at hand.

Table 3Labelled Transitions - Synchronization and structural rules

(Synch)

M
(p̃)α
−−→ M ′ N

α
−−→ N ′ p̃ ∩ fn(N) = ∅

M |N
τ

−−→ (νp̃)(M ′ |N ′)

(Cond)

(a = b ∧ M
α

−→ N) ∨ (a 6= b ∧ M ′ α
−→ N)

if a = b then M else M ′ α
−→ N

(Par)

M
α

−→ M ′ bn(α) ∩ fn(N) = ∅

M |N, N |M
α

−→ M ′ |N, N |M ′

(Restr)

N
α

−→ N ′ n 6∈ fn(α)

(νn)N
α

−→ (νn)N ′

(Rec)

N{w̃/x̃}
α

−→ N ′ A(x̃)
def
= N

A〈w̃〉
α

−→ N ′

not break the Harmony lemma, and we conclude that that
lemma holds for the observational LTS as well.

The notion of bisimilarity arising from the observational
LTS transitions is standard.

Definition 6.3 (Network Bisimilarity). A symmetric rela-
tion R over networks is a weak bisimulation if whenever

MRN andM ⊢
α
−→ M ′ with bn(α) ∩ fn(N) = ∅ one has

N |=
bα

=⇒ N ′ andM ′
RN ′. Two networks are bisimilar, writ-

tenM ≈ N iff MRN for some network bisimulationR.

A Characterization of Observational Equivalence We
move on by studying the relationship between network
bisimilarity and observational equivalence. Given the struc-
ture of the LTS, the notion of bisimilarity only makes sense
when applied to networks that only differ in the trusted com-
ponents and share a common opponent. That is because the
LTS does not look at the opponent transitions, hence it may
end-up equating nonequivalent networks. To see that, con-
sider the two opponentsO1 ,?z(x : y ‖ w).b〈− :‖〉 and
O2 , 0. ThenO1 ≈ O2, as neither has any observational
transition, but clearlyO1 6∼=O O2. On the other hand, when
restricted to trusted processes, bisimilarity coincides with
observational equivalence.

Theorem 6.4. P ∼=O Q iff P ≈ Q, for all P, Q trusted
processes.

Proof outline. For the if direction, define the candidate re-
lation R = {(O[P], O[Q]) | P, Q trusted,O[·] opponent}
and show thatR is barb preserving, reduction closed and
closed by opponent contexts. The proof proceeds by induc-
tion on the structure of the contextO[·].

For the only if direction the proof follows by coinduc-
tion using the relationR = {(P, Q) | P ∼=O Q} as
candidate. Then proof proceeds by exhibiting the distin-

guishing context for each transitionP ⊢
α
−→ P ′. In the gen-

eral case, the details are notationally costly due to the
polyadic nature of the calculus. We show the case when

α = (c)?b0〈b1 : b2 ‖ c〉• as a simpler representative. In that
case, we define:

Oñ = ko〈− : ‖ 〉 |
?x0(x1 : x2 ‖ y).if (xi = bi)i=0..2 then

if (y ∈ {ñ}) then 0

else ko(− : ‖).ok〈− : y ‖ y〉
else 0

where thẽn are the free names inP andQ (collectively),
andko andok are chosen fresh in{c, ñ}. By construction,
we have:

P | Oñ =⇒ M ≡ (νc)(P ′ |ok〈− : c ‖ c〉)

Here, as a result of the interception, the opponent caches a
copy of the message intercepted, namelyb0〈b1 : b2 ‖ c〉•∗.
In the labelled transition, this copy is attributed to the
derivative ofP , that isP ′, explaining the structure ofM .

The rest of the proof is standard. First observe thatM 6⇓
ko andM ⇓ ok. Then, from the hypothesisP ∼=O Q, being
Oñ adversarial, we deriveP | Oñ

∼=O Q | Oñ. Hence there
existsN such thatQ | Oñ =⇒ N andN 6⇓ ko andN ⇓ ok.
This implies thatOñ must have consumed the input onko.
Thus, given thatko is fresh toQ, andQ is a trusted process
(hence does not intercept/replay), we know that there exists
Q′ such thatN ≡ (νc)(Q′ | ok〈− : c ‖ c〉) andQ |=

α
=⇒ Q′.

Now the proof follows by showing thatM ∼=O N implies
P ′ ∼=O Q′.

The characterization is useful as it allows us to derive coin-
ductive proofs of observational equivalence. As an illustra-
tion, one can now obtain a proof for Theorem 5.1 by show-
ing that≈ is preserved by the contexts given in the state-
ment of the theorem.

7 Proof Techniques

One problem with the coinductive proof technique as-
sociated with bisimilarity is that the size of the candidate

relations used in proofs grows easily out of control due to
the presence of multiple replicas of the same message. In
this section we give two powerful techniques to control that
growth.

The two techniques share the common idea to factor out
from the candidate relations all pairs of processes contain-
ing more than one replica of the same non-authentic mes-
sages. As a result, we can restrict to candidates which in-
clude the cached copy of each message and at most one
replica. Then the two techniques take a further step in
dual directions: the first filters out the cached copy as well,
whereas the second filters out the replica and keeps the
cached copy.

Formalizing the two techniques requires some non trivial
technical steps that we outline below. We first introduce
notation to treat messages and their cached copies in a more
uniform and compact way:

Notation 7.1. We writeb〈− : m̃ ‖ c̃〉◦k to note the compo-
sition b〈− : m̃ ‖ c̃〉◦∗ | b〈− : m̃ ‖ c̃〉◦ | . . . | b〈− : m̃ ‖ c̃〉◦

︸ ︷︷ ︸

k

(k ≥ 0). A related notation applies for authentic mes-
sages. We writeb〈a : m̃ ‖ c̃〉◦0 to denoteb〈a : m̃ ‖ c̃〉◦∗ and
b〈a : m̃ ‖ c̃〉◦1 to denoteb〈a : m̃ ‖ c̃〉◦.

Intuitively, in b〈a : m̃ ‖ c̃〉◦k, k indicates the number of
available replicas of a certain message. Notice, to that re-
gard, that for authentic messages,k can only be0 or 1, as
such messages may not be replayed. We denote withIb(N)
the set of tuples that index the messages in the networkN
directed tob, and are known to the environment:

Ib(N) = {c̃ |N ≡ (νñ)(b〈a : m̃‖c̃〉◦k |N
′) with c̃∩ ñ = ∅}

The conditionc̃ ∩ ñ = ∅ ensures that̃c is known to the
environment, thus the message is either in plain mode or it
has been intercepted at least once. (Recall that the non-plain
modes generate a freshc̃ for each output.)

We writeP∗ to denote a derivative of a trusted process,
i.e.,P |=

γ
=⇒ P∗ and we call it arun-time trusted process.

Proposition 7.2. Let P∗ be a run-time trusted process. If
c̃ ∈ Ib(P∗), thenP∗ ≡ (νñ)(b〈a : m̃ ‖ c̃〉◦k | P ′

∗) where
c̃ ∩ ñ = ∅, c̃ 6∈ Ib(P

′
∗) andk = 0, 1 whena = a.

The conditionc̃ 6∈ Ib(P
′
∗) guarantees that there are no

other (possibly cached) outputs tob with the samẽc. Intu-
itively, all the cached and non-cached outputs with the same
b andc̃ necessarily contain the same messagesm̃.

Based on this result, we introduce an observational tran-
sition for a new label, noted!b(c̃)k, which makes the num-
berk of replicas for the message indexed byc̃ observable.

P∗ ⊢
!b(c̃)

−−−→ P ′
∗

P∗ ≡ (νñ)(b〈− : m̃ ‖ c̃〉◦k | Q∗)
c̃ ∩ ñ = ∅, c̃ 6∈ Ib(Q∗)

P∗ ⊢
!b(c̃)k

−−−−→ P ′
∗

We now give new notions of bisimilarity, which only relate
run-time trusted processes with at mostk copies of the same
message, calledk-processes:

Definition 7.3 (k-processes). Let P∗ be a run-time trusted
process. We say thatP∗ is a k-process, with k ≥ 0, iff

P∗ ⊢
!b(c̃)

k′

−−−−→ impliesk′ ≤ k.

7.1 k-Bisimilarity and up-to techniques

Definition 7.4 (k-bisimilarity). A symmetric relationRk

over k-processes is a weakk-bisimulation if whenever

P∗RkQ∗ and P∗ ⊢
α
−→ P ′

∗ with bn(α) ∩ fn(Q∗) = ∅ and
α 6=!b(c̃), one has

• if α =!b(c̃)k thenQ∗ ⊢
α
−→

• if α 6=!b(c̃)k thenQ∗ |=
bα

=⇒ Q′
∗ andP ′

∗RkQ′
∗.

Twok-processes arek-bisimilar, writtenP∗ ≈k Q∗ if and
only if P∗RkQ∗ for somek-bisimulationRk.

Intuitively, ak-bisimulation is like a standard weak bisimu-
lation for actions which are different from!b(c̃)k. For these
latter actions, instead, it requires that they are simulated in
a strong way, but on the other hand it disregards the(k+1)-
process reached by the transition.

The next proposition gives a key property that relates dif-
ferentk-bisimulations.

Proposition 7.5. If P∗ ≈k Q∗ with k ≥ 1 then we have

P∗ ≈k+1 Q∗. Moreover, ifP∗ ≈k Q∗ andP∗ ⊢
!b(c̃)k

−−−−→ P ′
∗,

Q∗ ⊢
!b(c̃)k

−−−−→ Q′
∗ thenP ′

∗ ≈k+1 Q′
∗.

From this proposition, we can prove that bisimilarity is the
union of all thek-bisimilarities.

Theorem 7.6. ≈ =
⋃

k≥1 ≈k

Proof. For the inclusion⊇ the proof is by coinduction. De-
fine R =

⋃

k≥1 ≈k. Then, from Proposition 7.5 we know
that R is a bisimulation, hence the desired inclusion. The
reverse inclusion derives from the following property: if

P∗ ≈ Q∗ thenP∗ ⊢
!b(c̃)k

−−−−→ iff Q∗ ⊢
!b(c̃)k

−−−−→ for all k ≥ 0.
This latter property is proved by induction onk.

As a result, we can restrict to 1-bisimilarity as a proof tech-
nique, thus limiting the number of replicas in the candidate
bisimulations to just one.

Corollary 7.7. If P∗ ≈1 Q∗ thenP∗ ≈ Q∗.

While relying on1-bisimilarity is much more convenient
than relying on bisimulations, we still have to work with
candidates (1-bisimulations) that include replicas in both

the formsb〈a : m̃ ‖ c̃〉◦0 and b〈a : m̃ ‖ c̃〉◦1. We will now
prove that it is sufficient to keep either one, but not both:
the choice of which one determines a different proof tech-
nique.

7.2 Bisimulation up-to forward and replay

The first proof techniques shows that we can disregard
replicas in the formb〈a : m̃ ‖ c̃〉◦0. For non-authentic out-
puts, that implies that in our candidate 1-bisimulations we
can refrain from observing the states (i.e. from including the
processes) that only store the cached copy of an intercepted
message, as the cached copy alone does not give any extra
transition that cannot be also performed byb〈− : m̃ ‖ c̃〉◦1.
Similarly, for authentic messages, it suffices to keep the au-
thentic outputb〈a : m̃ ‖ c̃〉◦1, disregarding the cached copy.

We introduce a family of relations, indexed by the pre-
fixes!b(c̃), to relate processes with the processes that result
from firing the cached copies of the messages indexed by
c̃, whenever possible. In particular, we writeP∗ >!b(c̃) P ′

∗

wheneverP∗ ⊢
!b(c̃)0
−−−−→ P ′

∗, orP ′
∗ ≡ P∗ if P∗ ⊢

!b(c̃)0

−−−−6→ . Notice
that in this latter caseP∗ is not moving, and captures the im-
possibility of performing a forward/replay action. We also
write P ′

∗ <!b(c̃) P∗ wheneverP∗ >!b(c̃) P ′
∗.

Definition 7.8 (1-bisimilarity up-to forward and replay).
A symmetric relationR over 1-processes is a weak1-
bisimulation up-to forward and replay if wheneverP∗RQ∗

and P∗ ⊢
α
−→ P ′

∗ with bn(α) ∩ fn(Q∗) = ∅ and α 6=!b(c̃),
one has

• if α =!b(c̃)1 thenQ∗ ⊢
α
−→

• otherwiseQ∗ |=
bα

=⇒ Q′
∗ andP ′

∗ >!b(c̃) R <!b(c̃) Q′
∗.

Theorem 7.9. If R is a weak1-bisimulation up-to for-
ward/replay then>!b(c̃) R <!b(c̃) is a1-bisimulation.

Corollary 7.10. If P∗RQ∗ for some weak1-bisimulation
up-to forward/replay, thenP∗ ≈ Q∗.

7.3 k-*Bisimilarity

The second proof technique is dual, and yields candi-
dates which only includeb〈a : m̃ ‖ c̃〉◦0 replicas. The tech-
nique arises from an alternative definition ofk-bisimilarity,
called k-*bisimilarity, that differs fromk-bisimilarity in
that it imposes a further condition on the processes reached
by a !b(c̃)k: namely, whenever a strong transition takes ei-
ther process back into the class of thek-processes, the other
process has a weak matching transition. The definition is as
follows:

Definition 7.11 (k-*bisimilarity). A symmetric relation
R k over k-processes is a weakk-*bisimulation if when-

everP∗ R kQ∗ andP∗ ⊢
α
−→ P ′

∗ with bn(α) ∩ fn(Q∗) = ∅
andα 6=!b(c̃), one has

• if α =!b(c̃)k then Q∗ ⊢
α
−→ Q′

∗ for someQ′
∗, and for

all k-processesP ′′
∗ such thatP ′

∗ ⊢
γ

−→ P ′′
∗ , there exists a

k-processQ′′
∗ such thatQ′

∗ |=
γ

=⇒ Q′′
∗ andP ′′

∗ R Q′′
∗ ;

• if α 6=!b(c̃)k thenQ∗ |=
bα

=⇒ Q′
∗ andP ′

∗ R kQ′
∗.

Two k-processes arek-*bisimilar, written P∗ ≈k
∗ Q∗ iff

P∗ R kQ∗ for somek-*bisimulation R k.

The main result that we outlined fork-bisimilarity, no-
tably, Proposition 7.5, Theorem 7.6 and Corollary 7.7 ex-
tend tok-*bisimilarity. Interestingly, Proposition 7.5 holds
for k = 0 as well when applied to≈k

∗ . This implies that
0-*bisimulations (that we call *bisimulations for short) can
be used as candidates. That is very convenient for proofs in-
volving non-authentic messages, as *bisimulations are very
compact. On the other hand, their use in proofs is slightly
more complicate, as proving a relation to be a *bisimulation
takes a little more work than proving the corresponding re-
lation to be a1-bisimulation up-to forward/reply.

8 Secrecy and Authentication Proofs

We show our proof methods at work on a series of
security-related observational (in)equalities. To ease the no-
tation, we express our candidates as asynchronous bisimu-
lations (thus disregarding the vacuous input transitions of
the observational LTS). As in Section 5, we writeH ∼=O K
to mean[H] ∼=O [K] andH ≈ K to mean[H] ≈ [K].

Our first observation is on the role of hidden channels.
As we noted, restricting the destination of an output does
not hide the presence of the output to an observer. In
other words,(νb)b〈a : m〉• 6∼=O 0, meaning that outputs
are always observable, even when they are secret. On the
other hand, secret outputs on restricted (or more generally
trusted) channels do guarantee the privacy of the payload.
This is expressed by the equation we discussed back in Sec-
tion 5.

(νb)b〈a : m〉• ∼=O (νb)b〈a : m′〉• (1)

The equality is proved directly by coinduction, using the
following candidate, whereP and Q are the trusted pro-
cesses representing the two high-level principals in the
equation.

R (1) = {(P, Q), (b〈a : m ‖ c〉•1, b〈a : m′ ‖ c〉•1)}

It is easy to verify thatR (1) is a weak 1-bisimulation, up-to
forward/replay. HenceP ≈ Q as desired. Notice that the

equation holds even without restriction, assumed thatb is a
trusted identity, i.e.,b ∈ Nt:

b〈a : m〉• ∼=O b〈a : m′〉•

A further variant of equation (1) uses a fresh message to

masquerade form in place ofm′:

(νb)b〈a : m〉• ∼=O (νb)(νd)b〈a : d〉• (2)

The proof of this equation is essentially the same as the one
we have just outlined. Interestingly, in the non-authentic
case, the equation also holds if the output on the right-hand
side is in plain mode, as its interception would produce the
label(b, d)?b〈− : d ‖ d〉, which is the same as the one pro-
duced by the interception of secret trusted outputs.

(νb)b〈− : m〉• ∼=O (νb)(νd)b〈− : d〉

Intuitively, a secret output is indistinguishable by the output
of a new (random) name in plain mode.

The equation breaks for the authentic case, since we
would have the label(b, c, d)?b〈a : d ‖ c〉, representing a
new named with its time-variant signaturec. As expected,
this redundancy makes the message distinguishable from a
secret output.

In [6], the spi-calculus characterization of secrecy is given
by means of a related equation, that we may express as fol-
lows:

(νb)(b〈a : m〉• | b(a : x)•.H(x))

∼=O (νb)(b〈a : m′〉• | b(a : x)•.H(x)) (3)

which holds just in caseH(m) ∼=O H(m′). The proof is
similar to the proof of equation (1). Here we use the follow-
ing candidate and show that it is a *bisimulation.

R (3) = { (P, Q), (P∗, Q∗) } ∪ ≈0
∗

P and Q are the trusted processes corresponding to the
high-level principals in the equation, whileP∗ and Q∗

are the residuals of the output intercepted transitions in
the two processes, namelyb〈a : m ‖ c〉•∗ | b(a : x)◦.H(x)
and b〈a : m′ ‖ c〉•∗ | b(a : x)◦.H(x), respectively. Notice
that, sinceH(m) andH(m′) are0-processes, we have that
H(m) ≈ H(m′) impliesH(m) ≈0

∗ H(m′).

8.1 Authentication

The most basic form of authentication can be stated in
terms of the equation(νa)(b(a : x)◦.P) ∼=O 0, which may
be proved by just observing that neither process has any
observational transition.

Again following [6], a more interesting notion of authen-
tication may be formalized by contrasting the system to be
authenticated with a system that satisfies the specification
trivially. To illustrate, consider the following equation:

(νa)(b〈a : m〉◦ | b(a : x)◦.H(x))

∼=O (νa)(b〈a : m〉◦ | b(a : x)◦.H(m)) (4)

Here, by “magically” pluggingm in H(x), the equation
states thatm is the only message that can possibly be re-
ceived. That is guaranteed because there is just one authen-
tic output in the scope of the restriction. The proof of equa-
tion (4) follows co-inductively showing that the following
candidate is a *bisimulation:

R (4) = { (P, Q), (P∗, Q∗) } ∪ Id

HereId is the identity relation,P andQ are the trusted net-
work processes corresponding to the high-level principals
in the equation, whileP∗ andQ∗ are the residuals of the
output intercepted transitions in the two processes, namely
b〈a : m ‖ c〉◦∗ | b(a : x)◦.H(x) and b〈a : m ‖ c〉◦∗ | b(a :
x)◦.H(m),

8.2 Sessions

We conclude our series of examples proving the authen-
ticity and secrecy of properties of the protocol for establish-
ing a private session we introduced back in Section 2. To
reason about authentication, let

Bspec(z′)
def
= (νh)b(a : y).(a〈b : h〉 |h(y : z)•.H(z′))

represent the “ideal” definition ofB, which differs fromB
only in the fact that the receivedz is ignored and, instead,

H gets the parameterz′. In other words,Dspec(m)
def
=

(A(m)|Bspec(m)) represents a process which always de-
livers m to Q(z). The protocol properties may then be de-
scribed as follows.

(authenticity) D(m) ∼=O Dspec(m)

(secrecy) D(m) ∼=O D(m′) if H(m) ∼=O H(m′)

The proof can be derived in essentially the same way for
both equations: we give the proof for the secrecy equation
as representative. While we could reason co-inductively, as
for the previous equations, in this case it is more convenient
to first show an auxiliary equation. Let:

A′(y)
def
= b〈a : k〉 | a(b : x).x〈k : y〉•

B′ def
= b(a : y).(a〈b : h〉 |h(y : z)•.H(z))

We show, thatA′(m) |B ∼=O A′(m′) |B. Then
the proof of our initial equation derives by compo-
sitionality as A′(m) | B ∼=O A′(m′) | B implies

(νh)(νk)(A′(m) | B) ∼=O (νh)(νh)(A′(m′) | B) by clo-
sure under restriction and henceA(m)|B ∼=O A(m′)|B be-
causeA(x) | B ≡ (νh)(νk)(A′(x) | B).

The proof thatA′(m) |B ∼=O A′(m′) |B follows by co-
induction, choosing the candidate as follows. First define:

R = {

(P (m), P (m′)),

([a(b : x).x〈k : m〉• | a〈b : h〉 | h(k : z)•.H(z)],

[a(b : x).x〈k : m
′〉• | a〈b : h〉 | h(k : z)•.H(z)]),

([h〈k : m〉• | h(k : z)•.H(z)],

[h〈k : m
′〉• | h(k : z)•.H(z)]) }

Now, we defineR sec = R ∪ ≈1 and show thatR sec is
a 1-bisimulation up-to forward (there are no replicas here).
The proof is routine, noting that some of the pairs that arise
from R in the bisimulation game are contained in≈1. One
such pair is([H(m)], [H(m′)]). That this pair is in≈1 de-
rives by the following argument. First notice that the hy-
pothesisH(m) ∼=O H(m′) implies [H(m)] ≈ [H(m′)] by
Theorem 6.4, and hence[H(m)] ≈1 [H(m′)] by Theorem
7.6, because[H] is a1-process wheneverH is a high-level
principal. Another pair is([a(b : x).x〈k : m〉• | B′], [a(b :
x).x〈k : m′〉• | B′]), which arises fromR via an (Out-
put) transition, and is contained in≈1 as both processes are
stuck.

9 Outline of an Implementation

We conclude our presentation of our communication
primitives by outlining a cryptographic framework for their
implementation. We keep the discussion informal to focus
on the main ideas and intuitions, leaving a detailed formal-
ization to our plans for future work.

The basic mechanisms we presuppose on the underlying
cryptographic infrastructure are fairly standard, and based
on well-known ISO protocols for secrecy and authentica-
tion. Our trusted principals may be implemented so as to en-
sure that all traffic they originate (and receive) is directed to
the network over public channels. To enforce the high-level
security guarantees provided by our primitives, these proto-
cols may use time-variant signatures to certify the source of
authentic messages, and randomized public-key encryption
to protect the secrecy of data when desired.

Far from being entirely realistic, (for instance, it would
certainly be more reasonably to rely on shared session keys
so to improve performance), with some care, these general
mechanisms may be assembled into a working implemen-
tation. In several respects, that can be accomplished as in
similar attempts made in the literature, e.g. [4, 5, 10]). On
the other hand, our primitives do have some specific feature
that is worth discussing.

One such feature is that the synchronization rules require
a precise match on the secrecy mode for the two partners.
In the implementation, this presuppose that messages circu-
late with enough redundancy to distinguish the structure of
ciphertexts from that of plain texts.

A further problem for our implementation is that, given
that the communication primitives are untyped, we may not
count on a formal distinction between names, serving as
data, and identities. This is unfortunate, as data and identi-
ties have rather different interpretations in a public key in-
frastructure like the one we are describing: specifically, a
piece of data has no predefined format, whereas an iden-
tity is typically represented by it associated public key. A
solution to this problem is readily obtained, however, by
resorting to a fairly standard typing discipline to enforce
the required run-time invariants on the separation between
names and identities.

A remark is also in order about authentication. As we
noted, an authentic exchange not only certifies the source
of the message exchange, but also its (the message’s) fresh-
ness. In an implementation, one way to accomplish that
is by means of timestamps: if the source and the destina-
tion of a message share a common clock, the destination
may verify the authenticity of a message by checking the
sender’s signature and the timestamp. In distributed sys-
tems, however, the presence of a global clock is hardly re-
alistic, and authentic exchanges are typically realized by
challenge-response protocols in which the receiver (initia-
tor) challenges the sender (responder) with a nonce that it
expects back with the message to deduce the freshness of
the message. The problem with an implementation based
on challenge-response protocols is that it requires a differ-
ent interpretation of the authentic input prefix. In partic-
ular, we observe that the equation[(νa)b(a : x).H] ∼= 0

is not validated by a challenge-response implementation of
authentication, as the presence of the input process is im-
mediately made apparent by the challenge it poses to the
responder.

The problem has an obvious solution however, as we
can simply adjust our interpretation of the input prefix, by
choosing its network-level presentation appropriately. In-
deed, it is enough to modify the mapping[·] in Definition 3.1
to so as to mimic, abstractly, the flow of traffic that can be
observed in the underlying protocol. That is accomplished
as follows, by emitting a nonce when an authentic input is
ready to fire:

[b(a : x̃)◦.H] , (νn)a〈− : n ‖ n〉 | b(a : x̃ ‖ ỹ).[H]

The authentication proofs given in Section 8 are still valid
under this definition. Of course, authentication has now
a slightly more concrete characterization, as with the new
definition we have[(νa)b(a : x).H] ∼= (νn)a〈− : n ‖ n〉
rather than[(νa)b(a : x).H] ∼= 0.

10 Conclusions

We have investigated a new set of security abstractions
for distributed communication. The resulting primitives can
be understood as a kernel API (Application Programming
Interface) for the development of distributed applications.
The API primitives are purposely defined without explicit
reference to an implementation; at the same time, however,
they are designed to be amenable to cryptographic imple-
mentation as the one we have outlined.

Certainly, for programming/specifying realistic exam-
ples and applications, one would need reliable communica-
tions within protected environments (a.k.a. secret channels
à la pi-calculus). We do not see any problem in accommo-
dating that feature within our present framework.

The semantic theory and the proof techniques we have
developed make the API a convenient tool for the analysis
of security-sensitive applications. In its present form, our
framework is targeted at (and we argue, well-suited for) se-
crecy and authentication. Future work includes expending it
to account for advanced properties, like anonymity, required
in modern network applications such as electronic voting.

Various papers in the literature have inspired or are re-
lated to our present approach. A localized use of names,
introduced in the Local pi-calculus [15] is discussed and
employed in [5] for purposes similar to ours, while the han-
dling of principals and authentication we adopted in the
present paper is reminiscent of that in [4].

Other papers with related design are [3, 14, 7]. Of these,
the closest to our approach is [7]. While we share some of
the initial motivations and ideas, specifically the idea that
the environment can mediate all communications, the two
target complementary objectives, and differ for a number
of design choices and technical results. A first important
difference is in the choice of the communication primitives
and their semantics: while we accommodate various com-
munication modes, the semantics of communication in [7]
makes it possible to only express (what corresponds to) our
securecommunications. As a result, our calculus makes it
possible to express a wider range of protocols. A second
important difference is that we allow dynamic creation of
new principal identities, thus making it possible to express
sessions, a feature that is not easily accounted for in [7].

Acknowledgments Work partially supported by M.I.U.R.
(Italian Ministry of University and Research) under contract
n. 2005015785. Thanks to Pierpaolo Degano and Cedric
Fournet for their comments and constructive criticism on
an earlier version of the present paper. We also gratefully
acknowledge comments from the anonymous referees of the
submitted version.

References

[1] M. Abadi. Protection in programming-language transla-
tions. In K. G. Larsen, S. Skyum, and G. Winskel, editors,
ICALP, volume 1443 ofLecture Notes in Computer Science,
pages 868–883. Springer, 1998.

[2] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. InPOPL’01, pages 104–115, 2001.

[3] M. Abadi and C. Fournet. Private authentication.Theor.
Comput. Sci., 322(3):427–476, 2004.

[4] M. Abadi, C. Fournet, and G. Gonthier. Authentication
primitives and their compilation. InPOPL’00, pages 302–
315, 2000.

[5] M. Abadi, C. Fournet, and G. Gonthier. Secure implemen-
tation of channel abstractions.Inf. Comput., 174(1):37–83,
2002.

[6] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus.Inf. Comput., 148(1):1–70,
1999.

[7] P. Adão and C. Fournet. Cryptographically sound imple-
mentations for communicating processes. In M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, editors,ICALP (2),
volume 4052 ofLecture Notes in Computer Science, pages
83–94. Springer, 2006.

[8] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimula-
tions for the asynchronous pi-calculus.Theor. Comput. Sci.,
195(2):291–324, 1998.

[9] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. InCSFW, pages 82–96. IEEE Com-
puter Society, 2001.

[10] M. Bugliesi and M. Giunti. Secure implementations of typed
channel abstractions. In M. Hofmann and M. Felleisen, edi-
tors,POPL, pages 251–262. ACM, 2007.

[11] M. Hennessy.A Distributed PI-Calculus. Cambridge Uni-
versity Press, 2007.

[12] K. Honda and M. Tokoro. On asynchronous communication
semantics. In M. Tokoro, O. Nierstrasz, and P. Wegner, ed-
itors, Object-Based Concurrent Computing, volume 612 of
Lecture Notes in Computer Science, pages 21–51. Springer,
1991.

[13] K. Honda and N. Yoshida. On reduction-based process se-
mantics.Theor. Comput. Sci., 151(2):437–486, 1995.

[14] P. Laud. Secrecy types for a simulatable cryptographicli-
brary. In V. Atluri, C. Meadows, and A. Juels, editors,
ACM Conference on Computer and Communications Secu-
rity, pages 26–35. ACM, 2005.

[15] M. Merro and D. Sangiorgi. On asynchrony in name-passing
calculi. In Proceedings of ICALP 98, volume 1443 ofLec-
ture Notes in Computer Science. Springer-Verlag, 1998.

[16] M. Merro and D. Sangiorgi. On asynchrony in name-
passing calculi.Mathematical Structures in Computer Sci-
ence, 14(5):715–767, 2004.

[17] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Se-
cure network objects. InSecure Internet Programming,
pages 395–412, 1999.

