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Abstract—Researchers have proposed formal definitions of
quantitative information flow based on information theoretic
notions such as the Shannon entropy, the min entropy, the
guessing entropy, and channel capacity. This paper invesfites
the hardness and possibilities of precisely checking and fer-
ring quantitative information flow according to such definitions.

We prove that, even for just comparing two programs on
which has the larger flow, none of the definitions is a k-
safety property for any k, and therefore is not amenable
to the self-composition technique that has been succesdful
applied to precisely checking non-interference. We also shw
a complexity theoretic gap with non-interference by provirg
that, for loop-free boolean programs whose non-interferene is
coNP-complete, the comparison problem is #P-hard for all of
the definitions.

For positive results, we show that universally quantifyingthe
distribution in the comparison problem, that is, comparing two
programs according to the entropy based definitions on which
has the larger flow for all distributions, is a 2-safety problem
in general and is coNP-complete when restricted for loop-fee
boolean programs. We prove this by showing that the problem
is equivalent to a simple relation naturally expressing thefact
that one program is more secure than the other. We prove that
the relation also refines the channel-capacity based defimgn,
and that it can be precisely checked via the self-compositio
as well as the “interleaved” self-composition technique.
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In both programs,H is a high security input and is

a low security output. Viewingd as a password); is

a prototypical login program that checks if the guess
matches the passwaidBy executingM;, an attacker only
learns whethefd is equal tog, whereas she would be able
to learn the entire content df by executingM,. Hence, a
reasonable definition of quantitative information flow shiou
assign a higher quantity td/, than to M, whereas non-
interference would merely say thdt/; and M, are both
interferent, assuming that there are more than one possible
value of H.

Researchers have attempted to formalize the definition of
quantitative information flow by appealing to information
theory. This has resulted in definitions based on the Shannon
entropy [12], [7], [19], the min entropy_[29], the guessing
entropy [16], [1], and channel capacity [22], [20], [26].
Much of the previous research has focused on information
theoretic properties of the definitions and approximate,(i.
incomplete and/or unsound) algorithms for checking and
inferring quantitative information flow according to such
definitions.

In this paper, we give a verification theoretic and com-
plexity theoretic analysis of quantitative informationvilo
and investigate precise methods for checking quantitative

We consider programs containing high security inputs andnformatlon flow. In particular, we study the followirgpm-

low security outputs. Informally, the quantitative infoation

flow problem concerns the amount of information that an
attacker can learn about the high security input by exegutin
the program and observing the low security output. Th

problem is motivated by applications in information seturi
We refer to the classic by Denning [12] for an overview.
In essence, quantitative information flow measunesv

secure, or insecure, a program is. Thus, unlike non-
interference [[14], that only tells whether a program is
completely secure or not completely secure, a definition o
guantitative information flow must be able to distinguistotw

programs that are both interferent but have different deggre

of “secureness.”
For example, consider the following two programs:

My =1if H=gthenO :=0else O :=1
My=0 :=H

parison problem Given two programs\/; and M,, decide
if X(M;) < X(Ms). Here X(M) denotes the information
flow quantity of the programd/ according to the quantitative

dnformation flow definition X where X' is either SE{y]

(Shannon-entropy based with distributipl, MFE[u] (min-
entropy based with distributiom), GE[u] (guessing-entropy
based with distribution:), or CC' (channel-capacity based).
Note that, obviously, the comparison problem is no harder
than actually computing the quantitative information flosv a
jve can compare the two numbers once we have computed
X(Ml) and X(Mg)

Concretely, we show the following negative results, where
X is CC, SE[u], ME[u], or GE[u] with p uniform.

« Checking if X(M;) < X(M,) is not a k-safety

IHere, for simplicity, we assume that is a program constant. See
Sectior[d] for modeling attacker/user (i.e., low securityputs.
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property [30], [9] for anyk. and proves it equivalent to the comparison problems for
« Restricted to loop-free boolean programs, checking ifthe entropy-based definitions with their distributions-uni
X (M) < X(Ms) is #P-hard. versally quantified. The section also shows that this is a

The results are in stark contrast to non-interference whici#-safety property and is easier to decide than the non-
is known to be a2-safety property in general][3][ [11] universally-quantified comparison problems, and suggests
(technically, for the termination-insensitive ddsand can be @ self-composition based method for precisely checking
shown to be coNP-complete for loop-free boolean program§uantitative information flow. Section]V discusses related
(proved in Sectiofi T=C). (#P is known to be as hard as theVork, and Sectiof VI concludes. AppendiX A contains the
entire polynomial hierarchy [31].) The results suggest thaSupporting lemmas and _deflnltlons for the proofs appearing
precisely inferring (i.e., computing) quantitative infoation N the main text. The omitted proofs appear in Apperidix B.
flow a_ccording to these definitions woul.d be hardgr than II. PRELIMINARIES
checklnghn_on—mterfertlafnce and may require a very different \ve introduce the information theoretic definitions of
approac (|.e_., not se cor_nposmc_q [3]. [110. -30]?' quantitative information flow that have been proposed in
We also give the following positive results which show jieratyre. First, we review the notion of tshannon en-
checking if the quantitative information flow of one program tropy [28], H[u](X), which is the average of the informa-

is larger than the other for all distributions accordinghe t content, and intuitively, denotes the uncertainty fe t
entropy-based definitions is easier. BelQWis SE, ME, or .o 4om variableX .

GE. o . Definition 2.1 (Shannon Entropy): Let X be a random
o Checking if Vu.Y[u](M1) < Y[u](M2) is a2-safety  variable with sample spac& and ;. be a probability
property. distribution associated withX (we write u explicitly for

+ Restricted to loop-free boolean programs, checking ifclarity). The Shannon entropy of is defined as
V. Y[p](My) < Y[p](Ms2) is coNP-complete.

1
These results are proven by showing that the prob- H[p)(X) = Z”(X = z)log WX =)
lems Vu.SE[u)(My) < SE[u](Ms), Vu.ME[u](My) < e
ME[u)(My), and Yu.GE[u)(M,) < GE[u)(M,) are all  (The logarithm is in base 2.)
actually equivalent to a simplesafety relationR (M, Ms). Next, we defineconditional entropy Informally, the condi-

We also show that this relation refines the channel-capacitifonal entropy of X' given Y denotes the uncertainty of

based quantitative information flow, that is, i(M,, M,)  after knowingY’.

then CC(M;) < CC(My). Definition 2.2 (Conditional Entropy): LetX andY be
The fact thatR(M;, M>) is a 2-safety property implies random variables with sample spacésandY, respectively,

that it can be reduced to a safety problem via self compoand p be a probability distribution associated with and

sition. This leads to a new approach to precisely checking”. Then, the conditional entropy ok givenY’, written

quantitative information flow that leverages recent adeanc #[u](X 1Y) is defined as

in automated software verification [2], [15], [24]] [4]. Bfly, - - o

given M; and M,, R(M;, M,) means thatM; is at least HlE(XIY) = ZM(Y = Y HUXY =)

as secure as/, for all distributions while=R(M7, M) vex

means that there must be a distribution in whidh is less

secure than\/,, according to the entropy-based definitions H[p(X]Y = y)

where

of quantitative information flow. Therefore, by deciding =D sex WX =2[Y =y)log 7,@(:;\3/:@
R(M,, My), we can measure the security of the program (X = 2]y = y) = “550=0)

M, relative to anothespecificationprogram,. Note that
this is useful even whed/; and M, are “incomparable”
by R, that is, when—-R(M, M2) and —~R(M,, M;). See
Section 1V-B for the details.

The rest of the paper is organized as follows. Sediibn |l
revievys .the. existing information-theoretic definitions of be random variables angi be an associated probability
quant!tauve|nfqrmat|0nﬂow. Sectiénll proves the haeda distributiond Then, the conditional mutual information of
of their comparison problems and thus shows the hardness gﬁ andY given Z is defined as
precisely inferring quantitative information flow accardi

to these definitions. Sectidn IV introduces the relati&n Iu)(X;YZ) = H[p|(X|Z) - H[p](X]Y, Z)
HIp(YZ) = H[W(Y]X, 2)

Next, we define (conditional) mutual information. Intu-
itively, the conditional mutual information ofX and Y
given Z represents the mutual dependence&XodndY after
knowing Z.

Definition 2.3 (Mutual Information): Let X,Y and Z

2We restrict to terminating programs in this paper. (The teation
assumption is nonrestrictive because we assume safetfjcagon as a SWe abbreviate sample spaces of random variables when teeglear
blackbox routine.) from the context.



Let M be a program that takes a high security influand
a low security inputl, and gives the low security outpGt.
For simplicity, we restrict to programs with just one vat@ab
of each kind, but it is trivial to extend the formalism to
multiple variables (e.g., by letting the variables rangerov

It is worth noting that non-interference can be formalized
as a special case of the Shannon-entropy based quantitative
information flow where the flow quantity is zero.

Theorem 2.6: Let M be a program that takes high-
security inputH, low-security inputl, and returns low-

tuples). Also, for the purpose of the paper, unobservablgecyrity outpu. Then,M is non-interferent if and only if

(i.e., high security) outputs are irrelevant, and so we mssu
that the only program output is the low security output.
Let 1 be a probability distribution over the values &f
and L. Then, the semantics af/ can be defined by the
following probability equation. (We restrict to terminadj
deterministic programs in this paper.)

2.

h,¢€HL
M(h,t) =0

p(H =h,L=1)

Note that we writeM (h, £) to denote the low security output
of the programM given inputsh and ¢£. Now, we are

Vu.SE[p](M) = 0.
The above theorem is complementary to the one proven by
Clark et al. [5] which states that for anysuch thatu(H =
h,L =¢)>0forall h € Hand¢ecL, SE[p](M) =0 iff
M is non-interferent.

Next, we introduce themnin entropy which Smith [29]
recently suggested as an alternative measure for quarditat
information flow.

Definition 2.7 (Min Entropy): Let X andY be random
variables, andu be an associated probability distribution.
Then, the min entropy oX is defined

ready to introduce the Shannon-entropy based definition of

guantitative information flow (QIF) [12]/17]/119].
Definition 2.4 (Shannon-Entropy-based QIF): Let M
be a program with high security inpdf, low security input
L, and low security outpu®. Let i, be a distribution over

H and L. Then, the Shannon-entropy-based quantitative

information flow is defined

SE[u] (M) Z[pl(O; H|L)
H[pl(H|L) = H[pl(H|O, L)

Intuitively, H[p](H|L) denotes the initial uncertainty know-
ing the low security input and{[u](H|O, L) denotes the
remaining uncertainty after knowing the low security odtpu
As an example, consider the prograts and M, from
Section[l. For concreteness, assume thag the value01
and H ranges over the spad@®0,01,10,11}. Let U be the
uniform distribution over{00,01, 10,11}, that is,U(h) =
1/4 for all h € {00,01, 10,11}. The results are as follows.

SE[U|(M:) =H[U|(H) - H[U](H|O)
=log4 — %log?)
~ .81128

SE[U](Mz) =H[U|(H) — H[UJ(H|O)
=log4 —log1l
=2

Consequently, we have tha&F[U](M;) < SE[U](Ms), but
SE[U)(M3) £ SE[U](M;). That is, M; is more secure

1
V[l (X)

and the conditional min entropy of givenY is defined

Hoo[p)(X) = log

1
Hoo [p](X]Y) = log W
where
Vpl(X) = maxgex u(X =)
V(XY =y) = maxzex p(X =Y =y)
VIl(X[Y) =3, cy (Y =)V [u](X]Y =y)

Intuitively, V[u](X) represents the highest probability that
an attacker guesseé§in a single try. We now define the min-
entropy-based definition of quantitative information flow.

Definition 2.8 (Min-Entropy-based QIF): Let M be a
program with high security inputf, low security inputZ,
and low security outpu®. Let i be a distribution overtd
and L. Then, the min-entropy-based quantitative information
flow is defined

ME[u)(M) = Hoo ] (H|L) — Hoo[p] (H|O, L)
Whereas Smith[[29] focused on programs lacking low

security inputs, we extend the definition to programs with
low security inputs in the definition above. It is easy to

than M, (according to the Shannon-entropy based definitiorsee that our definition coincides with Smith’s for programs

with uniformly distributed inputs), which agrees with our
intuition.
Let us recall the notion of non-interference [10], [[14].
Definition 2.5 (Non-intereference): A program M is
said to be non-interferent iff for ang, '’ € H and ¢ € L,
M(h,£) =MW, ).

without low security inputs. Also, the extension is argyabl
natural in the sense that we simply take the conditional
entropy with respect to the distribution over the low seguri
inputs.

Computing the min-entropy based quantitative informa-
tion flow for our running example program¥/; and M,



from Sectior{]l with the uniform distribution, we obtain, the uniform distribution.

ME[U)(M;) = Hoo|UJ(H) — Haoo[U](H|O) GE[U](M) - g[%ﬂ) — G[U|(H|O)
zaog4—log2 :8,754

ME[U|(Mz) = Hoo[U)(H) — Hso[U|(H|O) GE[U](Mz) = G[U)(H) - GUI(H|O)
=log4 —logl ili5—1
=2 =1.

) Therefore, we again have th&E[U](M;) < GE[U](M2)
Again, we have thatME[U|(M,) < ME[U](Mz) and  and GE[U](Ms) £ GE[U](M;), and soMs is considered
ME[U](Mz) £ ME[U|(M), and soM, is deemed less |ess secure than/;, even with the guessing-entropy based
secure than/, . definition with the uniform distribution.

The third definition of quantitative information flow  The fourth and the final existing definition of quantitative
treated in this paper is the one based on the guessingformation flow that we introduce in this paper is the one
entropy [21], that is also recently proposed in literati€][  based orchannel capacityi2?], [20], [26], which is simply
[1]. defined to be the maximum of the Shannon-entropy based

Definition 2.9 (Guessing Entropy): Let X and Y be quantitative information flow over the distribution.
random variables, ang: be an associated probability dis-  Definition 2.11 (Channel-Capacity-based QIF):

tribution. Then, the guessing entropy &f is defined Let M be a program with high security inpuff, low
security inputL, and low security outpuD. Then, the
Gluj(X) = Z i X p(X = ;) channel-capacity-based quantitative information flow is
1<i<m defined

where {z1,22,...,2,} = X and Vi, ji < j = u(X = CC(M) :IH,?XI[M](O;HlL)
;) > p(X :__xj)- _ _ _ _ Unlike the Shannon-entropy based, the min-entropy
The conditional guessing entropy &fgivenY” is defined  pased, and the guessing-entropy based definitions, the
) channel-capacity based definition of quantitative infaiora
Glu(X]Y) = Z“(Y =) Z ixpX =zilY =y) flow is not parameterized by a distribution over the inputs.

ey 1sism As with the other definitions, let us test the definition on the
where {z1,22,...,zm} = X and Vi, ji < j = p(X = running example from Sectigh | by calculating the quartditie
zlY =y) > p(X =xz,|Y =vy). for the programs\/; and Mo:
Intuitively, G[u](X) represents the average number of CC(M,) =max,Z[u|(O;H)
times required for the attacker to guess the valu&oiwe =1
now define the guessing-entropy-based quantitative irderm
tion flow. CC(M,) =max,Z[u](O;H)

Definition 2.10 (Guessing-Entropy-based QIF): =2
Let M be a program with high security inpul/, low As with the entropy-based definitions (with the uniform
security inputL, and low security outpu©. Let 4 be a  distribution), we have thatCC(M;) < CC(M;) and
distribution over H and L. Then, the guessing-entropy- CC(M,) £ CC(M,), that is, the channel-capacity based
based quantitative information flow is defined guantitative information flow also says thif; is less secure
than M;.

Ill. HARDNESS OFCOMPARISON PROBLEMS

Like with the min-entropy-based definition, the previous We investigate the hardness of deciding the following
research on guessing-entropy-based quantitative inftoma comparison problenCsg [u]: Given programs\/; and M,
flow only considered programs without low security in- having the same input domain, decide S#[u](M;) <
puts [16], [1]. But, it is easy to see that our definition with SE[u](M-). Because we are interested in hardness, we focus
low security inputs coincides with the previous definitionson the case wherg is the uniform distribution/. That
for programs without low security inputs. Also, as with is, the results we prove for the specific case applies to the
the extension for the min-entropy-based definition, it $imp general case. Also note that the comparison problem is no
takes the conditional entropy over the low security inputs. harder than actually computing the quantitative informati
We testGE on the running example from Sectigh | by flow because we can compa$& |[u](M1) and SE[u](Ms)
calculating the quantities for the prograhg and M> with if we know their actual values.

GE[u)(M) = G[u](H|L) = G[pl(H|O, L)



Likewise, we study the hardness of the compar-
ison problem Cyglu], defined to be the problem
ME[u](My) < ME[u](Ms2), Cgrlu], defined to be the
problem GE[u)(M7) < GE[u](Mz), and Coc, defined to
be the problemCC (M;) < CC(Myz). As with Csglu], we
require the two programs to share the same input domai
for these problems.

We show that none of these comparison problemsiare
safety problems for ang. Informally, a program property is
said to be &-safetyproperty [30], [9] if it can be refuted by
observingk number of (finite) execution traces. &safety
problem is the problem of checking f&safety property.
Note that the standard safety property is-gafety property.
An important property of &-safety problem is that it can
be reduced to a standard safety (i.&.safety) problem,

Theorem 3.4: C¢c¢ is not a k-safety property for any
k> 0.

A. Bounding the Domains

The notion ofk-safety property, like the notion of safety
property from where it extends, is defined over all programs
regardless of their size. (For example, non-interfereac i
2-safety property for all programs and unreachability is a
safety property for all programs.) But, it is easy to show
that the comparison problems would becomesafety”
properties if we constrained and bounded the input domains
because then the size of the semantics (i.e., the inputibutp
pairs) of such programs would be bounded |BY} x |L|.

In this case, the problems are at m¢El x |L|-safetyé
However, these bounds are high for all but very small

such as the unreachability problem, via a simple progranglomains, and are unlikely to lead to a practical verification

transformation calledelf compositiorf3], [L11].

It is well-known that non-interference is2asafety prop-
ertyﬁ and this has enabled its precise checking via
reduction to a safety problem via self composition and

method.

B. Proof of Theoreri 31
We discuss the details of the proof of Theorem 3.1. The

a

piggybacking on advances in automated safety verificatiolr00fs of Theorenis 312, 313, 8.4 are deferred to AppelnHix B.

methods [[30], [[25],[[32]. Unfortunately, the results insthi
section imply that quantitative information flow inference
problem is unlikely to receive the same benefits.

For contradiction, suppos€sg [U] is ak-safety property.
Let M and M’ be programs having the same input domain
such that(M, M’) ¢ Csg[U]. Then, it must be the case

Because we are concerned with properties about pairs dhat there exist” C [M] and7” C [M'] such that|T'| <

programs (i.e., comparison problems), we extend the notio
of k-safety to properties refutable by observingaces from

ko (T < k, and VM., MLT C [MJ AT C [M] —
(M., M) & Csg[U].

each of the two programs. More formally, we say that the Let

comparison problend' is ak-safety property i M7, Ms) ¢

C implies that there exist®; C [M;] andT, C [M-] such
that

(1) [Ty <k

() T2 <k

(3) VM{, M. Ty C [M{] AT> € [M3]] = (M{,M;) ¢ C

In the above,[M] denotes the semantics (i.e., traces)
of M, represented by the set of input/output pairs
{((h,£),0) |heH,£eL,0o=M(h,{)}.

We now state the main results of the section. (Recall that

U denotes the uniform distribution.) We sketch the main
idea of the proofs. All proofs are by contradiction. L&t
be the comparison problem in the statement and supfose
is k-safety. Let(My, M) ¢ C. Then, we haved’ C [M;]
and T, C [M-] satisfying the properties (1), (2), and (3)
above. From this, we construdf; and M, such thatT} C
[M:] and Ty C [M,] and (M, M5) € C to obtain the
contradiction.

Theorem 3.1: Csg[U] is not ak-safety property for any
k> 0.

Theorem 3.2: Cyg[U] is not ak-safety property for any
k> 0.

Theorem 3.3: Csg[U] is not ak-safety property for any
k> 0.

41t is also well known that it is not d-safety property[[23].

T = {(hla 01)7 (h27 02)7 ) (h"La Oz)}

T" = {(h},0), (hy,05), ..., (R}, 05)}
wherei,j < k. Now, we construct new program¥ and
M’ as follows.

M(hy) = 01 M'(h}) = o
M(hg) = 02 M’(hé) 012
M(hi) = o; CM'(hf) =0
M(hiﬂ) = M/(h;’-i—l) = 0;‘+1
M(hiy2) = M/(hj+2) = 0542
M(hivj) =0  M'(hj,;)= Ojti
M(hiJerrl) = Or M/(h]+i+1) = 0,
(hn) = oy Ml(h;z) =0},
where
e 0# oy,
e {01,09,...,0;} N{o,0.} =10,
. 0371’/0'/”2' o 0.’7-_‘_1-/, ando, allre di/stinct,
o {01,05,...,0.} N {0 q,..., 00,00} =0,
. {hl,...,hn} :{hll,,hil}, and
e N = 2/€

51t is possible to get a tighter bound for the channel-capabitsed
definition by also bounding the size of the output domain.



M = z:=1 |if 1 then M else M | Moy; M, range over functions mapping boolean variables of its kind t
b= true|z | pAY | o boolean values. So, for example;ifandy are low security
boolean variables andis a high security boolean variable,
Figure 1. The syntax of loop-free boolean programs then L ranges over the functiods;, y} — {false, true}, and

H and O range over{z} — {false,true}i (Every boolean
variable is either a low security boolean variable or a high
security boolean variable.) We writd/(h,¢) = o for an
input (h,¢) and an outpub if (h,¢) &= wp(M,¢) for a
boolean formula such thab = ¢ ando’ [~ ¢ for all output
o' # o. Here, |= is the usual logical satisfaction relation,
using h, /¢, 0, etc. to look up the values of the boolean
variables. (Note that this incurs two levels of lookup.)

As an example, consider the following program.

Woe = 1.6) = o]
wp(if 1 then My else M7, ¢)
Wp(MOa M17 ¢) = Wp(M07 Wp(M17 (b))

Figure 2. The weakest precondition for loop-free booleasgmams

Then, comparing the Shannon-entropy-based quantitative M=
information flow of M and M’, we have, L
_ _ Z =W =Y,
SE[U|(M") — SE[U|(M) ifxAythenz :=—zelsew :=w
_ / 1
= Zo;EI{O’U-wo;% U(Ow)lofg FCONS Let z, y andw be high security variables andbe a low
+U(d)log ooy T Ulo,)log ICA) security variable. Then,
~(o,eqorop Ulo) 08 7y SEUI(M) = 15
+20y€{0j+17~»=01j+i} U(oy)log Uloy) ME[U|(M) = log3
+U(or) log g755) ~  1.5849625
(Note the abbreviations from AppendiX A.) By lemmalA.5, GE[U](M) = 1.25
we have coun 2 110§549625
2016{01,...701} U(Ow) 10g U(})m) . - .
< , L U(d)log 1 We prove the following hardness results. These results
I A Uley) are proven by a reduction from #SAT, which is the prob-
and lem of counting the number of solutions to a quantifier-
Ulo) log -1 < e L U(0) log 1 free boolean formula. #SAT is known to be #P-complete.
(0) 108 757 < 201 ...0p) U 02) 108 777 Because #SAT is a function problem and the comparison
Trivially, we have problems are decision problems, a step in the proofs makes
, 1 1 binary search queries to the comparison problem oracle a
U(o})log T U(or)log Tlon) polynomial number of times. (Recall that the notation'FP

means the complexity class of function problems solvable
in polynomial time with an oracle for the problerh)

SE[U)(M') — SE[U](M) >0 Theorem 3.5: #P C FpCs# U]

Note that)/ and M’ have the same counterexamplesnd Theorem 3.6: #P C FP?VIE[[;]
T', that is,T C [M] and T’ C [M’]. However, we have  |heorem 3.7:#P ¢ FP=c
(M,M’) € Cgg[U]. This leads to a contradiction. Theorem 3.8: #P C FPc
We remind that the above results apply (even) when the
comparison problem&'sz (U], Cue[U], CarlU], andCeoc
The purpose of this section is to show a complexityare restricted to loop-free boolean programs.
theoretic gap between non-interference and quantitative i In summary, each comparison problétgz (U], Ce[U],
formation flow. The results strengthen the hypothesis that’;z[U], and Ccc can be used a polynomial number of
quantitative information flow is quite hard to compute pre-times to solve a #P-complete problem. Because Toda’s
cisely, and also suggest an interesting connection to owint theorem [[31] implies that the entire polynomial hierarchy
problems. can be solved by using a #P-complete oracle a polynomial
We focus on loop-free boolean programs whose syntax isumber of times, our results show that the comparison
given in Figure[l. We assume the usual derived formulagroblems for quantitative information flow can also be used
¢ =, p =1, Vb, andfalse. We give the usual weakest
precondition semantics in FigulEé 2. 6_ We do not distinguish ir]put boolean variables from outpuo_lban
To adapt the information flow framework to boolean pro- variables. But, a boolean variable can be made output-oplgskigning a

’ ' ) constant to the variable at the start of the program and mazi€-bnly by
grams, we make each information flow varialble I, andO assigning a constant at the end.

As a result, we have

C. Complexities for Loop-free Boolean Programs



a polynomial number of times to solve the entire polynomial

hierarchy, for the case of loop-free boolean programs.

As shown below, this presents a gap from non-
interference, which is only coNP-complete for loop-free

boolean programs.

=

The last line follows from—2 > 1.

1-1 =
. If ’
We prove the contraposition. Suppage- i. Then,
SE[U)(M;) — SEU)(M;)
=qlog; + (1 —q)log

I

Theorem 3.9: Checking non-interference is coNP- ) .
complete for loop-free boolean programs. —plog 5 — (1—p)log ip
The above is an instance of the general observation that, >0

by solving quantitative information flow problems, one is
able to solve the class of problems known esunting
problemﬂ which coincides with #SAT for the case of loop-

free boolean programs.
D. Proof of Theoreni 3|5

The last line follows from the fact th&@ < p < ¢ < %
Therefore SE[U|(M;) £ SE[U](M;).
[ |
Then, using LemmB_3.10, we prove the following lemma
which is crucial to proving Theorefn 3.5.

We discuss the details of the proof of Theorleml 3.5. The Lemma 3.11: Let H be distinct variables and be a
proofs of Theoremis 3.6, 3[7. 8.8 are deferred to Appentix Bboolean formula overd. Then, the number of assignments
First, we prove the following lemma which states that wefor ¢ can be computed by executing an oracle that decides

can compare the number of solutions to boolean formulaghether programs are i€'sz [U] at most3 * (|

|+1)+2

by computingSE[U]. (For convenience, we use large letterstimes.

H, L, O, etc. to range over boolean variables as well as

generic random variables.)
Lemma 3.10: Let

and H' be distinct boolean random

Proof: First, we define a procedure that returns the
number of solutions of.
Let F(j) = O := v A H where is a formula over?[

variables. Leti andj be any non-negative integers such thathaving j assignments and?’ be a boolean variable such

i < 2/l and j < 2/l Let v, (resp.;) be a formula

over having ¢ (resp. j) assignments. Then, < i iff
SE[U](MJ) < SE[U](Ml) WhereMj =0 = v A H'
and M; =0 := wi/\H/.

Proof: Let p = 57— andq = 5. We have
ol H+1

ol Hl+1 ol H[+1

SE[UJ(M;) = 2\HJ\+1 log 7 Q\H\+;J log THTFI_;
=plogp + (1 - p)log =,
SEIUN(M:) = grsirer log 25— + 2 log ey
=qlogg+ (1 -q)log 1,
e Only If
Supposegj < i. Then,
SE[U](M;) — SE[U](M;)
=plog; + (1 —p)log 11,
—qlog 2 — (1~ ¢q)log 1=,
= log(2)P 1= (74"
Then, from}_;g >1andp > ¢ > 0, we have
SE[U](M;) — SE[U(M;) = log(=2)P (L)1
> log(+52) (%)
= log (37
= log(£=E1)1
g B
= log(1=%)"
>0

“Formally, a counting problem is the problem of counting toenber of
solutions to a decision problem. For instance, #P is thesatdiscounting
problems associated with NP.

that H' ¢ { H}. Note that, by Lemm&_Al4, such can be
generated in linear time.

Then, we invoke the following procedure whetd’ =
O =¢NH.

l=0;
T:2‘ﬁ‘;
n=(+r)/2;

while =Csg[U](F(n), M"YV =Csg[U](M’, F(n))
if Csg|U](F(n),M’)
then {{=n;n=(+7)/2;}
else {r=n;n=>{+r)/2;}
return n

Note that when the procedure terminates, we have
SE|U|(F(n)) = SE[U](M’), and so by Lemma_31®;
is the number of satisfying assignments¢to

We show that the procedure iterates at m&Hl times.
To see this, every iteration in the procedure narrows the
range between and/ by one half. Because—/ is bounded
by 2171 it follows that the procedure iterates at mbﬁh—l
times. Hence, the oracl@s[U] is accessedx (| H|+1)+2
times, and this proves the lemma. ]

Finally, Theoreni_3]5 follows from Lemnia_3]11 and the
fact that #SAT, the problem of counting the number of
solutions to a boolean formula, is #P-complete.

IV. UNIVERSALLY QUANTIFYING DISTRIBUTIONS

As proved in SectiofTll, precisely computing quantitative
information flow is quite difficult. Indeed, we have shown
that even just comparing two programs on which has the
larger flow is difficult (i.e.,Csg, CyEe, Cor, andCeoc).



In this section, we show that universally quantifying Theorem 4.5: R C Ccc

the Shannon-entropy based comparison probtesg (s, Note that, the other directio © C¢¢, does not hold as
the min-entropy based problefiy (1], or the guessing- R is not always a total order, where@s:¢ is. We also show
entropy based probler@'cx([u] over the distributions is  that R is compatible with the notion of non-interference.
equivalent to a simple relatio®® enjoying the following Theorem 4.6: Let M, be a non-interferent program.

propert.ies. Then, R(My, Ms) iff M, is also non-interferent and/,
(1) R is a2-safety property. has the same input domain ag,.
(2) R is coNP-complete for loop-free boolean programs.  Next we show that? is easier to decide than the non-

Note that (1) implies that we can actually check if ynjversally-quantified versions of the comparison protdem

(My, Mz) € Csglp] for all p via self composition (and  First, it is trivial to see from Definitiofi 411 thaR is a 2-
likewise for Cyplu] and Ceplu]). We actually show in  safety property.

Section[IV-B that we can even use the security-type-based
approach suggested by Terauchi and Aiken [30] to minimize
code duplication during self composition (i.e., idterleaved
self composition).

We remind that except for the coNP-completeness resu .
(Theorem[ZB), the regults in this sectionp apply to any anks to it2-safety property and the fact that, for loop-free
' b

(deterministic and terminating) programs and not just to oolean programs, self composition reduces the problem to

loop-free boolean programs. an UNSAT instancd. _
Definition 4.1: We defineR to be the relation such that Theorem 4.8: Restricted to loop-free boolean programs,

R(My, My) iff for all £ € L andh, b’ € H, if My(h,¢) # 1 1S CONP-complete.
M (K, £) then My(h, £) # My (K, £). A. Proof of Theorerh 412

Note thatR(M;, M>) essentially says that if an attacker ) )
We discuss the details of the proof of Theorlem 4.2. The

can distinguish a pair of high security inputs by executing )
Mj, then she could do the same by executing. Hence, ~Proofs of Theoremis 4.8, 414, 4.5 are deferred to AppeinHix B.

R naturally expresses that; is at least as secure as,. _ First, we prove the followmg. lemma which says that,
It may be somewhat surprising that this simple relationif F(M, M) then SE[U](M’) is at least as large as

is actually equivalent to the rather complex entropy-basedZ(U](1) per each low security input € L.

quantitative information flow definitions when they are cast Lemma 4.9: SupposeR(M, M'), that is, for all hy, ho

as comparison problems and the distributions are univgrsalin H and ¢ in L, M'(hy,£) = M'(hy,¢) = M(hy,{) =

quantified, as stated in the following theorems. First, weM (ho,£). Let O be the set of the outputs af/, and

show thatR coincides exactly withiC'sz with its distribution Q' be the set of the outputs dil’. Then, for any/, we

Theorem 4.7: R is a 2-safety property.

It can be shown that, restricted to loop-free boolean
programs,R is coNP-complete. This follows directly from
ﬂ:e observation that we can decideby self composition

universally quantified. have 3 ,cq u(0,£) log M‘zfﬁ,) < Ypeo (0, 0)log l(‘(% .
Theorem 4.2: R = {(My, Ms) | Yu.Csg[p) (M, M2)} (Recall the notational convention from Definiti .1.§
The proof is detailed in SectignTV}A. The next two theorems Proof: First, we prove for any output of M, there
show thatR also coincides withC'y;z and Cx with their  €xist corresponding output, = {og, 0}, ..., 0}, } of M’

distribution universally quantified. such that

Theorem 4.3: R = {(My, Ma) | Vu.Cpg|p) (M, Ma)} (0, ) log 45,
Theorem 4.4: R = {(My, M) | Yu.Corlu](Mi, M)} < (o ) log 20
. K . = Zo"e@o M(OW ) og (o)

The first half of theC direction of the proofs for the ’ ™
theorems above is much like the that of Theofem 4.2, thatet H, be the set such thatl, = {h|M(h,¢) = o}.
is, it makes the observation thaf, disambiguates the high Let {ho,h1,...,h,} = H,. Let of = M'(hg,¥),...and,
security inputs at least as fine as ddés. Then, the proof o/, = M’(h,,f). For any h’ such that o.
concludes by utilizing the particular mathematical proiesr ~ AM'(h/,¢) and o. € {o},0},...,0,}, we have n’/
relevant to the respective definitions. The proof for he {h;,..., h,} since R(M,M’). Then, we haveu(o, £)
direction is also similar to the argument used in Thedret 4.2~ oy 10}, 0). By Lemma A, we have
The details of the proofs appear in Appendix B. o

Next, we show thatR refinesC¢¢ in the sense that if 11(0, ) log L9

n(o,0)
R(M,, M3) thenCee (M, Ms). < 2046{06,0,17“.,0,"} (0, 0) log uélo(’f,)é)

n(e)

m

refo},...

8We note that notions similar t&® have appeared in literature (often in
somewhat different representations) I[27].1[18], [6]. Intjgalar, Clark et 9To construct a polynomial size boolean formula from a logef
al. [6] have shown a result analogous to thedirection of Theorenf 412  boolean program, we use the well-known efficient weakestquition
below. But, R's properties have not been fully investigated. construction techniqué T13[.T17] instead of the naive sig&en in FiguréR.



Now to prove the lemma, it suffices to show that edth
constructed above are disjoint. That is, ferando, outputs

of M such thato; # 0q, O,, N 0Q,, = (). For contradiction,

suppose’ € Q,, N O,,. Then, there exisk; and hs such
that 01 = M(hl,é), o = M/(hl,é), 09 = M(h;Q,é), and
o' = M'(hg,¥). SinceR(M, M’), we haveo; = o2, and it
leads to a contradiction. Hence, we have

n(f) / n(£)
onu(oa Olog 75 < > (o, 0)log D)

o’

We now prove Theoreiin 4.2.
Proof:

o« C
§uppose(M, M') € R. By LemmdA3,
SE[p)(M) = H[u](O[L)
= Zez p(o,€) log HO 1))
and
SE[p|(M") = H[u)(O'|L)
=220 2o 10, €) log Ml(t(ffg)é)
By Lemma[4.® and the fact thdt\/, M’) € R, we
obtain for any/

Zuoflog 0 <Zuo £) log ((Z)@

Hence,

Zé Z /L(O g) 1Og ;L(E)ZZ)
<Y X, (0 0) log D

« D
We prove the contraposition. Suppos$é/, M') ¢
R. Then, there existo’, hg, hi,¢ such thato =
M/(ho,él) = M/(hl,él) and M(ho,él) 75 M(hl,él)
Pick a probability functionu such thatu(hg,¢) =
u(h, ) =
Then, we have

H{p)(O'|L)  =32,3, 1o, ) log
= u(d, é’)log (<? >,)
=1logi 1
=0
Let op and o; be output variables such that =
M(ho,f’), 01 = M(hl,fl), andoo 75 01.

HU(OIL) = Toe (o 00 1(0: ) 108 47y
= %1og% + %1ogé
=1
Therefore, SE[up](M) <€ SE[p](M'), that Iis,
(M, M") & {(My, M2) | Vp.(My, Mz) € Csplul}.
[

B. Quantitative Information Flow via Self Composition

Theorem§ 412, 418,4.4, and .7 imply that we can check if
the entropy-based quantitative information flow of a progra
(i.e., SE ME, and GE) is bounded by that of another
for all distributions via self composition |[3],.[11]. This
suggests a novel approach to precisely checking quandtati
information flow.

That is, given atarget program M;, the user would
construct aspecificationprogram M, with the same input
domain asM; having the desired level of security. Then, she
would checkR(M;, M) via self composition. If so, then
M is guaranteed to be at least as securéfasccording to
the Shannon-entropy based, the min-entropy based, and the
guessing-entropy based definition of quantitative infdioma
flow for all distributions (and also channel-capacity based
definition), and otherwise, there must be a distribution in
which M; is less secure tham/, according to the entropy-
based definitions.

Note that decidingR(M;, M) is useful even when
M; and M, are R-incomparable, that is, when neither
R(My, Ms) nor R(Ms, My). This is because:R(M7, M>)
implies that)M; is less secure thah/s on some distribution.

For example, suppogd; is some complex login program
with the high security input? and the low security input
L. And we would like to verify that\/; is at least as secure
as the prototypical login program/s below.

My=if H=LthenO :=0else O :=

Then, using this framework, it suffices to just query if
R(My, My) is true. (Note that the output domains df;
and M> need not to match.)

We now describe how to actually chedk( M, M,) via
self composition. From\/; and M5, we construct the self-
composed program/’ shown below.

M'(H,H',L) =
Oy :=M,(H,L);0} .= M,(H',L); //L1
Os := My(H, L); O, := My(H',L); // L2
assert(0; # O] = O3 # O))

Note that R(My, M,) is true iff M’ does not cause an
assertion failure. The latter can be checked via a software
safety verifier such as SLAM and BLASTTI[2], [15], [24],/[4].
As an aside, we note that this kind of construction could
be easily generalized to reduce ahysafety problem (cf.
Section 1) to a safety problem, as shown by Clarkson and
Schneiderl[[B].

Note that the line.1 (resp.L2) of the pseudo code above
is My (resp.Ms) sequentially composed with a copy of
itself, which is from where the name “self composition”
comes. Therefore, technically/’ is a composition of two
self compositions.

L1 (andL2) are actually exactly the original self compo-
sition proposed for non-interference [3], [11]. Terauchda
Aiken [30] noted that only the parts df/; (and M-) that



depend on the high security inputé and H' need to be any/, h,h’ suchthat: # ¢, i’ # ¢ andh # I’/, we have that
duplicated and self composed, with the rest of the programd/; (h, £) # Mi(h',¢) but Mgpec(h,£) = Mgpec (R, £) = 1.
left intact and “interleaved” with the self-composed parts To see that-R(Mz, M,p..), note that foré, h, b’ such that
The resulting program tends to be verified easier than thé # ¢, ' # ¢, h&el = 1 and h's«1 = 0, we have
naive self composition by modern software safety verifiersthat 1 = My (h,€) # Ma(h',€) = 0 but Mypec(h,0) =
They proposed a set of transformation rules that translates/;,..(k', ) = 1. To see that-R(Ms, Mspec), let ¢, h, b’
a WHILE program annotated with security typésli[33] (or be such thath|ss = {|s2, h/|32 # f|s2, and h # ¢,
dependency analysis results) to an interleaved self-cestpo then,1 = Ms(h,¢) # Ms(h',£) = 0 but Mgpe(h,£) =
program. This was subsequently improved by a numbef/,..(h',¢) = 14 (Here, z|3; denotesr mod2??, i.e., the
of researchers to support a richer set of language featurdst 32 bits ofx.)
and transformation patterns [32], [25]. These transfoiomat The results imply that fon/;, My, and M3, there must be
methods can be used in place of the naive self compositiors distribution where the program is less secure thag..
atL1 andL2 in building M’. That is, we apply a security according to each of the entropy-based definition of quantit
type inference (or a dependency analysis)/fp and M, to  tive information flow. For instance, for the Shannon-emyrop
infer program parts that depend on the high security inputbased definition, we have for the uniform distribution
H and H' so as to only duplicate and self compose those
parts of M7 and M.

264

SE[U](MS;DeC) = 2% + % log 2641
~ 3.46944695 x 1018

C. Example SE[UJ(My) =64
We recall the ideal login program below. SE[U)(Ms) =1+ 142" log 1i2463 + Z L log 52—
~ 1.0
Mpee =if H =L then O :=0else 0 :=1 SE[U](Mg) _ 217 " 264224232 log 2642i4232
We check the following four programs using the above as ~ 7.78648 x 10~°
the specification. That is, SE[U](M1) £ SE[U](M.ye), SEU)(Ms) %
M, =0 :=H SE[U](Mspec), and SE[U|(M3) £ SE[U](Mspec)-
Finally, we have thaR (M4, Mpe.), and soMy is at least
My=if H=LthenO :=0elseO := Hs&l as secure asd,,.. according to all of the definitions of
quantitative information flow considered in this paper. In
Ms; =0 :=1;i :=0; fact, it can be also shown tha(Mspe., Ma). (However,
whilei < 32 { note thatM, and M,,.. are not semantically equivalent,
m:=1<<7q; i.e., their outputs are reversed.)
if Hem # L&m then
O :=0: break; V. RELATED WORK
else This work builds on previous work that proposed informa-
i++; tion theoretic notions of quantitative information flow J12
} [, [19], [29], [16], [1], [22], [2Q], [2€]. The previous
research has mostly focused on information theoretic prope
My=0 :=1;i :=0; ties of the definitions and proposed approximate (i.e.,nmco
while i < 64 { plete and/or unsound) methods for checking and inferring
m:=1<<1; them. In contrast, this paper investigates the verification
if Hem # L&m then theoretic and complexity theoretic hardness of precisely
O := 0; break; inferring quantitative information flow according to the
else definitions and also proposes a precise method for check-
1++; ing quantitative information flow. Our method checks the
} quantitative information flow of a program against that of

a specification program having the desired level of security

Here, H and L are 64-bit valuesg is the bit-wise and . i, Z o .
. : . via self composition for all distributions according to the
operator, and< is the left shift operatord/; leaks the entire -
entropy-based definitions.

password.M, checks the password against the user guess It is quite interesting that the relatio®® unifies the

but then Iea}ks the flrSt bit when the check .faMB only different proposals for the definition of quantitative infoa-
checks the first 32 bits of the password. Afd, implements . .
tion flow when they are cast as comparison problems and

password checking correctly via a while loop.
We verify that only//, satisfies the specification, that is, 10 can be also shown that R(Mapee, Ms) and—R(Mapee, Ms), that
R(My, Mgpec). To see that-R(Mq, Mpe.), note that for s, M, and M5 are R-incomparable withMpec.



their distributions are universally quantified. As remarke  problem, and that it is also coNP-complete when restricted

Sectior 1V, R naturally expresses the fact that one progranto loop-free boolean programs.

is more secure than the other, and it could be argued that it We have done this by proving a surprising result that

is the essence of quantitative information flow. universally quantifying the distribution in the compariso
Researchers have also proposed definitions of quantitatiyeroblem for the entropy-based definitions is equivalent to

information flow that do not fit the models studied in this a simple2-safety relation. Motivated by the result, we have

paper. These include the definition based on the notion gfroposed a novel approach to precisely checking quangtati

belief[8]], and the ones that take the maximum over the lowinformation flow that reduces the problem to a safety prob-

security inputs([19], [16[}:]] lem via self composition. Our method checks the quantiativ
Despite the staggering complexity made apparent in thisnformation flow of a program for all distributions against

paper, recent attempts have been made to (more) preciselyat of a specification program having the desired level of

infer quantitative information flow (without universally security.

guantifying over the distribution as in our approach). Ehes

methods are based on the ideacofinting As remarked in ACKNOWLEDGMENT
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The following lemma is used to show that we can generate
a boolean formula that has exactly the desired number of
solutions in polynomial (actually, linear) time.

Lemma A.4: Let & be an integer such thah < k£ <

Proof: Because% >1 and”T*q > 1, it follows that,

pIOg%Jrqlog——(erq)logﬁ

=plog i —plogp+q —l—qlog% —qlogﬁ

- p+q p+q

2l7l — 1. Then, a boolean formula that has exactly =plog 5% +glog

assignments over the variablés can be computed in time =0

linear in | 7|. n

Proof: We define a procedure iter that returns the APPENDIXB.
2(r)]oleanJf|()rmula. Belowzw = T1,%2,..., .., x; IS the OMITTED PROOES
variable. :

! Theorem[2.6: Let M be a program that takes high-
iter(e,0) = false security inputH, low-security inputL, and returns low-
iter(Oé’ i) = Aiter(f,i — 1)) security outputD. Then,M is non-interferent if and only if
iter(1¢,i) = a; V (iter(£,i — 1)) V- SE[u](M) = 0.

Proof: Recall that M is non-interferent iff for any

Here, ¢ is an empty string. Let;, be a|Z|-bit binary h ' € Hand/ e L, M(h,£) =MW, 0).

representation of.. We prove that it | 7’|) returns a
boolean formula that has exactly k assignments by induction
on the number of variables, that i’ |.

- k=0
iter(0, 1) returnsz; A false, that is, false. false has
no satisfying assignment.

- k=1
iter(1, 1) returnsz; Vfalse, that is,z1. 1 has only
one satisfying assignment.

. |7,1’/|

— k< 2\?,1'\—1
Let 0¢ be a binary representation of.
iter(04, |7, 2’|) returns z’ A iter(¢,|Z|). By
induction hypothesis, it¢¢, | 2’|) hask satisfying
assignments for . It follows thatz’ Aiter(¢, | 2|)
has just k£ satisfying assignments, because
false A iter(¢,|Z’|) has no assignment and
true A |ter(£ |Z|) has justk assignments.

- k> DIEL
Let 1/ be a binary representation of.
iter(14,| 7, 2’|) returns z’ V |ter(£ |Z]). ¢ is
a binary representation d@f — 2/7!. By induction
hypothesis, itef,|7|) has k — Sk satisfying
assignments for’. It follows thatz’ Viter(¢, | 2’|)
has just k£ satisfying aSS|gnments because

e (=) Suppose thatM is non-interferent. Then, by
LemmalA3,
SE[u)(M) = ZI[u|(O;H|L)
= H[u(OIL)
= ZoZenloOlos iy
Z > ¢ (0, £) log & M(z)

The last step follows from the fact that non-interference
implies (£) = p(o, £).

o (<) Suppose thad/ is interferent. Then, there must be
ho and h; such thatM(ho,g/) = 09, M(hl,él) = 01,
and oy # o;. Pick a probability functionu such that
w(ho, ¢') = p(hy,¢') = . Then, by Lemm&AJ3,

SE[p)(M) = Z[u](O; H|L)
H[p)(O|L)

= 3,3 nlo.0)log 5

= (oo, ) log #é‘o( Z),)

+u(o1,£') log (O(] 42/)
= 1 5log2 + 3 Llog2
= 1
Therefore, there exists such thatSE[u](M) # 0, and
we have the conclusion.

[ |
We note the following equivalence &fC and ME[U] for

false V iter(¢, | 7'|) has justk — 27| assignments programs without low security inputs [29].

and whenz’ = true, 2’ Viter(¢, | Z|) has jus2/@|
assignments.

Lemma B.1: Let M be a program without low security

input. Then ME[U|(M) = CC(M).

The min-entropy-based quantitative information flow with

We frequent the following property of logarithmic arith- uniformly distributed high security input has the followin
metic when proving statements concerning the Shannoproperty [29].

entropy.

Lemma B.2: Let M be a program without low security

Lemma A.5: Let p and ¢ be numbers such that ¢ €  input and O be the output ofM. Then, ME[U](M) =
[0,1]. Then, we hav@log% + qlog % > (p+q)log ﬁ. log(|OJ).



Theorem[3.2: Cyg[U] is not ak-safety property for any
k> 0.

Proof: For contradiction, supposgyr|U] is ak-safety
property. LetM and M’ be programs having same input
domain such thatM, M’) ¢ Cyg[U]. Then, it must be the
case that there exist C [M] and T’ C [M'] such that
IT| < k, |T'| < k, andVM,, M.T C [MJAT' C [M] =
(Me, M() & CnplU].

Let
T = {(hl,Ol),(hg,Og),. (hl,Oz)}
T" = {(h1,01), (hy, 05), - .., (hj, 0)}

Proof: For contradiction, suppos€q;g[U] is ak-safety

property. LetM and M’ be programs having the same input
domain such thatM, M") & C¢g[U]. Then, it must be the
case that there exisf C [M] andT’ C [M’] such that
|T| <k, |T'"| <k, andVM., M..T C [MJAT’
(M., M;) & CaplU].

Let

C [M] =

T={(h1,01),(h2,02)7- (hlaol)}
T" = {(h1,0h), (hy, 05), . .., (h], 05)}

wherei,j < k. Now, we construct new program¥ and
M’ as follows.

wherei,j < k. Now, we construct new programe and M(h1) = o M/(hil) = 0:1
M’ as follows. M (hg) = 02 M'(hy) = 0}
M(hy) = o1 M!(h) = o] M(h)=o; MK =0
M(h 0 M'(h — o ’ v
( 2) 2 ( '2.) 2 M(hiJrl) =0 M/(h;'Jrl) — ;—4—1
M(hi)=o0i  M/(H) =0 M(hivo) =0 M'(Rjy5) = 0jss
M(hit1) = o M/(h;+1) = 0;+1 T(h Y — o
M(his2) =0 M) = o, Mk =0 ) = o
- ' M(hi+j+1) =0 M (h’j-‘,-z-i-l) = O,
M(hn) =0 M’(h%) = O;z M(hn) =o, M’(h'/ ) -0
where
. , , o where
* Ojgn Ojyzs oo andlon are dI/StInCt, .« 0o,
o {01,050, 053N {/0j+17 : -/-von}d: 0, o {01,09,...,0;} N {o o} =
* {hi’é'k"h"} ={h1,. b an o 01, 0o Oyy ando ‘are distinct,
¢ = Ak _ .{0’1,0'2,...,oj}ﬁ{ojﬂ,...,J+Z,0’T =0,
The number of outputs of the prografd’ is greater than o {h1, .. hat={H], K}, and
or equal to the number of the outputs of the program . n :’ 2k.,
Hence, by Lemm@BI2, we hav@{, ") € Cys[U]. But, We compare the guessing-entropy-based quantitative-infor

T C[M] andT’ C
Definition B.3:

In(p, X, z) =

[M']). This leads to a contradictiorm

{2 € X | p(a’) = p(x)}|
Intuitively, In(u, X, z) is the order ofr defined in terms of
M.

Lemma B.4:
Glul(X) = Yi<icix)ip(;)
= EmEXIn(Ma Xa I)M(l’)
Proof: Trivial. [ |

Lemma B.5: Let p be a function such thaty : D —
[0,1]. Let P and @Q be sets such thaP U@ = D and
PNQ = 0. Then, we have)  ,In(p,D,z)u(z) >
> pep In(p, Pp)pu(p) + 3 co In(p, Q, q)p(q).-

Proof: Trivial. ]

Definition B.6: Let M be a function such that/ : A —
B. For anyo € B, we defineM (o) to mean

M~ (o) ={i€ Alo=M()}

Theorem[33: Cg[U] is not a k-safety property for any
k>0

mation flow of the two programs.

GE[U)(M ) GE[U](M)
| 2|]HI\ D orenrqy MNP
T"' ZoEZW(H)|M ()|2
3 Soenrqn M (o)
ZoEJW’(H) | M 1(0/)|2
0:{or,. 01} M~ (oz)P?
Yo)]? + M~ (o,)[?)
— g (Zoseto..ory M THOL) P
+ 0101y MO
ML o)[?)

_ I
2

Jj+i

By lemma[B.5, we have

M~

Hoa)[?

IR/ |

2016{01 ..... ,0i }
< Zo v€{o}

and
ML) < oy eoqnory M08

M=o}

Trivially, we have

[M' = o,)]* = [M ™ (o) ?



T(¢) =
if ¢
then Oy := true; 8 = ﬁ

false;B =

whereOy and O are distinct,

—
else Oy := false

Figure 3. Boolean formula encoding by boolean program

As a result, we have

GE[U)(M') — GE[U](M) = 0

Recall that)/ and M’ have the same counterexamplEs
and 7", that is,7 C [M] andT" C [M']. However, we
have (M, M’) € Cgg[U]. This leads to a contradictions

Theorem[3.4: C¢ is not a k-safety property for any
k> 0.

Proof: Straightforward from Lemm& Bl1 and Theo-
rem[3.2. [ |
Lemma B.7: Letﬁ be distinct boolean variableg, be a
boolean formula oveﬁ andn be the number of satisfying
assignments fop. If n is less thare!®, then the number of
the outputs of the boolean prografi{¢) defined in Figuré3
is equal ton + 1.
Proof: Trivial. [ |
Lemma B.8: Let ff) be distinct variables and) be a
boolean formula ove

. Then, the number of assignments

We show that the procedure iterates at m&ﬁ—l times.
To see this, note that every iteration in the procedure marro
the range between and ¢ by one half. Because — ¢ is
bounded by2|ﬁ‘, it follows that the procedure iterates at
most|H | + 1 times. Hence, the oraclé,z[U] is accessed
3% (|ﬁ| + 1) + 2 times, and this proves the lemma. m

Theorem[3.6: #P C FPCu=(U]

Proof: Straightforward by Lemm@aBl8 and the fact that
#SAT, the problem of counting the number of solutions to a
boolean formula, is #P-complete. [ ]

Lemma B.9: Let ?I and H’ be_distinct variables ang
and ¢’ be boolean formulas ovelf. Let M = O := ¢ AN H’
and M’ = O := ¢ A H'. Then, we havetSAT (¢) <
#SAT(¢') iff GE[U|(M) < GE[U|(M").

Proof: By the definition,

GE[U|(M) — 12 G(110)

=3(H)+5 -3, Z1< i<|H| iU (hi, 0)

_

—QﬁﬂM—l(true)P + | M ~1(false)|?)

Therefore,

GE[U)(M) < GE[U](M")
iff

|M~(true)|? + | M ~!(false)|?

> |M'~L(true)|? + |M'~(false)|?

for ¢ can be computed by executing an oracle that decide8ut, trivially, the latter holds iff

whether programs are i€y, [U] at most3 x (|
times.

[+1)+2

Proof: First, we define a procedure that returns the

number of solutions fot.

Let B(j) = v A H' wherey is a formula overd having
j assignments and’ is a boolean variable such that’ ¢
{ﬁ}. Note that by Lemm&_Al4, such can be generated in
linear time.

Then, we invoke the following procedure whefe is
defined in Figurél3.

{=0;
T:2‘ﬁ‘;
n=(l+r)/2;

while ~((T(6 A H'), T(B(n))) € Caspio
and (T(B(n)), T(6 A H')) € Casi[U])
if (T(pAH'), T(B(n))) € CuslU]
then{{ =n;n=(+71)/2;}
else{r=nn=0L+r)/2;}
return n

Note that when the procedure terminates, we have

ME[U)(T(B(n)) ME[U|(T(¢ A H')), and so by
Lemma[B.2 and Lemm@aB.# is the number of satisfying

assignments to.

#SAT(¢) < #SAT(¢')

]
Lemma B.10: Let ﬁ and H ge distinct variables and
¢ be a boolean formula ove Then, the number of
assignments fop can be computed by executing an oracle
that decides whether programs are figg[U] at most
* (|ﬁ| + 1)+ 2 times.
Proof: First, we define a procedure that returns the
number of solutions for.
Let B(j) = v A H' wheret) is a formula overﬁ having
j assignments andl’ is a boolean variable such that’ ¢
{?I}. Note that by Lemm&_Al4, such can be generated in
linear time.

{=0;

r—olHl

n=(l+r)/2;

while =(O = GAH',O = B( n)) € Caplu)
and (O := B(n),0 := ¢ A H') € CaplU))

if (0= A H',0 := B(n)) € CoplU]

then{{=n;n=0L+71)/2;}
else{r=n;n=0L+r)/2;}

return n



Note that when this procedure terminates, we have  program is non-interferent, then this program returns

GE[U)(O := B(n)) = GE[U(O := ¢ A H'), and so by only true for any input, or returns onlyalse for any
Lemma[B.9,n is the number of satisfying assignments to input. However, this program can not return omtye,
0. because ifH = false then¢ A H = false. Therefore,
We show that the procedure iterates at m&Hl times. this program only returnglse, when this program is
To see this, every iteration in the procedure narrows the  non-interferent. That meansis unsatisfiable when the
range between and/ by one half. Because— ¢ is bounded program is non-interferent.
by 2171 it follows that the procedure iterates at mp?t|+1 [ ]
times. Hence, the oracteis[U] is accesset (| H|+1)+2 Definition B.11: Let M be a function such that/ : A —
times, and this proves the lemma. B B. Then, we define the image &f on X C A, M[X], as
Theorem[3.7: #P C FpCerlU] follows.

MX]={o]|o=M(z) Nz € X}
Proof: Straightforward by Lemm&a& B.10 and the fact ,
that #SAT, the problem of counting the number of solutions Leémma B.12: Let H be a set, andM and M’ be

to a boolean formula, is #P-complete. m functions whose domains contaiH. Suppose that we
. have M'(ho,1) = M'(hi,l) = M(ho,l) = M(hy,l),
Theorem[3.8: #P C FP™<¢ for all ho,hy in H. Then, for all’’ € H, we have
Proof: Straightforward from Lemm& B.1 and Theo- {h [ M'(h,1) = M'(R',1)} C {h | M(h,1) = M(n'1)}.
rem[3.6. ] Proof: Trivial. ]

Lemma B.13: Let H, O, O’, and L be distinct ran-
dom variables. LetM and M’ be programs. We have
(M, M’) € R iff for any distributiony, Hao[u](H|O', L) <

Proof: We write NI for the decision problem of check- Hoo[1](H|O, L) whereO’ = M'(H, L) andO = M (H, L).
ing non-interference of loop-free boolean programs. We  prgof:
prove by reducing NI to and from UNSAT, which is coNP-

Theorem[3.9: Checking non-interference is CcoNP-
complete for loop-free boolean programs.

. =)
complete. SupposeR(M, M'). We have
o NI C UNSAT
We reduce via self composition![3], [11]. Le¥/ be Hoo[u](H]O', L) < Hoo[pl(H|O, L)
a boolean program that we want to know if it is non- iff V[u](H|O, L) < V[u](H|O', L)
interferent. First, we make a copy @/, with each by the definition of min entropy, and
variablex in M replaced by a fresh (primed) variable
«’. Call this copyM’. Let ¢ = wp(M; M’', O = O'), VIu(H|O, L)
where O = O’ is the boolean formula encoding the _ '
conjunction of equalites); = O}, O, = O}, ..., = Loeouer #(o:0) maXhGHﬁ((ZL?;)@
O, = O, whereO,...,0, are the low security = 2oeo,cer #0; ) maxher Ty
output variables ofM/. Note that¢ can be obtained = 2 oco,ceL MaXneH (4(0, €) “l(/(l;?’f)
in time polynomial in the size of\/. Here, instead of =2 oco.rer, Maxnem fi(h, 0, )
the rules in Figuré]2, we use the optimized weakest = 0c0.rer, MAXne (1 jo=M(h',0)} H(, )

precondition generation technique [13], [17] that gen-
erates a formula quadratic in the sizedf, M’. Then,

M is non-interferent if and only i is valid, that is,

if and only if —¢ is unsatisfiable.

where® = M[{(h,¢) e H x L | u(h,1) > 0}], andLL
and H are sample spaces of low-security input and
high-security input, respectively. Therefore, it suffices
to show that

o UNSAT C NI
Let ¢ be a formula that we want to know if it is VI[u(H|0', L) — V[u](H|O, L)
unsatisfiable. We prove that the following programs is = Zo/e@)/,éeL maXpe (a'|o'=M" (h',0)} (R, £)
non-interferent iff¢ is unsatisfiable. Here, all variables - Z(,e@,g@ maXpe (njo=M(h,0)y H(h, €)
that appear inp are high security input variables and >0

H i_s a high secur_ity input variabl_e that is distinct f_rom whereQ’ = M’[{(h,0) € H x L | u(h, £) > 0}].

variables appearing i, and O is the low security For anyo € O and ¢ € L, there existsh,, such

output variable. that ju(hom, £) = maxyenjo=ni(n 0y #(h, £). Because
if A H then O := true else O := false R(M, M), by LemmdB.IP, we have

Trivially, if ¢ is unsatisfiable, then this program returns {h| M'(h,€) = M'(hp,£)}

only false, that is, this program is non-interferent. If this C{h| M(h,0) = M(hp,,£)}



Therefore,
hm, ) = h,t
(b, £) he{h,‘ogaﬁ,(h,ye)}u( )
for some o/ € O'. Hence, each summand in

Y 0c0.ter, MAXne (h|o=n1(nr o)} #(h, £) also appears
in Zo,e@,jeﬂlmaXhe{th/:M/(h/_’l)} /L(h,[) And, we
have the above proposition.

e (<)
We prove the contraposition. Suppo&¥/, M’) ¢ R.
Then, there exisky, h1, ¢, 09, 01 such thatM’(hg, ) =
M/(hl,é), og = M(ho,f), 01 = M(hl,é), and
o9 # 01. Pick a probability distributionu such that
p(ho, €) = p(hy,£) = 3. Then, we have

Vip|(H]|O', L)
;o/e@,fem maXpe (a'|o'=M(h 0)} 1M )

)
and
V[u|(H]0,L)
=D oc0,0eL MAXne {ho=M (0} W(h, £)
141
2 2
=1

ThereforeHoo [](H|O', L) £ Hoo[u](H|O, L).

|
Theorem: R = {(Ml, Mg) | V/L.CME[/L](Ml, Mg)}

Proof: Straightforward from Lemmga B.13 and the fact
that Hoo 4] (H|L) — Hoolu)(H|O,L) < Heolp](H|L)
Hoo[pl(H|O', L) iff Hoo[u](H|O, L) > Hoo[p)(H|O', L).

[
Theorem[4.3: R = {(M;, M2) | Vu.Cogrp] (M7, Ma)}
Proof:
e C
Supposg M, M’) € R. By the definition,
GE[p)(M) =

ZZG]L,heH In(/\h/'ﬂ(hlv f)v Hv h)/l'(hv Z)
- ZoE@,EGL,hGH I?’L(}\hl.p,(h/, 0, é)v Hv h)ﬂ(hv 0, Z)
and

GE[u)(M') =

> ver e IR w(h', €), H, h)p(h, £)

- ZO’E(O)/,@E]LJLEH In(/\h’u(h’, 0/7 é)v Hv h),u(ha Ola 6)
where O = MI[{(h,¢) e HxL | p(h,¢) > 0}] and
Q' = M'[{(h,t) € H x L | u(h, €) > 0}].

It suffices to show that
Zo’G@’,EGL,heH In()‘hl'ﬂ(hlv 0/7 é)v Hv h)ﬂ(hv 0/7 f)
< ZoE@,EGL,hGH I?’L(}\hl.p,(h/, 0, é)v Hv h)ﬂ(hv 0, Z)
Leto € O and/? € L. Let o = M(ho,l) = ---
M (hg, 0), and leto}, = M (hg,0), . .., 0, = M (hg, ).

BecauseR (M, M"), for any i’ such thatM’(h',¢) €
{0p,...,0.}, we haveh’ € {hg,...,h,}. Then, by
Lemmal[B.5, we have

> onery IR (R, o', £), H, h)u(h, 0, £)
> Zole@/mheHo In(AR . u(h'; 0" ), H, h)u(h, o, £)

where

o', ={op,...,0.}

H, ={ho,h1,...,hz}
Now we prove eacl®), constructed above are disjoint.
That is, foro; and o, outputs of M such thato; #
02, @,, N 0,, = 0. For a contradiction, suppogg €
0,, N0,,. Then, there exisk; andh, such thato; =
M(hl,g), o = M/(hl,g), 09 = M(hg,f), and o’
M’(hs, ?). Since R(M, M'), we haveo; = oq, and it
leads to a contradiction. Hence, we have for aryL,

Zo/e@)/,heH In()\h/':u(h/a 0/7 é)v H, h)ﬂ(ha Ola 6)
<D oconem IV (R’ 0,€), H, h)p(h, o, £)
Therefore, it follows that

Yoo seLner IR u(h', o' £), H, h)pu(h, o, £)
ZoG@,ZG]L,hEH In(/\hlu(hl7 o, f), Hu h)ll’(hv o, Z)

e D
We prove the contraposition. Suppo&®/, M’) ¢ R.
Then, there exist, ', £, 0,0’ such that
— M(h,¢) =0, M(W,¢) =0, ando # o
- M'(h, ) = M'(W,0)

Then, we can pick such thaju(h, ) = u(h', £) = 0.5.
We have

GE[p)(M)=15-1=0.5
and

GE[u)(M')=15-15=0
Therefore, we havéM, M) & Carlu].

Theorem[45: R C Ccc

Proof: Let M and M’ be programs such that
(M,M’") € R. We prove(M, M) € Ccc.
By Theoren{4.R, we have

V.SE[u])(M) < SE[u](M’)
Now, there existg,’ such that
CC(M) = SE[i/|(M)

Therefore,
SE[W|(M) < SE[u|(M)

Trivially,
SE[W)(M') < CO(M")

Therefore, we have the conclusion.



Theorem[4.6: Let M, be a non-interferent program.
Then, R(M, M») iff M; is also non-interferent and\/;
has the same input domain ag,.

Proof: Straightforward from Theorenis 2.6 and14 ..

Theorem[4.8: Restricted to loop-free boolean programs,
R is coNP-complete.

Proof:

e R C coNP
We prove by reducing? to UNSAT, which is coNP-
complete. We reduce via self composition [3], [[11].
Let M and M’ be boolean programs that we want to
know if they are inR. First, we make copies of/
and M’, with all variables inM and M’ replaced by
fresh (primed) variables. Call thse copies and%.
Let & — Wp(M; M3 M's M,,0' = O = O = O)
WhereB ,0.,0’, and O’ are the low security outputs
of M,M.,M’', and M/, respectively. Note thap can
be obtained in time polynomial in the size aff
and M'. Here, like in Theoreni 319, we use the opti-
mized weakest precondition generation technigué [13],
[17] to generate a formula quadratic in the size of
M; M.; M'; M. Then, (M, M') € R if and only if
¢ is valid, that is, if and only if-¢ is unsatisfiable.

« CONPC R
We prove by reducing NI ta?, because NI is coNP-
complete by Theoreri _3.9. We can check the non-
interference ofM by solving R(M, M’) where M’ is
non-interferent and have the same input domaid/&as
by Theoreni 4)6. Note that sudid’ can be constructed
in polynomial time. Therefore, we have coNPR.
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