

Edinburgh Research Explorer

StatVerif: Verification of stateful processes

Citation for published version:
Arapinis, M, Phillips, J, Ritter, E & Ryan, M 2014, 'StatVerif: Verification of stateful processes', Journal of
Computer Security, vol. 22, no. 5, pp. 743-821. https://doi.org/10.3233/JCS-140501

Digital Object Identifier (DOI):
10.3233/JCS-140501

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Computer Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.3233/JCS-140501
https://doi.org/10.3233/JCS-140501
https://www.research.ed.ac.uk/en/publications/7c529892-59fe-42bf-be0e-d780533f19ea

StatVerif: Verification of Stateful Processes

Myrto Arapinis Joshua Phillips Eike Ritter Mark D. Ryan
{m.d.arapinis, e.ritter, j.phillips, m.d.ryan}@cs.bham.ac.uk

School of Computer Science, University of Birmingham, UK

October 19, 2014

Abstract

We present StatVerif, which is an extension of the ProVerif process
calculus with constructs for explicit state, in order to be able to reason
about protocols that manipulate global state. Global state is required by
protocols used in hardware devices (such as smart cards and the trusted
platform module), as well as by protocols involving databases that store
persistent information. We provide the operational semantics of StatVerif.
We extend the ProVerif compiler to a compiler for StatVerif, which takes
processes written in the extended process language and produces Horn
clauses. Our compilation is carefully engineered to avoid many false at-
tacks. We prove the correctness of the StatVerif compiler. We illustrate
our method on two examples: a small hardware security device and a
contract signing protocol. We are able to prove their desired properties
automatically.

1 Introduction

Motivation Agents that engage in security protocols necessarily involve a
notion of state. For example, a protocol may require an agent A to send a certain
message, to receive a response, and then to send another message that depends
on the response. In this case, A needs to maintain some state information so
that it knows which step of the protocol is the next one. This notion of state is
local within a session.

Sometimes, there is also a requirement to maintain longer-term global state.
This state is not local to a session: if one session updates the state, then it
is updated for other sessions too. Two broad classes of protocols where global
state is relevant are:

• Protocols involving security device interfaces. This includes smartcards,
stateful RFID chips, the trusted platform module (TPM), and secure co-
processors such as the IBM 4758. Such devices maintain data including
keys and their metadata, including whether keys are loaded, valid, or
revoked. They may also have special registers for recording state informa-
tion, such as monotonic counters or the platform configuration registers
of the TPM. They may allow other data to be saved on the device, such
as the identity of a stateful RFID tag, that affects its future behaviour.

1

• Protocols involving databases, such as protocols for RFID tags (where a
database holds information about the status of tags), protocols for web-
sites (e.g., where a database holds status about transactions, and browsers
hold cookies), and key servers (where a database records the status of
keys). It also includes specialised protocols such as fair exchange proto-
cols and contract signing protocols, where a trusted party maintains the
status of the exchange in a database.

This notion of global state poses a problem for existing protocol verification
techniques, because those techniques often make abstractions that will introduce
false attacks when state is considered. We show this in the running example,
below. This has been noted before, e.g., by Herzog [1], Mödersheim [2], Guttman
[3] and Delaune et al. [4]. For example, the ProVerif protocol analyser [5] models
an ever-increasing set of derivable facts representing attacker knowledge, and is
not able to associate those facts with the states in which they arose. For this
reason, the tool typically reports many false attacks.

Related work The AVISPA tool [6] aims to handle mutable state via its
OFMC, CL-AtSe and SATMC backends. However, the first two of these re-
quire concrete bounds to be given on the number of sessions and fresh nonces.
SATMC can avoid this restriction in principle [7], but as we mentioned in [4],
SATMC performed poorly in our experiments due to the relatively large mes-
sage length, a known weakness of SATMC. Also aiming to address global states,
Mödersheim [2] has developed a framework that takes global state into account.
He introduces a low-level language called AIF, which extends the IF language of
AVISPA by adding sets. The framework is based on a strong abstraction that
identifies all objects that are in exactly the same sets. This method appears to
work well, but the method is tightly coupled with a particular abstraction, and
the scope of its applicability is not very clear. The author mentions the restric-
tions of the low-level and implementation-focused language, and points out the
desirability of a high-level language for protocol designers. Guttman has also
addressed the problem, by extending the strand space model with a notion of
state [3]. However, this extended model does not currently have tool support.
In a similar direction to ours, Delaune/Kremer/Ryan/Steel have coded stateful
aspects of the TPM directly in Horn clauses [8].

Our approach and contributions We present StatVerif, which is an exten-
sion of the ProVerif process language with constructs that allow one to directly
model global state. This approach allows us to build on ProVerif’s existing
successes. More precisely,

• We extend the ProVerif process calculus with explicit state, including
assignments, and provide its operational semantics.

• We extend the ProVerif compiler, which takes processes written in the pro-
cess language, and produces Horn clauses that can be verified by ProVerif.
Our translation is carefully engineered to avoid the false attacks mentioned
above.

2

• We prove the correctness of the extended compiler for secrecy properties;
that is, we show that attacks are not lost. Therefore, a security proof at
the clause level implies a proof at the process calculus level.

• We illustrate our method on two examples: a small hardware security
device, and a contract signing protocol. We are able to prove their desired
properties automatically.

We only consider secrecy properties, although ProVerif can also prove corre-
spondence and equivalence properties. Full details of our code for the examples
are available on the web, along with a ProVerif-based implementation1.

Running example The following example allows us to explain our results
more fully. Consider a hardware device whose behaviour can be configured
by the user. The device generates a public key PKk. A user Alice may use
software to encrypt pairs (x, y) of secrets with PKk, resulting in {(x, y)}PKk

.
Later, she can give the device and a set {{(x1, y1)}PKk

, . . . , {(xn, yn)}PKk
} of

such ciphertexts to another user Bob. The device allows Bob to configure it as
“left” or “right”. If Bob chooses to configure it as “left”, then after doing so he
can use the device to obtain any of the first components xi of the pairs. If he
configures it with “right”, then he gets to have the second components yi. Such
a device might, for example, be used to allow a customer to choose between
vouchers for a music website, or vouchers for a social networking site, but not
both.

We model such a device in our stateful language as the following process:

1 new s; new k;
2 let PKk = pk(k) in
3 out(c, PKk) | [s 7→ init] |
4 (! lock s; in(c, x); read s as y;
5 if y = init then
6 (if x = left then s := left; unlock s else
7 if x = right then s := right; unlock s)) |
8 (! lock s; in(c, x); read s as y; let z = adec(k, x) in
9 let xl = projl(z) in

10 let xr = projr(z) in
11 if y = left then out(c, xl); unlock s else
12 if y = right then out(c, xr); unlock s)

In line 3, we declare a cell s with initial value init. In lines 4–7, we allow the
user to provide a value—either left or right—to configure the device; this assigns
the value to the cell s. In lines 8–12, we allow the user to provide a ciphertext;
in return, the user will receive the left or right component, according to the
configuration. Notice that the device, once configured left or right, cannot be
configured again.

Details of the constructs including lock will be explained later. We assume
the usual equational theory for public key encryption. The desired property is
that, given a ciphertext {(x, y)}PKk

, the attacker cannot obtain the pair (x, y).
This property is easily automatically proved using our techniques.

1http://markryan.eu/research/StatVerif/

3

It is interesting to note that it is possible to convert such a process into a
semantically equivalent pure ProVerif process. The cell s could be represented
by a private channel that stores the configuration value. The subprocesses that
read the value s would instead input it from this private channel. However,
although the private channel process is semantically equivalent to our process,
ProVerif is not able to prove that it satisfies the desired property because, as
mentioned, ProVerif’s abstractions introduce false attacks. In particular, once
init is placed on the private channel, it remains forever available. Therefore,
in the private channel model, the device allows itself to be configured and re-
configured at will. The user can obtain (x, y) by configuring it first as left and
then as right. Our technique does not introduce for states the abstractions that
ProVerif uses for private channels.

Outline We give some necessary background about ProVerif and Horn clauses
in section II. In section III, we detail the syntax and semantics of our stateful
language, and show how it is translated into clauses in section IV. We also prove
the correctness of the translation. In section V, we treat the case studies.

2 Background

2.1 ProVerif process language

We start from the ProVerif process language introduced in [9], which we recall
in the first half of Figure 1 (up to and including the conditional process). This
language is similar to the applied pi calculus [10], and is designed to model secu-
rity protocols. It allows processes to send terms built over a signature including
names and variables. These terms model the messages that are exchanged dur-
ing a protocol. Cryptographic operations are modelled by reductions such as

sdec(x, senc(x, y)) → y
adec(x, aenc(pk(x), y)) → y

check getmsg(pk(x), sign(x, y)) → y
checkpcs(ct, pk(x), pk(y), pk(z), pcs(x, pk(y), pk(z), ct)) → ok

convertpcs(z, pcs(x, pk(y), pk(z), ct)) → sign(x, ct)

In this example, we consider a signature that has the constructors senc, aenc,
pk, pcs, sign and ok. The functions sdec, checkpcs, check getmsg and convertpcs
are destructors. The symbols x, y, z are variables. The first three reductions
model symmetric and asymmetric encryption and digital signing of messages in
the usual way. The last two model private contract signatures that are used in
our example in section V.

Processes P,Q,R, . . . are constructed as follows. The process 0 is the empty
process which does nothing. In new a;P , we restrict the name a in P ; this
can be used to model that a is a fresh random number or key. The process
in(M,x);P models the input of a term on a channel M ; the term is then sub-
stituted for x in process P . The process out(M,N) outputs a term N on a
channel M . The parallel composition P | Q models processes P and Q running
concurrently. The conditional if M = N then P else Q behaves as P when M
and N are equal modulo the reductions, and behaves as Q otherwise. !P is the

4

replication of P , modelling an unbounded number of copies of the process P .
ProVerif can automatically check security properties, while assuming that an
arbitrary adversary process is run in parallel.

Example 1. The following process P models a simple mutual authentication
protocol in which a party A engages with another party, say B, by sending to B
a signed and encrypted session key k:

P = new skA; new skB ; new s;
(out(c, pk(skA)) | out(c, pk(skB)) | !PA | !PB)

PA = in(c, xpk); new k;
out(c, aenc(xpk, sign(skA, k)));
in(c, z);Q

PB = in(c, y); let y′ = adec(skB , y) in
let yk = check getmsg(pk(skA), y′) in
out(c, senc(yk, s))

B responds by sending a secret s encrypted with k. Of course, this protocol is
known not to be secure; an attacker can send its own public key to A, and use
the session key it receives to start a parallel session with B. Then the attacker
will be able to decrypt B’s secret.

2.2 Horn clauses

The ProVerif tool works by translating processes written in the process language
into clauses of a particular form. Such a clause

H1 ∧ H2 ∧ . . . ∧ Hn → C

is a conjunction of hypotheses and a conclusion. The hypotheses Hi and the con-
clusion C are called facts, and are built by applying predicate symbols to terms.
ProVerif uses the two predicates attacker and message. The fact attacker(N)
means that the attacker can learn the value N . The fact message(M,N) means
that the message N is available on the channel M .

In the clause language of ProVerif, terms are formed from variables and
names, and by application of function symbols. Names are distinguished syn-
tactically by the fact that they are followed by square brackets [. . .]; function
symbols are followed by round brackets (. . .); and variables are not followed by
brackets. To handle the generation of new names by a process, such names in
the clause representation are parametrised by the inputs that have occurred be-
fore the new name is generated. The new name k in the running example above
is generated after the input of xpk; therefore, since there may be different k’s
for different xpk’s, the k becomes parametrised by xpk, and is written k[xpk].
The running example process P above is translated into the following clauses:

Clauses corresponding to the process

message(c[], pk(skA[]))
message(c[], pk(skB[]))
message(c[], xpk) → message(c[], aenc(xpk, sign(skA[], k[xpk])))
message(c[], aenc(pk(skB[]), sign(skA[], y))) → message(c[], senc(y, s[]))

5

The first two clauses correspond to the output of the public keys in the main
process P . The third one corresponds to the attacker’s ability to supply any
data xpk to PA, and in return obtain aenc(xpk, sign(skA[], k[xpk])). The last
one corresponds to a similar service offered by PB .

Clauses corresponding to the attacker’s ability to apply function sym-
bols These clauses depend only on the equational theory and not on the spe-
cific process.

attacker(ok())
attacker(v) → attacker(pk(v))
attacker(v1) ∧ attacker(v2) → attacker(sign(v1, v2))
attacker(v1) ∧ attacker(v2) → attacker(senc(v1, v2))
attacker(v1) ∧ attacker(v2) → attacker(aenc(v1, v2))
attacker(v1) ∧ attacker(v2) ∧ attacker(v3) → attacker(pcs(v1, v2, v3))

Clauses corresponding to the term reductions

attacker(pk(x)) ∧ attacker(sign(x, y)) → attacker(y)
attacker(x) ∧ attacker(aenc(pk(x), y)) → attacker(y)
attacker(x) ∧ attacker(senc(x, y)) → attacker(y)

Clauses corresponding to the attacker’s ability to send and receive
messages These clauses are the same for all protocols and all equational the-
ories.

message(v1, v2) ∧ attacker(v1) → attacker(v2)
attacker(v1) ∧ attacker(v2) → message(v1, v2)
attacker(c[])

The first of these three clauses says that if the attacker has a channel name
v1 then he may read messages sent on it. The second one is the dual; he may
also send messages on v1. Lastly, we stipulate that the channel c is public.

Returning to the authentication protocol example, one can check that the
fact attacker(s[]) can be derived from the set of clauses. Indeed, this derivation
corresponds to a real attack, and the protocol is not secure.

2.3 Translation and correctness

Details of the translation from the process language to clauses may be found in
[9]. We do not detail it here, although we extend it to handle states in section IV.
The translation has an important correctness property: it does not omit attacks.
More precisely, if the process allows the attacker to obtain a secret value, say s,
then attacker(s) can be derived from the clauses that correspond to the process.
ProVerif uses a clause resolution strategy that is complete. Therefore, if ProVerif
concludes that attacker(s) is not derivable, it is indeed not derivable. In that
case, thanks to the correctness property of the translation, we can conclude that
the attacker is indeed not capable of obtaining the secret s from the process.

6

3 The StatVerif language

We extend the process language of [9] recalled in section II with some constructs
to handle global state.

3.1 Syntax and informal semantics

To model global state, StatVerif adds the following new processes:

• [s 7→M], which represents a cell s that has the initial value M ;

• read s1, . . . , sn as x1, . . . , xn; P , which reads the values stored in cells
s1, . . . , sn (calling them x1, . . . , xn respectively), and then continues as P ;

• s1, . . . , sn := M1, . . . ,Mn; P which assigns M1, . . . ,Mn to s1, . . . , sn re-
spectively and then continues as P ;

• lock s1, . . . , sn; P . This process begins a locked section; that means that
the process takes exclusive access to the state cells s1, . . . , sn, and contin-
ues as P ; and

• unlock s1, . . . , sn; P , which releases the lock on the state cells s1, . . . , sn,
continuing as P .

The full syntax of StatVerif is given in Figure 1, subject to an additional re-
striction: [s 7→M] may occur only once for a given cell name s, and may occur
only within the scope of new, a parallel and a replication. It may not be in the
scope of an input, output, conditional, let, assignment, lock, or unlock.

Note that a process that executes a parallel or a replication after locking one
or more cells, but before unlocking them, will block according to the semantics.
Such a syntactic construction is therefore not useful.

The purpose of lock s1, . . . , sn and unlock s1, . . . , sn is to allow manipulations
of the global state cells s1, . . . , sn to proceed without interference from other
concurrent processes. Obviously, such interactions would lead to unwanted re-
sults. For example, in our security device, the lock s and unlock s in lines 4, 6
and 7 ensure that the device cannot move from the “left” configuration to the
“right” configuration. If we didn’t have the lock s and unlock s, it would be
possible to have the following execution. Consider two parallel sessions of the
device. The first inputs left on channel c and reads the state s. Then the second
session inputs right on channel c and reads the state s. At this moment both
sessions consider the device to be in state init. It would thus be possible for the
first session to update s to left and then for the second one to update s to right,
i.e. the state s goes from init to left and then to right. In other words, without
the locked section it is possible to reconfigure the device at will.

The read s1, . . . , sn as x1, . . . , xn and s1, . . . , sn := M1, . . . ,Mn constructs
allow multiple cells to be read from or written to atomically. This eliminates the
possibility of an older value of one cell being mixed with a newer value of another,
and allows the Horn clauses produced by StatVerif to be fewer and simpler, with
fewer variables and fewer hypotheses. This, in our experiments, has helped
with termination. For example, translating read s1 as x; read s2 as y may re-
sult in the hypotheses message((x, vs1), vc1, vm1) ∧ message((vs2, y), vc2, vm2),
whereas read s1, s2 as x, y can result in just the hypothesis message((x, y), vc, vm).

7

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn) constructor application

M̃, Ñ ::= tuple of terms
(M1, . . . ,Mn)

P,Q ::= processes
0 nil
out(M,N); P output
in(M,x); P input
P | Q parallel composition
!P replication
new a; P restriction
let x = g(M1, . . . ,Mn)

in P else Q destructor application
if M = N then P else Q conditional

[s 7→M] state
read s1, . . . , sn as x1, . . . , xn; P read
s1, . . . , sn := M1, . . . ,Mn; P assignment
lock s1, . . . , sn; P beginning of locked section
unlock s1, . . . , sn; P end of locked section

Figure 1: The StatVerif calculus. The terms and the processes up to and in-
cluding the conditional are from [9]. The remaining processes are our additions.
Some syntax restrictions are mentioned in the text.

8

We use the usual syntactic notion of subprocess. We sometimes omit the
else branch of “if” and “let” processes. If the subprocess if M = N then P
occurs in the scope of a lock s1, . . . , sn, then it is an abbreviation of if M =
N then P else unlock s1, . . . , sn; 0, otherwise it is an abbreviation of if M =
N then P else 0. Similarly, if the subprocess let x = g(M1, . . . ,Mn) in P oc-
curs in the scope of a lock s1, . . . , sn, then it is an abbreviation of let x =
g(M1, . . . ,Mn) in P else unlock s1, . . . , sn; 0, otherwise it is an abbreviation of
let x = g(M1, . . . ,Mn) in P else 0. We also write let x = f(M1, . . . ,Mn) in P
to mean P{f(M1, . . . ,Mn)/x}, as an abbreviation for repeated constructor appli-
cation.

The process new a; P binds a in P , in(c, x); P binds x in P ,
let x = g(M1, . . . ,Mn) in P else Q binds x in P (but not in Q), and
read s1, . . . , sn as x1, . . . , xn; P binds x1, . . . , xn in P . The scope of a, x, x1,
. . .xn is P . As usual, we use bn(P) and bv(P) to denote the set of bound names
and bound variables of P respectively, and fn(P) and fv(P) to denote the set of
free names and free variables of P respectively.

3.2 Operational semantics

A semantic configuration for StatVerif is a tuple (E ,S,P), where the environ-
ment E is a finite set of names, S is a function mapping state cells to their
values, P is a finite multiset of pairs of the form (P, λ) where P is a process
and λ is the set of cell names that P has locked for its own exclusive access.
In a configuration (E ,S,P), a cell name appears in at most one of the λs. The
environment E must contain at least the free names of S and P. The con-
figuration ({a1, . . . , an},S, {(P1, ∅), . . . , (Pm, ∅)}) intuitively corresponds to the
process new a1, . . . , an; ([s 7→ S(s) | s ∈ dom(S)] | P1 | · · · | Pm).

The semantics of StatVerif is defined by a reduction relation → on semantic
configurations, shown in Figure 2. It is an extension of the semantics of [9,
Fig. 3]. Notice that it preserves the invariant that at most one of the processes
in P can have a given cell name locked. The cell name s is added to λ by lock,
and only one process (P, λ) ∈ P can satisfy s ∈ P. If a process has locked a cell,
the other running processes cannot use the cell until the corresponding unlock.
s1, . . . , sn := M1, . . . ,Mn and read s1, . . . , sn as x1, . . . , xn update and read the
store S in the expected way.

3.3 Definition of secrecy

An adversary A is represented as a process of our calculus. He has some initial
knowledge of a finite set of names Init with at least one channel name attch ∈
Init. A is said to be an Init-adversary if A is a closed process and fn(A) ⊆ Init.

Informally, a protocol preserves the secrecy of a message M from Init if,
when run in parallel with any Init-adversary A, M cannot be output on a
public channel.

Definition 1. Let P be a closed process, Init a finite set of names such that
attch ∈ Init, M a message. P preserves the secrecy of M against Init if for
any Init-adversary A, there exists no trace of the form:
((Init ∪ fn(P) ∪ fn(M)), ∅, {(P | A, ∅)})→∗ (E ,S,Q∪ {(out(attch,M);Q,λ)}).

9

(E ,S,P ∪ {(0, λ)}) → (E ,S,P)
(E ,S,P ∪ {(!P, ∅)}) → (E ,S,P ∪ {(!P | P, ∅)})

(E ,S,P ∪ {(P | Q, ∅)}) → (E ,S,P ∪ {(P, ∅), (Q, ∅)})
(E ,S,P ∪ {(new a;P, λ)}) → (E ∪ {a′},S,P ∪ {(P{a′/a}, λ)}) if a′ fresh

(E ,S,P ∪ {(let x = g(M1, . . . ,Mn) in
P else Q,λ)}) → (E ,S,P ∪ {(P{M ′/x}, λ)})

if g(M1, . . . ,Mn)→M ′

(E ,S,P ∪ {(let x = g(M1, . . . ,Mn) in
P else Q,λ)}) → (E ,S,P ∪ {(Q,λ)})

if 6 ∃M ′, g(M1, . . . ,Mn)→M ′

(E ,S,P ∪ {(if M = M
then P else Q,λ)}) → (E ,S,P ∪ {(P, λ)})

(E ,S,P ∪ {(if M = N
then P else Q,λ)}) → (E ,S,P ∪ {(Q,λ)}) if M 6= N

(E ,S,P ∪ {(out(M,N);P, λ1),
(in(M,x);Q,λ2)}) → (E ,S,P ∪ {(P, λ1), (Q{N/x}, λ2)})

(E ,S,P ∪ {([s 7→M], ∅)}) → (E ,S ∪ {s 7→M},P) if s ∈ dom(E)
and s 6∈ dom(S)

(E ,S,P ∪ {(lock s1, . . . , sn;P, λ)}) → (E ,S,P ∪ {(P, λ ∪ {s1, . . . , sn})})
if ∀(Q,λ′) ∈ P. {s1, . . . , sn} ∩ λ′ = ∅

(E ,S,P ∪ {(unlock s1, . . . , sn;P, λ)}) → (E ,S,P ∪ {(P, λr {s1, . . . , sn})})
(E ,S,P ∪ {(read s1, . . . , sn as

x1, . . . , xn;P, λ)}) → (E ,S,P ∪ {(P{S(s1)/x1, . . . ,S(sn)/xn}, λ)})
if s1, . . . , sn ∈ dom(S)

if ∀(Q,λ′) ∈ P. {s1, . . . , sn} ∩ λ′ = ∅
(E ,S,P ∪ {(s1, . . . , sn :=

M1, . . . ,Mn;P, λ)}) → (E ,S[si 7→Mi | 1 ≤ i ≤ n],P ∪ {(P, λ)})
if s1, . . . , sn ∈ dom(S)

if ∀(Q,λ′) ∈ P. {s1, . . . , sn} ∩ λ′ = ∅

Figure 2: The semantics of StatVerif. E is a set of names. S is a function from
state cells to their current values. P is the set of running processes (P, λ), where
P is the process itself and λ is the set of cell names to which the process has
exclusive access.

10

Here we consider that M is secret if it is secret in all reachable states. We
could have extended this definition to express secrecy relative to a particular
state, or to states of a certain form, but for simplicity, and since we don’t need
to in what follows, we didn’t include it here.

4 Translation to Clauses

4.1 The translation

The translation generates clauses from a StatVerif process. In the Horn clauses
generated by our translation, each bound name a in P ′ is represented by the
pattern a[p1, . . . , pn] with p1, . . . , pn the set of variables read and input before
the generation of a; and terms in general are represented by patterns generated
by the following grammar:

p ::= patterns
x, y, z variables
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

The clauses are built around the predicates attacker and message with the
following meanings:

• attacker(M̃,N) means that there is a reachable state of the process in
which the state cells s̃ have the values M̃ , and in that state the attacker
may know the value N ; this binary predicate is also used in [8].

• message(M̃,N,K) means that there is a reachable state of the process in
which the state cells s̃ have the values M̃ , and in that state the value K
is available on channel N .

Our translation only applies to StatVerif processes of the form:

new m̃; ([s1 7→M1] | · · · | [sn 7→Mn] | P0)

such that

• P0 has no [s 7→M] in it. (Of course, P0 may have reads and assignments.)

• each name and variable is bound at most once in P0; and each name and
variable in P0 is either bound or free but not both.

The tuple m̃ contains cell names and ordinary names. Some of the s1, . . . , sn
may be in m̃, and others not.

Note that any process with a bounded number of cell names can be converted
into one of the prescribed form. While the restriction to a bounded number of
cells may appear to be severe, we will see in section 5 that it is still possible to
verify some processes with unbounded numbers of memory cells, by using a cor-
rect abstraction: replacing a process having an unbounded number of memory
cells with a process having a bounded number of memory cells.

11

J0KρHιφλ = ∅

JP | QKρHιφ∅ = JP KρHιφ∅ ∪ JQKρHιφ∅

J!P KρHιφ∅ = JP KρHιφ∅

Jnew a;P KρHιφλ =

{
JP K(ρ ∪ {a 7→ a[ι]})Hιφλ
JP K(ρ ∪ {a 7→ attn[]})Hιφλ

if a ∈ bn(P ′0)
otherwise

Jin(M,x);P KρHιφλ = JP Kρ′H ′(x :: ι)φ′λ
where φ′ = φ [k 7→ vsk | k 6∈ λ]

and H ′ = H ∧message(φ′, ρ(M), x)
and ρ′ = ρ ∪ {x 7→ x} ∪ {vsk 7→ vsk | k 6∈ λ}

and vs1, . . . , vsn are fresh variables

Jout(M,N);P KρHιφλ = {H ⇒ message(φ, ρ(M), ρ(N))} ∪ JP KρHιφλ

Jif M = N then
P else QKρHιφλ = JP K(ρσ)(Hσ)(ισ)(φσ)λ ∪ JQKρHιφλ

where σ = mgu(ρ(M), ρ(N))

Jlet x = g(M1, . . . ,Mt) in
P else QKρHιφλ = JQKρHιφλ⋃ {

JP K((ρσ) ∪ ρ′)(Hσ)(ισ)(φσ)λ
∣∣∣

g(p1, . . . , pt)→ p ∈ def(g)
and {z1, . . . , zm} = fv(g(p1, . . . , pt))

and z′1, . . . , z
′
m are fresh variables

and σ′ = {zi 7→ z′i | 1 ≤ i ≤ m}
and σ = mgu(g(M1ρ, . . . ,Mtρ), g(p1σ

′, . . . , ptσ
′))

and ρ′ = {x 7→ pσ′σ} ∪ {z′i 7→ z′iσ | 1 ≤ i ≤ m}
}

12

Jlock si1 , . . . ,
sim ;P KρHιφλ = JP K(ρ ∪ {vsk 7→ vsk | k 6∈ λ})Hιφ′(λ∪{i1, . . . , im})

where vs1, . . . , vsn are fresh variables
and φ′ = φ [k 7→ vsk | k 6∈ λ]

Junlock si1 , . . . ,
sim ;P KρHιφλ = JP K(ρ ∪ {vsk 7→ vsk | k 6∈ λ})Hιφ′(λr{i1, . . . , in})

where vs1, . . . , vsn are fresh variables
and φ′ = φ [k 7→ vsk | k 6∈ λ]

Jread si1 , . . . , sim
as x1, . . . , xm;P KρHιφλ = JP Kρ′′H ′(x1 :: · · · :: xm :: ι)φ′λ

where ρ′′ = ρ′ ∪ {xj 7→ φ′ij | 1 ≤ j ≤ m} ∪ {vc 7→ vc, vm 7→ vm}
and ρ′ = ρ ∪ {vsk 7→ vsk | k 6∈ λ}

and φ′ = φ [k 7→ vsk | k 6∈ λ]
and H ′ = H ∧message(φ′, vc, vm)

and vs1, . . . , vsn, vc, vm are fresh variables
Jsi1 , . . . , sim :=
M1, . . . ,Mm;P KρHιφλ = JP K(ρ ∪ {vsk 7→ vsk | k 6∈ λ})Hιφ′′λ

∪ {H ∧message(φ′, vc, vm)⇒ message(φ′′, vc, vm)}
∪ {H ∧ attacker(φ′, vm)⇒ attacker(φ′′, vm)}

where φ′ = φ [k 7→ vsk | k 6∈ λ]
and φ′′ = φ′ [ij 7→ ρ(Mj) | 1 ≤ j ≤ m]

and vs1, . . . , vsn, vc, vm are fresh variables

Figure 3: The rules for translating the stateful process P0 into clauses. The
translation of the StatVerif process new m̃; ([s1 7→M1] | · · · | [sn 7→Mn] | P0) is
JP0K ρ0 true [] φ0 . (Note that the rule for new a references this P0 and this n.)
In the rules, k 6∈ λ abbreviates 1 ≤ k ≤ n, k 6∈ λ.

13

4.1.1 Clauses corresponding to the protocol

Let P ′0 = new m̃; ([s1 7→ M1] | · · · | [sn 7→ Mn] | P0) be a StatVerif process.
Let ρ0 be the function {a 7→ a[], si 7→ si[] | a ∈ fn(P ′0), 1 ≤ i ≤ n} and let
φ0 = (ρ0(M1), . . . , ρ0(Mn)). The process P ′0 is translated into the following sets
of clauses:

• JP0K ρ0 true [] φ0 ∅ where the function J · KρHιφλ is given in Figure 3;

• Some other clauses given in the next two subsections.

The rules of Figure 3 generalise the ones given in [9, §5.2.2].
The StatVerif compiler that performs the translation maintains the variables

ρ, H, ι, φ and λ, which have the following purposes:

• ρ is a function mapping names and variables of the process language to
patterns of the clause language.

• H is a conjunction of facts used to accumulate the hypotheses of clauses
as they are constructed.

• ι accumulates the set of variables that have been input or read so far by
the thread being processed. This set is used to parametrise the Skolem
names that represent values created by “new”.

• φ is a tuple of terms (M1, . . . ,Mn) representing the last known values of
the state cells in the thread under consideration. For a cell that the process
being translated has locked, we can be sure that the corresponding element
of φ represents the current state of the cell, whereas for a cell that the
process has not locked, another subprocess running in parallel could have
assigned an arbitrary value to the cell, so when constructing hypotheses
or clauses, the elements of φ corresponding to unlocked cells are discarded
and replaced with fresh variables.

• λ is a set of indices indicating which state cells the currently processed
thread has locked for its exclusive access.

We explain the rules for the translation given in Figure 3.

• The rules for processing 0, parallel, “new”, “let” and “if” are similar to
those of [9], with obvious changes for our more general setting.

• The rule for processing !P is simpler than [9], since we don’t treat corre-
spondence properties for now.

• For an input, we record in ρ and ι the variable that is input, and add
a hypothesis to H. As explained above, entries for φ corresponding to
unlocked cells are replaced with fresh variables.

• An output generates a clause that reveals the output on the channel, using
the hypotheses accumulated so far.

• For lock si1 , . . . , sim , we initialise the assumed state with variables for the
so far unlocked cells (to represent the possibility of a parallel subprocess
assigning to them), and we add the cell indices i1, . . . , im to the set of
already locked cell names λ.

14

• We translate unlock si1 , . . . , sim in the same way as lock, except that the
cell indices are removed from λ instead of added.

• The assignment si1 , . . . , sim := M1, . . . ,Mm updates the current state φ.
The indices i1, . . . , im in φ are given the values M1, . . . ,Mm. The remain-
ing indices are treated as in the input case: locked cells retain their values
while values of unlocked cells are replaced by fresh variables. Addition-
ally, we generate the “inheritance” clauses that transport possible attacker
knowledge and message availability on channels from the state before the
assignment to the state after it. In other words, if the attacker can know
M before the assignment, he can also know it after the assignment.

• The read process assigns to the specified variables the values stored in the
cells that are read. As in the input case, arbitrary values are assumed for
unlocked cells. The hypothesis added to H ensures that the clause is only
applicable if the values that were read from cells si1 , . . . , sim correspond
to a reachable state.

4.1.2 Clauses corresponding to mutability of public state

If a state cell name s is known to the attacker, then the attacker is able to read
and write values from and to the cell. For each i ∈ {1, 2, . . . , n}, we have the
following clauses for reading:

attacker((x1, . . . , xn), si[]) → attacker((x1, . . . , xn), xi)

and the following ones for writing:

attacker((x1, . . . , xn), si[]) ∧ attacker((x1, . . . , xn), y)
∧ message((x1, . . . , xn), xc, xm)
→ message((x1, . . . , xi−1, y, xi+1, . . . , xn), xc, xm)

attacker((x1, . . . , xn), si[]) ∧ attacker((x1, . . . , xn), y)
∧ attacker((x1, . . . , xn), xm)
→ attacker((x1, . . . , xi−1, y, xi+1, . . . , xn), xm)

4.1.3 Other clauses

Additionally, we have clauses corresponding to the function symbols and the
term reductions for the signature at hand. These are the stateful counterparts
of the clauses used by ProVerif:
For each constructor f of arity n,

attacker(xs, x1) ∧ · · · ∧ attacker(xs, xn) → attacker(xs, f(x1, . . . , xn)).

For each constructor g, for each rewrite rule g(M1, . . . ,Mn) → M , let xs be a
fresh variable,

attacker(xs,M1) ∧ · · · ∧ attacker(xs,Mn) → attacker(xs,M)

The attacker is also able to read and write on channels that it knows, and the
stateful analogues of those clauses are:

message(xs, v1, v2) ∧ attacker(xs, v1) → attacker(xs, v2)
attacker(xs, v1) ∧ attacker(xs, v2) → message(xs, v1, v2)

15

Finally, the attacker knows

• all the free names of P ′0, i.e. we have the clause attacker(ρ0(φ0), n[]) for
every n ∈ fn(P)′0; and

• a channel attch and a name attn which he has generated on his own, i.e.
we have the clauses attacker(ρ0(φ0), attch[]) and attacker(ρ0(φ0), attn[]),

where ρ0 and φ0 are as defined in section 4.1.1.

4.2 Correctness

Let P ′0 = new m̃; ([s1 7→ M1] | · · · | [sn 7→ Mn] | P0) be a closed process and A
an Init-adversary s.t. attch ∈ Init. Without loss of generality, we can assume
that the free cell names in A are included in the free cell names of P ′0 (i.e.,
s1, . . . , sn), and that the set of bound cell names of A is empty. The reason
is that any other cell name of the intruder can be equivalently encoded using
channel names as described by Milner.

4.2.1 Instrumented operational semantics

To link the patterns in the generated clauses to the real terms exchanged and
manipulated during the execution of P ′0, we will consider instrumented semantic
configurations (E ,S,P) where E will now be a mapping from names to StatVerif
patterns, i.e. E records for each name a′ the new a in P0 it is an instance of. This
representation of names allows us in particular to associate different instances of
a new a with each other when arising from new a in the scope of a replication.
S is as before a function from cell names to terms, and P is a set of tuples
(Q, ι, λ) where we will record in ι the list of M1, . . . ,Mn that were previously
input or read to reach this configuration.

We adapt the semantics to an instrumented operational semantics which is
defined by a reduction relation on instrumented configurations. Except for the
reduction rules for New, Comm, and Read all the other rules of Figure 2 give
rise to a corresponding instrumented rule where E and the ιs are unchanged.
And

• The reduction rule for communication becomes the following

(E ,S,P ∪ {(out(M,N);P, ι1, λ1), (in(M,x);Q, ι2, λ2)}) →
(E ,S,P ∪ {(P, ι1, λ1), (Q{N/x}, (N :: ι2), λ2))

which records N in ι2.

• The reduction rule for read becomes the following

(E ,S,P ∪ {(read s1, . . . , sn as x1, . . . , xn;P, ι, λ)}) →
(E ,S,P ∪ {(P{S(s1)/x1, . . . ,S(sn)/xn}, (S(s1) :: · · · :: S(sn) :: ι), λ)})

if s1, . . . , sn ∈ dom(S) and ∀(Q,λ′) ∈ P. {s1, . . . , sn} ∩ λ′ = ∅

which records S(s1), . . . ,S(sn) in ι2.

16

• The reduction rule for name generation is replaced by the two following
rules. The first one is for translating processes new a;P coming from the
initial honest processes P ′0, i.e. a ∈ bn(P ′0), and the second one is for
translating processes new a;P coming from the initial attacker processes
A, i.e.. a 6∈ bn(P ′0) but a ∈ bn(A)

(E ,S,P ∪ {(new a;P, ι, λ)}) →
(E ∪ {a′ 7→ a[E(ι)]},S,P ∪ {(P{a′/a}, ι, λ)})

if a ∈ bn(P ′0) and a′ fresh

which records that a′ is an instance of new a. ι is used to distinguish two
instances of new a on the basis of the previous inputs.

(E ,S,P ∪ {(new a;P, ι, λ)}) →
(E ∪ {a′ 7→ attn[]},S,P ∪ {(P{a′/a}, ι, λ)})

if a 6∈ bn(P ′0) and a′ fresh

which records that a′ is an name of the attacker A.

It is easy to see that the instrumented semantics allows exactly the same
traces as the original semantics, only adding annotations on the origin of each
name.

Proposition 1. For all traces (E0,S0,P0) →∗ (E1,S1,P1), there exists an
instrumented trace (E ′0,S0,P ′0) →∗ (E ′1,S1,P ′1) such that for all k ∈ {1, 2},
dom(E ′k) = Ek and for all (P, λ) ∈ Pk, (P, ι, λ) ∈ P ′k for some ι.

For all instrumented traces (E ′0,S0,P ′0) →∗ (E ′1,S1,P ′1), (E0,S0,P0) →∗
(E1,S1,P1) is a valid trace such that for all k ∈ {1, 2}, Ek = dom(E ′k) and for
all (P, ι, λ) ∈ P ′k, (P, λ) ∈ Pk.

4.2.2 Proof of correctness

Let P ′0 = new m̃; ([s1 7→ M1] | · · · | [sn 7→ Mn] | P0) be a StatVerif process. Let
C0 be the set of clauses generated by StatVerif when applied to P ′0, and F0 the
set of closed facts derivable from C0. Let S0 = {s1 7→ M1, . . . , sn 7→ Mn}. Let
E0 be the environment such that

• fn(P ′0) ∪ cells(P ′0) ∪ fn(A) = dom(E0),

• E0(a) = a[] for all a ∈ fn(P ′0) ∪ cells(P ′0) ∪ {attch},

• E0(a) = attn[] for all a ∈ fn(A) r {attch}.

Let S = {s1 7→ K1, . . . , sn 7→ Kn} be a state. S denotes the ordered
representation of S, defined as S = (K1, . . . ,Kn).

We will say that a state R is a predecessor of the state S, denoted R ≤ S if:

attacker(R, attch[]) ∈ F0

∧ ∀M,N message(R,M,N) ∈ F0 ⇒ message(S,M,N) ∈ F0

∧ ∀M attacker(R,M) ∈ F0 ⇒ attacker(S,M) ∈ F0

The proof uses a type system to capture invariants of processes. The type
system captures the fact that the clauses generated for P0 are sound in the sense
that for any message M output on a channel N in state S, the corresponding

17

fact message(S, E(M), E(N)) is derivable (see typing of the out construct). The
rest of the typing rules capture the fact that the type system satisfies subject
reduction which in turn ensures that soundness of the clauses is preserved for
all executions of the process. The type system is only used for the proof, not
the implementation, so notions such as S0 ≤ S are never evaluated.

This type system is defined by the rules of Figure 4 (an extended version of
the type system of [9, 11]).

A process P is well typed w.r.t. the environment E , the state S, the list of
StatVerif patterns ι, and the mode λ, if (E ,S, ι, λ) ` P can be derived from the
rules and axiom of Figure 4.

Before proceeding with the proof of our main theorem, we need to establish
some properties of our typing system.

Lemma 1 (Typability of A).

(E0, E0(S0), [], ∅) ` A

Proof sketch. Let B be a subprocess of A, E an environment (from names and
variables to patterns), S a state (from cell names to patterns), ι a sequence of
patterns, and λ a set of cell indices. We first prove by induction on the depth d
of B that, if

(i) E0 ⊆ E ; and

(ii) E(S0) ≤ S; and

(iii) (bn(B) ∪ bv(B)) ∩ dom(E) = ∅; and

(iv) ∀a ∈ fn(B), attacker(S, E(a)) ∈ F0; and

(v) ∀x ∈ fv(B), attacker(S, E(x)) ∈ F0; and

(vi) for all i ∈ {1, . . . , n}, i ∈ λ if and only if B is in the scope of a lock . . . si . . .
in A,

then
(E ,S, ι, λ) ` B

To conclude the proof of Lemma 1 we then need to show that A, E0, E0(S0),
[], and ∅ satisfy conditions (i)- (vi).

(i) By definition E0 ⊆ E0.

(ii) By definition E0(S0) ≤ E0(S0).

(iii) By hypotheses, dom(E0) = fn(P) ∪ fn(A) ∪ cellP and (bn(A) ∪ bv(A)) ∩
(fn(P) ∪ fn(A) ∪ cellP) = ∅, thus (bn(A) ∪ bv(A)) ∩ dom(E0) = ∅.

(iv) By construction, ∀a ∈ fn(A)

If a = attch, then E0(a) = attch[], and attacker(E0(S0), attch[]) ∈ C0 by
construction.

If a 6= attch, then E0(a) = attn[], and attacker(E0(S0), attn[]) ∈ C0 by
construction.

Thus ∀a ∈ fn(A) attacker(E0(S0), E0(a)) ∈ F0.

18

message(S, E(M), E(N)) ∈ F0 (E ,S, ι, λ) ` P
τout

(E ,S, ι, λ) ` out(M,N);P

∀T ∀N (S ≤ T ∧ T = T [j 7→ S(j) | j ∈ λ] ∧
message(T , E(M), N) ∈ F0) ⇒

E ∪ {x 7→ N}, T , (N :: ι), λ) ` P
τin

(E ,S, ι, λ) ` in(M,x);P

τnil
(E ,S, ι, λ) ` 0

(E ,S, ι, ∅) ` P (E ,S, ι, ∅) ` Q
τpar

(E ,S, ι, ∅) ` P | Q

(E ,S, ι, ∅) ` P
τrepl

(E ,S, ι, ∅) `!P

(E(M) = E(N)⇒ (E ,S, ι, λ) ` P) (E ,S, ι, λ) ` Q
τif

(E ,S, ι, λ) ` if M = N then P else Q

a ∈ bn(P ′0) ⇒ (E ∪ {a 7→ a[ι]},S, ι, λ) ` P
τnewP

(E ,S, ι, λ) ` new a;P

a 6∈ bn(P ′0) ⇒ (E ∪ {a 7→ attn[]},S, ι, λ) ` P
τnewA

(E ,S, ι, λ) ` new a;P

∀M (g(E(M1), . . . , E(Mn))→M) ⇒ ((E ∪ {x 7→M},S, ι, λ) ` P ∧ (E ,S, ι, λ) ` Q)
τlet

(E ,S, ι, λ) ` let x = g(M1, . . . ,Mn) in P else Q

∀T (S ≤ T ∧ T = T [j 7→ S(j) | j ∈ λ])⇒
(E ∪ {xk 7→ T (jk) | 1 ≤ k ≤ m}, T , (T (j1) :: · · · :: T (jm) :: ι), λ) ` P

τread
(E ,S, ι, λ) ` read sj1 , . . . , sjm as x1, . . . , xm;P

∀T (S ≤ T ∧ T = T [j 7→ S(j) | j ∈ λ])⇒
(T ≤ T [jk 7→ E(Mk) | 1 ≤ k ≤ m] ∧

(E , T [jk 7→ E(Mk) | 1 ≤ k ≤ m], ι, λ) ` P)
τwrite

(E ,S, ι, λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;P

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ] ⇒ (E , T , ι, λ ∪ {j1, . . . , jm}) ` P)
τlock

(E ,S, ι, λ) ` lock sj1 , . . . , sjm ;P

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ] ⇒ (E , T , ι, λr {j1, . . . , jm}) ` P)
τunlock

(E ,S, ι, λ) ` unlock sj1 , . . . , sjm ;P

Figure 4: Typing system for correctness proof. Note that the rules τnewP and
τnewA refer to the initial honest process P ′0.

19

(v) A is an Init-adversary, so it is a closed process. Thus fv(A) = ∅.

(vi) A is by definition under no lock in A, thus by definition A, ∅ satisfy con-
dition (vi)

We can thus apply the preliminary result we just established to conclude
that (E0, E0(S0), [], ∅) ` A.

Lemma 2 (Typability of P0).

(E0, E0(S0), [], ∅) ` P0

Proof sketch. Let Q be a subprocess of P0, σ a substituion from variables to
patterns, ρ a mapping from names and variables to patterns, H a conjunction
of fact, ι a set of variables, φ a tuple of terms, and λ a set of indices. We first
prove by induction on the size of Q, that if

(i) ρ binds all the free names and variables of Q, H, ι and φ;

(ii) (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅;

(iii) σ is a closed substitution;

(iv) i ∈ λ if and only if Q is in the scope of lock . . . si . . . in P ;

(v) C0 ⊇ JQKρHιφλ;

(vi) ∀message(ξ,M,N) ∈ H, message(ξσ,Mσ,Nσ) can be derived from C0

(vii) attacker(φσ, attch[]) ∈ F0,

then
(ρσ, φσ, ισ, λ) ` Q.

To conclude the proof of Lemma 2 we then need to show that ρ = E0, σ s.t.
dom(σ) = ∅, H = true, ι = [], φ = E0(S0) and ∅ satisfy conditions (i)-(vii).

(i) Since by hypotheses fv(P ′0) = ∅ and fn(P ′0) ⊆ dom(E0) by construction, ρ
binds the free names and variables of P , ι, H and φ.

(ii) By definition σ is a closed substitution.

(iii) By construction, dom(E0) = fn(P ′0)∪cells(P ′0)∪{attch}, and by hypothesis
bn(P ′0) ∩ fn(P ′0) = ∅. Thus (bn(P0) ∪ bv(P0)) ∩ dom(E0) = ∅.

(iv) P is not under any lock in P , thus ∅ satisfies condition (iii).

(v) By definition C0 ⊇ JP KρHιφλ.

(vi) by definition Hσ = true, and thus Hσ can trivially be derived from C0.

(vii) By construction, attacker(E0(S0), attch[]) ∈ C0. So in particular, we have
that attacker(φσ, attch[]) ∈ F0.

Thus, P , ρ, σ, H, ι, φ and ∅ satisfy the conditions of our induction result
according to which (E0, E0(S0), [], ∅) ` P .

20

Lemma 3 (Subject reduction). Let (E ,S,Q) → (F , T ,R) be a valid instru-
mented transition such that no [s 7→ M] occurs in Q, names and variables are
bound at most once in Q, and cells(Q) ⊆ {s1, . . . , sn}. If (E , E(S), E(ı), λ) ` Q
for all (Q, ı, λ) ∈ Q, then (F ,F(T),F(), ν) ` R for all (R, , ν) ∈ R.

Proof sketch. The proof is done by case analysis on the rule that fired the tran-
sition (E ,S,Q)→ (F , T ,R).

Theorem 1. Consider the instrumented trace

tr = (E0,S0, {(P0 | A, [], ∅)}) →∗ (E ,S,Q∪ {(Q, ι, λ)})

If Q = out(M,N);Q′ then

message(E(S), E(M), E(N)) ∈ F0 and attacker(E(S), attch[]) ∈ F0.

Proof. Consider the instrumented trace

(E0,S0, {(P0 | A, [], ∅)}) = (E0,S0,Q0) → (E1,S1,Q1) → . . . →
(En,Sn,Qn) = (E ,S,Q∪ {(Q, ι, λ)})

We prove by induction on i, that for all i ∈ {0, . . . , n}

attacker(Ei(Si), attch[]) ∈ F0 and ∀(R, ı, ν) ∈ Qi (Ei, Ei(Si), Ei(ı), ν) ` R

Base case (i = 0). By definition of the StatVerif compiler we have that
attacker(E0(S0), attch[]) ∈ C0 and thus attacker(E0(S0), attch[]) ∈ F0. More-
over, by Lemma 1 we have (E0, E0(S0), [], ∅) ` A, and by Lemma 2 we have
(E0, E0(S0), [], ∅) ` P . Thus, according to the typing rule τpar,

(E0, E0(S0), [], ∅) ` A | P0.

Inductive case (i = n). By inductive hypothesis we know that the last
transition satisfies the hypotheses of Lemma 3 according to which we have
that attacker(En(Sn), En(attch)) ∈ F0, and (En, En(Sn), En(ı), ν) ` R for all
(R, ı, ν) ∈ Q.

This concludes our induction and gives us

(E , E(S), E(ι), λ) ` Q and attacker(E(S), attch[]) ∈ F0.

But then, by rule τout we know that message(E(S), E(M), E(N)) ∈ F0.

Corollary 1 (Correctness w.r.t. secrecy). Let M a be message. If P0 doesn’t
preserve the secrecy of M against Init, then attacker(E(S), E(M)) ∈ F0 for
some E and some S.

Proof. If P0 doesn’t preserve the secrecy of M against Init, then by definition of
secrecy and according to Proposition 1, there exists an instrumented trace tr =
(E0,S0, {(P0 | A, [], ∅)} →∗ {(E ,S,Q ∪ {(Q, ι, λ)} s.t. Q = out(attch,M);Q′.
But Theorem 1 then tells us that attacker(E(S), E(M)) ∈ F0.

21

5 Case studies

To illustrate our method, we describe two case studies in detail. We show the
processes in the StatVerif language, and use our rules to translate them to
clauses. We have implemented StatVerif2 on top of ProVerif and have used our
tool to automatically verify the security properties of interest.

5.1 A simple security device

5.1.1 Description and process

Consider again the hardware device introduced in section 1. We take the process
representing the device, together with the process representing Alice who creates
the ciphertexts:

1 let device =
2 new s;
3 out(c, PKk) | [s 7→ init] |
4 (! lock s; in(c, x); read s as y;
5 if y = init then
6 (if x = left then s := left; unlock s else
7 if x = right then s := right; unlock s)) |
8 (! lock s; in(c, x); read s as y; let z = adec(k, x) in
9 let zl = projl(z) in
10 let zr = projr(z) in
11 (if y = left then out(c, zl); unlock s else
12 if y = right then out(c, zr); unlock s))

13 let user =
14 new sl; new sr; new r;
15 out(c, aenc(PKk, r, (sl, sr)))

16 let system =new k; let PKk = pk(k) in device | ! user

Bob is the attacker. He receives the device and the ciphertexts, and chooses the
messages to send to the device. We assume the term reductions:

adec(u, aenc(pk(u), v, w))→ w
projl((u, v))→ u
projr((u, v))→ v

The query is query attacker(vs, (sl[], sr[])), which asks if there is a reachable
state vs in which the attacker may know both secrets sl and sr.

5.1.2 Clauses corresponding to the protocol

We apply the translation described in section 4. We will only show how to
compute the clauses corresponding to the system process. In other words we
will compute JsystemKρ0 true []φ0false, where ρ0 = {c 7→ c[], left 7→ left [], right 7→
right [], init 7→ init []} and φ0 = (init []).

2http://markryan.eu/research/StatVerif/

22

The out(c, PKk) on line 3 is translated to:

message(init [], c[], pk(k[]))

The s := left on line 6, with in(c, x) and read s as y from line 4, generates:

message(init [], c[], left []) ∧ message(init [], yc, ym) ∧
message(init [], zc, zm)→ message(left [], zc, zm)

message(init [], c[], left []) ∧ message(init [], yc, ym) ∧
attacker(init [], zm)→ attacker(left [], zm)

The s := right on line 7, with in(c, x) and read s as y from line 4, generates:

message(init [], c[], right []) ∧ message(init [], yc, ym) ∧
message(init [], zc, zm)→ message(right [], zc, zm)

message(init [], c[], right []) ∧ message(init [], yc, ym) ∧
attacker(init [], zm)→ attacker(right [], zm)

The out(c, zl) on line 11, with lines 8–10, is translated to:

message(left [], c[], aenc(pk(k[]), xr , (xsl , xsr))) ∧
message(left [], yc, ym)→ message(left [], c[], xsl)

The out(c, zr) on line 12, with lines 8–10, is translated to:

message(right [], c[], aenc(pk(k[]), xr , (xsl , xsr))) ∧
message(right [], yc, ym)→ message(right [], c[], xsr)

The output on line 15 is translated to:

message(init [], c[], aenc(pk(k[]), r[], (sl [], sr [])))

5.1.3 Results of the analysis

We ran StatVerif on the StatVerif process corresponding to the hardware device,
together with the query given above. StatVerif immediately concluded that the
query is not satisfied (i.e., the protocol is secure). We made a few sanity checks,
such as modifying the device to allow it to be configured again, and in that case
StatVerif reported the valid attack as expected.

5.2 Contract signing protocol

A contract signing protocol allows a set of participants to exchange messages
with each other in order to arrive at a state in which each of them has a pre-
agreed contract signed by the others. An important property of contract signing
protocols is fairness: no participant should be left in the position of having sent
another participant his signature on the contract but not having received the
others’ signatures. To ensure fairness, a trusted party is necessary. Garay
and Mackenzie [12] proposed such a protocol which, for efficiency, involves the
trusted party only to resolve disputes. This protocol is based on private contract
signatures. A private contract signature by A for B on m w.r.t. trusted party
T acts as a promise by A to B to sign m.

23

P1 P2m1=pcs(sk(P1),P2,T,ct)−−−−−−−−−−−−−−−−−−−→
if ¬ok, quit

m2=pcs(sk(P2),P1,T,ct)←−−−−−−−−−−−−−−−−−−−
if ¬ok, abort(m1)

m3=sign(sk(P1),ct)−−−−−−−−−−−−−−−−−−−→
if ¬ok, resolve2(m1,m4)

m4=sign(sk(P2)),ct)←−−−−−−−−−−−−−−−−−−−
if ¬ok, resolve1(m3,m2)

Figure 5: The GM Main protocol (see [12])

In this section we will show how by applying our techniques to the two-
party instance of the Garay and Mackenzie (GM) protocol, we automatically
prove that the two-party version of this protocol satisfies fairness. To achieve
this result we need no bound on the number of sessions/contracts or agents
considered. In comparison, if we model the protocol by a plain ProVerif process
using private channels to model the state of the trusted party, and run ProVerif
on it, then the tool reports a false attack. It reports the same false attack even
if only one contract is considered.

5.2.1 Description and process

The protocol is informally described in Figure 5 and consists of four subpro-
tocols: Main, Abort1, Resolve2 and Resolve1. Usually, contract signers try to
achieve the exchange without the help of the trusted party. They first exchange
their promises to sign the contract (messages m1 and m2), and then exchange
their actual signatures of the contract (messages m3 and m4). If for some rea-
son they do not succeed in completing their exchange, the signers can ask the
trusted party to arbitrate, by asking it either to abort or to resolve:

1. If P2 doesn’t receive P1’s promise, he just quits.

2. If P1 doesn’t receive P2’s promise, he asks the trusted party to abort. He
includes his own promise in his request.

3. If P2 (resp. P1) doesn’t receive P1’s (resp. P2’s) signature, he asks the
trusted party to resolve. He includes his own signature, and P1’s (resp.
P2’s) promise to sign the contract, in his request.

To deal with these requests, the trusted party records the following informa-
tion for each contract ct:

• status - indicating whether it has solved any dispute regarding ct in the
past. The possible values are init, aborted, resolved1 and resolved2.

• sigs - the acknowledgement of its decision, if it has made one. As we will
now see, this is either its signature on the received abortion request or its
signature on the two contracts.

On receipt of a request, the trusted party checks whether it had to solve a
dispute on the same contract in the past. If it did (status 6= init), it just sends

24

the decision it had taken and stored at that time (sigs). If it is the first request
it receives, then:

• if it is an abortion request including the promise m = pcs(sk(x), y, T, ct), it
acknowledges the request with the message sign(skT,m). It then updates
the status of ct to aborted and stores its decision sign(skT,m);

• if it is a resolution request including the promise pcs(sk(x), y, T, ct) and
the signature sign(sk(y), ct), it converts x′s promise into a valid signature
sign(sk(x), ct) and replies with the message
sign(skT, (sign(sk(x), ct), sign(sk(y), ct))). In other words, it sends to the
plaintiff the signature corresponding to the promise. It also stores its reply
in sigs and updates the status of ct to resolved1 or resolved2, according
to which party sent the request.

The following process represents the trusted party:
1 let T = new skT ; (out(c, pk(skT)) | ! C)
2 let C = new status; new sigs; new ct ;
3 [status 7→ init] | [sigs 7→ init] |
4 out(c, ct); in(c, xpk1); in(c, xpk2);
5 (! Abort1 | ! Resolve2 | ! Resolve1)

where Abort1, Resolve2 and Resolve1 are the subprocesses modelling the trusted
party’s behaviour upon an abortion or resolution request. After having pub-
lished its public key (line 1), the trusted party can start handling contracts
(!C). As we just discussed, for each contract it needs to create two new memory
cells status and sigs, both of which it initialises to init (lines 2–3), to record
information regarding the particular contract. It can then start replying to re-
quests regarding this contract (line 5). The details of the subprocesses Abort1,
Resolve2, and Resolve1 are given in appendix A.1.

As we explained in this section’s introduction, it is important that the trusted
party is fair to both parties. In other words, we want the following:

• if the participant P1 has first contacted the trusted party and requested
an abortion for contract ct, which was granted, then P2 cannot obtain P1’s
signature from the trusted party (i.e. he cannot receive the signature of
P1 on contract ct signed with the trusted party’s secret key); and

• if the participant P1 (resp. P2) has first contacted the trusted party and
requested a resolution for contract ct, which was granted, then P2 (resp.
P1) cannot obtain from the trusted party an abortion confirmation (i.e.
the promise of P1 (resp. P2) on contract ct signed with the trusted party’s
secret key).

These two properties can be combined and stated as a secrecy property, and
can be formalised as

query attacker(xs, (abortC, resolveC))

where abortC = sign(skT, pcs(skP1, pk(skP2), pk(skT), ct)) is the abortion ac-
knowledgement, and resolveC = sign(skT, (sign(skP1, ct), sign(skP2, ct))) is the
resolution acknowledgement.

Of course, there are many more properties that one would want a contract
signing protocol to satisfy, but we only considered this one for the purpose of
illustrating our techniques and showing that they work in non-trivial situations.

25

5.2.2 From unbounded number of cell names to bounded

Our translation only applies to processes with a bounded number of cell names,
i.e. with no [s 7→ M] under a replication. However, in the GM protocol, the
trusted party creates two cell names for each contract. So for an unbounded
number of contracts it creates an unbounded number of cell names.

To prove that the GM protocol satisfies fairness using our techniques we
make the following correct abstraction: the trusted party behaves according to
the protocol only for a single contract ct. For this witnessing contract it creates
the two cells it needs, and to any request regarding ct it replies and updates its
memory according to the protocol. Thus, fairness of the protocol is proved only
for ct. To requests concerning any other contract ct′ it replies as if it were the
first time it received any request regarding ct′.

So the process for the trusted party that we actually verify is the following:
1 let T′ = new skT ; (out(c, pk(skT)) | C | ! C′)
2 let C′ = new ct ′; out(c, ct ′); in(c, xpk1); in(c, xpk2);
3 (! Abort1′ | ! Resolve2′ | ! Resolve1′)

where C is as we defined it in section 5.2.1 and Abort1′, Resolve2′, Resolve1′

are like Abort1, Resolve2, Resolve1 but with no checks on the status before
replying. These subprocesses are given in detail in appendix A.2.

Proposition 2. Let Init be a finite set of names. If T ′ satisfies fairness against
Init, then T does too.

Proof sketch. Let attch ∈ Init and let A be an Init-attacker that breaks the
fairness of T .
1) In any trace of T , A cannot read or write the trusted party’s memory. Indeed,
the cell names held by the trusted party are never sent on any channel and are
under a restriction. So we can correctly consider A to be a plain process (no
cell names occurring in it).
2) Because all the conditions before the trusted party’s output are removed in
Abort1′, Resolve2′, and Resolve1′, the following holds: for any trace tr of T
such that

(fn(T) ∪ fn(A), ∅, {(T | A, false)})→∗
(E ,S,P ∪ {(out(attch,M);Q, false)})

there exists a trace tr′ of T ′

(fn(T ′) ∪ fn(A), ∅, {(T ′ | A, false)})→∗
(E ′,S ′,P ′ ∪ {(out(attch,M);Q′, false)})

Now, since T doesn’t preserve fairness against A, there exists a trace

(fn(T) ∪ fn(A), ∅, {(T | A, false)})→∗
(E ,S,P ∪ {(out(attch,M);Q, false)})

with M = (abortC, resolveC). But then by 2) a trace of T ′ | A breaking fairness
also exists.

5.2.3 Results of the analysis

We ran StatVerif on the StatVerif process corresponding to the two-party in-
stance of the GM contract signing protocol. StatVerif concluded in less than 30

26

seconds that the query is not satisfied; in other words, that T ′ satisfies fairness.
Thus, according to proposition 2, the two-party instance of the GM protocol
satisfies fairness in the general case. The code for this example is available on
the web3.

6 Conclusion

We presented StatVerif, an extension of the ProVerif process calculus with con-
structs for explicit global state, and detailed the StatVerif compiler that takes
processes written in this language and returns a corresponding set of clauses.
We proved that the compiler is correct with respect to the operational semantics.

This machinery allows us to naturally write protocols that manipulate state
in an intuitive high-level language. The language includes locked sections to
allow sequences of state manipulations to be written conveniently and correctly.
We demonstrated the language and tool on a couple of case studies. The ef-
fectiveness of our approach is further illustrated in some other papers. In [8],
the same approach is used to automatically verify a simplified version of key
management in Microsoft Bitlocker, and a protocol for making a digital enve-
lope. Both of these protocols rely on the TPM and in particular on reasoning
about mutable persistent state. In [13], our StatVerif tool is used to analyse
Flicker [14] which also relies on the TPM.

The StatVerif compiler converts processes written in the language to clauses
upon which ProVerif can be run. We have engineered the compiler carefully
to result in clauses which do not introduce false attacks (as would be the case
if one used the natural private-channel encoding of state). Moreover, ProVerif
has a good chance to terminate on the translated clauses. Typically, it will
do so easily if the state space is finite. For infinite state spaces, some further
abstractions are likely to be necessary. We provided the clauses resulting from
the translation of the case studies. ProVerif terminates easily on those examples,
and we are able to prove their desired properties automatically.

We currently have an implementation of the StatVerif compiler3. If appro-
priate, we would like to contribute it to the ProVerif code-base. We also want
to develop some further abstractions that are likely to be necessary in common
situations.

Acknowledgements. We gratefully acknowledge financial support from Mi-
crosoft Corporation, and from EPSRC via the projects Verifying Interoperabil-
ity Requirements in Pervasive Systems (EP/F033540/1) and Analysing Security
and Privacy Properties (EP/H005501/1).

References

[1] J. Herzog, “Applying protocol analysis to security device interfaces,” IEEE
Security & Privacy Magazine, vol. 4, no. 4, pp. 84–87, July-Aug 2006.

[2] S. Mödersheim, “Abstraction by set-membership: verifying security pro-
tocols and web services with databases,” in Proc. 17th ACM Conference

3http://markryan.eu/research/StatVerif/

27

on Computer and Communications Security (CCS’10). ACM, 2010, pp.
351–360.

[3] J. D. Guttman, “Fair exchange in strand spaces,” Journal of Automated
Reasoning, 2011, to appear.

[4] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “A formal analysis
of authentication in the TPM,” in Proc. 7th International Workshop on
Formal Aspects in Security and Trust (FAST’10), Pisa, Italy, 2010.

[5] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog
rules,” in Proc. of the 14th IEEE Computer Security Foundations Workshop
(CSFW’01). Cape Breton, Nova Scotia, Canada: IEEE Computer Society
Press, Jun. 2001, pp. 82–96.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,
P. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and
L. Vigneron, “The AVISPA tool for the automated validation of internet
security protocols and applications.” in Proc. 17th International Conference
on Computer Aided Verification (CAV’05), 2005, pp. 281–285.

[7] S. Fröschle and G. Steel, “Analysing PKCS#11 key management APIs
with unbounded fresh data,” in Proc. Joint Workshop on Automated Rea-
soning for Security Protocol Analysis and Issues in the Theory of Security
(ARSPA-WITS’09), ser. LNCS, P. Degano and L. Viganò, Eds., vol. 5511.
York, UK: Springer, 2009, pp. 92–106, to appear.

[8] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “Formal analysis of
protocols based on TPM state registers,” in Proc. of the 24th IEEE Com-
puter Security Foundations Symposium (CSF’11). IEEE Computer Society
Press, 2011.

[9] B. Blanchet, “Automatic verification of correspondences for security pro-
tocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434, 2009.

[10] M. Abadi and C. Fournet, “Mobile values, new names, and secure com-
munication,” in Proc. 28th Symposium on Principles of Programming Lan-
guages (POPL’01), H. R. Nielson, Ed. London, UK: ACM Press, 2001,
pp. 104–115.

[11] B. Blanchet, “Automatic verification of correspondences for security pro-
tocols,” CoRR, vol. abs/0802.3444, 2008.

[12] J. A. Garay, M. Jakobsson, and P. D. MacKenzie, “Abuse-free optimistic
contract signing,” in Proceedings of the 19th Annual Cryptology Conference
on Advances in Crypto, ser. CRYPTO ’99, London, UK, 1999, pp. 449–466.

[13] I. Batten, S. Xu, and M. Ryan, “Dynamic measurement and protected
execution: model and analysis,” in Proceedings of the 8th International
Symposium on Trustworthy Global Computing (TGC 2013), 2013.

[14] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker:
An execution infrastructure for tcb minimization,” in Proceedings of the
ACM European Conference in Computer Systems (EuroSys), Apr. 2008.

28

A Contract signing

A.1 Contract signing: Trusted party with unbounded mem-
ory

In this section we detail the process of our language modelling the GM protocol
without any restriction on the number of cell names held by the trusted party T .
The overall process T representing the trusted party is followed by definitions
of its subprocesses.

1 let T = new skT ; (out(c, pk(skT)) | ! C)

2 let C = new status; new sigs; new ct ;
3 [status 7→ init] | [sigs 7→ init] |
4 out(c, ct); in(c, xpk1); in(c, xpk2);
5 (! Abort1 | ! Resolve2 | ! Resolve1)

Abort1 If P1 doesn’t receive P2’s promise, he requests an abortion from T by
sending it a message containing the information about the contract for which
he requests the resolution, and of the form:

(abort︸ ︷︷ ︸
xcmd

, ((

ycontract︷︸︸︷
ct ,

yparties︷ ︸︸ ︷
(pk(skP1), pk(skP2))),

ysig︷ ︸︸ ︷
sign(skP1, (ct , (pk(skP1), pk(skP2)))))︸ ︷︷ ︸

y

)

︸ ︷︷ ︸
x

Upon receipt of such a command (line 7), the trusted party executes the sub-
process Abort1 which consists of:

• Extracting from x the parts xcmd , ycontract , yparties, and ysig (lines 8,
10–13, 16).

• Checking that it is an abortion request (line 9).

• Checking that it has a record for this contract with these participants
(lines 14–15).

• Checking that the third component of x is a signature of the second (lines
17–18).

Once all these checks on the received message have succeeded, the request is
handled:

• If the trusted party has already handled an abortion request regarding ct ,
(i.e. ystatus = aborted at line 20) then it retrieves (line 21) and replies
with (line 22) its previous decision regarding this contract.

• Otherwise, if this is the first request regarding ct , (i.e. ystatus = init at
line 23), it updates the status of ct to aborted (line 24), and stores (line
24) and sends (line 25) the acknowledgement sign(skT , y).

29

6 let Abort1 =
7 lock status, sigs; in(c, x);
8 let xcmd = projl(x) in
9 if xcmd = abort then
10 let y = projr(x) in
11 let yl = projl(y) in
12 let ycontract = projl(yl) in
13 let yparties = projr(yl) in
14 if yparties = (xpk1 , xpk2) then
15 if ycontract = ct then
16 let ysig = projr(y) in
17 let ym = check getmsg(xpk1 , ysig) in
18 if ym = yl then
19 read status as ystatus;
20 (if ystatus = aborted then
21 read sigs as ysigs;
22 out(c, ysigs); unlock ystatus, ysigs else
23 if ystatus = init then
24 ystatus, ysigs := aborted, sign(skT , y);
25 out(c, sign(skT , y)); unlock ystatus, ysigs)

Resolve2 If P2 doesn’t receive P1’s signature, he asks T to resolve by sending
it a message containing the information about the contract for which he requests
the resolution. This message is of the form:

(resolve2︸ ︷︷ ︸
xcmd

, (pcs(skP1 , pk(skP2), pk(skT), ct)︸ ︷︷ ︸
ypcs1

, sign(skP2 ,

ycontract︷︸︸︷
ct)︸ ︷︷ ︸

ysig2

))

︸ ︷︷ ︸
x

Upon receipt of such a command (line 27), the trusted party executes the sub-
process Resolve2 which consists of:

• Extracting from x the parts xcmd , ycontract , ypcs1 , and ysig2 (lines 28
and 30–33).

• Checking that it is a resolution request (line 29).

• Checking that he has a record for this contract (line 34).

• Checking that the received promise (ypcs1) and the received signature
(ysig2) concern the same contract (ycontract) (lines 33–36).

Once all these checks on the received message have succeeded, it handles the
request:

• If the trusted party has already handled a resolve2 request regarding ct ,
(i.e. ystatus = resolved2 at line 38) then it retrieves (line 39) and replies
with (line 40) its previous decision regarding this contract.

• Otherwise, if this is the first request regarding ct , (i.e. ystatus = init at
line 41), it updates the status of ct to resolved2, converts the promise
ypcs1 into a valid signature ysig1 (line 42) and stores (line 43) and sends
(line 44) the acknowledgement sign(skT , (ysig1, ysig2)).

30

26 let Resolve2 =
27 lock status, sigs; in(c, x);
28 let xcmd = projl(x) in
29 if xcmd = resolve2 then
30 let y = projr(x) in
31 let ypcs1 = projl(y) in
32 let ysig2 = projr(y) in
33 let ycontract = check getmsg(xpk2 , ysig2) in
34 if ycontract = ct then
35 let ycheck = checkpcs(ct , xpk1 , xpk2 , pk(skT), ypcs1) in
36 if ycheck = ok then
37 read status as ystatus;
38 (if ystatus = resolved2 then
39 read sigs as ysigs;
40 out(c, ysigs); unlock status, sigs else
41 if ystatus = init then
42 let ysig1 = convertpcs(skT , ypcs1) in
43 status, sigs := resolved2, sign(skT , (ysig1 , ysig2));
44 out(c, sign(skT , (ysig1 , ysig2))); unlock status, sigs)

Resolve1 If P1 doesn’t receive P2’s signature, he asks T to resolve. Upon
receipt of such a command, the trusted party executes the subprocess Resolve1
which is analogous to Resolve2 above.

45 let Resolve1 =
46 lock status, sigs; in(c, x);
47 let xcmd = projl(x) in
48 if xcmd = resolve1 then
49 let y = projr(x) in
50 let ysig1 = projl(y) in
51 let ypcs2 = projr(y) in
52 let ycontract = check getmsg(xpk1 , ysig1) in
53 if ycontract = ct then
54 let ycheck = checkpcs(ct , xpk2 , xpk1 , pk(skT), ypcs2) in
55 if ycheck = ok then
56 read status as ystatus;
57 (if ystatus = resolved1 then
58 read sigs as ysigs;
59 out(c, ysigs); unlock status, sigs else
60 if ystatus = init then
61 let ysig2 = convertpcs(skT , ypcs2) in
62 status, sigs := resolved1, sign(skT , (ysig1 , ysig2));
63 out(c, sign(skT , (ysig1 , ysig2))); unlock status, sigs)

A.2 Contract signing: Trusted party with bounded mem-
ory

In this section we detail the process of our language model that we actually
verified to prove that the 2-party GM protocol satisfies fairness. As we estab-
lished in Section 5.2.2, T ′ is a correct abstraction of T w.r.t. fairness. Note that
in what follows, we took care that the altered process C ′′ does not handle our

31

witnessing contract ct , which is handled by C ′.

1 let T′ = new skT ; new status; new sigs; (out(c, pk(skT)) | ! C′ | C′′)
2 let C′ = [status 7→ init] | [sigs 7→ init] |
3 Abort1

[
pk(skA)/xpk1, pk(skB)/xpk2

]
|

4 Resolve2
[
pk(skA)/xpk1, pk(skB)/xpk2

]
|

5 Resolve1
[
pk(skA)/xpk1, pk(skB)/xpk2

]
6 let C′′ = new ct ′; out(c, ct ′) |
7 ! Abort1′ | ! Resolve2′ | ! Resolve1′

Abort1′ is built from Abort1 just by removing lines 19–24. Because Abort1′

replies to a request without checking the status of the requested contract, it will
always reply with the abort acknowledgement.

8 let Abort1′ =
9 lock status, sigs; in(c, x);
10 let xcmd = projl(x) in
11 if xcmd = abort then
12 let y = projr(x) in
13 let yl = projl(y) in
14 let ycontract = projl(yl) in
15 let yparties = projr(yl) in
16 if yparties = (xpk1 , xpk2) then
17 if ycontract = ct then
18 let ysig = projr(y) in
19 let ym = check getmsg(xpk1 , ysig) in
20 if ym = yl then
21 out(c, sign(skT , y)); unlock ystatus, ysigs

Resolve2′ is built from Resolve2 just by removing lines 37–41 and 43. Because
Resolve2′ replies to a request without checking the status of the requested con-
tract, it will always reply with the resolve acknowledgement.

22 let Resolve2′ =
23 lock status, sigs; in(c, x);
24 let xcmd = projl(x) in
25 if xcmd = resolve2 then
26 let y = projr(x) in
27 let ypcs1 = projl(y) in
28 let ysig2 = projr(y) in
29 let ycontract = check getmsg(xpk2 , ysig2) in
30 if ycontract = ct then
31 let ycheck = checkpcs(ct , xpk1 , xpk2 , pk(skT), ypcs1) in
32 if ycheck = ok then
33 let ysig1 = convertpcs(skT , ypcs1) in
34 out(c, sign(skT , (ysig1 , ysig2))); unlock status, sigs)

Resolve1′ is built from Resolve1 just by removing lines 56–60 and 62. Because
Resolve1′ replies to a request without checking the status of the requested con-
tract, it will always reply with the resolve acknowledgement.

32

35 let Resolve1′ =
36 lock status, sigs; in(c, x);
37 let xcmd = projl(x) in
38 if xcmd = resolve1 then
39 let y = projr(x) in
40 let ysig1 = projl(y) in
41 let ypcs2 = projr(y) in
42 let ycontract = check getmsg(xpk1 , ysig1) in
43 if ycontract = ct then
44 let ycheck = checkpcs(ct , xpk2 , xpk1 , pk(skT), ypcs2) in
45 if ycheck = ok then
46 let ysig2 = convertpcs(skT , ypcs2) in
47 out(c, sign(skT , (ysig1 , ysig2))); unlock status, sigs

B Correctness

Let P ′0 = new m̃([s1 7→M1] | · · · | [sn 7→Mn] | P0) be a closed process and A an
Init-adversary s.t. attch ∈ Init. Without loss of generality, we can assume that
the free cell names in A are included in the free cell names of P ′0, and that the
set of bounded cell names of A is empty. The reason is that any other cell name
of the intruder can be equivalently encoded using channel names as described
by Milner. Moreover, we assume that names and varibales are bound at most
once in P ′0 | A, and names and variables are not both bound and free in P ′0 | A.

Let C0 be the set of clauses generated by StatVerif when applied to P ′0, and
F0 the set of closed facts derivable from C0. Let S0 = {s1 7→M1, . . . , sn 7→Mn}.
Let E0 be the environment such that

• fn(P ′0) ∪ cells(P ′0) ∪ fn(A) = dom(E0),

• E0(a) = a[] for all a ∈ fn(P ′0) ∪ cells(P ′0) ∪ {attch},

• E0(a) = attn[] for all a ∈ fn(A) r {attch}.

Let S = {s1 7→ K1, . . . , sn 7→ Kn} be a state. S denotes the ordered
representation of S, defined as S = (K1, . . . ,Kn).

We will say that a state R is a predecessor of the state S, denoted R ≤ S if:

attacker(R, attch[]) ∈ F0

∧ ∀M,N message(R,M,N) ∈ F0 ⇒ message(S,M,N) ∈ F0

∧ ∀M attacker(R,M) ∈ F0 ⇒ attacker(S,M) ∈ F0

B.1 Preliminaries

Lemma 4. Let M be a term, S a state (a function from {s1, . . . , sn} to pat-
terns), and E an environment (a function from names and variables to patterns).
If

(i) ∀a ∈ fn(M), attacker(S, E(a)) ∈ F0; and

(ii) ∀x ∈ fv(M), attacker(S, E(x)) ∈ F0.

33

Then
attacker(S, E(M)) ∈ F0.

Proof. We prove this by induction on the depth of M .

Base case (d = 1).
⇒ M is a name or a variable
Def.⇒ M ∈ fn(M) ∪ fv(M)
Hyp.⇒ attacker(S, E(M)) ∈ F0

Inductive case (d > 1). In this case, M = f(M1, . . . ,Mn) for some
constructor f and some terms M1, . . . ,Mn. Let i ∈ {1, . . . , n}.

(i)
Def.⇒ fn(Mi) ⊆ fn(M)
Hyp.⇒ ∀a ∈ fn(Mi), attacker(S, E(a)) ∈ F0

(ii)
Def.⇒ fv(Mi) ⊆ fv(M)
Hyp.⇒ ∀x ∈ fv(Mi), attacker(S, E(x)) ∈ F0

I.H.⇒ attacker(S, E(Mi)) ∈ F0

Thus for all i ∈ {1, . . . , n}, attacker(S, E(Mi)) ∈ F0. Now by definition, C0
contains the following clause:

attacker(xs, xm1)∧ · · · ∧ attacker(xs, xmn)→ attacker(xs, f(xm1, . . . , xmn))
Thus, by resolution we have that

attacker(S, E(M)) = attacker(S, f(E(M1), . . . , E(Mn))) ∈ F0.

Lemma 5 (Substitution lemma). Let E be an environment (a function from
names and variables to patterns), x a variable such that x 6∈ dom(E), and M a
term. Let E ′ = E ∪ {x 7→ E(M)}.

1. For all N , E(N{M/x}) = E ′(N);

2. For all S (from {s1, . . . , sn} to patterns), Q, ι, λ such that bn(Q)∩fn(M) =
∅ and x 6∈ bv(Q), if (E ′,S, ι, λ) ` Q then (E ,S, ι, λ) ` Q{M/x}.

Proof.
1. We prove the first statement by induction on the depth d of N .

Base case d = 1. In that case, N is either a variable or a name.
Let us first suppose that N 6= x. Then

E(N{M/x}) = E(N) = E ′(N)

Now, if N = x, then

E(N{M/x}) = E(x{M/x}) = E(M) = E ′(x) = E ′(N)

34

Inductive case (d > 1). In that case, N = f(N1, . . . , Nk) for some con-
structor f and some terms N1, . . . , Nk, and

E(N{M/x}) Def.
= E(f(N1{M/x}, . . . , Nk{M/x}))
Def.
= f(E(N1{M/x}), . . . , E(Nk{M/x}))
I.H.
= f(E ′(N1), . . . , E ′(Nk))
Def.
= E ′(f(N1, . . . , Nk))
Def.
= E ′(N)

2. We prove the second statement by induction on the depth d of Q.

Base case (d = 0). In that case Q = 0, thus Q{M/x} = Q = 0, and
according to our typing system

τnil
(E ,S, ι, λ) ` 0 (= Q{M/x})

Inductive case (d > 0). We proceed by case analysis on the structure of
Q.

Case Q = Q1 | Q2.
Hyp⇒ (E ′,S, ι, λ) ` Q1 | Q2

bn(Q1 | Q2) ∩ fn(M) = ∅
x 6∈ bv(Q1 | Q2)

τpar,bn(),bv()⇒ λ = ∅
(E ′,S, ι, λ) ` Q1

(E ′,S, ι, λ) ` Q2

bn(Q1) ∩ fn(M) = ∅ ∧ bn(Q2) ∩ fn(M) = ∅
x 6∈ bv(Q1) ∧ x 6∈ bv(Q2)

I.H.⇒ λ = ∅
(E ,S, ι, λ) ` Q1{M/x}
(E ,S, ι, λ) ` Q2{M/x}

τpar⇒ (E ,S, ι, λ) ` Q1{M/x} | Q2{M/x} (= Q{M/x})

Case Q =!Q′.
Hyp⇒ (E ′,S, ι, λ) `!Q′

bn(!Q′) ∩ fn(M) = ∅
x 6∈ bv(!Q′)

τrepl,bn(),bv()⇒ λ = ∅
(E ′,S, ι, λ) ` Q′
bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒ λ = ∅
(E ,S, ι, λ) ` Q′{M/x}

τrepl⇒ (E ,S, ι, λ) `!Q′{M/x} (= Q{M/x})

Case Q = if N1 = N2 then Q1 else Q2 with E ′(N1) = E ′(N2).

35

Hyp⇒ E ′(N1) = E ′(N2)
(E ′,S, ι, λ) ` if N1 = N2 then Q1 else Q2

bn(if N1 = N2 then Q1 else Q2) ∩ fn(M) = ∅
x 6∈ bv(if N1 = N2 then Q1 else Q2)

τif ,bn(),bv()⇒ E ′(N1) = E ′(N2)
(E ′,S, ι, λ) ` Q1

(E ′,S, ι, λ) ` Q2

bn(Q1) ∩ fn(M) = ∅ ∧ bn(Q2) ∩ fn(M) = ∅
x 6∈ bv(Q1) ∧ x 6∈ bv(Q2)

I.H.⇒ E ′(N1) = E ′(N2)
(E ,S, ι, λ) ` Q1{M/x}
(E ,S, ι, λ) ` Q2{M/x}

Lem. 5.1⇒ E(N1{M/x}) = E ′(N1) = E ′(N2) = E(N2{M/x})
(E ,S, ι, λ) ` Q1{M/x} ∧ (E ,S, ι, λ) ` Q2{M/x}

τif⇒ (E ,S, ι, λ) ` if N1{M/x} = N2{M/x}
then Q1{M/x} else Q2{M/x} (= Q{M/x})

Case Q = if N1 = N2 then Q1 else Q2 with E ′(N1) 6= E ′(N2).
Hyp⇒ E ′(N1) 6= E ′(N2)

(E ′,S, ι, λ) ` if N1 = N2 then Q1 else Q2

bn(if N1 = N2 then Q1 else Q2) ∩ fn(M) = ∅
x 6∈ bv(if N1 = N2 then Q1 else Q2)

τif ,bn(),bv()⇒ E ′(N1) 6= E ′(N2)
(E ′,S, ι, λ) ` Q2

bn(Q2) ∩ fn(M) = ∅
x 6∈ bv(Q2)

I.H.⇒ E ′(N1) 6= E ′(N2)
(E ,S, ι, λ) ` Q2{M/x}

Lem. 5.1⇒ E(N1{M/x}) = E ′(N1) 6= E ′(N2) = E(N2{M/x})
(E ,S, ι, λ) ` Q2{M/x}

τif⇒ (E ,S, ι, λ) ` if N1{M/x} = N2{M/x} then Q1{M/x}
else Q2{M/x} (= Q{M/x})

Case Q = let y = g(N1, . . . , Nk) in Q1 else Q2. Note first that since by
hypothesis x 6∈ bv(Q) and by definition y ∈ bv(Q), then y 6= x.

36

Hyp⇒ (E ′,S, ι, λ) ` let y = g(N1, . . . , Nk) in Q1 else Q2

bn(let y = g(N1, . . . , Nk) in Q1 else Q2) ∩ fn(M) = ∅
x 6∈ bv(let y = g(N1, . . . , Nk) in Q1 else Q2)

τlet,bn(),bv()⇒
∧

{N |g(E′(N1),...,E′(Nk))→N}
(E ′ ∪ {y 7→ N},S, ι, λ) ` Q1

(E ′,S, ι, λ) ` Q2

bn(Q1) ∩ fn(M) = ∅ ∧ bn(Q2) ∩ fn(M) = ∅
x 6∈ bv(Q1) ∧ x 6∈ bv(Q2)

I.H.⇒
∧

{N |g(E′(N1),...,E′(Nk))→N}
(E ∪ {y 7→ N},S, ι, λ) ` Q1{M/x}

(E ,S, ι, λ) ` Q2{M/x}
Lem. 5.1⇒

∧{
N | g(E(N1{M/x}),
. . . , E(Nk{M/x}))→ N

}(E ∪ {y 7→ N},S, ι, λ) ` Q1{M/x}

(E ,S, ι, λ) ` Q2{M/x}
τlet⇒ (E ,S, ι, λ) ` let y = g(N1{M/x}, . . . , Nk{M/x}) in Q1{M/x}

else Q2{M/x} (
y 6=x
= Q{M/x})

Case Q = new a;Q′ with a ∈ bn(P ′0).
Hyp⇒ (E ′,S, ι, λ) ` new a;Q′

bn(new a;Q′) ∩ fn(M) = ∅
x 6∈ bv(new a;Q′)

τnewP ,bn(),bv()⇒ (E ′ ∪ {a 7→ a[ι]},S, ι, λ) ` Q′
bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒ (E ∪ {a 7→ a[ι]},S, ι, λ) ` Q′{M/x}
τnewP⇒ (E ,S, ι, λ) ` new a;Q′{M/x} (= Q{M/x})

Case Q = new a;Q′ with a 6∈ bn(P ′0).
Hyp⇒ (E ′,S, ι, λ) ` new a;Q′

bn(new a;Q′) ∩ fn(M) = ∅
x 6∈ bv(new a;Q′)

τnewA,bn(),bv()⇒ (E ′ ∪ {a 7→ attn[]},S, ι, λ) ` Q′
bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒ (E ∪ {a 7→ attn[]},S, ι, λ) ` Q′{M/x}
τnewA⇒ (E ,S, ι, λ) ` new a;Q′{M/x} (= Q{M/x})

Case Q = out(N1, N2);Q′.

37

Hyp⇒ (E ′,S, ι, λ) ` out(N1, N2);Q′

bn(out(N1, N2);Q′) ∩ fn(M) = ∅
x 6∈ bv(out(N1, N2);Q′)

τout,bn(),bv()⇒ message(S, E ′(N1), E ′(N2)) ∈ F0 ∧ (E ′,S, ι, λ) ` Q′
bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒ message(S, E ′(N1), E ′(N2)) ∈ F0 ∧ (E ,S, ι, λ) ` Q′{M/x}
Lem. 5.1⇒ message(S, E(N1{M/x}), E(N2{M/x})) ∈ F0

∧ (E ,S, ι, λ) ` Q′{M/x}
τout⇒ (E ,S, ι, λ) ` out(N1{M/x}, N2{M/x});Q′{M/x} (= Q{M/x})

Case Q = in(N, y);Q′. Note first that by hypothesis x 6∈ bv(Q) and by
definition y ∈ bv(Q), thus y 6= x.

Hyp⇒ (E ′,S, ι, λ) ` in(N, y);Q′

bn(in(N, y);Q′) ∩ fn(M) = ∅
x 6∈ bv(in(N, y);Q′)

τin,bn(),bv()⇒ bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′) ∧N ′

∣∣∣∣∣∣∣∣
∃T . S ≤ T

T = T [j 7→ S(j) | j ∈ λ]

message(T ,E′(N),N ′) ∈ F0



(E ′ ∪ {y 7→ N ′}, T , (N ′ :: ι), λ) ` Q′

I.H.⇒
∧N ′

∣∣∣∣∣∣∣∣
∃T . S ≤ T

T = T [j 7→ S(j) | j ∈ λ]

message(T ,E′(N),N ′) ∈ F0



(E ∪ {y 7→ N ′}, T , (N ′ :: ι), λ) ` Q′{M/x}

Lem. 5.1⇒
∧N ′

∣∣∣∣∣∣∣∣
∃T . S ≤ T

T = T [j 7→ S(j) | j ∈ λ]

message(T ,E(N{M/x}),N ′) ∈ F0



(E ∪ {y 7→ N ′}, T , (N ′ :: ι), λ) ` Q′{M/x}

τin⇒ (E ,S, ι, λ) ` in(N{M/x}, y);Q′{M/x} (
y 6=x
= Q{M/x})

Case Q = lock sj1 , . . . , sjm ;Q′.

38

Hyp⇒ (E ′,S, ι, λ) ` lock sj1 , . . . , sjm ;Q′

bn(lock sj1 , . . . , sjm ;Q′) ∩ fn(M) = ∅
x 6∈ bv(lock sj1 , . . . , sjm ;Q′)

τlock,bn(),bv()⇒
∧

{T | S ≤ T
T = T [k 7→ S(k) | k ∈ λ]}

(E ′, T , ι, λ ∪ {j1, . . . , jm}) ` Q′

bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒
∧

{T | S ≤ T
T = T [k 7→ S(k) | k ∈ λ]}

(E , T , ι, λ ∪ {j1, . . . , jm}) ` Q′{M/x}

τlock⇒ (E ,S, ι, λ) ` lock sj1 , . . . , sjm ;Q′{M/x} (= Q{M/x})

Case Q = unlock sj1 , . . . , sjm ;Q′.
Hyp⇒ (E ′,S, ι, λ) ` unlock sj1 , . . . , sjm ;Q′

bn(unlock sj1 , . . . , sjm ;Q′) ∩ fn(M) = ∅
x 6∈ bv(unlock sj1 , . . . , sjm ;Q′)

τlock,bn(),bv()⇒
∧

{T | S ≤ T
T = T [k 7→ S(k) | k ∈ λ]}

(E ′, T , ι, λr {j1, . . . , jm}) ` Q′

bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒
∧

{T | S ≤ T
T = T [k 7→ S(k) | k ∈ λ]}

(E , T , ι, λr {j1, . . . , jm}) ` Q′{M/x}

τlock⇒ (E ,S, ι, λ) ` unlock sj1 , . . . , sjm ;Q′{M/x} (= Q{M/x})

Case Q = sj1 , . . . , sjm := N1, . . . , Nm;Q′.
Hyp⇒ (E ′,S, ι, λ) ` sj1 , . . . , sjm := N1, . . . , Nm;Q′

bn(sj1 , . . . , sjm := N1, . . . , Nm;Q′) ∩ fn(M) = ∅
x 6∈ bv(sj1 , . . . , sjm := N1, . . . , Nm;Q′)

τwrite,bn(),bv()⇒
∧

{T | S ≤ T
T = T [j 7→ S(j) | j ∈ λ]}

T ≤ T [jk 7→ E ′(Nk) | 1 ≤ k ≤ m] ∧
(E ′, T [jk 7→ E ′(Nk) | 1 ≤ k ≤ m], ι, λ) ` Q′

bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒
∧

{T | S ≤ T
T = T [j 7→ S(j) | j ∈ λ]}

T ≤ T [jk 7→ E ′(Nk) | 1 ≤ k ≤ m] ∧
(E , T [jk 7→ E ′(Nk) | 1 ≤ k ≤ m],

ι, λ) ` Q′{M/x}

Lem. 5.1⇒
∧

{T | S ≤ T
T = T [j 7→ S(j) | j ∈ λ]}

T ≤ T [jk 7→ E(Nk{M/x}) | 1 ≤ k ≤ m] ∧
(E , T [jk 7→ E(Nk{M/x}) |

1 ≤ k ≤ m], ι, λ) ` Q′{M/x}

τwrite⇒
(E ,S, ι, λ) ` sj1 , . . . , sjm := N1{M/x}, . . . , Nm{M/x};

Q′{M/x} (
sj1 6=x,...,sjm 6=x= Q{M/x})

39

Case Q = read sj1 , . . . , sjm as y1, . . . , ym;Q′. Note first that by hypothesis
x 6∈ bv(Q) and by definition y1, . . . , ym ∈ bv(Q), thus x 6∈ {y1, . . . , ym}

Hyp⇒ (E ′,S, ι, λ) ` read sj1 , . . . , sjm as y1, . . . , ym;Q′

bn(read sj1 , . . . , sjm as y1, . . . , ym;Q′) ∩ fn(M) = ∅
x 6∈ bv(read sj1 , . . . , sjm as y1, . . . , ym;Q′)

τread,bn(),bv()⇒
∧

{T | S ≤ T
T = T [j 7→ S(j) | j ∈ λ]}

(E ′ ∪ {yk 7→ T (jk) | 1 ≤ k ≤ m}, T ,
(T (j1) :: . . . T (jm) :: ι), λ) ` Q′

bn(Q′) ∩ fn(M) = ∅
x 6∈ bv(Q′)

I.H.⇒
∧

{T | S ≤ T
T = T [j 7→ S(j) | j ∈ λ]}

(E ∪ {yk 7→ T (jk) | 1 ≤ k ≤ m}, T ,
(T (j1) :: . . . T (jm) :: ι), λ) ` Q′{M/x}

τread⇒
(E ,S, ι, λ) ` read sj1 , . . . , sjm as y1, . . . , ym;

Q′{M/x} (
x 6∈{sj1 ,y1,...,sjm ,ym}= Q{M/x})

Lemma 6 (Type propagation). Let Q, E (from names and variables to pat-
terns), S (from cell names to patterns), T (from cell names to patterns), ι, and
λ such that S ≤ T and T = T [j 7→ S(j) | j ∈ λ]

(E ,S, ι, λ) ` Q ⇒ (E , T , ι, λ) ` Q.

Proof. We prove this by induction on the depth d of the proof of (E ,S, ι, λ) ` Q.
Case d = 0. In this case, Q = 0, and according to our type rule τnil,

(E , T , ι, λ) ` Q.

Case d > 0. We proceed by case analysis on the structure of Q.

Case Q = Q1 | Q2.
Hyp.⇒ (E ,S, ι, λ) ` Q1 | Q2
τpar⇒ (E ,S, ι, λ) ` Q1 ∧ (E ,S, ι, λ) ` Q2 ∧ λ = ∅
I.H.⇒ (E , T , ι, λ) ` Q1 ∧ (E , T , ι, λ) ` Q2 ∧ λ = ∅
τpar⇒ (E , T , ι, λ) ` Q1 | Q2 (= Q)

Case Q =!Q′.
Hyp.⇒ (E ,S, ι, λ) ` !Q′
τrepl⇒ (E ,S, ι, λ) ` Q′ ∧ λ = ∅
I.H.⇒ (E , T , ι, λ) ` Q′ ∧ λ = ∅
τrepl⇒ (E , T , ι, λ) ` !Q′ (= Q)

Case Q = if M = N then Q1 else Q2 with E(M) = E(N).
Hyp.⇒ (E ,S, ι, λ) ` if M = N then Q1 else Q2 ∧ E(M) = E(N)
τif⇒ (E ,S, ι, λ) ` Q1 ∧ (E ,S, ι, λ) ` Q2 ∧ E(M) = E(N)
I.H.⇒ (E , T , ι, λ) ` Q1 ∧ (E , T , ι, λ) ` Q2 ∧ E(M) = E(N)
τif⇒ (E , T , ι, λ) ` if M = N then Q1 else Q2 (= Q)

40

Case Q = if M = N then Q1 else Q2 with E(M) 6= E(N).
Hyp.⇒ (E ,S, ι, λ) ` if M = N then Q1 else Q2 ∧ E(M) 6= E(N)
τif⇒ (E ,S, ι, λ) ` Q2 ∧ E(M) 6= E(N)
I.H.⇒ (E , T , ι, λ) ` Q2 ∧ E(M) 6= E(N)
τif⇒ (E , T , ι, λ) ` if M = N then Q1 else Q2 (= Q)

Case Q = let x = g(M1, . . . ,Mn) in Q1 else Q2.
Hyp.⇒ (E ,S, ι, λ) ` let x = g(M1, . . . ,Mn) in Q1 else Q2
τlet⇒

∧
{M |g(E(M1),...,E(M1))→M}

(E ∪ {x 7→M},S, ι, λ) ` Q1 ∧ (E ,S, ι, λ) ` Q2

I.H.⇒
∧

{M |g(E(M1),...,E(M1))→M}
(E ∪ {x 7→M}, T , ι, λ) ` Q1 ∧ (E , T , ι, λ) ` Q2

τlet⇒ (E , T , ι, λ) ` let x = g(M1, . . . ,Mn) in Q1 else Q2 (= Q)

Case Q = new a;Q′ with a ∈ bn(P ′0).
Hyp.⇒ (E ,S, ι, λ) ` new a;Q′
τnewP⇒ (E ∪ {a 7→ a[ι]},S, ι, λ) ` Q′
I.H.⇒ (E ∪ {a 7→ a[ι]}, T , ι, λ) ` Q′
τnewP⇒ (E , T , ι, λ) ` new a;Q′ (= Q)

Case Q = new a;Q′ with a 6∈ bn(P ′0).
Hyp.⇒ (E ,S, ι, λ) ` new a;Q′
τnewA⇒ (E ∪ {a 7→ attn[]},S, ι, λ) ` Q′
I.H.⇒ (E ∪ {a 7→ attn[]}, T , ι, λ) ` Q′
τnewA⇒ (E , T , ι, λ) ` new a;Q′ (= Q)

Case Q = out(M,N);Q′.
Hyp.⇒ (E ,S, ι, λ) ` out(M,N);Q′
τout⇒ message(S, E(M), E(N)) ∈ F0 ∧ (E ,S, ι, λ) ` Q′
I.H.⇒ message(S, E(M), E(N)) ∈ F0 ∧ (E , T , ι, λ) ` Q′
S≤T⇒ message(T , E(M), E(N)) ∈ F0 ∧ (E , T , ι, λ) ` Q′
τout⇒ (E , T , ι, λ) ` out(M,N);Q′ (= Q)

Case Q = in(M,x);Q′.
Hyp.⇒ (E ,S, ι, λ) ` in(M,x);Q′
τin⇒ ∀U∀N (S ≤ U ∧ U = U [j 7→ S(j) | j ∈ λ] ∧

message(U , E(M), N) ∈ F0) ⇒
(E ∪ {x 7→ N},U , N :: ι, λ) ` Q′

transitivity of ≤ ∧
T = T [j 7→ S(j) | j ∈ λ]

⇒ ∀U∀N (T ≤ U ∧ U = U [j 7→ S(j) | j ∈ λ] ∧
message(U , E(M), N) ∈ F0) ⇒

(E ∪ {x 7→ N},U , N :: ι, λ) ` Q′
T =T [j 7→S(j)|j∈λ]⇒ ∀U∀N (T ≤ U ∧ U = U [j 7→ T (j) | j ∈ λ] ∧

message(U , E(M), N) ∈ F0) ⇒
(E ∪ {x 7→ N},U , N :: ι, λ) ` Q′

τin⇒ (E , T , ι, λ) ` in(M,x);Q′ (= Q)

41

Case Q = lock sj1 , . . . , sjm ;Q′.
Hyp.⇒ (E ,S, ι, λ) ` lock sj1 , . . . , sjm ;Q′
τlock⇒ ∀U (S ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(E ,U , ι, λ ∪ {j1, . . . , jm}) ` Q′
transitivity of ≤ ∧

T = T [k 7→ S(k) | k ∈ λ]
⇒ ∀U (T ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(E ,U , ι, λ ∪ {j1, . . . , jm}) ` Q′
T=T [k 7→S(k)|k∈λ]⇒ ∀U (T ≤ U ∧ U = U [k 7→ T (k) | k ∈ λ]) ⇒

(E ,U , ι, λ ∪ {j1, . . . , jm}) ` Q′
τlock⇒ (E , T , ι, λ) ` lock sj1 , . . . , sjm ;Q′ (= Q)

Case Q = unlock sj1 , . . . , sjm ;Q′.
Hyp.⇒ (E ,S, ι, λ) ` unlock sj1 , . . . , sjm ;Q′
τunlock⇒ ∀U (S ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(E ,U , ι, λr {j1, . . . , jm}) ` Q′
transitivity of ≤ ∧

T = T [k 7→ S(k) | k ∈ λ]
⇒ ∀U (T ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(E ,U , ι, λr {j1, . . . , jm}) ` Q′
T=T [k 7→S(k)|k∈λ]⇒ ∀U (T ≤ U ∧ U = U [k 7→ T (k) | k ∈ λ]) ⇒

(E ,U , ι, λr {j1, . . . , jm}) ` Q′
τunlock⇒ (E , T , ι, λ) ` unlock sj1 , . . . , sjm ;Q′ (= Q)

Case Q = sj1 , . . . , sjm := M1, . . . ,Mm;Q′.
Hyp.⇒ (E ,S, ι, λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;Q′

τwrite⇒
∀U (S ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(U ≤ U [jk 7→ E(Mk) | 1 ≤ k ≤ m] ∧
(E ,U [jk 7→ E(Mk) | 1 ≤ k ≤ m], ι, λ) ` Q′)

transitivity of ≤ ∧
T = T [k 7→ S(k) | k ∈ λ]

⇒
∀U (T ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(U ≤ U [jk 7→ E(Mk) | 1 ≤ k ≤ m] ∧
(E ,U [jk 7→ E(Mk) | 1 ≤ k ≤ m], ι, λ) ` Q′)

T=T [k 7→S(k)|k∈λ]⇒
∀U (T ≤ U ∧ U = U [k 7→ T (k) | k ∈ λ]) ⇒

(U ≤ U [jk 7→ E(Mk) | 1 ≤ k ≤ m] ∧
(E ,U [jk 7→ E(Mk) | 1 ≤ k ≤ m], ι, λ) ` Q′)

τwrite⇒ (E , T , ι, λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;Q′ (= Q)

Case Q = read sj1 , . . . , sjm as x1, . . . , xm;Q′.

42

Hyp.⇒ (E ,S, ι, λ) ` read sj1 , . . . , sjm as x1, . . . , xm;Q′
τread⇒ ∀U (S ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒

(E ∪ {xk 7→ U(jk) | 1 ≤ k ≤ m},U ,
(U(j1) :: · · · :: U(jm) :: ι), λ) ` Q′

transitivity of ≤ ∧
T = T [k 7→ S(k) | k ∈ λ]

⇒ ∀U (T ≤ U ∧ U = U [k 7→ S(k) | k ∈ λ]) ⇒
(E ∪ {xk 7→ U(jk) | 1 ≤ k ≤ m},U ,

(U(j1) :: · · · :: U(jm) :: ι), λ) ` Q′
T=T [k 7→S(k)|k∈λ]⇒ ∀U (T ≤ U ∧ U = U [k 7→ T (k) | k ∈ λ]) ⇒

(E ∪ {xk 7→ U(jk) | 1 ≤ k ≤ m},U ,
(U(j1) :: · · · :: U(jm) :: ι), λ) ` Q′

τread⇒ (E , T , ι, λ) ` read sj1 , . . . , sjm as
x1, . . . , xm;Q′ (= Q)

B.2 Proof of Lemma 1: Typability of A

Lemma 1 (Typability of A).

(E0, E0(S0), [], ∅) ` A

Proof. Let B be a subprocess of A, E an environment (from names and variables
to patterns), S a state (from cell names to patterns), ι a sequence of patterns,
and λ a set of cell indices. We first prove by induction on the depth d of B that,
if

(i) E0 ⊆ E ; and

(ii) E(S0) ≤ S; and

(iii) (bn(B) ∪ bv(B)) ∩ dom(E) = ∅; and

(iv) ∀a ∈ fn(B), attacker(S, E(a)) ∈ F0; and

(v) ∀x ∈ fv(B), attacker(S, E(x)) ∈ F0; and

(vi) for all i ∈ {1, . . . , n}, i ∈ λ if and only if B is in the scope of a lock . . . si . . .
in A,

then
(E ,S, ι, λ) ` B

Base case (d = 0). In that case B = 0 and according to our typing system

τnil
(E ,S, ι, λ) ` 0 (= B)

Inductive case (d > 0). We proceed by case analysis on the structure of
B.

Case B = B1 | B2. First note that no parallel composition can occur in the
scope of a lock, so λ = ∅.

43

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B1) ∪ bv(B1) ⊆ bn(B) ∪ bv(B)

bn(B2) ∪ bv(B2) ⊆ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B1) ∪ bv(B1)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(bn(B2) ∪ bv(B2)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B1) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B1). attacker(S, E(a)) ∈ F0
Def.⇒ fn(B2) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B2). attacker(S, E(a)) ∈ F0

(v)
Def.⇒ fv(B1) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B1). attacker(S, E(x)) ∈ F0
Def.⇒ fv(B2) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B2). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B1 and B2 are too, so
B1, λ and B2, λ satisfy condition (vi) by hypothesis.

Thus (B1, E ,S, ι, λ) and (B2, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can
apply our inductive hypothesis

(E ,S, ι, λ) ` B1 (E ,S, ι, λ) ` B2

and, according to our typing system

(E ,S, ι, λ) ` B1 (E ,S, ι, λ) ` B2
τpar

(E ,S, ι, λ) ` B1 | B2 (= B)

Case B =!B′. First note that no replication can occur in the scope of a
lock, so λ = ∅

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B′) ∪ bv(B′) = bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) = (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B′) = fn(B)

Hyp.⇒ ∀a ∈ fn(B′). attacker(S, E(a)) ∈ F0

(v)
Def.⇒ fv(B′) = fv(B)

Hyp.⇒ ∀x ∈ fv(B′). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ,S, ι, λ) ` B′

and, according to our typing system

(E ,S, ι, λ) ` B′
τrepl

(E ,S, ι, λ) `!B′ (= B)

Case B = if M = N then B1 else B2 with E(M) = E(N).

44

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B1) ∪ bv(B1) ⊆ bn(B) ∪ bv(B)

bn(B2) ∪ bv(B2) ⊆ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B1) ∪ bv(B1)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(bn(B2) ∪ bv(B2)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B1) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B1). attacker(S, E(a)) ∈ F0
Def.⇒ fn(B2) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B2). attacker(S, E(a)) ∈ F0

(v)
Def.⇒ fv(B1) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B1). attacker(S, E(x)) ∈ F0
Def.⇒ fv(B2) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B2). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B1 and B2 are too, so
B1, λ and B2, λ satisfy condition (vi) by hypothesis.

Thus (B1, E ,S, ι, λ) and (B2, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can
apply our inductive hypothesis

(E ,S, ι, λ) ` B1 (E ,S, ι, λ) ` B2

and, according to our typing system

E(M) = E(N) (E ,S, ι, λ) ` B1 (E ,S, ι, λ) ` B2
τif

(E ,S, ι, λ) ` if M = N then B1 else B2 (= B)

Case B = if M = N then B1 else B2 with E(M) 6= E(N).

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B2) ∪ bv(B2) ⊆ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B2) ∪ bv(B2)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B2) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B2). attacker(S, E(a)) ∈ F0

(v)
Def.⇒ fv(B2) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B2). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B2 is too, so B2, λ satisfy
condition (vi) by hypothesis.

Thus (B2, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ,S, ι, λ) ` B2

and, according to our typing system

E(M) 6= E(N) (E ,S, ι, λ) ` B2
τif

(E ,S, ι, λ) ` if M = N then B1 else B2 (= B)

45

Case B = new a;B′. By hypothesis on A, bn(A) ∩ bn(P ′0) = ∅, thus
a 6∈ bn(P ′0). Let E ′ = E ∪ {a 7→ attn[]}.

(i) By hypothesis, E0 ⊆ E ⊆ E ∪ {a 7→ attn[]} = E ′. Moreover, by hypothesis
bn(B) ∩ dom(E) = ∅, thus a 6∈ dom(E), thus, E ′ is an environment, i.e. a
function from names and variables to patterns.

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B′) ∪ bv(B′) ⊆ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let b ∈ fn(B′). Then either b 6= a or b = a.

Case b 6= a.
Def.⇒ b ∈ fn(B)
Hyp.⇒ attacker(S, E(b)) ∈ F0

E′(b)=E(b)⇒ attacker(S, E ′(b)) ∈ F0

Case b = a.
Def.⇒ attacker(E(S0), attn[]) ∈ C0
Def.⇒ attacker(E(S0), attn[]) ∈ F0

E(S0)≤S⇒ attacker(S, attn[]) ∈ F0

E′(b)=attn[]⇒ attacker(S, E ′(b)) ∈ F0

(v) Let x ∈ fv(B′).
Def.⇒ x ∈ fv(B)
Hyp.⇒ attacker(S, E(x)) ∈ F0

E′(x)=E(x)⇒ attacker(S, E ′(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ′,S, ι, λ) ` B′

and according to our typing system

a 6∈ bn(P ′0) ⇒ (E ∪ {a 7→ attn[]},S, ι, λ) ` B′
τnewA

(E ,S, ι, λ) ` new a;B′

Case B = let x = g(M1, . . . ,Mk) in B1 else B2. Let M be a term such that
g(E(M1), . . . E(Mk))→M . Let E ′ = E ∪ {x 7→M}.

(i) By hypothesis, E0 ⊆ E .

By hypothesis, E0 ⊆ E ⊆ E ∪ {x 7→M} = E ′.

(ii) By hypothesis, E(S0) ≤ S.

46

(iii)
Def.⇒ bn(B1) ∪ bv(B1) ⊂ bn(B) ∪ bv(B)

bn(B2) ∪ bv(B2) ⊆ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B1) ∪ bv(B1)) ∩ dom(E) ⊂ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(bn(B2) ∪ bv(B2)) ∩ dom(E) ⊆ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B1) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B1). attacker(S, E(a)) ∈ F0
Def.⇒ fn(B2) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B2). attacker(S, E(a)) ∈ F0

(v)
Def.⇒ fv(B1) ⊆ fv(B) ∪ {x}. Let y ∈ fv(B1).

Case y ∈ fv(B).
Hyp.⇒ attacker(S, E(y)) ∈ F0

E(y)=E′(y)⇒ attacker(S, E ′(y)) ∈ F0
S≤T⇒ attacker(T , E ′(y)) ∈ F0

Case y = x. In that case, by construction
C = att(xs,N1)∧. . . attacker(xs,Nk)⇒ attacker(xs,N) ∈ C0 for some
N1, . . . , Nk and E(M1) = N1σ, . . . , E(Mk) = Nkσ, M = Nσ for some
σ. Now,

Hyp.⇒ ∀i ∈ {1, . . . , k}∀u ∈ fn(M) ∪ fv(Mi) attacker(S, E(u))
Lem. 4⇒ ∀i ∈ {1, . . . , k} attacker(S, E(Mi)) ∈ F0
S≤T⇒ ∀i ∈ {1, . . . , k} attacker(T , E(Mi)) ∈ F0

σ ∧ C∈C0⇒ attacker(T ,M) ∈ F0

E′(y)=M⇒ attacker(T , E ′(y)) ∈ F0

Def.⇒ fv(B2) ⊆ fv(B)
Hyp.⇒ ∀x ∈ fv(B2). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B1 and B2 are too, so
B1, λ and B2, λ satisfy condition (vi) by hypothesis.

Thus (B1, E ′,S, ι, λ) and (B2, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can
apply our inductive hypothesis

(E ′,S, ι, λ) ` B1 (E ,S, ι, λ) ` B2

and, according to our typing system

∀M (g(E(M1), . . . , E(Mk))→M) ⇒ ((E ∪ {x 7→M},S, ι, λ) ` B1 ∧ (E ,S, ι, λ) ` B2)
τlet

(E ,S, ι, λ) ` let x = g(M1, . . . ,Mk) in B1 else B2 (= B)

Case B = out(M,N);B′.

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B′) ∪ bv(B′) = bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) = (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv)
Def.⇒ fn(B′) ⊆ fn(B)

Hyp.⇒ ∀a ∈ fn(B′). attacker(S, E(a)) ∈ F0

47

(v)
Def.⇒ fv(B′) ⊆ fv(B)

Hyp.⇒ ∀x ∈ fv(B′). attacker(S, E(x)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E ,S, ι, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ,S, ι, λ) ` B′

Moreover, by hypothesis we have that

• for all a ∈ fn(M)∪fn(N), attacker(S, E(a)) ∈ F0, because fn(M)∪fn(N) ⊆
fn(B); and

• for all x ∈ fv(M)∪fv(N), attacker(S, E(x)) ∈ F0, because fv(M)∪fv(N) ⊆
fv(B).

Thus according to lemma 4 it is the case that

attacker(S, E(M)) ∈ F0 and attacker(S, E(N)) ∈ F0

And because

attacker(xs, xc) ∧ attacker(xs, xm)⇒ message(xs, xc, xm) ∈ C0

we have by resolution that

message(S, E(M), E(N)) ∈ F0.

Thus, according to our typing system

message(S, E(M), E(N)) ∈ F0 (E ,S, ι, λ) ` B′
τout

(E ,S, ι, λ) ` out(M,N);B′ (= B)

Case B = in(M,x);B′. Let T be a state such that S ≤ T and T = T [j 7→
S(j) | j ∈ λ], N a term such that message(T , E(M), N) ∈ F0, E ′ = E∪{x 7→ N},
and ι′ = N :: ι.

(i) By hypothesis, E0 ⊆ E ⊆ E ∪ {x 7→ N} = E ′. Moreover, since bv(B) ∩
dom(E) = ∅, x 6∈ dom(E). Thus E ′ is indeed an environment, i.e. a
function from variables and names to patterns.

(ii)
Hyp.⇒ E(S0) ≤ S

Transitivity of ≤⇒ E(S0) ≤ T

(iii)
Def.⇒ bn(B′) ∪ bv(B′) ⊂ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) ⊂ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let a ∈ fn(B′).
Def.⇒ a ∈ fn(B)
Hyp.⇒ attacker(S, E(a)) ∈ F0

E(a)=E′(a)⇒ attacker(S, E ′(a)) ∈ F0
S≤T⇒ attacker(T , E ′(a)) ∈ F0

48

(v) Let y ∈ fv(B′). Then either y ∈ fv(B) or y = x.

Case y ∈ fv(B).
Hyp.⇒ attacker(S, E(y)) ∈ F0

E(y)=E′(y)⇒ attacker(S, E ′(y)) ∈ F0
S≤T⇒ attacker(T , E ′(y)) ∈ F0

Case y = x.
Hyp.⇒ ∀u ∈ fn(M) ∪ fv(M) attacker(S, E(u))

Lem. 4⇒ attacker(S, E(M)) ∈ F0
S≤T⇒ attacker(T , E(M)) ∈ F0

message(xs,xc,xm)∧

attacker(xs,xc)⇒attacker(xs,xm)∈C0
⇒

attacker(T , N) ∈ F0

E′(y)=N⇒ attacker(T , E ′(y)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E ′,S, ι′, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ′, T , ι′, λ) ` B′

Finally, according to our typing system

∀T ∀N (S ≤ T ∧ T = T [j 7→ S(j) | j ∈ λ] ∧
message(T , E(M), N) ∈ F0) ⇒ (E ∪ {x 7→ N}, T , (N :: ι), λ) ` B′

τin
(E ,S, ι, λ) ` in(M,x);B′ (= B)

Case B = [s 7→ M]. This case cannot occur because by hypothesis no
[s 7→M] occurs in A.

Case B = lock sj1 , . . . , sjm ;B′. Let T be a state such that S ≤ T and
T = T [k 7→ S(k) | k ∈ λ]. Let λ′ = λ ∪ {j1, . . . , jm}.

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B′) ∪ bv(B′) = bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) = (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let a ∈ fn(B′).
Def.⇒ a ∈ fn(B)
Hyp.⇒ attacker(S, E(a)) ∈ F0
S≤T⇒ attacker(T , E(a)) ∈ F0

(v) Let x ∈ fv(B′).
Def.⇒ x ∈ fv(B)
Hyp.⇒ attacker(S, E(x)) ∈ F0
S≤T⇒ attacker(T , E(x)) ∈ F0

(vi) Because if B is in the scope of a lock . . . si . . . so is B′, and because if
B′ is in the scope of a lock . . . si . . . with i 6∈ {j1, . . . , jm} so is B′, B′, λ′

satisfy condition (vi) by hypothesis.

49

Thus, B′, E , T , ι, and λ′ thus satisfy conditions (i)-(vi), so we can apply our
inductive hypothesis

(E , T , ι, λ′) ` B′.

Finally, according to our typing system

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ] ⇒ (E , T , ι, λ ∪ {j1, . . . , jm}) ` B′)
τlock

(E ,S, ι, λ) ` lock sj1 , . . . , sjm ;B′ (= B)

Case B = unlock sj1 , . . . , sjm ;B′. Let T be a state such that S ≤ T and
T = T [k 7→ S(k) | k ∈ λ]. Let λ′ = λr {j1, . . . , jm}.

(i) By hypothesis, E0 ⊆ E .

(ii) By hypothesis, E(S0) ≤ S.

(iii)
Def.⇒ bn(B′) ∪ bv(B′) = bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) = (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let a ∈ fn(B′).
Def.⇒ a ∈ fn(B)
Hyp.⇒ attacker(S, E(a)) ∈ F0
S≤T⇒ attacker(T , E(a)) ∈ F0

(v) Let x ∈ fv(B′).
Def.⇒ x ∈ fv(B)
Hyp.⇒ attacker(S, E(x)) ∈ F0
S≤T⇒ attacker(T , E(x)) ∈ F0

(vi) Because if B′ is in the scope of a lock . . . si . . . so is B, and because if B is
in the scope of a lock . . . si . . . with i 6∈ {j1, . . . , jm} so is B′, B′, λ′ satisfy
condition (vi) by hypothesis.

Thus, B′, E , T , ι, and λ′ satisfy conditions (i)-(vi), so we can apply our inductive
hypothesis

(E , T , ι, λ′) ` B′.

Finally, according to our typing system

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ] ⇒ (E , T , ι, λr {j1, . . . , jm}) ` B′)
τunlock

(E ,S, ι, λ) ` unlock sj1 , . . . , sjm ;B′ (= B)

Case B = read sj1 , . . . , sjm as x1, . . . , xk;B′. Let T such that S ≤ T
and T = T [k 7→ S(k) | k ∈ λ], E ′ = E ∪ {xk 7→ T (jk) | 1 ≤ k ≤ m}. Let
ι′ = T (j1) :: · · · :: T (jm) :: ι.

(i) By hypothesis E0 ⊆ E ⊆ E ∪ {xk 7→ T (sjk) | 1 ≤ k ≤ m} = E ′. Moreover,
since bv(B)∩dom(E) = ∅, x 6∈ dom(E). Thus E ′ is indeed an environment,
i.e. a function from variables and names to patterns.

(ii)
Hyp.⇒ E(S0) ≤ S

Transitivity of ≤⇒ E(S0) ≤ T

50

(iii)
Def.⇒ bn(B′) ∪ bv(B′) ⊂ bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) ⊂ (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let a ∈ fn(B′).
Def.⇒ a ∈ fn(B)
Hyp.⇒ attacker(S, E(a)) ∈ F0

E(a)=E′(a)⇒ attacker(S, E ′(a)) ∈ F0
S≤T⇒ attacker(T , E ′(a)) ∈ F0

(v) Let y ∈ fv(B′). Then either y ∈ fv(B) or y ∈ {x1, . . . , xm}.

Case y ∈ fv(B).
Hyp.⇒ attacker(S, E(y)) ∈ F0

E(y)=E′(y)⇒ attacker(S, E ′(y)) ∈ F0
S≤T⇒ attacker(T , E ′(y)) ∈ F0

Case y = xk for some k ∈ {1, . . . ,m}. By hypothesis cells(A) ⊆ fn(P).
Thus by definition of E0, cells(A) ⊆ dom(E0) and by construction of
C0, for all i ∈ {1 . . . , n}

Ci = message((xs1, . . . , xsn), xc, xm) ∧
attacker((xs1, . . . , xsn), E0(si))⇒
attacker((xs1, . . . , xsn), xsi) ∈ C0

Def.⇒ sj1 , . . . , sjm ∈ fn(B)
Hyp.⇒ attacker(S, E(sjk)) ∈ F0

E0(sjk)=E(sjk)⇒ attacker(S, E0(sjk)) ∈ F0
S≤T⇒ attacker(T , E0(sjk)) ∈ F0
Cjk∈C0⇒ attacker(T , T jk) ∈ F0

T jk
=T (jk)⇒ attacker(T , T (jk)) ∈ F0

E′(y)=T (jk)⇒ attacker(T , E ′(y)) ∈ F0

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E ′, T , ι′, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E ′, T , ι′, λ) ` B′

and thus, according to our typing system

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ]) ⇒
(E ∪ {xjk 7→ T (jk) | 1 ≤ k ≤ m}, T , (T (j1) :: · · · :: T (jm) :: ι), λ) ` B′

τinT
(E ,S, ι, λ) ` read sj1 , . . . , sjm as x1, . . . , xm;B′ (= B)

Case B = sj1 , . . . , sjm := M1, . . . ,Mm;B′. Let T such that S ≤ T and
T = T [k 7→ S(k) | k ∈ λ]. Let T ′ = T [jk 7→ E(Mk) | 1 ≤ k ≤ m]. We first

51

show that T ≤ T ′. By hypothesis cells(A) ⊆ fn(P). Thus by construction of
E0, cells(A) ⊆ dom(E0), and by construction of C0 for all i ∈ {1, . . . , n}

Ci1 = message((xs1, . . . , xsn), xc, xm) ∧ attacker((xs1, . . . , xsn), E0(si)) ∧
attacker((xs1, . . . , xsn), ysi)⇒ message((xs1, . . . , ysi, . . . , xsn), xc, xm) ∈ C0

Ci2 = attacker((xs1, . . . , xsn), xm) ∧ attacker((xs1, . . . , xsn), E0(si)) ∧
attacker((xs1, . . . , xsn), ysi)⇒ attacker((xs1, . . . , ysi, . . . , xsn), xm) ∈ C0

Def.⇒ sj1 , . . . , sjm ∈ fn(B)
Hyp.⇒

∧
1≤k≤m

attacker(S, E(sjk)) ∈ F0

S≤T⇒
∧

1≤k≤m
attacker(T , E(sjk)) ∈ F0

E0(sjk)=E(sjk)⇒

∧
1≤k≤m

attacker(T , E0(sjk)) ∈ F0

Hyp.⇒
∧

1≤k≤m

∀u ∈ fn(Mk) ∪ fv(Mk).
attacker(S, E(u)) ∈ F0

Lem. 4⇒
∧

1≤k≤m
attacker(S, E(Mk)) ∈ F0

S≤T⇒
∧

1≤k≤m
attacker(T , E(Mk)) ∈ F0

Moreover,
Def.⇒ attacker(E(S0), attch[]) ∈ C0
Def.⇒ attacker(E(S0), attch[]) ∈ F0

E(S0)≤S⇒ attacker(S, attch[]) ∈ F0
S≤T⇒ attacker(T , attch[]) ∈ F0

Combining all this we can infer the following
Ci1 ,Ci2∈C0 and S≤T

⇒ ∀K,L message(T ,K, L) ∈ F0 ⇒ message(T ′,K, L) ∈ F0

∀K attacker(T ,K) ∈ F0 ⇒ attacker(T ′,K) ∈ F0

attacker(T , attch[]) ∈ F0
Def.⇒ T ≤ T ′

(i) By hypothesis E0 ⊆ E .

(ii)
Hyp.⇒ E(S0) ≤ S

Transitivity of ≤⇒ E(S0) ≤ T
Transitivity of ≤⇒ E(S0) ≤ T ′

(iii)
Def.⇒ bn(B′) ∪ bv(B′) = bn(B) ∪ bv(B)
Hyp.⇒ (bn(B′) ∪ bv(B′)) ∩ dom(E) = (bn(B) ∪ bv(B)) ∩ dom(E) = ∅

(iv) Let a ∈ fn(B′).
Def.⇒ a ∈ fn(B)
Hyp.⇒ attacker(S, E(a)) ∈ F0
S≤T⇒ attacker(T , E(a)) ∈ F0

T ≤T ′

⇒ attacker(T ′, E(a)) ∈ F0

(v) Let y ∈ fv(B′).
Def.⇒ y ∈ fv(B)
Hyp.⇒ attacker(S, E(y)) ∈ F0
S≤T⇒ attacker(T , E(y)) ∈ F0

T ≤T ′

⇒ attacker(T ′, E(y)) ∈ F0

52

(vi) B is in the scope of a lock . . . si . . . if and only if B′ is too, so B′, λ satisfy
condition (vi) by hypothesis.

Thus (B′, E , T ′, ι, λ) satisfy conditions (i)- (vi), so we can apply our inductive
hypothesis

(E , T ′, ι, λ) ` B′

and thus, according to our typing system

∀T (S ≤ T ∧ T = T [k 7→ S(k) | k ∈ λ]) ⇒
(T ≤ T [jk 7→ E(Mk) | 1 ≤ k ≤ m] ∧

(E , T [jk 7→ E(Mk) | 1 ≤ k ≤ m], ι, λ) ` B′)
τwrite

(E ,S, ι, λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;B′ (= B)

To conclude the proof of Lemma 1 we then need to show that A, E0, E0(S0),
[], and ∅ satisfy conditions (i)- (vi).

(i) By definition E0 ⊆ E0.

(ii) By definition E0(S0) ≤ E0(S0).

(iii) By hypotheses, dom(E0) = fn(P) ∪ fn(A) ∪ cellP and (bn(A) ∪ bv(A)) ∩
(fn(P) ∪ fn(A) ∪ cellP) = ∅, thus (bn(A) ∪ bv(A)) ∩ dom(E0) = ∅.

(iv) By construction, ∀a ∈ fn(A)

If a = attch, then E0(a) = attch[], and attacker(E0(S0), attch[]) ∈ C0 by
construction.

If a 6= attch, then E0(a) = attn[], and attacker(E0(S0), attn[]) ∈ C0 by
construction.

Thus ∀a ∈ fn(A) attacker(E0(S0), E0(a)) ∈ F0.

(v) A is an Init-adversary, so it is a closed process. Thus fv(A) = ∅.

(vi) A is by definition under no lock in A, thus by definition A, ∅ satisfy con-
dition (vi)

We can thus apply the preliminary result we just established to conclude
that (E0, E0(S0), [], ∅) ` A.

B.3 Proof of Lemma 2: Typability of P0

Lemma 2 (Typability of P0).

(E0, E0(S0), [], ∅) ` P0

Proof. Let Q be a subprocess of P0 and σ, ρ, H, ι, φ, and λ. We first prove by
induction on the size of Q, that if

(i) ρ binds all the free names and variables of Q, H, ι and φ;

(ii) (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅;

(iii) σ is a closed substitution;

53

(iv) i ∈ λ if and only if Q is in the scope of lock . . . si . . . in P0;

(v) C0 ⊇ JQKρHιφλ;

(vi) ∀message(ξ,M,N) ∈ H, message(ξσ,Mσ,Nσ) can be derived from C0

(vii) attacker(φσ, attch[]) ∈ F0,

then
(ρσ, φσ, ισ, λ) ` Q.

Base case (|Q| = 0). In that case Q = 0, and thus according to the rule
τnil of our type system

τnil
(ρσ, φσ, ισ, λ) ` 0 (= Q)

Inductive case (|Q| > 0). We proceed by case analysis on the structure of
Q.

Case Q = Q1 | Q2. In that case, λ = ∅ because no parallel composition can
occur under a lock. We will show that (Q1, σ, ρ,H, ι, φ, λ) and (Q2, σ, ρ,H, ι, φ, λ)
satisfy conditions (i)-(vii)

(i) By definition, fv(Q1)∪ fv(Q2) = fv(Q) and fn(Q1)∪ fn(Q2) = fn(Q). Thus
if ρ binds the free names and variables of Q, it also binds the free names
and variables of Q1 and Q2.

(ii)
Def.⇒ bn(Q1) ∪ bv(Q1) ⊆ bn(Q) ∪ bv(Q)

bn(Q2) ∪ bv(Q2) ⊆ bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q1) ∪ bv(Q1)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(bn(Q2) ∪ bv(Q2)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii) By hypothesis σ is a closed substitution.

(iv) By definition since Q is under a lock . . . si . . . in P0 if and only if Q1 and
Q2 are also in the scope of a lock . . . si . . . in P0, thus condition (iii) is
satisfied by hypothesis.

(v) C0
Hyp.

⊇ JQ1 | Q2KρHιφλ
Def.
= JQ1KρHιφλ ∪ JQ2KρHιφλ

(vi) Let message(ξ,K,L) ∈ H. By hypothesis, we know that message(ξσ,Kσ,Lσ)
is derivable from C0.

(vii) By hypothesis attacker(φσ, attch[]) ∈ F0

We can thus apply our induction hypothesis to infer that

(ρσ, φσ, ισ, λ) ` Q1 and (ρσ, φσ, ισ, λ) ` Q2

But then according to our type system

(ρσ, φσ, ισ, λ) ` Q1 (ρσ, φσ, ισ, λ) ` Q2
τpar

(ρσ, φσ, ισ, λ) ` Q1 | Q2 (= Q)

54

Case Q =!Q′. In that case, λ = ∅ because no replication can occur under a
lock. We will show that (Q′, σ, ρ,H, ι, φ, λ) satisfy conditions (i)-(vii)

(i) By definition, fv(Q′) = fv(Q) and fn(Q′) = fn(Q). Thus if ρ binds the free
names and variables of Q, it also binds the free names and variables of Q′.

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii) By hypothesis σ is a closed substitution.

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is also
under a lock . . . si . . . in P0, thus condition (iii) is satisfied by hypothesis.

(v) C0
Hyp.

⊇ J!Q′KρHιφλ
Def.
= JQ′KρHιφλ

(vi) Let message(ξ,K,L) ∈ H. By hypothesis, we know that message(ξσ,Kσ,Lσ)
is derivable from C0.

(vii) By hypothesis attacker(φσ, attch[]) ∈ F0

We can thus apply our induction hypothesis to infer that

(ρσ, φσ, ισ, λ) ` Q′

But then according to our type system

(ρσ, φσ, ισ, λ) ` Q′
τrepl

(ρσ, φσ, ισ, λ) `!Q′ (= Q)

Case Q = if M = N then Q1 else Q2 with Mρσ = Nρσ. Let θ =
mgu(ρ(M), ρ(N)). Since Mρσ = Nρσ, by definition of a most general uni-
fier, there exists σ′ s.t. σ = θσ′. Let ρ′ = ρθ, H ′ = Hθ, ι′ = ιθ, φ′ = φθ, and
λ′ = λ. We show that (Q1, σ

′, ρ′, H ′, ι′, φ′, λ′) and (Q2, σ, ρ,H, ι, φ, λ) satisfy
conditions (i)-(vii).

(i)
Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆

fn(Q) ∪ fv(Q) ∪ fn(ιθ) ∪ fv(ιθ) ∪ fn(Hθ) ∪ fv(Hθ) ∪ fn(φθ) ∪ fv(φθ)
Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆

fn(Q) ∪ fv(Q) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ)∪
fn({M,N}) ∪ fv({M,N})

Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆
fn(Q) ∪ fv(Q) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ)

Hyp.⇒ fn(Q1) ∪ fv(Q1) ⊆ dom(ρ)
dom(ρ)=dom(ρ′)⇒ fn(Q1) ∪ fv(Q1) ⊆ dom(ρ′)

⇒ ρ′ binds the free names and variables of Q1, ι
′, H ′, φ′

55

Def.⇒ fn(Q2) ∪ fv(Q2) ⊆ fn(Q) ∪ fv(Q)
Hyp.⇒ fn(Q2) ∪ fv(Q2) ⊆ dom(ρ)
⇒ ρ binds the free names and variables of Q2, ι,H, φ

(ii)
Def.⇒ bn(Q1) ∪ bv(Q1) ⊆ bn(Q) ∪ bv(Q)
Def.⇒ (bn(Q1) ∪ bv(Q1)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

dom(ρ)=dom(ρ′)⇒ (bn(Q1) ∪ bv(Q1)) ∩ dom(ρ′) = ∅

Def.⇒ bn(Q2) ∪ bv(Q2) ⊆ bn(Q) ∪ bv(Q)
Def.⇒ (bn(Q2) ∪ bv(Q2)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii)
Hyp.⇒ σ is closed
σ=θσ′

⇒ σ′ is closed

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q1 and Q2 are
under a lock . . . si . . . , so condition (iii) is satisfied by hypothesis because
λ′ = λ.

(v) C0
Hyp.

⊇ Jif M = N then Q1 else Q2KρHιφλ
Def.
= JQ1K(ρθ)(Hθ)(ιθ)(φθ)λ ∪ JQ2KρHιφλ
Def.
= JQ1Kρ′H ′ι′φ′λ′ ∪ JQ2KρHιφλ

(vi) Let message(ξ,K,L) ∈ H ′.
H′=Hθ⇒ message(ξ,K,L) ∈ Hθ
Def.⇒ message(ξ′,K ′, L′) ∈ H ∧ ξ = ξ′θ ∧ K = K ′θ ∧ L = L′θ
Hyp.⇒ message(ξ′σ,K ′σ, L′σ) is derivable from C0
σ=θσ′

⇒ message(ξ′θσ′,K ′θσ′, L′θσ′) is derivable from C0
ξ=ξ′ K=K′θ L=L′θ⇒ message(ξσ′,Kσ′, Lσ′) is derivable from C0

Let message(ξ,K,L) ∈ H. By hypothesis, message(ξσ,Kσ,Lσ) is deriv-
able from C0.

(vii)
Hyp.⇒ attacker(φσ, attch[])
σ=θσ′

⇒ attacker(φθσ′, attch[])
φ′=φθ⇒ attacker(φ′σ′, attch[])

Hyp.⇒ attacker(φσ, attch[])

We can now apply our induction hypothesis to infer that

I.H.⇒ (ρ′σ′, φ′σ′, ι′σ′, λ′) ` Q1

ρ′=ρθ φ′=φθ ι′=ιθ λ′=λ⇒ (ρθσ′, φθσ′, ιθσ′, λ) ` Q1

σ=θσ′

⇒ (ρσ, φσ, ισ, λ) ` Q1

I.H.⇒ (ρσ, φσ, ισ, λ) ` Q2

and thus according to our typing system

Mρσ = Nρσ (ρσ, φσ, ισ, λ) ` Q1 (ρσ, φσ, ισ, λ) ` Q2
τif

(ρσ, φσ, ισ, λ) ` if M = N then Q1 else Q2

56

Case Q = if M = N then Q1 else Q2 with Mρσ 6= Nρσ. We show that
(Q2, σ, ρ,H, ι, φ, λ) satisfy conditions (i)–(vii).

(i)
Def.⇒ fn(Q2) ∪ fv(Q2) ⊆ fn(Q) ∪ fv(Q)
Hyp.⇒ fn(Q2) ∪ fv(Q2) ⊆ dom(ρ)
⇒ ρ binds the free names and variables of Q2, ι,H, φ

(ii)
Def.⇒ bn(Q2) ∪ bv(Q2) ⊆ bn(Q) ∪ bv(Q)
Def.⇒ (bn(Q2) ∪ bv(Q2)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii) By hypothesis, σ is closed.

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q2 are under
a lock . . . si . . . , so condition (iii) is satisfied by hypothesis.

(v) C0
Hyp.

⊇ Jif M = N then Q1 else Q2KρHιφλ
Def.
⊇ JQ2KρHιφλ

(vi) Let message(ξ,K,L) ∈ H. By hypothesis, message(ξσ,Kσ,Lσ) is deriv-
able from C0.

(vii)
Hyp.⇒ attacker(φσ, attch[])

We can now apply our induction hypothesis to infer that

(ρσ, φσ, ισ, λ) ` Q2

and thus according to our typing system

Mρσ 6= Nρσ (ρσ, φσ, ισ, λ) ` Q2
τif

(ρσ, φσ, ισ, λ) ` if M = N then Q1 else Q2

Case Q = let x = g(M1, . . . ,Mk) in Q1 else Q2. Let M be a pattern
such that g(ρσ(M1), . . . , ρσ(Mk)) → M using g(p1, . . . , pk) → p ∈ def(g) with
fv({p1, . . . , pk, p}) = {x1, . . . , x`}. Let σ′ = {xi 7→ yi | 1 ≤ i ≤ `} with y1, . . . , y`
fresh, and θ = mgu(g(ρ(M1), . . . , ρ(Mk)), g(p1σ

′, . . . , pkσ
′)). By definition of

a most general unifier, there exists σ′′ s.t. σ = θσ′′ and M = pσ′θ. Let
ρ′ = ρθ ∪ {x 7→ pσ′θ} ∪ {yi 7→ yi | 1 ≤ i ≤ `}, H ′ = Hθ, ι′ = ιθ, φ′ = φθ, and
λ′ = λ. We show that (Q1, σ

′′, ρ′, H ′, ι′, φ′, λ′) and (Q2, σ, ρ,H, ι, φ, λ) satisfy
conditions (i)-(vii).

57

(i)
Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆

fn(Q) ∪ fv(Q) ∪ {x} ∪ fn(ιθ) ∪ fv(ιθ) ∪ fn(Hθ) ∪ fv(Hθ) ∪ fn(φθ) ∪ fv(φθ)
Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆

fn(Q) ∪ fv(Q) ∪ {x} ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪
fn(φ) ∪ fv(φ) ∪ fn({M1, . . . ,Mk}) ∪ fv({M1, . . . ,Mk}) ∪ {yi | 1 ≤ i ≤ `}

Def.⇒ fn(Q1) ∪ fv(Q1) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′) ∪ fv(φ′) ⊆
fn(Q) ∪ fv(Q) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ)

Hyp.⇒ fn(Q1) ∪ fv(Q1) ⊆ dom(ρ) ∪ {x} ∪ {yi | 1 ≤ i ≤ `}
dom(ρ′)=dom(ρ)∪{x}∪{yi|1≤i≤`}⇒ fn(Q1) ∪ fv(Q1) ⊆ dom(ρ′)

⇒ ρ′ binds the free names and variables of Q1, ι
′, H ′, φ′

Def.⇒ fn(Q2) ∪ fv(Q2) ⊆ fn(Q) ∪ fv(Q)
Hyp.⇒ fn(Q2) ∪ fv(Q2) ⊆ dom(ρ)
⇒ ρ binds the free names and variables of Q2, ι,H, φ

(ii)
Def.⇒ bn(Q1) ∪ bv(Q1) ⊆ bn(Q) ∪ bv(Q)
Def.⇒ (bn(Q1) ∪ bv(Q1)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

x 6∈ bv(Q1)
y1, . . . , y` fresh

⇒ (bn(Q1) ∪ bv(Q1)) ∩ dom(ρ′) = ∅

Def.⇒ bn(Q2) ∪ bv(Q2) ⊆ bn(Q) ∪ bv(Q)
Def.⇒ (bn(Q2) ∪ bv(Q2)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii)
Hyp.⇒ σ is closed
σ=θσ′′

⇒ σ′′ is closed

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q1 and Q2 are
under a lock . . . si . . . , so condition (iii) is satisfied by hypothesis because
λ′ = λ.

(v) C0
Hyp.

⊇ Jlet x = g(M1, . . . ,Mk) in Q1 else Q2KρHιφλ
Def.
= JQ1Kρ′H ′ι′φ′λ′ ∪ JQ2KρHιφλ

(vi) Let message(ξ,K,L) ∈ H ′.
H′=Hθ⇒ message(ξ,K,L) ∈ Hθ
Def.⇒ message(ξ′,K ′, L′) ∈ H ∧ ξ = ξ′θ ∧ K = K ′θ ∧ L = L′θ
Hyp.⇒ message(ξ′σ,K ′σ, L′σ) is derivable from C0
σ=θσ′′

⇒ message(ξ′θσ′′,K ′θσ′′, L′θσ′′) is derivable from C0
ξ=ξ′ K=K′θ L=L′θ⇒ message(ξσ′′,Kσ′′, Lσ′′) is derivable from C0

Let message(ξ,K,L) ∈ H. By hypothesis, message(ξσ,Kσ,Lσ) is deriv-
able from C0.

(vii)
Hyp.⇒ attacker(φσ, attch[])
σ=θσ′′

⇒ attacker(φθσ′′, attch[])
φ′=φθ⇒ attacker(φ′σ′′, attch[])

Hyp.⇒ attacker(φσ, attch[])

58

We can now apply our induction hypothesis to infer that

I.H.⇒ (ρ′σ′′, φ′σ′′, ι′σ′′, λ′) ` Q1
Def.⇒ (ρθ ∪ {x 7→ pσ′θ} ∪ {yi 7→ yi | 1 ≤ i ≤ `}, φ′σ′′, ι′σ′′, λ′) ` Q1

y1, . . . , y` fresh
Lem. 5.2
⇒ (ρθ ∪ {x 7→ pσ′θ}, φ′σ′′, ι′σ′′, λ′) ` Q1

M=pσ′θ⇒ (ρθσ′′ ∪ {x 7→M}, φ′σ′′, ι′σ′′, λ′) ` Q1

φ′=φθ ι′=ιθ λ′=λ⇒ (ρθσ′′ ∪ {x 7→M}, φθσ′′, ιθσ′′, λ) ` Q1

σ=θσ′′

⇒ (ρσ ∪ {x 7→M}, φσ, ισ, λ) ` Q1

I.H.⇒ (ρσ, φσ, ισ, λ) ` Q2

and thus according to our typing system

∀M (g(ρσ(M1), . . . , ρσ(Mk))→M)⇒ (ρσ ∪ {x 7→M}, φσ, ισ, λ) ` Q1 (ρσ, φσ, ισ, λ) ` Q2
τif

(ρσ, φσ, ισ, λ) ` let x = g(M1, . . . ,Mk) in Q1 else Q2

Case Q = new a;Q′. Note that Q being a subprocess of P0 implies that
a ∈ bn(P ′0). Let ρ′ = ρ ∪ {a 7→ a[ι]}. We first show that (Q′, σ, ρ′, H, ι, φ, λ)
satisfy conditions (i)-(vii)

(i)
Def.⇒ fv(Q′) ∪ fn(Q′) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ) =

fv(Q) ∪ fn(Q) ∪ {a} ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ)
Hyp.⇒ fv(Q′) ∪ fn(Q′) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ) ⊆

dom(ρ) ∪ {a}
dom(ρ′)=dom(ρ)∪{a}⇒ fv(Q′) ∪ fn(Q′) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪ fn(φ) ∪ fv(φ) ⊆ dom(ρ′)

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) ⊂ bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊂ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

a6∈bn(Q′)⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii) By hypothesis, σ is a closed substitution.

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is under a
lock . . . si . . . , so condition (iii) is satisfied by hypothesis.

(v) C0
Hyp.

⊇ Jnew a;Q′KρHιφλ
Def.
= JQ′K(ρ ∪ {a 7→ a[ι]})Hιφλ

ρ′=ρ∪{a7→a[ι]}
= JQ′Kρ′Hιφλ

(vi) Let message(ξ,K,L) ∈ H. By hypothesis message(ξσ,Kσ,Lσ) ∈ H is
derivable from C0.

(vii) By hypothesis attacker(φσ, attch[]) ∈ F0.

We can thus apply our induction hypothesis to infer that

I.H.⇒ ((ρ′σ, φσ, ισ, λ) ` Q′
ρ′=ρ∪{a7→a[ι]}⇒ ((ρ ∪ {a 7→ a[ι]})σ, φσ, ισ, λ) ` Q′
a6∈dom(σ)⇒ (ρσ ∪ {a 7→ a[ι]}, φσ, ισ, λ) ` Q′

59

But then according to our typing system

a ∈ bn(P ′0) (ρσ ∪ {a 7→ a[ι]}, φσ, ισ, λ) ` Q′
τnewP

(ρσ, φσ, ισ, λ) ` new a;Q′ (= Q)

Case Q = out(K,L);Q′. We first prove that (Q′, σ, ρ,H, ι, φ, λ) satisfy
conditions (i)-(vii).

(i) By definition fn(Q′) ⊆ fn(Q) and fv(Q′) ⊆ fv(Q). Thus since by hypothesis
ρ binds the free names and variables of Q, it also binds the free names and
variables of Q′.

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) ⊆ bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

(iii) By hypothesis, σ is a closed substitution.

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is under a
lock . . . si . . . in P0. Thus Q′ and λ satisfy (iii) because by hypothesis Q′

and λ satisfy it.

(v) C0
Hyp.

⊇ Jout(K,L);Q′KρHιφλ
Def.
⊇ JQ′KρHιφλ

(vi) Let message(ξ,K,L) ∈ H. By hypothesis, we know that message(ξσ,Kσ,Lσ)
is derivable from C0.

(vii) By hypothesis, attacker(φσ, attch[]) ∈ F0.

We can thus apply our induction hypothesis to infer that (ρσ, φσ, ισ, λ) ` Q′.
Moreover, by definition of our translation

JQKρHιφλ = {H ⇒ message(φ, ρ(K), ρ(L))} ∪ JQ′KρHιφλ.

with H and σ satisfying condition (vi), i.e. Hσ is derivable from C0. So by
resolution we can thus derive

message(φσ, ρ(K)σ, ρ(L)σ)
fn(Q)⊆dom(ρ)

= message(φσ, (ρσ)(K), (ρσ)(L))

Finally, according to our typing system

message(φσ, (ρσ)(K), (ρσ)(L)) ∈ F0 (ρσ, φσ, ισ, λ) ` Q′
τout

(ρσ, φσ, ισ, λ) ` out(K,L);Q′ (= Q)

Case Q = in(K,x);Q′. Let ψ be a state such that φσ ≤ ψ and ψ = ψ[j 7→
φσ(j) | j ∈ λ]. Let L be a pattern such that message(ψ, (ρσ)(K), L) ∈ F0. Let
ρ′ = ρ∪{x 7→ x}∪{vsj 7→ vsj | j 6∈ λ}, σ′ = σ∪{x 7→ L}∪{vsj 7→ ψ(j) | j 6∈ λ},
ι′ = x :: ι, φ′ = φ[j 7→ vsj | j 6∈ λ], H ′ = H ∧ message(φ′, ρ(K), x), and
λ′ = λ, for vs1, . . . , vsn fresh. We show that (Q′, σ′, ρ′, H ′, ι′, φ′, λ′) satisfy
conditions (i)-(vii).

60

(i)
Def.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(φ′) ∪ fn(φ′) ⊆

fv(Q) ∪ {x} ∪ fn(Q) ∪ fv(ι) ∪ fn(ι) ∪ fv(H) ∪ fn(H) ∪
fv(φ) ∪ fn(φ) ∪ {vsj | j 6∈ λ}

Hyp.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(φ′) ∪ fn(φ′) ⊆
dom(ρ) ∪ {x} ∪ {vsj | j 6∈ λ}

dom(ρ′)⊇dom(ρ)∪{x}∪{vsj |j 6∈λ}⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪
fv(φ′) ∪ fn(φ′) ⊆ dom(ρ′)

⇒ ρ′ binds the free names and variables of Q′, ι′, H ′, φ′

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) ⊆ bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

x 6∈ bv(Q′)
vs1, . . . , vsn fresh

⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii)
Hyp.⇒ L, φ(1), . . . , ψ(n) are ground
Def.⇒ {x 7→ L} ∪ {vsj 7→ ψ(j) | j 6∈ λ} is closed

σ closed⇒ σ ∪ {x 7→ L} ∪ {vsj 7→ ψ(j) | λ} is closed
σ′=σ∪{x 7→L}∪{vsj 7→ψ(j)|j 6∈λ}⇒ σ′ is closed

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is under a
lock . . . si . . . , so condition (iii) is satisfied by hypothesis.

(v) C0
Hyp.

⊇ Jin(K,x);Q′KρHιφλ
Hyp.
= JQ′K(ρ ∪ {x 7→ x} ∪ {vsj 7→ vsj | j 6∈ λ})(H ∧

message(φ′, ρ(K), x))(x :: ι)φ′λ
Def.
= JQ′Kρ′H ′ι′φ′λ′

(vi) Let message(ξ′,K ′, L′) ∈ H ′. Then either message(ξ′,K ′, L′) ∈ H or
message(ξ′,K ′, L′) = message(φ′, ρ(K), x).

If message(ξ′,K ′, L′) ∈ H.

Hyp.⇒ message(ξ′σ,K ′σ, L′σ) is derivable from C0
x 6∈ fn(ξ′) ∪ fn(K′) ∪ fn(L′)

vs1, . . . , vsn fresh
⇒ message(ξ′σ′,K ′σ′, L′σ′) is derivable from C0

If message(ξ′,K ′, L′) = message(φ′, ρ(K), x).

Hyp.⇒ message(ψ, ρ(K)σ, L) is derivable from C0
x 6∈ fn(ρ(K))

vs1, . . . , vsn fresh
⇒ message(ψ, ρ(K)σ′, L) is derivable from C0

σ′(x)=L⇒ message(ψ, ρ(K)σ′, xσ′) is derivable from C0
ψ=φ′σ′

⇒ message(φ′σ′, ρ(K)σ′, xσ′) is derivable from C0
message(ξ′,K′,L′)=message(φ′,ρ(K),x)⇒ message(ξ′σ′,K ′σ′, L′σ′) is derivable from C0

(vii)
Hyp.⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(ψ, attch[]) ∈ F0

φ′σ′

⇒ attacker(φ′σ′, attch[]) ∈ F0

61

We can thus apply our induction hypothesis to infer that

I.H.⇒ (ρ′σ′, φ′σ′, ι′σ′, λ′) ` Q′
ψ=φ′σ′

⇒ (ρ′σ′, ψ, ι′σ′, λ′) ` Q′
ρ′σ′=ρσ′∪{x 7→L}⇒ (ρσ′ ∪ {x 7→ L}, ψ, ι′σ′, λ′) ` Q′

x 6∈ρ⇒ (ρσ ∪ {x 7→ L}, ψ, ι′σ′, λ′) ` Q′
ι′σ′=L::ισ∧λ′=λ⇒ (ρσ ∪ {x 7→ L}, ψ, L :: ισ, λ) ` Q′

Thus according to our typing system

∀ψ∀L (φσ ≤ ψ ∧ ψ = ψ[j 7→ φσ(j) | j ∈ λ] ∧message(ψ, (ρσ)(K), L) ∈ F0 ⇒
(ρσ ∪ {x 7→ L}, ψ, L :: ισ, λ) ` Q′)

τin
(ρσ, φσ, ισ, λ) ` in(K,x);Q′ (= Q)

Case Q = lock sj1 , . . . , sjm ;Q′ . Let ψ such that φσ ≤ ψ and ψ = ψ[j 7→
φσ(j) | j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ vsj | j 6∈ λ}, σ′ = σ ∪ {vsj 7→ ψ(j) |
j 6∈ λ}, φ′ = φ[j 7→ vsj | j 6∈ λ], H ′ = H, ι′ = ι, λ′ = λ ∪ {j1, . . . , jm},
for some vs1, . . . , vsn fresh. We will show that (Q′, σ′, ρ′, H ′, ι′, φ′, λ′) satisfy
conditions (i)-(vii).

(i)
Def.⇒ fn(Q′) ∪ fv(Q′) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪ fn(φ′)∪

fv(φ′) ⊆ fn(Q) ∪ fv(Q) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H)∪
fn(φ) ∪ fv(φ) ∪ {vsj | j 6∈ λ}

Hyp.⇒ fn(Q′) ∪ fv(Q′) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′)∪
fn(φ′) ∪ fv(φ′) ⊆ dom(ρ) ∪ {vsj | j 6∈ λ}

ρ′=dom(ρ)∪{vsj 7→vsj |j 6∈λ}⇒ fn(Q′) ∪ fv(Q′) ⊆ dom(ρ′)

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

vs1,...,vsn 6∈bv(Q′)⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii)
Hyp.⇒ ψ(1), . . . , ψ(n) are ground
Def.⇒ {vsj 7→ ψ(j) | j 6∈ λ} is closed

σ closed⇒ σ ∪ {vsj 7→ ψ(j) | j 6∈ λ} is closed
σ′=σ∪{vsj 7→ψ(j)|j 6∈λ}⇒ σ′ is closed

(iv) By definitionQ′ is under a lock . . . s . . . if and only if either s ∈ {sj1 , . . . , sjm}
or Q is under a lock . . . s . . . , so condition (iii) is satisfied by construction
of λ′.

(v) C0
Hyp.

⊇ Jlock sj1 , . . . , sjm ;Q′KρHιφλ
Def.
= JQ′K(ρ ∪ {vsj 7→ vsj | j 6∈ λ})Hι

(φ[j 7→ vsj | j 6∈ λ = false])(λ ∪ {j1, . . . , jm})
Def.
= JQ′Kρ′H ′ι′φ′λ′

62

(vi) Let message(ξ,K,L) ∈ H.

Hyp.⇒ message(ξσ,Kσ,Lσ) is derivable from C0
vs1,...,vsn 6∈fv(ξ)∪fv(K)∪fv(L)⇒ message(ξσ′,Kσ′, Lσ′) is derivable from C0

(vii)
Hyp.⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(ψ, attch[]) ∈ F0

ψ=φ′σ′

⇒ attacker(φ′σ′, attch[]) ∈ F0

We can thus apply our induction hypothesis to infer that

I.H⇒ (ρ′σ′, φ′σ′, ι′σ′, λ′) ` Q′
Def.⇒ (ρσ ∪ {vsj 7→ ψ(j) | j 6∈ λ}, ψ, ισ, λ ∪ {j1, . . . , jm}) ` Q′

Lem. 5⇒ (ρσ, ψ, ισ, λ ∪ {j1, . . . , jm}) ` Q′{vsj 7→ ψ(j) | j 6∈ λ}
vs1,...,vsn 6∈fv(Q′)⇒ (ρσ, ψ, ισ, λ ∪ {j1, . . . , jm}) ` Q′

But then according to our typing system

∀ψ (φσ ≤ ψ ∧ ψ = ψ[j 7→ φσ(j) | j ∈ λ]) ⇒ (ρσ, ψ, ισ, λ ∪ {j1, . . . , jm}) ` Q′
τlock

(ρσ, φσ, ισ, λ) ` lock sj1 , . . . , sjm ;Q′ (= Q)

Case Q = unlock sj1 , . . . , sjm ;Q′. Let ψ such that φσ ≤ ψ and ψ = ψ[j 7→
φσ(j) | j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ vsj | j 6∈ λ}, σ′ = σ ∪ {vsj 7→ ψ(j) |
j 6∈ λ}, φ′ = φ[j 7→ vsj | j 6∈ λ], H ′ = H, ι′ = ι, λ′ = λ r {j1, . . . , jm},
for some vs1, . . . , vsn fresh. We will show that (Q′, σ′, ρ′, H ′, ι′, φ′, λ′) satisfy
conditions (i)-(vii).

(i)
Def.⇒ fn(Q′) ∪ fv(Q′) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′) ∪

fn(φ′) ∪ fv(φ′) ⊆ fn(Q) ∪ fv(Q) ∪ fn(ι) ∪ fv(ι) ∪ fn(H) ∪ fv(H) ∪
fn(φ) ∪ fv(φ) ∪ {vsj | j 6∈ λ}

Hyp.⇒ fn(Q′) ∪ fv(Q′) ∪ fn(ι′) ∪ fv(ι′) ∪ fn(H ′) ∪ fv(H ′)∪
fn(φ′) ∪ fv(φ′) ⊆ dom(ρ) ∪ {vsj | j 6∈ λ}

ρ′=dom(ρ)∪{vsj 7→vsj |j 6∈λ}⇒ fn(Q′) ∪ fv(Q′) ⊆ dom(ρ′)

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

vs1,...,vsn 6∈bv(Q′)⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii)
Hyp.⇒ ψ(1), . . . , ψ(n) are ground
Def.⇒ {vsj 7→ ψ(j) | j 6∈ λ} is closed

σ closed⇒ σ ∪ {vsj 7→ ψ(j) | j 6∈ λ} is closed
σ′=σ∪{vsj 7→ψ(j)|k 6∈λ}⇒ σ′ is closed

(iv) By definition Q′ is not under a lock . . . s . . . if and only if either s ∈
{sj1 , . . . , sjm} or Q is not under a lock . . . s . . . , so condition (iii) is satisfied
by construction of λ′.

63

(v) C0
Hyp.

⊇ Junlock sj1 , . . . , sjm ;Q′KρHιφλ
Def.
= JQ′K(ρ ∪ {vsj 7→ vsj | j 6∈ λ})Hι

(φ[j 7→ vsj | j 6∈ λ])(λr {j1, . . . , jm})
Def.
= JQ′Kρ′H ′ι′φ′λ′

(vi) Let message(ξ,K,L) ∈ H.
Hyp.⇒ message(ξσ,Kσ,Lσ) is derivable from C0

vs1,...,vsn 6∈fv(ξ)∪fv(K)∪fv(L)⇒ message(ξσ′,Kσ′, Lσ′) is derivable from C0

(vii)
Hyp.⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(ψ, attch[]) ∈ F0

ψ=φ′σ′

⇒ attacker(φ′σ′, attch[]) ∈ F0

We can thus apply our induction hypothesis to infer that

I.H⇒ (ρ′σ′, φ′σ′, ι′σ′, λ′) ` Q′
Def.⇒ (ρσ ∪ {vsj 7→ ψ()j | j 6∈ λ}, ψ, ισ, λr {j1, . . . , jm}) ` Q′

Lem. 5⇒ (ρσ, ψ, ισ, λr {j1, . . . , jm}) ` Q′{vsj 7→ ψ(j) | j 6∈ λ}
vs1,...,vsn 6∈fv(Q′)⇒ (ρσ, ψ, ισ, λr {j1, . . . , jm}) ` Q′

But then according to our typing system

∀ψ (φσ ≤ ψ ∧ ψ = ψ[j 7→ φσ(j) | j ∈ λ]) ⇒ (ρσ, ψ, ισ, λr {j1, . . . , jm}) ` Q′
τunlock

(ρσ, φσ, ισ, λ) ` unlock sj1 , . . . , sjm ;Q′ (= Q)

Case Q = sj1 , . . . , sjm := K1, . . . ,Km;Q′ Let ψ such that φσ ≤ ψ and
ψ = ψ[j 7→ φσ(j) | j ∈ λ]. Let ρ′ = ρ ∪ {vsj 7→ vsj | j 6∈ λ}, σ′ = σ ∪ {vsj 7→
ψ(j) | j 6∈ λ}, φ′ = φ[j 7→ vsj | j 6∈ λ], H ′ = H, ι′ = ι, λ′ = λ, and
φ′′ = φ′[jk 7→ ρ(Mk) | 1 ≤ k ≤ m], for some vs1, . . . , vsn fresh. We will show
that (Q′, σ′, ρ′, H ′, ι′, φ′′, λ′) satisfy conditions (i)-(vii). But first, we will show
that φ′σ′ = ψ ≤ ψ[jk 7→ ρσ(Mk) | 1 ≤ k ≤ m] = φ′′σ′. By definition of our
translation

Jsj1 , . . . , sjm := K1, . . . ,Km;Q′KρHφιλ =
JQ′K(ρ ∪ {vsj 7→ vsj | j 6∈ λ}Hιφ′′λ
∪{H ∧message(φ′, wc, wm)→ message{φ′′, wc, wm}} (= C1)

∪{H ∧ attacker(φ′, wm)→ message{φ′′, wm}} (= C2)

for some wc,wm fresh.

• Hyp⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(ψ, attch[]) ∈ F0

• Let message(ψ,K ′, L′) ∈ F0.
Hyp.⇒ Hσ derivable from C0 ∧message(ψ,K ′, L′) ∈ F0

vs1,...,vsn fresh⇒ Hσ′ derivable from C0 ∧message(ψ,K ′, L′) ∈ F0

ψ=φ′σ′

⇒ Hσ′ derivable from C0 ∧message(φ′σ′,K ′, L′) ∈ F0
C1∈C0⇒ message(φ′′σ′,K ′, L′) ∈ F0

ψ[jk 7→(ρσ)(MK)|1≤k≤m]=φ′′σ′

⇒ message(ψ[jk 7→ (ρσ)(MK) | 1 ≤ k ≤ m],K ′, L′) ∈ F0

64

• Let attacker(ψ,K ′) ∈ F0.

Hyp.⇒ Hσ derivable from C0 ∧ attacker(ψ,K ′) ∈ F0
vs1,...,vsn fresh⇒ Hσ′ derivable from C0 ∧ attacker(ψ,K ′) ∈ F0

ψ=φ′σ′

⇒ Hσ′ derivable from C0 ∧ attacker(φ′σ′,K ′) ∈ F0
C2∈C0⇒ attacker(φ′′σ′,K ′) ∈ F0

ψ[jk 7→(ρσ)(MK)|1≤k≤m]=φ′′σ′

⇒ attacker(ψ[jk 7→ (ρσ)(MK) | 1 ≤ k ≤ m],K ′) ∈ F0

⇒ φ′σ′ = ψ ≤ ψ[jk 7→ ρσ(Mk) | 1 ≤ k ≤ m] = φ′′σ′.

We will now show that (Q′, σ′, ρ′, H ′, ι, φ′′, λ′) satisfy conditions (i)-(vii).

(i)
Def.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪

fv(φ′) ∪ fn(φ′) ⊆ fv(Q) ∪ fn(Q) ∪ fv(ι) ∪ fn(ι) ∪ fv(H) ∪ fn(H) ∪
fv(φ) ∪ fn(φ) ∪ {vsj | j 6∈ λ}

Hyp.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪ fv(φ′) ∪
fn(φ′) ⊆ dom(ρ) ∪ {vsj | j 6∈ λ}

ρ′=ρ∪∪{vsj 7→vsj |j 6∈λ}⇒ fv(Q′) ∪ fn(Q′) ⊆ dom(ρ′)

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) = bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) = (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

vs1,...,vsm fresh⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii)
Hyp.⇒ ψ(1), . . . , ψ(n) are ground
Def.⇒ {vsj 7→ ψ(j) | j 6∈ λ} is closed

σ closed⇒ σ ∪ {vsj 7→ ψ(j) | j 6∈ λ} is closed
σ′=σ∪{vsj 7→ψ(j)|j 6∈λ}⇒ σ′ is closed

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is under a
lock . . . si . . . , so condition (iii) is satisfied by hypothesis.

(v) C0
Hyp.

⊇ Jsj1 , . . . sjm := K1, . . . ,Km;Q′KρHιφλ
Def.
⊇ JQ′Kρ′H ′ι′φ′′λ′

(vi) Let message(ξ,K ′, L′) ∈ H ′ = H. By hypothesis message(ξσ,K ′σ, L′σ)
is derivable from C0, and because v1, . . . , vsn are fresh, i.e. not infn()ξ ∪
fn(K ′) ∪ fn(L′), then message(ξσ′,K ′σ′, L′σ′) = message(ξσ,K ′σ, L′σ) is
derivable from C0.

(vii)
Hyp.⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(φ′σ, attch[]) ∈ F0

ψ≤ψ′

⇒ attacker(φ′σ, attch[]) ∈ F0

ψ′=φ′′σ′

⇒ attacker(φ′′σ′, attch[]) ∈ F0

65

We can thus apply our inductive hypothesis to infer that

I.H⇒ (ρ′σ′, φ′′σ′, ι′σ′, λ′) ` Q′
ρ′σ′=ρσ∪{vsj 7→vsj |j 6∈λ}

φ′′σ′=ψ[jk 7→(ρσ)(Kk)|1≤k≤m]
⇒ (ρσ ∪ {vsj 7→ vsj | j 6∈ λ},

ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m], ι′σ′, λ′) ` Q′

Lem. 5⇒ (ρσ, ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m], ι′σ′, λ′) `
Q′{vsj 7→ vsj | j 6∈ λ}

vs1,...,vsm 6∈fv(Q′)⊆dom(ρ)⇒ (ρσ, ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m], ι′σ′, λ′) ` Q′
ι′σ′=ισ λ′=λ⇒ (ρσ, ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m], ισ, λ) ` Q′

But then according to our typing system

∀ψ (φσ ≤ ψ ∧ ψ = ψ[j 7→ φσ(j) | j ∈ λ])⇒
(ψ ≤ ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m] ∧

(ρσ, ψ[jk 7→ (ρσ)(Kk) | 1 ≤ k ≤ m], ισ, λ) ` Q′)
τwrite

(ρσ, φσ, ισ, λ) ` sj1 , . . . , sjm := K1, . . . ,Km;Q′ (= Q)

Case Q = read sj1 , . . . , sjm as x1, . . . , xm;Q′. Let ψ} be a state such that
φσ ≤ ψ and ψ = ψ[j 7→ φσ(j) | j ∈ λ]. Let ρ′ = ρ ∪ {vc 7→ vc, vm 7→
vm} ∪ {xk 7→ φ′(jk) | 1 ≤ k ≤ m} ∪ {vsj 7→ vsj | j 6∈ λ}, σ′ = σ ∪ {vsj 7→ ψ(j) |
j 6∈ λ} ∪ {vc 7→ attch[], vm 7→ attch[]}, ι′ = x1 :: · · · :: xm :: ι, φ′ = φ[j 7→ vsj |
j 6∈ λ], H ′ = H ∧message(φ′, vc, vm), and λ′ = λ, for vc, vm, vs1, . . . , vsn fresh.
We show that (Q′, σ′, ρ′, H ′, ι′, φ′, λ′) satisfy conditions (i)-(vii).

(i)
Def.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪

fv(φ′) ∪ fn(φ′) ⊆ fv(Q) ∪ {x1, . . . , xm} ∪ fn(Q) ∪ fv(ι) ∪
fn(ι) ∪ fv(H) ∪ fn(H) ∪ {vc, vm} ∪ fv(φ) ∪ fn(φ){vsj | j 6∈ λ}

Hyp.⇒ fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪
fn(H ′) ∪ fv(φ′) ∪ fn(φ′) ⊆ dom(ρ) ∪ {x1, . . . , xm} ∪ {vc, vm}

dom(ρ′)=dom(ρ)∪{x1,...,xm}∪{vsj |j 6∈λ}⇒
fv(Q′) ∪ fn(Q′) ∪ fv(ι′) ∪ fn(ι′) ∪ fv(H ′) ∪ fn(H ′) ∪

fv(φ′) ∪ fn(φ′) ⊆ dom(ρ′)

(ii)
Def.⇒ bn(Q′) ∪ bv(Q′) ⊆ bn(Q) ∪ bv(Q)
Hyp.⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ) ⊆ (bn(Q) ∪ bv(Q)) ∩ dom(ρ) = ∅

x1, . . . , xm 6∈ bv(Q′)
vc, vm, vs1, . . . , vsn fresh

⇒ (bn(Q′) ∪ bv(Q′)) ∩ dom(ρ′) = ∅

(iii)
Hyp.⇒ L, ψ(1), . . . , ψ(n), attch[] are ground
Def.⇒ {vsj 7→ ψ(j) | j 6∈ λ} ∪ {vc 7→ attch[], vm 7→ attch[]} is closed

σ closed⇒ σ ∪ {vsj 7→ ψ(j) | j 6∈ λ} ∪ {vc 7→ attch[], vm 7→ attch[]} is closed
σ′ = σ ∪ {vsj 7→ ψ(j) | j 6∈ λ} ∪
{vc 7→ attch[], vm 7→ attch[]}

⇒ σ′ is closed

(iv) By definition Q is under a lock . . . si . . . in P0 if and only if Q′ is under a
lock . . . si . . . , so condition (iii) is satisfied by hypothesis.

66

(v) C0
Hyp.

⊇ Jread sj1 , . . . , sjm as x1, . . . , xm;Q′KρHιφλ
Hyp.
= JQ′K(ρ ∪ {xj 7→ φ′(jk) | 1 ≤ k ≤ m} ∪ {vsj 7→ vsj | j 6∈ λ})

(H ∧message(φ′, vc, vm))(x1 :: · · · :: xm :: ι)φ′λ
Def.
= JQ′Kρ′H ′ι′φ′λ′

(vi) Let message(ξ′,K ′, L′) ∈ H ′. Then either message(ξ′,K ′, L′) ∈ H or
message(ξ′,K ′, L′) = message(φ′, vc, vm).

If message(ξ′,K ′, L′) ∈ H.

Hyp.⇒ message(ξ′σ,K ′σ, L′σ) is derivable from C0
x1, . . . , xm 6∈ fn(ξ′) ∪ fn(K′) ∪ fn(L′)

vc, vm, vs1, . . . , vsn fresh
⇒ message(ξ′σ′,K ′σ′, L′σ′) is derivable from C0

If message(ξ′,K ′, L′) = message(φ′, vc, vm).

Hyp.⇒ attacker(φσ, attch[]) is derivable from C0
Def. of C0⇒ message(φσ, attch[], attch[]) is derivable from C0
φσ≤ψ⇒ message(ψ, attch[], attch[]) is derivable from C0
ψ=φ′σ′

⇒ message(φ′σ′, attch[], attch[]) is derivable from C0
σ′(vc)=attch[]∧σ′(vm)=attch[]⇒ message(ψ, vcσ′, vmσ′) is derivable from C0

message(ξ′,K′,L′)=message(φ′,vc,vm)⇒ message(ξ′σ′,K ′σ′, L′σ′) is derivable from C0

(vii)
Hyp.⇒ attacker(φσ, attch[]) ∈ F0
φσ≤ψ⇒ attacker(ψ, attch[]) ∈ F0

ψ=φ′σ′

⇒ attacker(φ′σ′, attch[]) ∈ F0

We can thus apply our induction hypothesis to infer that

I.H.⇒ (ρ′σ′, φ′σ′, ι′σ′, λ′) ` Q′
{x1, . . . , xm} ∩ dom(ρ) = ∅
vc, vm, vs1, . . . , vsn fresh

Lem. 5.2
⇒ (ρσ ∪ {xk 7→ φ′σ′(jk) | 1 ≤ k ≤ m}, φ′σ′, ι′σ′, λ′) ` Q′

ψ=φ′σ′

⇒ (ρσ ∪ {xk 7→ ψ(jk) | 1 ≤ k ≤ m}, ψ, ι′σ′, λ′) ` Q′
ι′σ′=ψ(j1)::···::ψ(jm)::(ισ) λ′=λ⇒ (ρσ ∪ {xk 7→ ψ(jk) | 1 ≤ k ≤ m},

ψ, ψ(j1) :: · · · :: ψ(jm) :: (ισ), λ) ` Q′

Thus according to our typing system

∀ψ (φσ ≤ ψ ∧ ψ = ψ[j 7→ φσ(j) | j ∈ λ])⇒
(ρσ ∪ {xk 7→ ψ(jk) | 1 ≤ k ≤ m}, ψ, (ψ(j1) :: · · · :: ψ(jm) :: (ισ)), λ) ` Q

τread
(ρσ, φσ, ι, λ) ` read sj1 , . . . , sjm as x1, . . . , xm;Q

To conclude the proof of Lemma 2 we then need to show that ρ = E0, σ s.t.
dom(σ) = ∅, H = true, ι = [], φ = E0(S0) and ∅ satisfy conditions (i)-(vii).

(i) Since by hypotheses fv(P ′0) = ∅ and fn(P ′0) ⊆ dom(E0) by construction, ρ
binds the free names and variables of P0, ι, H and φ.

67

(ii) By construction, dom(E0) = fn(P ′0)∪cells(P ′0)∪{attch}, and by hypothesis
bn(P ′0) ∩ fn(P ′0) = ∅. Thus (bn(P0) ∪ bv(P0)) ∩ dom(E0) = ∅.

(iii) By definition σ is a closed substitution.

(iv) P0 is not under any lock in P0, thus ∅ satisfies condition (iii).

(v) By definition C0 ⊇ JP0KρHιφλ.

(vi) by definition Hσ = true, and thus Hσ can trivially be derived from C0.

(vii) By construction, attacker(E0(S0), attch[]) ∈ C0. So in particular, we have
that attacker(φσ, attch[]) ∈ F0.

Thus, P0, ρ, σ, H, ι, φ and ∅ satisfy the conditions of our induction result
according to which (E0, E0(S0), [], ∅) ` P0.

B.4 Proof of Lemma 3: Subject Reduction

Lemma 3 (Subject reduction). Let (E ,S,Q) → (F , T ,R) be a valid instru-
mented transition such that no [s 7→ M] occurs in Q, names and variables are
bound at most once in Q, and cells(Q) ⊆ {s1, . . . , sn}. If (E , E(S), E(ı), λ) ` Q
for all (Q, ı, λ) ∈ Q, then (F ,F(T),F(), ν) ` R for all (R, , ν) ∈ R.

Proof. We prove this by case analysis on the rule R that fired the transition
(E ,S,Q) → (F , T ,R).

Case R = Red Nil. In this case, F = E , T = S, Q = Q′ ∪ {(0, ı, λ)}, and
R = Q′. Let (R, , ν) ∈ R.

Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

Case R = Red Repl. In this case, F = E , T = S, Q = Q′∪{(!Q, ı, λ)}, and
R = Q ∪ {(Q, ı, λ)}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) =
(Q, ı, λ).

If (R, , ν) ∈ Q.
Hyp.⇒ (E , E(S), E(), ν) ` R

F=E T=S⇒ (F ,F(T),F(), ν) ` R
If (Q, , ν) = (R, ı, λ).

Hyp.⇒ (E , E(S), E(ı), λ) `!Q
τrepl⇒ (E , E(S), E(ı), λ) ` Q

F=E T=S =ı ν=λ R=Q⇒ (F ,F(T),F(), ν) ` R

Case R = Red Par. In this case, F = E , T = S, Q = Q′∪{(Q1 | Q2, ı, λ)},
and R = Q′ ∪{(Q1, ı, λ), (Q2, ı, λ)}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′
or (R, , ν) ∈ {(Q1, ı, λ), (Q2, ı, λ)}.

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

68

If (R, , ν) = (Q1, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` Q1 | Q2
τpar⇒ (E , E(S), E(ı), λ) ` Q1

F=E T=S =ı ν=λ R=Q1⇒ (F ,F(T),F(), ν) ` R
If (R, , ν) = (Q2, ı, λ).

Hyp.⇒ (E , E(S), E(ı), λ) ` Q1 | Q2
τpar⇒ (E , E(S), E(ı), λ) ` Q2

F=E T=S =ı ν=λ R=Q2⇒ (F ,F(T),F(), ν) ` R

Case R = Red New 1. In this case, F = E ∪ {a′ 7→ a[E(ı)]} where
a′ is fresh, a ∈ bn(P ′0), T = S, Q = Q′ ∪ {(new a;Q, ı, λ)}, and R = Q′ ∪
{(Q{a′/a}, ı, λ)}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) =
(Q{a′/a}, ı, λ).

If (R, , ν) ∈ Q′.
Hyp.⇒ (E , E(S), E(), ν) ` R
a′ fresh⇒ (E ,F(S),F(), ν) ` R
a6∈fn(R)⇒ (E ,F(S),F(), ν) ` R{a′/a}
Lem. 5.2⇒ (F ,F(S),F(), ν) ` R

If (R, , ν) = (Q{a′/a}, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` new a;Q′
τnewP⇒ (E ∪ {a 7→ a[E(ı)]}, E(S), E(ı), λ) ` Q′
a′ fresh⇒ (E ∪ {a 7→ a[E(ı)]},F(S),F(ı), λ) ` Q′

a′ fresh, α-renaming⇒ (E ∪ {a′ 7→ a[E(ı)]},F(S),F(ı), λ) ` Q′{a′/a}
F=E∪{a′ 7→a[E(ı)]}⇒ (F ,F(S),F(ı), λ) ` Q′{a′/a}

T =S =ı ν=λ R=Q′{a′/a}⇒ (F ,F(T),F(), ν) ` Q′{a′/a}

Case R = Red New 2. In this case, F = E ∪{a′ 7→ attn[]} where a′ fresh,
a 6∈ bn(P ′0), T = S, Q = Q′ ∪{(new a;Q, ı, λ)}, and R = Q′ ∪{(Q{a′/a}, ı, λ)}.
Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) = (Q{a′/a}, ı, λ).

If (R, , ν) ∈ Q′.
Hyp.⇒ (E , E(S), E(), ν) ` R
a′ fresh⇒ (E ,F(S),F(), ν) ` R
a6∈fn(R)⇒ (E ,F(S),F(), ν) ` R{a′/a}
Lem. 5.2⇒ (F ,F(S),F(), ν) ` R

If (R, , ν) = (Q{a′/a}, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` new a;Q′
τnewP⇒ (E ∪ {a 7→ attn[]}, E(S), E(ı), λ) ` Q′
a′ fresh⇒ (E ∪ {a 7→ attn[]},F(S),F(ı), λ) ` Q′

a′ fresh, α-renaming⇒ (E ∪ {a′ 7→ attn[]},F(S),F(ı), λ) ` Q′{a′/a}
F=E∪{a′ 7→attn[]}⇒ (F ,F(S),F(ı), λ) ` Q′{a′/a}

T =S =ı ν=λ R=Q′{a′/a}⇒ (F ,F(T),F(), ν) ` Q′{a′/a}

Case R = Red Destr 1. In this case, F = E , T = S, g(M1, . . . ,Mn) →
M , Q = Q′ ∪ {(let x = g(M1, . . . ,Mn) in Q1 else Q2, ı, λ)}, and R = Q′ ∪

69

{(Q1{M/x}, ı, λ)}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) =
(Q1{M/x}, ı, λ).

If (R, , ν) ∈ Q′. First note that g(M1, . . . ,Mn)→M , implies that
g(E(M1), . . . , E(Mk))→ E(M) because the Mis only contain variables and con-
structors.

Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q1{M/x}, ı, λ). Note first that g(E(M1), . . . , E(Mn))→ E(M)
because the Mis only contain variables and constructors.

Hyp.⇒ (E , E(S), E(ı), λ) ` let x = g(M1, . . . ,Mn) in Q1 else Q2
τlet⇒ (E ∪ {x 7→ E(M)}, E(S), E(ı), λ) ` Q1

Lem. 5.2⇒ (E , E(S), E(ı), λ) ` Q1{M/x}
F=E T=S =ı ν=λ R=Q1{M/x}⇒ (F ,F(T),F(), ν) ` R

Case R = Red Destr 2. In this case, F = E , T = S, for all M ,
g(M1, . . . ,Mn) 6→ M , Q = Q′ ∪ {(let x = g(M1, . . . ,Mn) in Q1 else Q2, ı, λ)},
and R = Q′ ∪ {(Q2, ı, λ)}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or
(R, , ν) = (Q2, ı, λ).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q2, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` let x = g(M1, . . . ,Mn) in

Q1 else Q2
τlet⇒ (E , E(S), E(ı), λ) ` Q2

F=E T=S =ı ν=λ R=Q2⇒ (F ,F(T),F(), ν) ` R

Case R = Red Cond 1. In this case, F = E , T = S, Q = Q′ ∪ {(if M =
M then Q1 else Q2, ı, λ)}, and R = Q′ ∪ {(Q1, ı, λ)}. Let (R, , ν) ∈ R, then
either (R, , ν) ∈ Q′ or (R, , ν) = (Q1, ı, λ).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q1, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` if M = M then Q1 else Q2
τif⇒ (E , E(S), E(ı), λ) ` Q1

F=E T=S =ı ν=λ R=Q1⇒ (F ,F(T),F(), ν) ` R

Case R = Red Cond 2. In this case, F = E , T = S, Q = Q′ ∪ {(if M =
N then Q1 else Q2, ı, λ)}, and R = Q′ ∪ {(Q2, ı, λ)}. Let (R, , ν) ∈ R, then
either (R, , ν) ∈ Q′ or (R, , ν) = (Q2, ı, λ).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q2, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` if M = N then Q1 else Q2
τif⇒ (E , E(S), E(ı), λ) ` Q2

F=E T=S =ı ν=λ R=Q2⇒ (F ,F(T),F(), ν) ` R

Case R = Red I/O. In this case, F = E , T = S,
Q = Q′ ∪ {(out(M,N);Q1, ı1, λ1), (in(M,x);Q2, ı2, λ2)}, and

70

R = Q′ ∪ {(Q1, ı1, λ1), (Q2{N/x}, (N :: ı2), λ2)}.
Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or
(R, , ν) ∈ {(Q1, ı1, λ1), (Q2{N/x}, (N :: ı2), λ2)}.

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q1, ı1, λ1).
Hyp.⇒ (E , E(S), E(ı1), λ1) ` out(M,N);Q1
τout⇒ (E , E(S), E(ı1), λ1) ` Q1

F=E T =S =ı1 ν=λ1 R=Q1⇒ (F ,F(T),F(), ν) ` R
If (R, , ν) = (Q2{N/x}, (N :: ı2), λ2). First note that, by hypothesis we

have that (E , E(S), E(ı1), λ1) ` out(M,N);Q1, but then according to the typing
rule τout, message(E(S), E(M), E(N)) ∈ F0. Moreover

Hyp.⇒ (E , E(S), E(ı2), λ2) ` in(M,x);Q2
τin⇒ (E ∪ {x 7→ E(N)}, E(S), (E(N) :: E(ı2)), λ2) ` Q2

Lem. 5.2⇒ (E , E(S), (E(N) :: E(ı2)), λ2) ` P2{N/x}
E(N)::E(ı2)=E(N ::ı2)⇒ (E , E(S), E(N :: ı2), λ2) ` Q2{N/x}

F=E T=S =N ::ı2 ν=λ2 R=Q2{N/x}⇒ (F ,F(T),F(), ν) ` R

Case R = Red Init State. This case cannot occur because by hypothesis
no [s 7→M] occurs in Q.

Case R = Red Lock. In this case,
F = E , T = S, Q = Q′ ∪ {(lock sj1 , . . . , sjm ;Q, ı, λ)}, and R = Q′ ∪ {(Q, ı, λ ∪
{j1, . . . , jm})}. Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) =
{(Q, ı, λ ∪ {j1, . . . , jm})}.

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q, ı, λ ∪ {j1, . . . , jm}).
Hyp.⇒ (E , E(S), E(ı), λ) ` lock sj1 , . . . , sjm ;Q
τlock⇒ (E , E(S), E(ı), λ ∪ {sj1 , . . . , sjm}) ` Q

F=E T=S =ı ν=λ∪{sj1 ,...,sjm}) R=Q
⇒ (F ,F(T),F(), ν) ` R

Case R = Red Unlock. In this case, F = E , T = S, Q = Q′ ∪
{(unlock sj1 , . . . , sjm ;Q, ı, λ)}, and R = Q′ ∪ {(Q, ı, λ r {sj1 , . . . , sjm}))}. Let
(R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) = (Q, ı, λr {sj1 , . . . , sjm}).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q, ı, λr {sj1 , . . . , sjm}).
Hyp.⇒ (E , E(S), E(ı), λ) ` unlock sj1 , . . . , sjm ;Q
τunlock⇒ (E , E(S), E(ı), λr {sj1 , . . . , sjm}) ` Q

F=E T=S =ı ν=λr{sj1 ,...,sjm} R=Q
⇒ (F ,F(T),F(), ν) ` R

Case R = Red Read. In this case, F = E , T = S,
Q = Q′ ∪ {(read sj1 , . . . , sjm as x1, . . . , xm;Q, ı, λ)}, and

71

R = Q′ ∪ {(Q{S(j1)/x1, . . . ,S(jm)/xm}, (S(j1) :: · · · :: S(jm) :: ı), λ)}.
Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or
(R, , ν) = (Q{S(j1)/x1, . . . ,S(jm)/xm}, (S(j1) :: · · · :: S(jm) :: ı), λ).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
F=E T=S⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q{S(sj1)/x1, . . . ,S(sjm)/xm}, (S(j1) :: · · · :: S(jm) :: ı), λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` read sj1 , . . . , ssm as x1, . . . , xm;Q
τread⇒ (E ∪ {xk 7→ E(S(jk)) | 1 ≤ k ≤ m},

E(S), (E(S(j1)) :: · · · :: E(S(jm)) :: E(ı)), λ) ` Q
Lem. 5.2⇒ (E , E(S), (E(S(j1)) :: · · · :: E(S(jm)) :: E(ı)), λ) `

Q{S(jk)/xk | 1 ≤ k ≤ m}
E(S(j1))::···::E(S(jm))::E(ı)=

E(S(j1)::···::S(jm)::ι)
⇒

(E , E(S), (E(S(j1) :: · · · :: S(jm) :: ι)), λ) `
Q{S(jk)/xk | 1 ≤ k ≤ m}

F=E T=S =S(j1)::···::S(jm)::ι∧

ν=λ∧R=Q{S(sk)/x}
⇒

(F ,F(T),F(), ν) ` R

Case R = Red Write. In this case, F = E , T = S[jk 7→Mk | 1 ≤ k ≤ m],
Q = Q′ ∪ {(sj1 , . . . , sjm := M1, . . . ,Mm;Q, ı, λ)}, and R = Q′ ∪ {(Q, ı, λ)}.
Let (R, , ν) ∈ R, then either (R, , ν) ∈ Q′ or (R, , ν) = (Q, ı, λ). Let us
first note that by hypothesis having (sj1 , . . . , sjm := M1, . . . ,Mm;Q, ı, λ) ∈ Q
implies (E , E(S), E(ı), λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;Q. And thus because
E(S) ≤ E(S) according to the typing rule τwrite it is the case that E(S) ≤ E(T).

If (R, , ν) ∈ Q′. Hyp.⇒ (E , E(S), E(), ν) ` R
Lem. 6⇒ (E , E(T), E(), ν) ` R
F=E⇒ (F ,F(T),F(), ν) ` R

If (R, , ν) = (Q, ı, λ).
Hyp.⇒ (E , E(S), E(ı), λ) ` sj1 , . . . , sjm := M1, . . . ,Mm;Q
τwrite⇒ (E , E(T), E(ı), λ) ` Q

F=E =ı ν=λ R=Q⇒ (F ,F(T),F(), ν) ` R

72

We would like to thank the two reviewers for their detailed comments

that have greatly contributed to improving our paper.

------ Review 1 ------

>>> The goal of this paper is to explain how to adapt ProVerif so that

>>> it can establish properties of protocols that are constrained by long

>>> term state. The current paper treats secrecy properties, though not

>>> correspondence properties, as would be appropriate to stress in the

>>> introduction.

>>> The strategy of work is adapted to the underlying form of ProVerif.

>>> ProVerif consists of two main parts, one of which translates (or

>>> abstracts) process algebra expressions to a clausal form; the second

>>> executes a resolution algorithm on these clauses. In StatVerif, a new

>>> translation takes as input an extended process algebra with some special

>>> constructs for reading, writing, and locking locations in a bounded

>>> store. The output language consists of clauses using a different pair of

>>> predicates from ProVerif; they are obtained from the ProVerif predicates

>>> by adding an argument position to each. The argument refers to the step

>>> at which the remainder of the assertion holds. The paper describes

>>> the translation and the semantics of the input and output languages, and

>>> proves that the translation is sound. It includes two examples. One is a

>>> simple hardware security module; the other is a fair exchange protocol.

>>> The contribution is substantial; the exposition and examples are

>>> effective; and the proof is plausible (though I have not checked many

>>> details). I recommend it for acceptance with minor revisions, which I

>>> will describe below.

>>> page number:

>>> 2. Mention secrecy rather than correspondence in this paper.

RESPONSE: We have now corrected this.

>>> 3. After code example, the text mentions "allow the user to

>>> provide" and "in return, the user will receive". The first "user" is

>>> Alice, and the second is Bob.

RESPONSE: We have now corrected this.

>>> 8. Last para of 3.1: Reword; sentence structure came out unclear.

RESPONSE: We have now corrected this.

>>> 9. Fig 2, read and assign clauses. Should the \cup in the LHS

>>> really be *disjoint* union?

RESPONSE: We consider multisets of processes, so the \cup symbol

corresponds to the multiset union. This is true for all the clauses and

not only the read and assign ones.

73

>>> 10. 3.3 Header: Ligature lost in my printout: "De nition of secrecy"

RESPONSE: We do not see the ligature problem mentioned.

>>> 10. 4.1, line 2: "each bounded name" should be bound name. (Also occurs passim.)

RESPONSE: We have now corrected this.

>>> 11. Fig 11. Caption below page no. It’s better to split this into

>>> parts anyway, e.g. the part through if, and the part starting with lock.

RESPONSE: We have now corrected this.

>>>Actually, maybe also interchange if clause with let (matching),

>>> since the latter involves the conditional idea as well as the binding

>>> manipulations. It could be more readable with if first.

RESPONSE: We have now corrected this.

>>>attn is not yet explained.

RESPONSE: In Fig 2, we introduce the translation. The explanations

(including for attn) are given right after in sections 4.1.1, 4.1.2, and

4.1.3.

>>>The constant "fresh" is curious. You use it to indicate that all of

>>> these slots may have changed unpredictably since phi was recorded. But

>>> of course all of the "fresh"es are the same. And that’s the worst case,

>>> since those values are maximally available and predictable for the

>>> adversary. You should comment on this in the text. In fact, you might

>>> consider, instead of the name fresh", calling this constant "stale".

RESPONSE: We have now corrected this. Please see Figure 3.

>>>Comment about the if clause etc: Since these clauses take the union

>>> of what we get from both branches, it would be the same if there were an

>>> implicit replication.

RESPONSE: Everything is the same with or without a replication, because

we do nothing when translating a replication. We handle conditionals

exactly like ProVerif does.

>>> 12. "to correctly abstract processes" should be "to correctly

>>> abstract *some* processes". Actually, reword to separate this sentence

>>> into several.

RESPONSE: We hope this paragraph is clearer now.

74

>>>Last bullet point: Expand on absence of correspondence properties.

>>> Comment about what might be needed to make them work.

RESPONSE: Our techniques do not directly apply to handle injective

correspondence properties. We haven’t yet understood what would be

needed to make them work.

>>> 13. Assignment clause. Please expand.

RESPONSE: We have now corrected this.

>>>read clause: Should "arbitrary states" be arbitrary *values*?

RESPONSE: We have now corrected this.

>>> 14. 4.2. Intro. Please be more explicit about the syntactic setup.

>>> For instance, if it’s closed, can it involve attch? The free cell names

>>> are just s_1...s_n, right?

RESPONSE: We have now corrected this.

>>>4.2.1. "to identify different instances". Strangely, "identify" can

>>> have opposite meanings. To identify variables means to equate them.

>>> However, to identify people means to distinguish them from all others.

>>> You appear to mean the latter. Clarify.

RESPONSE: We have now corrected this.

>>> 15. "new" clause: Clarify free and bound names.

RESPONSE: Our translation is parameterised by the initial honest process

P’_0 given to StatVerif. But we haven’t made it explicit (with a

[[.]]_{P’_0} notation for example) for readability reasons. We have now

made this more clear at the beginning of Section 4.1 and in the caption

of Figure 3.

>>> 17. Fig 4. Strange type system, since premises \forall T . S\le T

>>> are not syntactic, and are presumably very hard to evaluate; certainly

>>> these rules give you no way to deduce formulas of this form. Comment.

RESPONSE: The typing system is just used in the proof but StatVerif does

not actually type check P’_0 against this type system. So this is why it

doesn’t need to give us a way to deduce formulas. It is just part of the

proof technique which is adapted from the original ProVerif proof

technique for correctness. We have added explanations page 17.

>>>In the let rule, is M assumed to be normal in some sense? What does

>>> this rule mean if the rewrite rules are not convergent?

RESPONSE: The typing rule for the let construct requires that for all

the possible reductions of g(M_1, \dots, M_n), the process Q be

75

well-typed in the corresponding environment. Thus there is no

convergence requirement on the rewriting system.

>>> 23. "These three properties": Two?

RESPONSE: We have now corrected this.

------ Review 2 ------

>>> This paper presents StatVerif, a ProVerif extension to verify

>>> stateful protocols. The motivation for this work is the incapability of

>>> ProVerif to deal with several classes of stateful protocols, i.e.,

>>> protocols that maintain a state across sessions. Although these

>>> protocols can be modeled in applied pi-calculus using private channels,

>>> the abstraction which ProVerif builds on makes messages permanently

>>> available on these channels, introducing a number of false positives.

>>> The idea of this work is to extend the calculus with constructs to

>>> explicitly reason about state and to extend the Horn clauses used in the

>>> analysis with an argument tracking the current state. Such an

>>> abstraction is more precise and the authors show the effectiveness of

>>> their approach by analysing a simple protocol for cryptographic devices

>>> and a contract signing protocol. The contribution of this work is

>>> certainly interesting and useful. Furthermore, the presentation is

>>> overall clear and the technical content carefully explained. It catches

>>> the eye though that the body of the paper is largely identical with the

>>> paper published at CSF. Clearly the paper contains a huge amount of

>>> additional material in the appendix, and I would personally appreciate

>>> if the authors tried to integrate some of that material in the body of

>>> the paper. RESPONSE: We agree with the reviewer that it’s good if the

>>> body of the paper is self-contained. In this case, however, we think we

>>> have the right balance. Appendix A contains the complete StatVerif code

>>> of our two examples. We believe that integrating this to the body of the

>>> paper would break the flow and greatly harm the readability of our

>>> paper. We do illustrate the StatVerif constructs with parts of the code

>>> corresponding to the security device example in the body of the paper as

>>> we introduced the different notions and constructs. Appendix B contains

>>> the details of the proof of correctness of our translation. This are

>>> mainly easy inductions so we do not feel that detailing them in the body

>>> of the paper would help the understanding of the reader. On the contrary

>>> we fear that it would harm readability. The other extra contribution

>>> with respect to the conference paper is the implementation of StatVerif

>>> as an extension of ProVerif which is available online

>>> [http://markryan.eu/research/statverif/].

>>> Detailed comments:

>>> p.7: the last four primitives in Figure 1 operate on multiple

>>> cells as opposed to a single one. From a semantic point of view, this

76

>>> does not seem to be necessary. Does it simplify the analysis?

RESPONSE: It does by removing the superfluous intermediate states. We

have added a paragraph to explain this.

>>> p.8: you did not formalize the notion of scope.

RESPONSE: We have now corrected this.

>>> p.8: you say that the state (initialization) construct may occur

>>> within the scope of a replication. Initializing several times the same

>>> cell does not make sense and, indeed, is forbidden by the semantics.

RESPONSE: \new s; !([s\mapsto init] | P) doesn’t make any sense. But

!\new s; ([s\mapsto init] | P) does. In particular, our semantics

doesn’t allow more than one execution of the initialisation of cell s in

the first example.

>>> p.8: I did not fully understand the abbreviations introduced

>>> before the list of binders (i.e., the ones omitting the unlock

>>> construct). What happens if there are nested if or nested let

>>> constructs? There would be multiple unlock constructs, right? Does it

>>> make sense?

RESPONSE: It does make sense because only one else branch is ever taken.

The following example shows how that would work:

lock s; if M = N then if M’ = N’ then P

abbreviates

lock s; if M = N then if M’ = N’ then P else unlock s; 0 else unlock s; 0

which makes sense

>>> p.9: The notation \tilde{M} has not been introduced. If it stands

>>> for a sequence of arguments, then the attacker predicate is not binary.

RESPONSE: We have now corrected this.

>>> p.11: I did not understand the translation rule for the

>>> restriction. What is P?

RESPONSE: Our translation is parameterised by the initial honest process

P’_0 given to StatVerif. But we haven’t made it explicit (with a

[[.]]_{P’_0} notation for example) for readability reasons. We have now

made this more clear at the beginning of Section 4.1 and in the caption

of Figure 3.

>>> p.11: You did not introduce "fresh". What is it formally? Is it

>>> always the same constant or a fresh one?

RESPONSE: As for reviewer 1 see the Notation introduced page 13.

77

>>> p.11: You should explain the type system in more detail and

>>> explain which properties of a process it captures.

RESPONSE: We have added explanations in section 4.2.2.

>>> p.16: You did not introduce the notion of subprocess.

RESPONSE: We have now corrected this.

>>> p.18: I could not parse the first sentence in the proof of Lemma 2.

RESPONSE: We have now corrected this.

>>> p.19: you say that you use ProVerif to analyze the case studies,

>>> but ProVerif does not deal with the Horn clauses produced by the

>>> StatVerif compiler. You should be more precise on this point. Did you

>>> modify the ProVerif resolution algorithm? If so, you should explain how

>>> and argue why it is sound.

RESPONSE: ProVerif does handle Horn clauses produced by the StatVerif

compiler. Indeed, one can either input a ProVerif process to ProVerif or

a set of arbitrary Horn Clauses, so we didn’t need to modify the

resolution algorithm, only the translation.

>>> p.25: "we are currently implementing the StatVerif compiler"...you

>>> seem to have already an implementation.

RESPONSE: Indeed we have implemented StatVerif on top of ProVerif and it

is available online [http://markryan.eu/research/statverif/]. We have

now made this clear in the paper.

>>> Besides the two simple examples borrowed from the conference

>>> submission, I would have expected a more comprehensive example in the

>>> journal version. For instance, it would be interesting to analyse a

>>> real-life cryptographic protocol suite (e.g., a security API for trusted

>>> hardware) to demonstrate how the analysis scales to larger protocols.

RESPONSE: There are other examples in the literature [8,13] that further

demonstrate the applicability of the StatVerif approach. We have added a

few words on this in our conclusion. However we do not feel that we

should include these examples in this paper because in [8,13] it is not

enough to use StatVerif to automatically analyse the considered

protocols. So extra abstractions are made before using StatVerif. So

including these examples would require us to introduce a lot more than

just the protocols and their models. In particular we would need to

introduce the notion of k-stability.

78

