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Abstract number of pairs of ciphertexts and corresponding

execution times. Blinding randomizes each cipher-
We show that the amount of information about the key thetbxt before decryption In this way the attacker’s
an unknown-message attacker can extract from a deterrininist[. . ’ !
side-channel is bounded from above 6| log, (n + 1) bits, tMING Measurements are decorrelated from the
where n is the number of side-channel measurements anciphertexts, rendering all known timing attacks
O is the set of possible observations. We use this bound tReffective Blinding has become the state-of-the-
derive a novel countermeasure against timing attacks, her ’ . - .
the strength of the security guarantee can be freely trade@t cOUNtermeasure against timing attacks and is
for the resulting performance penalty. We give algorithivett implemented in a wide range of crypto-libraries.

efficiently and optimally adjust this trade-off for givenneo Hawever, it is still unclear whether blinding offers
straints on the side-channel leakage or on the efficienchef t !

cryptosystem. Finally, we perform a case-study that shbas t any kind of complet_en_ess in the sense that it
applying our countermeasure leads to implementations wittlefeats all possible timing attacks [17]. A recent

minor performance overhead and formal security guarantees;ag)|t even shows that a blinded implementation
may leak the entire key information if the number
1. Introduction of measurements is sufficiently large [2].
In contrast,constant-timeimplementations de-

Side-channel attacks threaten the security @at all timing attacks. However, this security guar-
cryptographic algorithms by exploiting informa-antee comes at the price of a large performance
tion that is revealed by the algorithm’s physical expenalty, as the system assumes its worst-case
ecution. Characteristics such as running time [17¢xecution time on all inputs. For many resource-
cache behavior [27], power consumption [18]¢ritical application domains, such a performance
and electromagnetic radiation [12], [29] have alpenalty is not acceptable. Moreover, for many
been exploited to recover secret keys from impleplatforms, constant-time software is hard to write
mentations of different cryptographic algorithmsand maintain. As a consequence, constant-time
In distributed environments such as the internespftware is not widely used in practical implemen-
timing attacks are maybe the most daunting kinthtions of cryptosystems.
of side-channel attack: Timing can be measured In general (see also the section on related work),
and exploited remotely [4], opening the door foexisting countermeasures against timing attacks
a potentially large number of attackers. are either not fully practical (e.g., in terms of the

A number of countermeasures against timingesulting performance penalty) or not known to
attacks have been proposed [17], [4], most notabbe sound (i.e., they are not backed up by any
input blinding and constant-time implementationdormal security guarantee). It has been an open

To describeinput blinding we use RSA as an problem to devise countermeasures that satisfy
example. Input blinding relies on the fact thaboth requirements. In this paper, we propose a
all known timing attacks against RSA decryptiorsolution to this open problem for systems with
require that the attacker be able to obtain a largieterministic timing behavior.



The key to our solution is the insight that if aimplementation, more thag“® timing measure-
system with deterministic timing behavior is runments are necessary for recovering an expected
on inputs that have been previously blinded, thamount of200 key bits (alternatively24® side-
amount of information about the key that is leakedhannel measurements reduce our lower bound
by the system’s timing behavior is bounded fronfor the expected effort for determining the key
above by by exhaustive search by a factor 2f°°). The

10| logy(n + 1) performance overhead imposed by the bucketing
amounts to less than.7% with respect to the
bits, whereO is the set of possible executionblinded implementation without bucketing.
times, andn is the number of side-channel mea- In summary, our contributions are both theo-
surements made. We formally establish this bountgtical and practical. On the theoretical side, we
and we use it to derive a lower bound on the exprove a bound on the amount of information

pected effort for determining the key by exhaustivéhat a side-channel attacker can extract from a
search after a side-channel attack. blinded implementation in a given number of mea-

Motivated by this result, we propose the comsurements. This bound leads to a countermeasure
bination of blinding and bucketing as a novefgdainst timing attacks, where the strength of the
countermeasure against timing attacRsicketing Security guarantee can be freely traded for the re-
is the discretization of a system’s execution time8ulting performance penalty. On the practical side,
such that the results of the computation are on¥/€ give algorithms that efficiently and optimally
returned at a small number of fixed points in timedjust this trade-off for given constraints on the
More precisely, bucketing partitions a system’§ide-channel leakage or on the efficiency of the
possible execution times into intervalbugkety Cryptosystem. Finally, we perform a case-study
of variable length, where, for each execution timg¢hat shows that the combination of blinding and
one waits until the enclosing bucket's upper boun@ucketing leads to implementations with minor
before returning the result of the computation. Performance overhead and formal security guar-

Bucketing reduces the number of possible tim3Ntees. _ _ _
ing observations (and hence improves the bound The remainder of this paper is structured as
on the leaked information) at the cost of thdollows. In Section 2, we present a measure for
system’s performance. The resulting trade-off bdD€ amount of information that is leaked by a
tween security and performance can be adjust@inded implementation. In Section 3, we prove a
by choosing the number of buckets and thepoun_d on this quantlty and give an mterpretat_lon
bounds. To this end, we give an algorithm thaOf this bound in terms of guessing. In Section
for a given number of buckets (i.e., a desired: We present algorithms for computing optimal
security guarantee), computes a bucketing sudycketings. In Section 5, we present expenment_al
that the system’s resulting performance penal sul_ts. We present relate_d work and conclude in
is minimal. Moreover, we give an algorithm that>€ctions 6 and 7, respectively.
computes the minimal number of buckets (i.e, C
the best possible security guarantee) under tlze Preliminaries
constraint that the resulting performance penalty In this section, we introduce our model of side-

does not exceed a given bound. channels and an information-theoretic measure

security of a realistic example. As a case study, the subject.

we analyze an implementation of an algorithm

for 1024 bit RSA decryption. Our results showp 1 |nformation Theory Basics

that meaningful security guarantees can be ob-

tained with only a minor performance overhead: Let A be a finite set andp: A — R a
If a bucketing of 5 buckets is applied to the probability distribution. For a random variable



X: A — X, we definepy: X — R as whereO denotes the set of possible observations.
px(z) =3, cx—1(s) Pla), Which is often denoted We assume that the attacker has full knowledge of

by p(X = z) in the literature. the implementation/y; in particular we assume
The (Shannon) entropyf a random variable that f;,. is known to the attacker. We will usually
X: A— X is defined as leaveIr implicit and abbreviatef;,. by f.
HX)=— pr(a;) log, p(z) . Example 1. Suppose that is implemented in
e X synchronous (clocked) hardware and that the at-

The entropy is a lower bound on the averag@Cker is able to determindg’s running times

number of bits required to represent the resul to sllngfk; clock tl')CkS' Tdhelndthe t|m|fng st|_de-
of independent repetitions of the experiment aghannel ofip can be modeled as a function

sociated withX'. Thus, in terms of guessing, thef: K x M — N that repregents the numbe_r of
entropy H(X) is a lower bound on the aver- clock ticks consumed by an invocation/ef. This

age number of binary questions that need to ogellng glsolappl!es to software |mF€Lemtentat|r(])ns
asked to determinéX’s value [5]. The entropy 0 on simplie microprocessors without caches

is nonnegative, and reaches its maximal valuaend pipelines.

of H(X) = log,(|X|) when X is uniformly Example 2. For implementations on microproces-

distributed. sors with performance-enhancing features such as
If Y: A — Y is another random variable,pipelines and caches, the timing behavior Igf

H(X|Y = y) denotes the entropy of given) = is not necessarily a function of the inputs fa

y, i.e., with respect to the distributiopyy—,. However, if the processor is forced into a fixed
Theconditional entropyH (X'|Y) is defined as the initial state before each call td& (e.g., by filling
expected value off (X|Y = y) over ally € Y, up the pipeline and the cache), and if there are no

namely, interferences such as interrupts and preemptions,
the execution time becomes a function of the inputs
HX)Y) = py(y)HX|Y =y) . o F.
yey

Our modeling of side-channels also encom-
\{)asses simple models of power consumption, e.g.
: . : ~ the Hamming weight model [21]. However, these
i@é k|)s ;? ((z)r)a n.?r?énmﬁﬂglb ilﬁfgfn];lgt?gnasy(k) " models abstract away certain electrical effects, and

’ ' formal bounds derived on their basis do not imply
I(X;Y)=H(X) - H(X|Y) security from attackers that exploit the omitted

effects. The practical implications of applying our

captures the expected reduction in uncertainfy,qe| to power analysis requires further investi-
about X' when one learns the value of. The ya4ion |n this paper, we focus on timing side-
mutual information is measured in bits. channels.

Entropy and conditional entropy are related b
the equationt (X)) = H(Y) + H(X|Y), where

2.2. Side-Channels 2.3. Unknown-Message Attacks

Let K be a finite set of keysM be a finite In a side-channel attack, a malicious
set of messages, anl be an arbitrary set. We agent  gathers  side-channel  observations
consider systems that compute functions of typg(k,m1),..., f(k,m,) for deducing k& or
F: K x M — D, and we assume that thenarrowing down its possible values. Depending
attacker can make physical observations aboah the attack scenario, the attacker might
F’s implementation/ that are associated withadditionally be able to see or choose the
the computation of’'(k, m). We assume that the messagesn; € M: An attack ischosen-message
attacker can make one observatiord pfper call to if the attacker can chooser; € M; an attack
F and that no measurement errors occur. Formallig, known-messagéf the attacker can observe
a side-channels a functionf;,: K x M — O, but cannot influence the choice of; € M; an



attack isunknown-messagé the attacker cannot i remains fixed over all invocations ¢f while the
observem; € M. messagesny, ..., m, are chosen independently.
As previously mentioned, all known timing Example 4. Consider again the blinded RSA

attacks against RSA decryption require that th&phertextm-re mod N from Example 3. Ifn is

attaf:ker be able to obtain a Ia.rge numb(_er Of.pa'rrglatively prime toN, the multiplication withm
of ciphertexts and corresponding execution tlmeg,1

Input blinding randomizes each ciphertext be—'nd the exponentiation with are permutations
P 9 P on Zjy. Hence, for independent and uniformly

fore decryption, thus turning chosen- and knowndistributed values of-, the blinded inputs to the
message attacks into unknown-message attacksd . : .
ecryption are also independent and uniformly

Example 3. Consider an RSA decryptian= m” distributed. Note that choosing a ciphertext
mod N, wherem is a ciphertext chosen by thethat is not relatively prime taV corresponds to
attacker, z is the plaintext,N = p - ¢ is the guessing one of the prime factors¥f= p-q. We
modulus, andk with k- ¢ = 1 mod ¢(N) is can hence safely capture the effect of RSA input
the secret key. In thélinding phase, one picks blinding by assuming a uniform distributigs, .

a randomr that is relatively prime toN and
computesn-r¢ mod N. The result of the decryp-
tion is (m - r)¥ = 2 -r mod N, which yieldsz

An unknown-message attacker makingside-
channel observation®,, may learn information
L A -~ —, about the value ofC, i.e., about the secret key.
afterunblinding i.e., after multiplication with- This information can be expressed as the reduc-
mod . tion in uncertainty about the value df, i.e.,

Input blinding techniques are available for many (K; O,,) = H(K) — H(K|O,,).
common cryptographic algorithms, including EI- Note that/(K; O,,) captures only the informa-
Gamal and Diffie-Hellman. While the mathemattion leaked by the time required for computing
ical details of these techniques depend on the &, but does not capture the timing behavior of
gebraic properties of the individual cryptosystemghe blinding and unblinding steps. We assume
the notion of an unknown-message attack providésat these steps do not introduce additional timing
a common abstraction for attacks against blindg@aks.
implementations.

3. Bounds on the Side-Channel Leak-

2.4. Side-Channel Leakage in Unknown- age
Message Attacks
In this section, we prove our main result, which

We review the information measure from [2]|s an upper bound on the amount of information

that captures the side-channel leakage mat an unknown-message attacker can extract

unknown-message  attacks. For this |é’{om a side-channel in a given number of mea-
v K — R andpy: M — R be probability surements. We give the proof idea in Section 3.1

distributions and let the random variable@nd formalize it in Section 3.2. In Section 3.3, we
K = idg, M — idy; model the choice of keys give an interpretation of this bound in terms of the

and messages, respectively; we assume jihat remaining effort for correctly guessing a key.
andpy are known to the attacker.

For n € N, we define the random variable
On: K x M™ — O™ by O, (k,m1,...,my,) =

3.1. Proof Idea

(f(k,m1),. .., f(k,mn)), where The_number of possible Qbservations that can be
made inn measurements is bounded from above
2 by |O|™. Hence,log,(|O|™) = n log,(]O]) is an
proxarn (kyma, .. my) = prc(k) HpM(mi) upper bound for the information that is contained
1=1

in n side-channel measurements. Note that this
is the probability distribution onX” x M™. The crude bound does not yet imply any useful security
definition of the random variabl®,, captures that guarantees.
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For afixed key, however, the individual observapo |k —i(0') whenevert, = t,. Hence
tions are independent and identically distributed.
As a consequence, their ordering is irrelevant: only P, c=k Z Po,, =k (
the relative frequency with which each observation o':to=t,
occurs carries information about the key. The = [to] o, =k (0) -
number of relative frequencies of observations,
however, is bounded from above iy + 1)I°!, We further have
which leads to outO| log,(n + 1) upper bound

on the leaked information. _ Pric=k(to)pr (k)
p1c|T:to(k)
pT(to)
3.2. Formal Proof _ _ Prix=k(tolprc(k)
> wex PTic=k (to)Pic (K')
Formally, the type t, of a sequenceo = - [tolpo, =k (0)Pk (k)
(01,...,0,) € O™ is the relative frequency with 2 wek [tolPo, k=k ()P (K')
which each element of occurs ino. Let T;, = _ po,k=k(0)pk (k)
{t, | 0 € O™} be the set of types of sequences - o, (0)
of length n of elements of 0. The function = prjon—o(k) ,

7,: O™ — T, defined byo — t, is a random

variable whereyr, (t) = po, ({0 € O" | t, = t}). from which the statement follows. O

We denote byjt,| the number of observation vec- | emma 3 shows that the random varialdg

tors of typet,, i.e., [to| = [{o' € O" [to = to}|.  contains as much information about the key as the
The following bound on the size of;, is random variableZ;,.

fundamental to the (information-theoretic) method
of types, see e.g. [10]. Lemma 3. H(K|0,) = H(K|Ty)

Lemma 1. |T,| < (n + 1)° Proof:

Proof: Each typel, € T, can be represented H(K|O,,) = Z po, (0)H(K|O,, = o)

by a vector in{0,...,n}°l, where each com- oc0On

ponent of the vector corresponds to the number _ Z Z o, (0)H(K|O,, = o)
of occurences of a particular observation dn
The assertion then follows frofdo, . ..,n}°l =
(n+ 1)l°l, 0 © > prH(K|T, =1t)

Lemma 2 shows that a vector of observations teTn
contains as much information (i.e., leads to the = H(K|T,)

same reduction in uncertainty) about the key as
the typet,. where step(x) follows from Lemma 2. O

We are now ready to give the proof of our main

Lemma 2. H(K|O, = 0) = H(K|T,, = t,) result, which is an upper bound on the amount
Proof: H(K|O, = o) is defined by of information that an unkn.own-rlnessage side-
= S ek Prclon—o(k) 10gs Prjo, —o(k), hence it channel attacker can extract in a given number of

suffices to show thapx|o,—o = px|7,,=t,- FOr measurements.
a fixed k, the individual observations im = Theorem 1. Let f: K x M — O be a side-

(01,...,0,) are independent, hence channel and letC and ©,, be defined as above.
Then we have

teTy oito=t

PO, K =k( HP01|K k(0i) - 1(K; 0,,) < |O]logy(n +1) .

In particular, this implies thapo, x—r(0) = Proof:



The following lemma generalizes Massey'’s en-
tropic lower bound on the guessing entropy to a

I(K; On) = H(K) — H(K|On) (1) lower bound on the conditional guessing entropy.
= H(K) — H(K|T,) 2) _
— H(T,) — H(T.K) 3) Lemma 4. Let X', ) be random variables. Then
< H(7,) (4) G(X|Y) = 2H@E -2
< logy | Th| (5)
< |O[logy(n+1) , 6) Proof: We haveG(X) > 2H#(*¥)=2 11 when-

where (1) follows from the definition of the mu-ever H(X) > 2. Note thatG(X) > 1 always
tual information, (2) follows from Lemma 3, (3) holds, hence we havé/(X) > 2H(*)=2 without
follows from the chain rule for the conditionalany restrictions orf{ (X). We conclude
entropy, (4) follows from the non-negativity of the
entropy, (5) is basic information theory, and (6) G(X|Y)=E(GX|)Y =y)
follows from Lemma 1. O > p(2H(X1Y=v)-2)
Theorem 1 characterizes the available side- -
channel information in terms of a bound on the (;) 9 E(H(X|y=y))-2
expected number of leaked bits. Below, we give __2H(XD/)72
a characterization of this information in terms of - ’
the remaining effort for correctly guessing a key.
where E denotes the expected value oyee Y

3.3. The Effort for Guessing Keys after a and where(x) follows from Jensen’s inequality.

Side-channel Attack _ -
The following corollary of Theorem 1 shows

In this section, we give a lower bound on thdhat the information contained in side-channel

attacker’s expected effort for guessing the Correaﬂeasurements |OWEI‘S the bound for the effOI’t for
key aftern side-channel measurements. guessing the correct key by a factor(@f+1)°!.
The basis for our proof is a result by
Massey [22] that shows that the average numb
of questions of the form “Doe&” = z hold” that
must be asked to guess the value of a random G(K|O,) > _
variableX’ with H(X') > 2 is bounded from below "= 4 (n+1)lOl
by 2H(¥)=2 4 1, We extend this bound to a bound
in terms of the conditional Shannon entropy and  Proof: We have
apply the result to Theorem 1.
To this end, observe that the optimal guessing (x
strategy is to try each of the possible values of G(K|On) = 2H(KIOn)=2
X: A — X in order of their decreasing probabil- )
ities. Without loss of generality, leX be indexed z
such thatpy(z;) > px(z;), wheneveri < j.
Then theguessing entropy(X') of X is defined Where(x) follows from Lemma 4 andsx) follows

Corollary 1. Let £ and O,, be defined as above.
en

2H(IC)

)

as G(X) = 3, c;<|x|ipx(zi). One defines the from Theorem 1. [
conditional guessing entrop§ (X|)) as The guessing entropy captures the average effort
for determining a secret by exhaustive search. For
GX|Y) = ZPJ/(?J)G(XD) =) . expressing worst-case bounds, alternative mea-
yey sures such as the min-entropy are required [30].

The conditional guessing entropy captures thé/e leave the investigation of min-entropic bounds
expected number of guesses needed to determfoe the side-channel leakage in unknown-message
X when the value of) is already known [5]. attacks to future work.



4. An Adjustable Countermeasure S. We denote the relative frequency with which

Against Timing Attacks o € O occurs inS by ps(o), i.e.,
i ps(0) = SELIC/S
4.1. Bucketing 5 Yo S(0)

Reducing the size of improves the bound on We extendps to sets of observations in the natural

the leaked information given by Theorem 1. In th&/@Y- _ _
case of timing, such a reduction can be achievedAn (r-)bucketing B of O, is a vectorB =
by a discretization of the possible execution timeg01: -+ -» ) Of observations, witho, = o, and
which we call bucketing Bucketing partitions a i < 0; whenever < j. Note that it would suffice
system's possible execution times into interval® réquire thab, > o, and later prove that equality
(which we callbucket} of variable length, where, holds f_or _opt|mal bucketings. We avoid this detour
for each execution time, one waits until the enPY definition. _
closing bucket's upper bound before returning the FOri € {1,...,7}, we define thebucketb; by
result of the computation.

Clearly, bucketing leads to a performance

penalty. In this section we show how, for a givewhere we setj, = —1. For a bucketingB of O,

r € N, one can compute a bucketing intbuckets and a samples, we define theaverage ofS with
such that the resulting performance penalty igspect toB by

minimal. Moreover, we show how, for a given
e > 0, one can compute a bucketing with a mini-
mal number of buckets, such that the performance
penalty when applying this bucketing is belaw
Our algorithms take as input a sampfe of An r-bucketing B of O; is S-optimal if
execution times oflr and do not require pre- avg(S, B) < avg(S, B') for everyr-bucketingB’
cise knowledge abouf;,. The accuracy of the of Oy.
estimated performance penalty, however, dependsin our application,5 models a sample of exe-
on the accuracy with whicl$ approximates the cution times of the target system aBtrepresents
average execution time df- (In Section 5.3, we & sequence of time boundaries. If a computation
show how to estimate this accuracy). By contrastakes timeo, we wait for the minimal time bound-
the validity of the obtained security guarante@’y 0; With 6; > o until we return the result
depends only on the correct number of buckets afdi the computation. This modified system has an
does not rely on the accuracy §f For the number average running time ofvg(S, B). The perfor-
of buckets to be correct, it suffices thgitcontains mance penaltyen(S, B) resulting from applying
an upper bound for the worst-case execution tinfe bucketingB of O to S is given by
of Ir. For many embedded processors, such upper
bounds can be obtained by automated worst-case pen(S, B) = avg(S, B) — Z o ps(0)

bi:{O€O|éi—1<0§6i}’

T

avg(S, B) =Y 6: ps(bs)- (7)

=1

execution time analysis [32]. oes
Example 5. The sequencés, . .., o0,,) is a buck-
4.2. Trading Security for Performance eting of O with
In the remainder of this section, we assume that avg(S, (01, 0m)) = (; o ps(0).
O ={o1,...,0,} is a set of positive reals that is
indexed in ascending order, i.€. < o; whenever This value is the average value of the sample
i < j. We denote the sdloy,...,0;} by O;. S, which leads to a performance penalty of

A Samp|eS is a multiset of observations. For-and illustrates that the execution time does not
mally, S is a functionS: O — N, where S(o) increase if the bucketing is as fine-grained as the
represents the number of occurrencescofn Set of possible observations.



Example 6. The singleton sequencge,,) is al- that (61,...,6,-1) is not optimal forO;. Then

bucketing ofO with one can pick theS-optimal (r — 1)-bucketing

of O; and add one bucket for the observations
avg(S, (0m)) = om - 0j+1,---,0;. The result is anr-bucketing B’ of

This reflects that a system with bucketifg,) Oi, With avg(S, B’) < avg(S, B), which contra-

requires timeo,,, for all inputs, and hence the av-dicts the optimality of3 for S. A consequence of

erage and the worst-case execution times coinciddis so-callecbptimal substructure propertg that

we can use dynamic programming (see, e.g., [9])

to construct optimal bucketings of a s@t from

optimal bucketings of subset3; C O;.

Definition 1 (Minimal Performance Penalty Prob- To this end, we define the functiom where

lem). Given a sampleS of observations and the intuition is thata(i,r) captures the value

r € N, the Minimal Performance Penalty Prob-avg(S, B) for an S-optimalr-bucketingB of O;.

lemis to find anr-bucketing ofO with minimal

performance penalty with respect g5 Formally, C 4y

the goal is to find an-bucketingB of O, such ali, 1) = o Z ps(0)

that

We consider the following two optimization
problems related to bucketings.

0<o0;
avg(S, B) < avg(S, B") a(i,r) = 1léljilgli(l(j,7“ —1)+o; z; ps (o)
0; <004

for all r-bucketingsB’ of O. . . N
" g The following lemma formalizes our intuition

Definition 2 (Minimal Information Loss Problem) abouta.
Given a sample5 of observations and > 0, the
Minimal Information Loss Problenis to find a .
bucketing that minimizes the system’s informatio‘?l’ o
loss through timing behavior under the constraint a(i,r) < avg(S, B). (9)
that the resulting performance penalty does not ) _

exceede . Formally, the goal is to find an- Moreover, there exists an-bucketing ofO; for

bucketingB of O with minimalr and which equality holds in (9).

Lemma 5. Let S be a sample andB =
.,0,) be a bucketing 0D;,. Then

Proof: We prove the assertion by induc-

pen(S B) < €. ®) tion on r. For r = 1, there is only oner-

Below, we present efficient algorithms for bothbucketing ofO;, namely(o;). We havea(i, 1) =
problems. 0i ) <o, Ps(0), Which proves the assertion. For

r > 1, it follows by induction thata(j,r — 1) =

4.3. Computing Optimal Bucketings avg(S, B), where B is an S-optimal (r — 1)-

bucketing of O;. By adding one bucket with
In this section, we propose efficient algorithm&oundaryo; and Weightzoj<o<m ps(o), one can

for the Minimal Performance Penalty Problem anéxtendB to anr-bucketingB’ of O; with
for the Minimal Information Loss Problem stated
above. For this, we leverage ideas from computing avg(S, B') = avg(S, B) +o; Z ps(o) -
optimal histograms [16]. 05 <o%o;

Note thatB’ is not necessarily5-optimal for O;.
4.3.1. An Algorithm for the Minimal Perfor- However, as previously observed, 8roptimalr-
mance Penalty Problem.The following obser- bucketingB* of O; contains an optima(r — 1)-
vation is fundamental for our algorithm: Everybucketing of some) ;- with j* < i. By definition
S-optimal bucketing ofO, contains aS-optimal of a(i,r), this j* is found and, hence(i,r) =

bucketing for someD; with j < i. Formally, if avg(S, B*). O
the bucketingB = (61, ..., 6,) is optimal forO;, Lemma 5 implies that(|O|,r) = avg(S, B)
then the bucketindés,...,6,-1) is optimal for for an optimal-bucketingB of O. For computing

O,, whereo; = 6,_1. Assume to the contrary a, one can build up a table of sizg)| x r.



For computing each entry, at mogD| lookups

are necessary (The valugs, ., ps(o) can be ! procedure Exzp(z, k, N)
precomputed fori € {1,...,|0[}). A concrete 2  Input z,k, N €N
bucketing can then be obtained from this table by 3  output o* mod N
backtracking, which yields the following proposi- 4  Pegin
tion. 5 p — MontMul (1,1)
6 x «— MontMul (z, 1)
Proposition 1. For a sampleS and a number 7 for i =n — 1 downto 0 do
of bucketsr, the Minimal Performance Penalty s p < MontMul (p, p)
Problem can be solved in tim@(r |O]?). 9 if k[¢] =1 then
o 10 p — MontMul (p, x)
As we show next, a similar approach can be | od
taken for solving the Minimal Information Loss p — MontMul (p, R?)
Problem. 13 return p
14 end

4.3.2. An Algorithm for the Minimal Infor- Fig. 1. Pseudo-code of the exponentiation
mation Loss Problem.We present an algorithm algorithm, where MontMul stands for Mont-
for the Minimal Information Loss Problem. Forgomery Multiplication. The operations in lines
this, we re-use the function defined in Section 5, 6, and 12 transform the operands to Mont-
4.3.1. As before, we use dynamic programmingomery form and back, respectively, and the

to build a value-table representation @f where loop in lines 7-11 performs the actual expo-
the difference to the algorithm for the Minimalnentiation.

Performance Penalty Problem is that the minimal

length r of a bucketingB with pen(S,B) < e ] o

is not known a priori. However, as Example 5-1. RSA Implementation and Timing
shows, there is a bucketing of lengtty| with Model

a performance penalty df. Hencer is bounded

from above by|O|, which leads to arO(|O}*)- We consider the RSA implementation in Figure
algorithm. 1, in which the modular exponentiation is per-
formed by square-and-multiply, and where each
o : odular multiplication is carried out using Mont-
Minimal Information Loss Problem can be SOlve‘g]omery’s algorithm [26], which is a common

S 3
in time O(|O"). choice in practice. It is important to note that

This direct approach to the Minimal Informa-Montgomery multiplication is n_ot constant-time,
tion Loss Problem is efficient enough for our exPecause of so-calleekira reductionshat must be
periments, however, it is likely that the complexityP€rformed for some operands.

bounds can be further improved, e.g., along the Our analysis is based on a timing model that
lines of [16]. captures a simple 32-bit microprocessor that can

perform word-level additions and multiplications
within single clock cycles. Using standard al-
5. Experimental Results gorithms for multi-precision arithmetic [23], a
Montgomery multiplication of two1024-bit in-
tegers can then be performed within (roughly)
In this section, we perform a case study whergl024/32)? = 1024 clock cycles, and an extra
we evaluate the influence of bucketing on the pereduction step can be performed within (roughly)
formance and the security of a realistic exampld024/32 = 32 clock cycles. We hence assume
To this end, we apply the algorithms presented ithat ¢,,,; = 1024 andt,.q = 32, wheret,,,; and
Section 4 to compute optimal bucketings for am,.; are the numbers of clock cycles consumed
implementation of 1024 bit RSA decryption. by a multi-precision multiplication and an extra

Proposition 2. For a sampleS and e > 0, the
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Fig. 2. Execution time in clock cycles of 1024-bit RSA exponentiation for 2'° samples. The mean
for the original distribution is 1 586 211, the mean for the bucketized distribution is 1 596 726.

reduction step, respectively. bound for the attacker’s expected effort for cor-
An upper bound,,., on the worst-case execu-rectly guessing the key by a factor of at most
tion time of our implementation is given by 2200 A modern Smartcard such as Infineon’s SLE

66CX366PE can perform an RSA decryption in
tmaz = (21024 + 3)(Lmut + trea) = 2165856 ,  26ms [15] (see also [13]). For such a system,
which corres S . Hhe time for performing these*® measurements
ponds to an execution in which al
possible multiplications and extra reductions ar%mounts to more thaaoQ years. .
. We conclude that adding bucketing to a blinded
carried out. . L )
implementation implies only a minor performance
overhead and yields meaningful formal security
5.2. The Effect of Bucketing on Security guarantees.
and Performance Figure 3 depicts how the average execution time
decreases as the number of buckets grows. This
The black curve in Figure 2 shows the distribudecrease is most notable between bucketings of
tion of the execution times of our RSA implemenand 2 buckets, which illustrates the performance
tation, based 0@'® randomly sampled inputs. Thegain of a2-bucketing with respect to a constant-
average execution time of this implementation i§me implementation. Observe that this strong per-
1586 211 clock ticks. formance gain does not give the whole picture, be-
The (centers of the) gray bars and the dash&@use our analysis does not consider the overhead
vertical line depict the boundaries of an optirial introduced by the blinding and unblinding steps.
bucketing computed with our algorithm, i.e, a solf the maskr® can be precomputed, however, this
lution to the Minimal Performance Penalty Proboverhead will be small.
lem. The average execution time for the system
with this bucketing isl 596 726 clock ticks, which 5.3. Error Estimations
corresponds to an overhead of orlly67% with
respect to the implementation without bucketing. When computing bucketings, we approximate
Theorem 1 shows that &bucketing is coarse the distribution of side-channel observations by a
enough for obtaining meaningful security guarsampleS of timing measurements. As discussed
antees: At leasR?°%/% timing measurements arein Section 4, the quality of this approximation
necessary for learning an expected amount dbes not affect the obtained security guarantees.
200 key bits. Alternatively, Corollary 1 shows However, the quality of the approximation af-
that 2209/ timing measurements reduce the lowefects the precision of the estimated performance

10



2200000

X T Twihout buckets " multiplication in line 10 and the extra reductions
. with n buckets —x— in lines 5, 6, 8, 10, and 12 account for potential
£ 2000000 | b iati i
= variations. Summing up, we see that
3=]
3 1800000 | . O] <1024-(32+1+1)+3=234819.
; 1600000 | Our computation of bounds on the statistical
° distance ofpp, and pg in terms of |O] uses

Chernoff bounds and the McDiarmid Inequality.
The actual computation is tedious and we omit it
for better readability. The result is that a sample
of 219 execution times is sufficient to guarantee
an approximation error of less than01 with a
confidence of more thain99. With this, we obtain

| pen(S, B) — pen(So, B)| < 64976

1400000

Fig. 3. Expected execution time vs. number of
buckets for 1024-bit RSA exponentiation for 21°
samples.

gg?ear%'n\é\ge next show how this precision can bglock cycles, which amounts to less thdn%

Formally, we derive a bound on of the expected execution time. Note that these
' error bounds depend only d®| andé, and hold

| pen(S, B) — pen(So, B)| , for arbitrary systems with these parameters. The

. . timing behavior of our case-study shows strong

where Sp denotes an “idealized sample” 611,  regularity, and we expect that this can be exploited

i.e. a sample withps, = po,. To this end, let for deriving much tighter error bounds.
B = (61,. ..,CA)T), let

. Related Work
A(Polaps):%Z@Ol(x)_ps(x” 6 elated Wor

o IE_O Our results are based on the model of
denote the statistical distance @b, andps, and side-channels from [19] and the measure for
let £ denote the expected value. We have information-flow in unknown-message attacks

from [2]. The exact computation of this measure

| pen(S, B) — pen(So, B)| for a given system requires the enumeration of all

r possible inputs and does not scale. Our new result

= Z 0i Z ps(z) — E(ps) implies that, by combining bucketing and blinding,

=1 6i-1<x<0; such a costly analysis can be entirely avoided.

r A number of quantitative information-flow mea-
- Zéi Z po, () — E(po,) sures have been proposed in the literature, e.g.

i=1  6;_1<z<6; [20], [7], [6]. The measure proposed by Clark et

r al. [6] is closely related to the measure used in

< Zéi Z lps(z) — po, ()] this paper; however, it does not capture multiple
i=1 6, 1<z<6; computations with the same key and is hence not
+|E(ps) — E(po,)| applicable to the analysis of side-channel attacks.
<46, Aps.po,) Several approaches in language-based security

use type systems to detect [14] or eliminate timing

For our example, we instantiat®. with the side-channels[1], [3]. If a program successfully

worst-case execution time of165856 clock type-checks, then an attacker cannot gain any

cycles. We have computed upper bounds dnformation about the secret, even if he exhaus-
A(ps,po,) in terms of the size oD, which we tively runs the program on all possible public

estimate as follows: All variations in the executionnputs. A quantitative, language-based approach
time are multiples 082 clock cycles, hence it suf- to mitigate timing attacks is proposed in [28].
fices to count the number of variations. Only th&he mitigation relies on probabilistic padding,
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which also leads to a trade-off between securityng optimal bucketings by dynamic programming
and performance. Applying these language-based inspired by work on computing optimal his-
approaches requires restrictive programming aridgrams of probability distributions [16]. In [16],
precise knowledge about the time consumptiohe buckets partition a set of values (which corre-
of the individual instructions on the underlyingsponds to the observations in our model), where
machine. By contrast, our approach only requiresach value has a given frequency (which corre-
that the system’s execution time be a function adponds to the number of occurences in a sam-
the inputs to the system. ple). However, there is no direct correspondence
Code transformations to eliminate the influencbetween the notions of optimality of bucketings
of secrets on the control flow of a program havén [16] and in our approach, which requires our
been proposed in [25], [8], and they have bee#ievelopment in Section 4.3.
applied to eliminate timing leaks in code for The discretization of the execution time into
modern multi-purpose processors. As shown imultiples of a fixed time quantum has been pro-
[25], the resulting performance overhead can hgosed in [4]. However, it was observed that, for
large compared to that introduced by blinding (andbtaining security guarantees, the execution time
hence to that introduced by our countermeasurdpr all all decryption operations must lie within
Standaert et al. propose a framework for tha single time quantum. This use of discretization
evaluation of side-channel attacks [31], where the§orresponds to the requirement that the decryption
use two largely independent metrics for the evalipperation is constant-time. Bucketing weakens this
ation of systems. The information-theoretic metri¢equirement and hence improves the performance
captures non-adaptive chosen-message adversagieghe system. Our results show that this im-
and is not given a direct interpretation in term@rovement can be achieved while retaining formal
of security. The security metric characterizes thgecurity guarantees.
security of a system in terms of the success rate
of applying a given key recovery strategy to th&. Conclusions
measurement data. In this way, an analysis with
the model of [31] yields assertions about the We have presented a provably secure and
effectiveness of a particular kind of attack, but nogfficient countermeasure against timing attacks,
necessarily universal bounds. where the strength of the obtained security guar-
Micali and Reyzin [24] proposghysically ob- antee can be freely traded for the resulting perfor-
servable cryptographya mathematical model thatmance overhead. We have given algorithms that
aims at providing provably secure cryptography osfficiently and optimally adjust this trade-off for
hardware that is only partially shielded. Using ajiven constraints on the side-channel leakage or
similar approach, Dziembowski and Pietrzak [11bn the efficiency of the cryptosystem. Finally,
recently obtained the first positive results, wherare have performed a case-study that shows that
they construct a stream cipher that is provablgur countermeasure leads to implementations with
secure in the presence of arbitrary leakage funminor performance overhead and meaningful se-
tions with output of logarithmic length (assumingcurity guarantees.
ordinary PRFs) or of a constant fraction of state- Our results can be directly applied to implemen-
bits (assuming the existence of exponentially handtions of cryptographic algorithms on systems
PRFs). It will be interesting to see how efficieniith deterministic timing behavior, such as simple
their constructions work in practice, and whethegmbedded systems and cryptographic coproces-
they extend to public-key cryptography. Our apsors, and we believe that our work can have prac-
proach is more concrete than that of [11] in thafical impact on this important application domain.
we prove the security of a specific countermea- As future work, we will investigate whether our
sure against timing attacks. This countermeasum@sults extend to systems with nondeterministic
however, can readily be applied to existing cryptiming behavior. In particular, we plan to inves-
tosystems. tigate the impact of concurrency and uncertain
The termbucketingand the idea of comput- initial cache state on the information leakage of

12



blinded implementations. Finally, any improve{19] Boris Képf and David Basin. An information-theoretic
ment on the information-theoretic bounds will
have a direct impact on the security guaranteesy,
delivered by our countermeasure.
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