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Abstract—This paper explores the idea of knowledge-based
security policies, which are used to decide whether to answer
a query over secret data based on an estimation of the querier’s
(possibly increased) knowledge given the result. Limiting knowl-
edge is the goal of existing information release policies that
employ mechanisms such as noising, anonymization, and redac-
tion. Knowledge-based policies are more general: they increase
flexibility by not fixing the means to restrict information flow.
We enforce a knowledge-based policy by explicitly tracking a
model of a querier’s belief about secret data, represented as
a probability distribution. We then deny any query that could
increase knowledge above a given threshold. We implement query
analysis and belief tracking via abstract interpretation using
a novel domain we call probabilistic polyhedra, whose design
permits trading off precision with performance while ensuring
estimates of a querier’s knowledge are sound. Experiments with
our implementation show that several useful queries can be
handled efficiently, and performance scales far better than would
more standard implementations of probabilistic computation
based on sampling.

I. INTRODUCTION

Facebook, Twitter, Flickr, and other successful on-line ser-
vices enable users to easily foster and maintain relationships
by sharing information with friends and fans. These services
store users’ personal information and use it to customize
the user experience and to generate revenue. For example,
Facebook third-party applications are granted access to a user’s
“basic” data (which includes name, profile picture, gender,
networks, user ID, and list of friends [1]) to implement
services like birthday announcements and horoscopes, while
Facebook selects ads based on age, gender, and even sexual
preference [2]. Unfortunately, once personal information is
collected, users have limited control over how it is used. For
example, Facebook’s EULA grants Facebook a non-exclusive
license to any content a user posts [3]. MySpace, another social
network site, has recently begun to sell its users’ data [4].

Some researchers have proposed that, to keep tighter control
over their data, users could use a storage server (e.g., running
on their home network) that handles personal data requests,
and only responds when a request is deemed safe [5], [6]. The
question is: which requests are safe? The standard answer is to
defer to some kind of user-determined access control policy.
The problem is that such policies are unnecessarily restric-
tive when the goal is to maximize the customized personal
experience. Consider the following example: a horoscope or
“happy birthday” application operates on birth month and day;
music recommendation algorithms typically operate on the

Mudhakar Srivatsa
IBM T.J. Watson Research Laboratory

birth year. Access control at the granularity of the entire birth
date could preclude both of these applications, while choosing
only to release birth year or birth day precludes access to one
application or the other. But in fact the user may not care much
about these particular bits of information, but rather about what
can be deduced from them. For example, it has been reported
that zip code, birthday, and gender are sufficient information to
uniquely identify 63% of Americans in the 2000 U.S. census
[7]. So the user may be perfectly happy to reveal any one of
these bits of information in its entirety as long as a querier
gains no better than a 1/n chance to guess the entire group, for
some parameter n. We call such a policy a knowledge-based
security policy.

This paper explores one design and implementation strategy
for knowledge-based policies. In our model, a user agent U
responds to queries involving secret data. For each querying
principal @), agent U maintains a probability distribution over
the secret data, representing Q’s belief of the data’s likely
values. For example, U may model a social networking site
X’s otherwise uninformed knowledge of a user’s birthday
according to a likely demographic: the birth month and day
are uniformly distributed, while the birth year is most likely
between 1956 and 1992 [8]. Each querier () is also assigned a
knowledge-based policy, expressed as a set of thresholds, each
applying to a different group of (potential overlapping) data.
For example, U’s policy for site X might be a threshold of
1/100 for the entire tuple (birthday, zipcode, gender), and
1/5 for just birth month and day. U will not respond to
any queries that it determines could increase ()’s chances of
guessing a secret above the assigned threshold. If deemed safe,
U returns the query’s (exact) result and updates (Q’s modeled
belief appropriately. Note that if there is a perceived risk of
collusion, a single distribution may be used to model a set of
principals’ collective beliefs.

To implement our model, we need (1) an algorithm to check
whether answering a query could violate a knowledge-based
policy, (2) a method for revising a querier’s belief according
to the answer that is given, and (3) means to implement (1)
and (2) efficiently. We build on the work of Clarkson et al. [9]
(reviewed in Section IIT), which works out the theoretical basis
for (2) and gives us a head start on (1). The main contributions
of this paper, therefore, in addition to the idea of knowledge-
based policies, are our solutions to problems (1) and (3).

Given a solution to the second problem, a solution to the
first problem seems deceptively simple: U runs the query,



tentatively revises ’s belief based on the result, and then
responds with the answer only if ()’s revised belief about the
secrets does not exceed the prescribed thresholds. The problem
with this approach is that the decision to deny depends on the
actual secret, so a rejection could leak information. We give an
example in the next section that shows how the entire secret
could be revealed. Therefore, we propose that a query should
be rejected if any secret value () believes is possible would
produce an output whereby the revised belief would exceed the
threshold. This idea, given in detail in Section IV, is inspired
by Smith’s proposal to use min-entropy, rather than Shannon
entropy, to characterize a program’s security [10].

To implement belief tracking and revision, our first thought
was to use languages for probabilistic computation and con-
ditioning, which provide the foundational elements of the ap-
proach. Most languages we know of—IBAL [11], Probabilistic
Scheme [12], and several other systems [13], [14], [15]—
are implemented using sampling. Unfortunately, we found
these implementations to be inadequate because they either
underestimate the querier’s knowledge when sampling too
little, or run too slowly when the state space is large.

Instead of using sampling, we have developed an im-
plementation based on abstract interpretation. In Section V
we develop a novel abstract domain called a probabilistic
polyhedron, which extends the standard domain of convex
polyhedra [16] with measures of probability. We represent
beliefs as a set of probabilistic polyhedra. While some prior
work has explored probabilistic abstract interpretation [17],
this work does not support belief revision, which is required
to track how observation of outputs affects a querier’s belief.
Support for revision requires that we maintain both under-
and over-approximations of the querier’s belief, whereas [17]
deals only with over-approximation. We have developed an
implementation of our approach based on Parma [18] and
LattE [19], which we present in Section VII along with
some experimental measurements of its performance. We find
that while the performance of Probabilistic Scheme degrades
significantly as the input space grows, our implementation
scales much better, and can be orders of magnitude faster.

The next section presents a technical overview of the rest
of the paper, whose main results are contained in Sections I1I-
VII. We compare our approach to related work, and discuss
future work and limitations, in Sections VIII and IX.

II. OVERVIEW

Knowledge-based policies and beliefs. User Bob would
like to enforce a knowledge-based policy on his data so that
advertisers do not learn too much about him. Suppose Bob
considers his birthday of September 27, 1980 to be relatively
private; variable bday stores the calendar day (a number
between 0 and 364, which for Bob would be 270) and byear
stores the birth year (which would be 1980). To bday he
assigns a knowledge threshold t; = 0.2 stating that he does
not want an advertiser to have better than a 20% likelihood of
guessing his birth day. To the pair (bday, byear) he assigns a
threshold ¢4, = 0.05, meaning he does not want an advertiser

to be able to guess the combination of birth day and year
together with better than a 5% likelihood.

Bob runs an agent program to answer queries about his
data on his behalf. This agent models an estimated belief of
queriers as a probability distribution 0, which is conceptually
a map from secret states to positive real numbers represent-
ing probabilities (in range [0,1]). Bob’s secret state is the
pair (bday = 270, byear = 1980). The agent represents a
distribution as a set of probabilistic polyhedra. For now, we
can think of a probabilistic polyhedron as a standard convex
polyhedron C' with a probability mass m, where the probability
of each integer point contained in C' is m/||C||, where ||C]| is
the number of integer points contained in the polyhedron C.
Shortly we present a more involved representation.

Initially, the agent might model an advertiser X’s belief
using the following rectangular polyhedron C, where each
point contained in it is considered equally likely (m = 1):

C = bday > 0, bday < 364, byear > 1956, byear < 1992

Enforcing knowledge-based policies safely. Suppose X
wants to identify users whose birthday falls within the next
week, to promote a special offer. X sends Bob’s agent the
following program.

Example 1.

today := 260;
if bday > today A bday < (today + 7) then
output = True;

This program refers to Bob’s secret variable bday, and also
uses non-secret variables today, which represents the current
day and is here set to be 260, and output, which is set to
True if the user’s birthday is within the next seven days (we
assume output is initially False).

The agent must decide whether returning the result of
running this program will potentially increase X’s knowledge
about Bob’s data above the prescribed threshold. We explain
how it makes this determination shortly, but for the present we
can see that answering the query is safe: the returned output
variable will be False which essentially teaches the querier that
Bob’s birthday is not within the next week, which still leaves
many possibilities. As such, the agent revises his model of
the querier’s belief to be the following pair of rectangular
polyhedra C4, Cs, where, again, all points in each are equally
likely (m; = 0.726, mo = 0.274):

C1 = bday > 0, bday < 260, byear > 1956, byear < 1993
Csy = bday > 267, bday < 365, byear > 1956, byear < 1993

Ignoring byear, there are 358 possible values for bday and
each is equally likely. Thus the probability of any one is
1/358 = 0.0028 < t; = 0.2.

Suppose the next day the same advertiser sends the same
program to Bob’s user agent, but with today set to 261. Should
the agent run the program? At first glance, doing so seems OK.
The program will return False, and the revised belief will be
the same as above but with constraint bday > 267 changed
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to bday > 268, meaning there is still only a 1/357 = 0.0028
chance to guess bday.

But suppose Bob’s birth day was actually 267, rather than
270. The first query would have produced the same revised
belief as before, but since the second query would return True
(since bday = 267 < (261 + 7)), the querier can deduce
Bob’s birth day exactly: bday > 267 (from the first query)
and bday < 268 (from the second query) together imply that
bday = 267! But the user agent is now stuck: it cannot simply
refuse to answer the query, because the querier knows that
with t4 = 0.05 (or indeed, any reasonable threshold) the only
good reason to refuse is when bday = 267. As such, refusal
essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not be
based on the effect of running the query on the actual secret,
because then a refusal could leak information. In Section IV
we propose that an agent should reject a program if there
exists any possible secret that could cause a program answer
to increase querier knowledge above the threshold. As such we
would reject the second query regardless of whether bday =
270 or bday = 267.

Full probabilistic polyhedra. Now suppose, having run the
first query and rejected the second, the user agent receives the
following program from X.

Example 2.
age := 2011 — byear;
if age =20V ...V age = 60 then
output := True;

pif 0.1 then output := True;

This program attempts to discover whether this year is a
“special” year for the given user, who thus deserves a special
offer. The program returns True if either the user’s age is (or
will be) an exact decade, or if the user wins the luck of the
draw (one chance in ten), as implemented by the probabilistic
if statement.

Running this program reveals nothing about bday, but
does reveal something about byear. In particular, if
output = False then the querier knows that byear ¢
{1991,1981,1971,1961}, but all other years are equally
likely. We could represent this new knowledge, combined
with the knowledge gained from the first query, as shown in
Figure 1(a), where each shaded box is a polyhedron containing

equally likely points. On the other hand, if output = True
then either byear € {1991,1981,1971,1961} or the user got
lucky. We represent the querier’s knowledge in this case as
in Figure 1(b). Darker shading indicates higher probability;
thus, all years are still possible, though some are much more
likely than others. With the given threshold of ¢4, = 0.05,
the agent will permit the query; when output = False, the
likelihood of any point in the shaded region is 1/11814; when
output = True, the points in the dark bands are the most
likely, with probability 5/13067. Since both outcomes are
possible with Bob’s byear = 1980, the revised belief will
depend on the result of the probabilistic if statement.

This example illustrates a potential problem with the simple
representation of probabilistic polyhedra mentioned earlier:
when output = False we will jump from using two prob-
abilistic polyhedra to ten, and when output = True we
jump to using eighteen. Allowing the number of polyhedra
to grow without bound will result in performance problems.
To address this concern, we need a way to abstract our belief
representation to be more concise. Section V shows how
to represent a probabilistic polyhedron P as a seven-tuple,
(C, Smin’ Smax7 pmin7 pmax7 1,nmin7 mmax) where Smin and s™ax
are lower and upper bounds on the number of points with
non-zero probability in the polyhedron C' (called the support
points of C); the quantities p™™ and p™#* are lower and upper
bounds on the probability mass per support point; and m™"
and m™#* give bounds on the total probability mass. Thus,
polyhedra modeled using the simpler representation (C,m)
given earlier are equivalent to ones in the more involved repre-
sentation with m™a* = m™in =y, pMax — pmin — p /||C
and s™aX = gmin — |||

With this representation, we could choose to collapse the
sets of polyhedron given in Figure 1. For example, we could
represent Figure 1(a) with two probabilistic polyhedra P; and
P5 containing polyhedra C; and C defined above, respec-
tively, essentially drawing a box around the two groupings of
smaller boxes in the figure. The other parameters for P; would
be as follows:

[l

prln.in — pgﬂax = 9/135050
5;5?11!1 = f;g?lkl}( == ég ESég ()
mrlnin — mllnax = 7722/13505

Notice that sP* = g = 8580 < |C1]| = 9620,
illustrating that the “bounding box” of the polyhedron covers
more area than is strictly necessary. In this representation the
probabilities may not be normalized, which improves both
performance and precision. For this example, P, happens
to have mP® = mya* = 3234/13505 so we can see
miP* + mP** = (10956,/13505) # 1.

While all minimums and maximums above are equal, if we
consider the representation of Figure 1(b) in a similar manner,
using the same two polyhedra C; and C, the other parameters
for C; are as follows:

pi™ = 1/135050 p** = 10/135050
sPin = 9620 sPax = 9620
mPn =26/185  mP** = 26/185



Variables x € Var

Integers n e Z

Rationals g e Q

Arith.ops  aop = +|x|-—

Rel.ops relop = <|<|=]|#]

Arith.exps E w= x| n|E aop By

Bool.exps B = E; relop Es |
Bl/\BQ|Bl\/BQ‘_‘B

Statements S = skip|z = F|

if B then S else S5 |
pif ¢ then S else S5 |
S1; Sa | while B do S

Fig. 2. Core language syntax

In this case sf" = sPa% = |||, meaning that all covered
points are possible, but p*i* # paX as some points are more
probable than others (i.e., those in the darker band).

The key property of probabilistic polyhedra, and a main
technical contribution of this paper, is that this abstraction can
be used to make sound security policy decisions. To accept
a query, we must check that, for all possible outputs, the
querier’s revised, normalized belief of any of the possible se-
crets is below the threshold ¢. In checking whether the revised
beliefs in our example are acceptable, the agent will try to find
the maximum probability the querier could ascribe to a state,
for each possible output. In the case output = True, the most
probable points are those in the dark bands, which each have
probability mass 10/135050 = p"** (the dark bands in Py
have the same probability). To find the maximum normalized
probability of these points, we divide by the minimum possible
total mass, as given by the lower bounds in our abstraction.
In our example, this results in pPa*/(m™® + mPin) =
(10/135050)/(26/185 + 49/925) = 0.0004 < t4 = 0.05.

As just shown, the bound on minimum total mass is needed
in order to soundly normalize distributions in our abstraction.
The maintenance of such lower bounds on probability mass is
a key component of our abstraction that is missing from prior
work. Each of the components of a probabilistic polyhedron
play a role in producing the lower bound on total mass.
While spin, giax pmin - and m®8% do not play a role in
making the final policy decision, their existence allows us to
more accurately update belief during the query evaluation that
precedes the final policy check. Nevertheless, the choice of
the number of probabilistic polyhedra to use impacts both
precision and performance, so choosing the right number
is a challenge. For the examples given in this section, our
implementation can often answer queries in a few of seconds;
more details are in Sections V-VIL

III. TRACKING BELIEFS

This section reviews Clarkson et al.’s method of revising a
querier’s belief of the possible valuations of secret variables
based on the result of a query involving those variables [9].

A. Core language

The programming language we use for queries is given in
Figure 2. A computation is defined by a statement S whose
standard semantics can be viewed as a relation between states:
given an input state o, running the program will produce an
output state ¢’. States are maps from variables to integers:

o, T € State < Var — Z

Sometimes we consider states with domains restricted to a
subset of variables V/, in which case we write oy, € Statey B

V' — Z. We may also project states to a set of variables V:
o | V= \z € Vary.o(x)

The language is essentially standard. We limit the form
of expressions to support our abstract interpretation-based
semantics (Section V). The semantics of the statement form
pif g then §; else S5 is non-deterministic: the result is that of
S1 with probability ¢, and Se with probability 1 — g.

B. Probabilistic semantics for tracking beliefs

To enforce a knowledge-based policy, a user agent must be
able to estimate what a querier could learn from the output
of his query. To do this, the agent keeps a distribution § that
represents the querier’s belief of the likely valuations of the
user’s secrets. More precisely, a distribution is a map from
states to positive real numbers, interpreted as probabilities (in
range [0, 1]).

¢ € Dist = State — R+
We sometimes focus our attention on distributions over states
of a fixed set of variables V, in which case we write dy €
Disty, to mean Statey, — R+. Projecting distributions onto a
set of variables is as follows:

§ 1V E N\oy € Statey, . Z
o'|(e’|V=0ov)

5(o’)

The mass of a distribution, written ||d]| is the sum of the proba-
bilities ascribed to states, > . 0(0). A normalized distribution
is one such that ||§]] = 1. A normalized distribution can be
constructed by scaling a distribution according to its mass:

def 1
1]

The support of a distribution is the set of states which have
non-zero probability: support(6) = {o | 6(c) > 0}.

The agent evaluates a query in light of the querier’s initial
belief using a probabilistic semantics. Figure 3 defines a
semantic function [-] whereby [S]0 = ¢’ indicates that, given
an input distribution ¢, the semantics of program S is the
output distribution ¢’. The semantics is defined in terms of
operations on distributions, including assignment ¢ [v — E]
(used in the rule for v := E), conditioning §|B and addition
01 + 2 (used in the rule for if), and scaling q - 6 where g is
a rational (used for pif). The rules are standard, so we omit
discussion of them here; the appendix provides a brief review.

normal(9)



[skip]6 = 4§
[x := E]6 = 6z — E|
[if B then S; else S2]d = [S1](8|B) + [S2](6|-B)
[pif g then Sy else Sol6 = [S1](g-96) + [S2]((1 — q) - 9)
[S1; 8206 = [S20([$1]9)

[while B do S]6 = fix(\f : Dist — Dist.\d.

f([S1G1B) + (6]=B)))
where

6[$—>E]Cg)\0'.z,r‘,’_[ o(7)

z—[E]r]=0

6140y = Xo.61(0) + 03(0)

’|B = \o. if [B]o then (o) else 0
p-o = No.p- (o)

Fig. 3. Probabilistic semantics for the core language

C. Belief and security

Clarkson et al. [9] describe how a belief about possible
values of a secret, expressed as a probability distribution, can
be revised according to an experiment using the actual secret.
Such an experiment works as follows.

The values of the set of secret variables H are given by the
hidden state o;. The attacker’s initial belief as to the possible
values of oy is represented as a distribution dg. A query
is a program S that makes use of variables H and possibly
other, non-secret variables from a set L; the final values of
L, after running S, will be made visible to the attacker. Let
or be an arbitrary initial state of these variables such that
domain(or) = L. Then we take the following steps:

Step 1. Evaluate S probabilistically using the attacker’s
belief about the secret to produce an output distribution ¢,
which amounts to the attacker’s prediction of the possible
output states. This is computed as ¢’ = [S]d, where J, a
distribution over variables H W L, is defined as 6 = dy X op.
Here, we make use of the distribution product operator and
point operator. That is, given 1, d2, which are distributions
over states having disjoint domains, the distribution product
is

51 X (52 &t )\(0'1,0'2). (51(0’1) . (52(0‘2)

where (01, 02) is the “concatenation” of the two states, which
is itself a state and is well-defined because the two states’ do-
mains are disjoint. And, given a state o, the point distribution
0 is a distribution in which only o is possible:

6= A7, if 0 = 7 then 1 else 0

Thus, the initial distribution ¢ is the attacker’s belief about
the secret variables combined with an arbitrary valuation of
the public variables.

Step 2. Using the actual secret o, evaluate S “concretely”
to produce an output state 6, in three steps. First, we have
" = [S]4, where § = 6 x G1. Second, we have 6 € I'(4)
where I is a sampling operator that produces a state o from the
domain of a distribution ¢ with probability 6(c)/||d||. Finally,

we extract the attacker-visible output of the sampled state by
projecting away the high variables: 6 =6 | L.

Step 3. Revise the attacker’s initial belief 6y according to
the observed output 6, yielding a new belief 6 = &'|6,, |
H. Here, ¢ is conditioned on the output o, which yields a
new distribution, and this distribution is then projected to the
variables H. The conditioning operation is defined as follows:

Sloy = Ao if 0 | V = oy then 6(c) else 0

Note that this protocol assumes that S always terminates and
does not modify the secret state. The latter assumption can be
eliminated by essentially making a copy of the state before
running the program, while eliminating the former differs de-
pending on the observer’s ability to detect nontermination [9].

IV. ENFORCING KNOWLEDGE-BASED POLICIES

When presented with a query over a user’s data o, the
user’s agent should only answer the query if doing so will not
reveal too much information. More precisely, given a query S,
the agent will only return the public output o, resulting from
running S on oy if the agent deems that from this output the
querier cannot guess the secret state oy beyond some level
of doubt, identified by a threshold ¢. If this threshold could
be exceeded, then the agent declines to run S. We call this
security check knowledge threshold security.

Definition 3 (Knowledge Threshold Security). Let ¢’ = [S]d,
where ¢ is the model of the querier’s initial belief. Then query
S is threshold secure iff for all o, € support(6’ | L) and all
oy € Statey we have (normal(¢'|or [ H))(o}) < t for
some threshold ¢.

This definition can be related to the experiment protocol
defined in Section III-C. First, §’ in the definition is the same
as ¢’ computed in the first step of the protocol. Step 2 in the
protocol produces a concrete output ¢ based on executing
S on the actual secret o, and Step 3 revises the querier’s
belief based on this output. Definition 3 generalizes these two
steps: instead of considering a single concrete output based on
the actual secret it considers all possible concrete outputs, as
given by support(§’ | L), and ensures that the revised belief in
each case for all possible secret states must assign probability
no greater than .

This definition considers a threshold for the whole secret
state op. As described in Section II we can also enforce
thresholds over portions of a secret state. In particular, a
threshold that applies only to variables V' C H requires that
all of, € Statey result in (normal(d’|oy, | V))(o},) < t.

The two “foralls” in the definition are critical for ensuring
security. The reason was shown by the first example in
Section II: If we used the flawed approach of just running
the experiment protocol and checking if ) u(opg) > t then
rejection depends on the value of the secret state and could
reveal information about it. Indeed, even a more general policy
Vor € support(é’ | L).(normal(¢'|or | H))(og) < t,
which would sidestep the problem in the example, could reveal
information because it, too, depends on the actual secret 0.



(An example illustrating the problem in this case is given in
the appendix.) Definition 3 avoids any inadvertent information
leakage because rejection is not based on the actual secret: if
there exists any secret such that a possible output would reveal
too much, the query is rejected. Definition 3 resembles min-
entropy, since the security decision is made based on the most
likely secret from the attacker’s point of view [10]. In fact, the
use of a simple threshold ¢ corresponds to a minimum relative
entropy 27! between revised belief and the true belief [9].

V. BELIEF REVISION VIA ABSTRACT INTERPRETATION

Consider how we might implement belief tracking and
revision to enforce the threshold security property given in
Definition 3. A natural choice would be to evaluate queries
using a probabilistic programming language with support for
conditioning, such as IBAL [11], Probabilistic Scheme [12],
or another system [13], [14], [15]. In these languages, normal-
ization (following conditioning) is implemented by sampling.
In particular, they select a random set of input states X
and compute the sum X,cx(d|oy)(o). The probabilities of
support(d|oy ) are scaled by this sum. Unfortunately, to get a
reasonable estimate of the total sum requires sampling over the
entire input space, which could be quite large. If insufficient
coverage is achieved, then the threshold check in Definition 3
could either be unsound or excessively conservative, depend-
ing in which direction an implementation errs.

To avoid sampling, we have developed a new means to
perform probabilistic computation based on abstract interpre-
tation, for which conditioning and normalization are relatively
inexpensive. In the next two sections, we present two abstract
domains. This section presents the first, denoted P, for which
an abstract element is a single probabilistic polyhedron, which
is a convex polyhedron [16] combined with information about
probabilities of its points. Because using a single polyhedron
will accumulate precision after multiple queries, in our imple-
mentation we actually use a different domain, denoted P,, (P),
for which an abstract element consists of a set of at most
n probabilistic polyhedra (whose construction is inspired by
powersets of polyhedra [20], [21]). This domain, described in
the next section, allows us to retain precision at the cost of
increased execution time. By adjusting n, the user can trade
off efficiency and precision.

A. Polyhedra

We first review convex polyhedra, a common technique for
representing sets of program states. We use the meta-variables
8,81, P2, ... to denote linear inequalities. We write fv(3) to
be the set of variables occurring in ; we also extend this to

sets, writing fv({B1,...,Bn}) for (1) U... Uf(Bn).

Definition 4. A convex polyhedron C is a set of linear
inequalities {01, ..., Bm }, interpreted conjunctively. We write
C for the set of all convex polyhedra. A polyhedron C'
represents a set of states, denoted v¢c(C'), as follows, where
o = B indicates that the state o satisfies the inequality [.

Ye(C) = {o | domain(c) D f(C) AVYB € C. o = 5}

Given a state o and an ordering on the variables in
domain(o), we can view o as a point in an N-dimensional
space, where N = |domain(c)|. The set yc(C) can then
be viewed as the integer-valued lattice points in an N-
dimensional polyhedron. Due to this correspondence, we use
the words point and state interchangeably. We will also allow
ourselves to write linear equalities z = f(¥) as an abbreviation
for the pair of inequalities < f(¥) and = > f(¥).
Convex polyhedra support the following operations.

« Polyhedron size, or #(C), is the number of integer points
in the polyhedron, i.e., |yc(C)|. We will always consider
bounded polyhedra, ensuring that #(C) is finite.

o Expression Evaluation, ((B)) C returns a convex polyhe-
dron containing at least all points in C' that satisfy B.

o Expression Count, C# B returns an upper bound on the
number of integer points in C' that satisfy B.

e Meet, Cy Mc Cs is the convex polyhedron representing
the set of points in the intersection of ¢ (C1),vc(Ca).

e Join, C Lic Cs is the smallest convex polyhedron con-
taining both v(C4) and v(Cy).

o Comparison, C; C¢ Cs is a partial order whereby C; T
Cy if and only if v(Cy) C v(Cs).

o Affine transform, C [v — F], where x € fv(E), computes
an affine transformation of C. This scales the dimen-
sion corresponding to x by the coefficient of x in FE
and shifts the polyhedron. For example, {z < y,y =
2z} [y = z+y] evaluates to {x <y —z,y — z = 2z}.

o Forget, f,.(C), projects away x. That is, {,(C) =
Th(0)—{2}(C), where 7y (C) is a polyhedron C’ such
that yc(C') = {o | 0/ € % (C)ANo =o' | V}. So
¢’ =1, (C) implies z & fv(C").

We write L to denote the empty polyhedron. We have

~vc(L) = () and any polyhedron with an inconsistent set of
linear constraints is equivalent to L.

B. Probabilistic Polyhedra

We take this standard representation of sets of program
states and extend it to a representation for sets of distributions
over program states. We define probabilistic polyhedra, the
core element of our abstract domain, as follows.

Definition 5. A probabilistic polyhedron P is a tuple
(C,smin gmax pmin pmax pymin pymaxy  We write P for the
set of probabilistic polyhedra. The quantities s™" and s™a%
are lower and upper bounds on the number of support points
in the polyhedron C. The quantities p™™ and p are lower
and upper bounds on the probability mass per support point.
The m™" and m™** components give bounds on the total
probability mass. Thus P represents the set of distributions
~p(P) defined below.

ve(P) = {8 | support(5) C vc(C) A
gmin < |support(6)| < ™A
mmin S ||5H S mmax/\
Vo € support(8). p™™ < §(o) < p™*}

max



Note the set yp(P) is singleton exactly when s™i? = gmax —

#(C) and p™® = pma* and m™® = m™*, In such a
case yp(P) is the uniform distribution where each state in
7¢c(C) has probability p™i®. Distributions represented by a
probabilistic polyhedron are not necessarily normalized (as
was true in Section III-B). In general, there is a relationship
between pmi“,smi“7 and m™™, in that m™ > pmin . ghin
(and m™®* < p™ax . gMmaX) and the combination of the three
can yield more information than any two in isolation.

Our convention will be to always use C', s‘j“i“, si, ete. for
the components associated with probabilistic polyhedron P;
and to use subscripts to name different probabilistic polyhedra.

In [9], distributions are ordered point-wise. That is, ; < §5
if and only if Vo. 61 (o) < d2(0). To extend this to our abstract
domain, we say that P, Cp P, if and only if V6, € P;. 355 €
P;. 61 < §y. This corresponds to the following definition,
given in terms of the components of P; and P»

Definition 6. P, Cp Ps if and only if C; C¢ Co, mPP?** <
M, S < S and pPes < ppe,

The least element is then the probabilistic polyhedron P
with C = 1, m™®* = (, s = 0, p™®* = 0, which
represents the zero distribution.

In a standard abstract domain, termination of the fixed point
computation for loops is often ensured by use of a widening
operator. This allows abstract fixed points to be computed
in fewer iterations and also permits analysis of loops that
may not terminate. In our setting, non-termination may reveal
information about secret values. As such, we would like to
reject queries that may be non-terminating.

We enforce this by not introducing a widening operator. Our
abstract interpretation then has the property that it will not
terminate if a loop in the query may be non-terminating (and,
since it is an over-approximate analysis, it may also fail to
terminate even for some terminating computations). We then
reject all queries for which our analysis fails to terminate.
Loops do not play a major role in any of our examples, and so
this approach has proved sufficient so far. We leave for future
work the development of an abstract domain with widening
that soundly accounts for non-termination behavior.

Following standard abstract interpretation terminology, we
will refer to P (Dist) (sets of distributions) as the concrete
domain, P as the abstract domain, and ~p : P — P (Dist) as
the concretization function for P.

C. Abstract Semantics for P

In order to support execution in the abstract domain just
defined, we need to provide abstract implementations of the
basic operations of assignment, conditioning, addition, and
scaling used in the concrete semantics given in Figure 3. We
will overload notation and use the same syntax for the abstract
operators as we did for the concrete operators.

As we present each operation, we will also state the
associated soundness theorem which shows that the abstract
operation is an over-approximation of the concrete operation.
Proofs are given in a forthcoming technical report. The abstract

max
h?/

Fig. 4. An example of a forget operation in the abstract domain P. In this
case, hg‘m =1 and h{lna" = 3. Note that h{lna" is precise while hfj‘”‘ is

an under-approximation. If sj"* = s}*®* = 9 then we have sj"'* = 3,
max min min max . 4

sp8% = 4, pypt'" = p" - 1, py'®* = pj

program semantics is then exactly the semantics from Figure 3,
but making use of the abstract operations defined here, rather
than the operations on distributions defined in Section III-B.
We will write ((S)) P to denote the result of executing S using
the abstract semantics. The main soundness theorem we obtain
is the following.

Theorem 7. If § € ~p(P) and ([S]9)
Te((S) P).

We now present the abstract operations.

1) Forget: We first describe the abstract forget operator
f,(P1), which is used in implementing assignment. When we
forget variable y, we collapse any states that are equivalent up
to the value of y into a single state. In order to do this correctly,
we must find an upper bound hy'** and a lower bound hg‘i“
on the number of different points that share the same value
of x (this may be visualized of as the min and max height of
C1 in the y dimension). Once these are obtained, we have that
fy(Pl) E P, where the following hold of Ps.

C: = £,(Ch)

= ¢ then &' €

pE = i - max (bt — (#(Ch) - s, 1)
PE = PP - min (b, sp)

Sgﬁin _ "Slinin /h;nax mgnin _ mrlnin
S = min(#(E,(C1)), sP™) | mPe = mper

Figure 4 gives an example of a forget operation and illus-
trates the quantities h;*** and h;“i“. The upper bound h;***
can be found by maximizing y — ¢’ subject to the constraints
Cy U C1]y'/y], where ' is a fresh variable and Ci[y’/y]
represents the set of constraints obtained by substituting 7’
for y in C;. As our points are integer-valued, this is an
integer linear programming problem (and can be solved by
ILP solvers). A less precise upper bound can be found by
simply taking the extent of the polyhedron C; along y, which
is given by #(m,(C1)).

For the lower bound, it is always sound to use 1, and this
what our implementation does. A more precise estimate can
be obtained by checking each vertex to find the vertex with
minimal height along dimension y. Call this distance u. Since
the shape is convex, all other points will have y height greater



than or equal to u. We then find the smallest number of integer
points that can be covered by a line segment of length w. This
is given by [u] — 1. This value can be taken as hj™".

Since the forget operator is related to projection, we state
soundness in terms of the projection operation on distributions.

Lemma 8. If 6 € yp(P) then § | (fv() — {y}) € vp(f,(P)).
We can define an abstract version of projection using forget:

Definition 9. Let fr, ., . ..3(P) fran,.on) (fz, (P)).
Then P r V' = f(domain(P)—V/)(P)'

That is, in order to project onto the set of variables V', we
forget all variables not in V.

2) Assignment: We have two cases for abstract assignment.
If the assignment is invertible, then the result of the assignment
Py [z — E] is the probabilistic polyhedron P, where Cy =
Cy [x — E] and all other components are unchanged.

If the assignment z := E is not invertible, then information
about the previous value of x is lost. In this case, we use the
forget operation to project onto the other variables and then
add a new constraint on x. Let P, = f,(P;). Then P; [z — E]
is the probabilistic polyhedron Ps; where all values are as in
P, except that C3 = Cy U {z = E}.

Lemma 10. [f § € vp(P) then 6 [v — E] € vp(Pv — E]).

The soundness of assignment relies on the fact that our
language of expressions does not include division. An invariant
of our representation is that s™** < #(C'). When E contains
only multiplication and addition the above rules preserve this
invariant; an E' containing division would violate it. Division
should result in multiple points collapsing to one and would
be dealt with in a manner similar to that used for projection,
which accounts for the same possibility.

3) Plus: In order to compute the effect of plus on the
number of support points and probability per support point,
we need to consider how the support points contained in
the polyhedra being added may overlap. That is, we need to
determine the minimum and maximum number of points in
the intersection that may be a support point for both P; and
for P,. We refer to these counts as the pessimistic overlap and
optimistic overlap, respectively, and define them below.

Definition 11. Given two distributions d1, d2, we refer to the
set of states that are in the support of both §; and J5 as
the overlap of 61, 02. The pessimistic overlap of P; and P,
denoted P, ® P, is the cardinality of the smallest possible
overlap for any distributions ¢; € vp(P;) and dy € vp(Ps).
The optimistic overlap P; © P, is the cardinality of the
largest possible overlap. Formally, we define these as follows.
ng = #(C1NcCa), ny = #(C1)—na, and ny = #(Co)—ns.
Then

PoPRYE max((sPim —ny) + (SP — ny) — ng, 0)

P, © P, = min(si"2%, s ng)

We now use these concepts to define the abstract version of
distribution addition.

Definition 12. P, + P, is the probabilistic polyhedron Ps; =

(Cs,sin, spax pmin pmax) defined as follows.

C3 = (1 Uc Cy
pmin py™ + pyt if P ® Py =#(C3)
8 min(p™™®, p™)  otherwise
pmax _ prlnax + prznax lf P1 ® Pg > 0
3 max (pi™®*, pax)  otherwise
spin - — gmin 4 gmin _ p @ P,
SPX = g L PO Py
R U e

Lemma 13. If §; € vp(P1) and 62 € vp(P2) then §; + 02 €
’y[p(Pl + PQ).

4) Product: When evaluating the product Ps = P; X P,
we assume that the domains of P; and P are disjoint. This
implies that C; and C are polyhedra involving disjoint sets of
variables. Let fv(C1) = V1 and fv(Cs) = V5. The polyhedron
C1 Uy is the Cartesian product of C7 and C5 and contains
all those states o for which o [ V} € v¢(Cy) and o [ V5 €
~c(C2). What remains is to ensure that the probabilities and
support point counts are correctly accounted for. The full list
of constraints on P5 is given below.

C3 = C1UCy
min __ min min max __ ., max max
b3 = P17 P2 b3 = P17 P2
Sénm _ Srlnm . Sr2r11n Sénax _ Slinax . Sr2nax
min __ min min max __ max max
mz"" = mi"" - my mz®* = mp** . mj

Lemma 14. If 61 € vp(P1) and 62 € vp(P2) then §; X 02 €
'YIP(Pl X PQ)

In our examples we often find it useful to express uniformly
distributed data directly, rather than encoding it using pif.
In particular, consider extending statements S to include the
statement form uniform x n; ny whose semantics is to define
variable x as possibly having values uniformly distributed
between nq and no. Its semantics is as follows.

[[uniform T ny ng]]Pl = fz(Pl) X P2

1 Smin — gmax _—
: no—ni1+1° 2 - 2 -

ny—ny+1, miP" =my** =1, and C = {z > ny,x < na}.
5) Conditioning: Distribution conditioning for probabilistic

polyhedra serves the same role as meet in the classic domain

of polyhedra in that each is used to perform abstract evaluation

of a conditional expression in its respective domain.

min

Here, P, has pj

_ max _
_p2x_

Definition 15. Consider the probabilistic polyhedron P; and
Boolean expression B. Let n, 7 be such that n = C1#B and
n = C1#(—B). The value n is an over-approximation of the
number of points in C that satisfy the condition B and 7 is
an over-approximation of the number of points in C; that do
not satisfy B. Then P, | B is the probabilistic polyhedron Py



Conditioning

Components

Fig. 5. An example of distribution conditioning in the abstract domain P.

defined as follows.

pgnln — pinin SEnin — max(sﬁ“in _ ﬁ’ 0)

P =P | S = min(sp,n)

m12‘mn — max(prznin . Sl2nin’ mrlnln _ prlnax mln(srlnax7ﬁ))
m5'?* = min (pgnax -5y % mpte* — ptt max(s‘f‘m —n, O))
Cy  =(B)Ch

The maximal and minimal probability per point are un-
changed, as conditioning simply selectively retains points from
the original distribution. To compute the minimal number of
points in P», we assume that as many points as possible from
C; fall in the region satisfying —B. The maximal number
of points is obtained by assuming that a maximal number of
points fall within the region satisfying B.

The total mass calculations are more complicated. There are
two possible approaches to computing m3*" and m5'®*. The
bound m¥™ can never be less than pJ™ - s% and so we can
always safely choose this as the value of m‘znm. Similarly, we
can always choose py'**-s5"** as the value of m3"**. However,
if m™" and mi"®* give good bounds on total mass (i.e., mpin
is much higher than p" - 7% and similarly for m{"®*), then
it can be advantageous to reason starting from these bounds.

We can obtain a sound value for m¥™ by considering the
case where a maximal amount of mass from C; fails to satisfy
B. To do this, we compute 7 = C1#—B, which provides an
over-approximation of the number of points within C; but
outside the area satisfying B. We bound 7 by s"** and then
assign each of these points maximal mass p}*®*, and subtract
this from m{*®, the previous lower bound on total mass.

By similar reasoning, we can compute m5'** by assuming
a minimal amount of mass m is removed by conditioning, and
subtracting m from m}*®*. This m is given by considering an
underapproximation of the number of points falling outside
the area of overlap between C; and B and assigning each
point minimal mass as given by p®. This m is given by
max(s‘lnin —n, 0).

Figure 5 demonstrates the components that affect the condi-
tioning operation. The figure depicts the integer-valued points
present in two polyhedra—one representing C; and the other
representing B (shaded). As the set of points in C; satisfying
B is convex, this region is precisely represented by (B)) C;.
By contrast, the set of points in C; that satisfy —B is not
convex, and thus ((—B))Cy is an over-approximation. The
icons beside the main image indicate which shapes correspond

.min
S

to which components and the numbers within the icons give
the total count of points within those shapes.
Suppose the components of P; are as follows.

sPm =19 p"™ =001  mP" =075
Srlnax — 20 plil'laX — 005 ml’l’la,X O 9
Then n = 4, m = 18, and n = 16. We have the following for

the first four numeric components of Ps.

SN = max (19 — 18,0) = 1 " =0.01
ST = min(20,4) = py®* = 0.05
For the m$™ and m%***, we have the following for the method

min/max mm/max

of calculation based on p, and s,

mg‘in =0.01-1=0.01 my** =0.05-4=0.2
For the method of computation based on minin/ A% we have
mgﬂn = 0.75—-0.05-18 = 0.04
my** = 1.0-0.01-16 = 0.74

In this case, the calculation based on subtracting from total
mass provides a tighter estimate for m3*®, while the method
based on multiplying p5'®* and s5'#* is better for m5'**

Lemma 16. If § € vp(P) then 6|B € yp(P | B).

6) Scalar Product: The scalar product is straightforward,
as it just scales the mass per point and total mass.

Definition 17. Given a scalar p in [0, 1], we write p - P; for
the probabilistic polyhedron P, specified below.

min min

52 = 5 b = PP
max — max max __ max
S 51 ) p2™ = P P1
my't = p-m™° Co, =0
mrQnax =p- mrlnax

Lemma 18. If §; € vp(P1) then p-61 € yp(p- P1).

7) Normalization: If a probabilistic polyhedron P has
m™® = 1 and m™® = 1 then it represents a normalized
distribution. We define below an abstract counterpart to dis-
tribution normalization, capable of transforming an arbitrary
probabilistic polyhedron into one containing only normalized
distributions, which is important for policy evaluation.

Definition 19. We write normal(P;) for the probabilistic
polyhedron P; specified below.

min

Hlll’l max min —_
%) /mj S =5
max — max m1n max __ max
P2 = /mj S = 851
mg“n = mglax = Cy, =Ch

Lemma 20. If §; €
~e(normal(Py)).

ve(P1) then normal(é,) €



D. Policy Evaluation

Here we show how to implement the threshold test given as
Definition 3 using probabilistic polyhedra.

Definition 21. Suppose we have some initial probabilistic
polyhedron P;. Let P, = {(S)) P1. Let P; = P, | L. If, for
all o € v¢(C3) we have p®* < t where Py = normal(P; |
Nzecr © = o(x)), then we write tsecure(S, Pp).

Here we condition on a boolean expression corresponding
to the assumed output state and not the output state directly,
as per the definition for distributions.

Now we state the main soundness theorem for abstract in-
terpretation using probabilistic polyhedra. This theorem states
that the abstract interpretation just described can be used to
soundly determine whether to accept a query.

Theorem 22. Let § be an attacker’s initial belief. If § €
vo(P1) and tsecure(S, Py), then S is threshold secure for
threshold t when evaluated with initial belief §.

VI. POWERSET OF PROBABILISTIC POLYHEDRA

This section presents the P, (P) domain, an extension of
the P domain that abstractly represents a set of distributions
as at most n probabilistic polyhedra, elements of P.

Definition 23. A probabilistic (polyhedral) set A is a set
of probabilistic polyhedra, or {P;}. We write P, (P) for the
domain of probabilistic polyhedral powersets composed of no
more than n probabilistic polyhedra.

The concretization function for P,, (IP) is defined as follows:

. ({Pr, .. Pn}) S {216 | 6; € vp(P)}
A. Abstract Semantics for Py, (P)

With a few exceptions, the abstract implementations of the
basic operations for the powerset domain are extensions of
operations defined on the base probabilistic polyhedra domain.

Theorem 24. For all 6, P, S, A,
if 6 € vp, ) (A) then [S]6 € vp, ) ((S) A).

Definition 25. The powerset simplification transforms a set
containing potentially more than n elements into one contain-
ing no more than n. The simplest approach involves repeated
use of abstract plus in the base domain P.

o et {Pz}Z":l ifm<n
H{Pitizi)n = { L{B}?;2 U{Pmn_1+ Py} |n otherwise

Lemma 26. vp, »({Pi}) € vp, @) ({Pi}]n)

The order in which simplification acts on individual prob-
abilistic polyhedra makes no difference for the soundness of
the approach but may have significant impact on the accuracy
of the resulting abstraction.

Many of the operations and lemmas for the powerset do-
main are simple liftings of the corresponding operations and
lemmas for single probabilistic polyhedra. For these operations
(operations 1-4 given below), we simply list the definition.

1) Forget: fy({Pz}) = {fy(Pz)}

2) Assignment: {P;}[x — E] = {P;[z — E]}

3) Scalar product: p-{P;} = {p- P;}

4) Product: The product operation is only required for the
special uniform statement and only applies to the product of a
probabilistic set with a single probabilistic polyhedron. {P;} x
P = {P, x P}

5) Plus: The abstract plus operation involves simplifying
the combined contributions from two sets into one bounded
set: A; + A=A UA,

Lemma 27. If §; € 'Y’Pn(]P’)(Al) and 69 € ’}/'pn(]p)(AQ) then
01+ 02 € vp, ) (A1 + Aa).

6) Conditioning: To take best advantage of the richer
abstraction, we need to better approximate the state cover of
boolean expressions. Instead of approximating them with a
single polyhedron, we can also approximate them with a set
of polyhedra, interpreted as disjuncts. The disjunctive abstract
operation formalizes this operation.

Definition 28. The disjunctive abstract of a boolean expres-
sion B, denoted a™(B), is a set of polyhedra C = {C;} with
€] <m. and {o | o = B} € U, %(C)).

Though not part of the definition, we are naturally interested
in the smallest abstractions for boolean expressions.

Definition 29. Conditioning on polyhedron. Consider a proba-
bilistic polyhedron P; and a polyhedron C'. Let n = #(C1 M¢
C) and @ = #(C1) — n. Then P; | C is the probabilistic
polyhedron P, defined as follows.

Co =CiNcC

PE™ =pP™ | sp = max(spit —7,0)

DI =pP™ | sP = min(sP,n)

ménin — maX(pIan . Sénin’ minin _ prlnax . min (Srlnax7ﬁ))
m5'®* = min (p‘Qnax 55" mtex — prl’“i’ﬂ . max(s‘f“i“ —n, 0))

Similarly, we can condition on a set of disjuncts. If C =
{C;} then P, | C = {P; | C;}, a member of P, (P).

Finally, given a set {P;} and a boolean expression B, we
can define a set of probabilistic polyhedra conditioned on B:

Py B |UJE1a"®)]

3

Note that the parameter m bounding the number of disjuncts
in the abstraction of B need not be related to n.

Lemma 30. [f 6 € ’an(p)(A) then 0|B € rYPn,(lP’)(A | B).

7) Normalization: Since in the P domain, the over(under)
approximation of the total mass is not contained in any
single probabilistic polyhedron, the normalization must scale
each component of a set by the overall total. The minimum
(maximum) mass of a probabilistic polyhedra set A = {P;}
is defined as follows.

MUR((PY) S| M)



Definition 31. The scaling of a probabilistic polyhedra P;
by minimal total mass m and maximal total mass 7, written
normal( P)(m, ) is the probabilistic polyhedron P, satisfying
the conditions below.

pgnin — prlnin/m Sr2nin — Srlnin
p12nax — prlnax/m Sr2nax _ Srlnax
mg‘in = mrlnin /m Cy = C4
WP = P /m

Finally, the normalization of a set of probabilistic polyhedra
can be defined.

normal({P;}) = {normal(P;)(M™™({P;}), M™*>*({P;}))}

Lemma 32. If 6 € p,w)(A) then normal(d) €
VP, ) (normal(A)).

Definition 33. We write P(c) to mean the maximum prob-
ability of a state o according to a probabilistic polyhedron
P, and {P;}(0) to mean the maximum probability of a
state o according to a probabilistic polyhedron set {P;}. The
definitions are as follows.

= [ p™= if o € 4¢(0)
Plo) = { 0 otherwise

Lemma 34. {P;}(0) < (%;P;)(0)

{P}(0) =32, Pi(0)

Determining the maximal probabilty of any state repre-
sented by a single probabilistic polyhedron is a simple as
checking the p™#* value in the normalized version of the prob-
abilistic polyhedron. In the domain of probabilistic polyhedron
sets, however, the situation is more complex, as polyhedra may
overlap and thus a state’s probability could involve multiple
probabilistic polyhedra.

A complex approach would produce a disjoint set of prob-
abilistic polyhedra, but a simple estimate can be computed by
abstractly adding all the probabilistic polyhedra in the set, and
finding the p™®* value of the result.

max {P;}(o) < pi**  where P, = %, P;
g
This is the approach we adopt in the implementation.
B. Policy Evaluation
We begin by defining concretization for sets of polyhedra.

Definition 35. A set of convex polyhedra {C;} represents all
states that are in at least one of the polyhedra.

) ({Ci}) = U%c(@‘)

We now define tsecure for P, (P):

Definition 36. Suppose we have some initial probabilistic
polyhedron set Aj. Let Ay = {(S) Aq. Let A’ = {P/} =
Ay | L. If, for all ¢ € ypc)({C/}) we have As(o) < ¢
where Az = normal(Ay | A, ., © = o(x)), then we write
tsecures (S, Ay).

Below we state the main soundness theorem for abstract in-
terpretation using probabilistic polyhedron sets. This theorem
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Fig. 6. Query evaluation comparison

states that the abstract interpretation just described can be used
to soundly determine whether to accept a query.

Theorem 37. Let § be an attacker’s initial belief. If § €
¥, ) (A) and tsecure;(S, A), then S is threshold secure for
threshold t when evaluated with initial belief 0.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented an interpreter for the core language
based on the probabilistic polyhedra powerset domain. The
base manipulations of polyhedra are done using the Parma
Polyhedra Library [18]. Size calculations are done using the
LattE lattice point counter [19]. LattE is also used for the
integer linear programming problem involved in the abstract
forget operation. The interpreter itself is written in OCaml.

To compare the abstract interpretation approach to an exist-
ing, sampling-based approach, we used our implementation to
vet the query given in Example 1, Section II, and an implemen-
tation based on Probabilistic Scheme [12], which is capable
of sound probability estimation after partial enumeration.



Figure 6(a) illustrates the result when run on 2.5 GHz Intel
Core 2 Duo MacBook Pro, using OS X v10.5.8 with 4 GB
of RAM. Each x plots Probscheme’s maximum probability
value (the y axis)—that is, the probability it assigns to the
most likely secret state—when given a varying amount of
time for sampling (the x axis). We can see the precision
improves steadily until it reaches the exact value of 1/259
at around 30 seconds. Each + plots our implementation’s
maximum probability value when given an increasing number
of probabilistic polyhedra; with a polyhedral bound of 2 (or
more), we obtain the exact value in less than 3 seconds. The
advantage of our approach is more evident in Figure 6(b)
where we use the same program but allow byear to span 1910
to 2010 rather than 1956 to 1992. In this case ProbScheme
makes little progress even after a minute, and eventually runs
out of memory. Our approach, however, is unaffected by this
larger state space and produces the exact maximum belief after
around 3 seconds when using only 2 probabilistic polyhedra.

Figure 6(c) shows the result of our implementation assessing
the special query (Example 2) with initial belief matching that
following the first birthday query. Each plotted point is the
number of polyhedra allowed. The result demonstrates that
more complex queries, specifically ones with many disjunc-
tions in their conditionals, not only slow our approach down,
but also reduce the precision of the maximum probability
value. The example requires 36 polyhedra for exact calcu-
lations though as little as 3 produce probabilities near exact.
The precision worsens as the number of polyhedra is increased
until 36 are allowed. We conjecture this is a side-effect of an
overly simple means of deciding which polyhedra to merge
when performing abstract simplification and plan to investigate
this closely in future work.

VIII. RELATED WORK

Prior work aimed at controlling access to users’ private
data has focused on access control policies. For example,
Persona [6] users can store personal data on distributed storage
servers that use attribute-based encryption; only those parties
that have the attribute keys for particular data items may
see them. Our approach relaxes the access control model to
offer more fine-grained information release policies by directly
modeling an attacker’s belief.

However, explicit belief modeling can be both a strength
and a limitation. As shown in this paper, explicit modeling
is a strength because it supports intuitive policies, i.e., those
designed to control the likelihood of correctly guessing a secret
value, and these policies can be enforced without an a priori
limit on the number or form of queries. On the other hand,
a secret’s owner must produce a reasonably accurate estimate
of the attacker’s knowledge for the technique to be effective;
gaps in that estimate (e.g., due to collusion) could lead to
leaks. This problem was the motivation for work on differential
privacy [22], which aims to bound the increase in attacker
knowledge without having to model knowledge explicitly. Un-
fortunately, the secret owner is still left with deciding what this
bound should be, and ultimately this decision must be made

with some assumption about the attacker’s knowledge; this fact
is shown explicitly by Rastogi et al [23]. Another problem
with differential privacy is that because knowledge is not
modeled explicitly, in general each query’s knowledge release
is assumed independent, and once the query limit is reached, as
determined by the bound, no further queries are permitted. In
contrast, our approach permits an unlimited number of queries
as long as knowledge gained from them never exceeds the
threshold. Finally, differential privacy applies to queries over
databases of structurally-similar records, so its application to
individual personal data, as is our interest, is not clear.

Several quantitative approaches to track program informa-
tion leakage have been proposed by past approaches. McCa-
mant and Ernst [24] model the program as a covert channel
whose output is a lossy encoding over the program’s input
symbols; Backes et al. [25] model information leakage in a
program as (the size of) an equivalence relationship between
the set of input and output symbols. However, the measures for
information proposed by past approaches are coarse-grained.
For example, [24] use of channel capacity as a metric for
information leakage. However, channel capacity is determined
by the worst case probability distribution over input symbols
that maximizes leakage. While such worst case estimates may
offer bounds on leakage, we believe that our approach offers
a more fine-grained (per query), semantically-richer means to
measure release.

Kopf and Rybalchenko [26] present an analysis that uses
under- and over-approximation to obtain bounds on informa-
tion flow. However this analysis is focused on tracking entropy
and is incapable of reasoning about belief distributions. Mu
and Clark [27] present a similar analysis that uses over-
approximation only. This work is also focused solely on
entropy measures and cannot represent beliefs. Monniaux [28]
gives an abstract interpretation for probabilistic programs
based on over-approximating probabilities. That work contains
no treatment of distribution conditioning and normalization,
which are crucial for belief-based information flow analysis.
Under-approximations are needed to soundly handle condition-
ing and normalization and this use of under-approximations is
unique to our approach.

IX. CONCLUSION

This paper has explored the idea of knowledge-based se-
curity policies: given a query over some secret data, that
query should only be answered if doing so will not increase
the querier’s knowledge above a fixed threshold. We enforce
knowledge-based policies by explicitly tracking a model of a
querier’s belief about secret data, represented as a probability
distribution, and we deny any query that could increase knowl-
edge above a the threshold. Our denial criterion is independent
of the actual secret, so denial does not leak information. We
implement query analysis and belief tracking via abstract inter-
pretation using a novel domain we developed called powersets
of probabilistic polyhedra. Compared to typical approaches to
implementing belief revision, our implementation using this
domain is more efficient and scales better.
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APPENDIX
CONCRETE PROBABILISTIC SEMANTICS

Here we briefly explain the concrete probabilistic semantics
given in Figure 3. More details can be found in Clarkson et
al. [9].

The semantics of skip is straightforward: it is the identity
on distributions. The semantics of sequences S ; Sz is also
straightforward: the distribution that results from executing S}
with § is given as input to Sy to produce the result.

The semantics of assignment is § [x — E], which is defined

as follows:

7 | Tlz—=[E]7]=0

Sz — E] = \o. 5(7)

In words, the result of substituting an expression £ for z is a
distribution where state o is given a probability that is the sum
of the probabilities of all states 7 that are equal to o when x
is mapped to the distribution on £ in 7. For implementation
purposes, it will be useful to consider separately the case
where assignment is invertible.

When © — FE is an invertible transformation, the formula
for assignment can be simplified to the following, where x —
E’ is the inverse of x — E.

Sz — E] = \o. 6(c [z — [E']o])

When z — E is not invertible, the original definition is
equivalent to a projection followed by an assignment. Let V' =
domain(0) — {z} and let 6’ = § | V'. Then we have the
following for a non-invertible assignment.

Sz — E] = \o. if o(z) = [E]o then §'(c | V') else 0
In the appendix, we show that this definition by cases is
equivalent to the original definition (Theorem ??).

The semantics for conditionals makes use of two operators
on distributions which we now define. First, given distributions
01 and d9 we define the distribution sum as follows:

614 02 = No. 61(0) + d2(0)

In words, the probability mass for a given state o of the
summed distribution is just the sum of the masses from the
input distributions for ¢. Second, given a distribution ¢ and a
boolean expression B, we define the distribution conditioned
on B to be

§|B = Xo. if [B]o then 6(c) else 0

In short, the resulting distribution retains only the probability
mass from § for states o in which B holds.

With these two operators, the semantics of conditionals can
be stated simply: the resulting distribution is the sum of the
distributions of the two branches, where the first branch’s
distribution is conditioned on B being true, while the second
branch’s distribution is conditioned on B being false.

The semantics for probabilistic conditionals like that of
conditionals but makes use of distribution scaling, which is



defined as follows: given § and some scalar p in [0, 1], we
have
p-0= Ao.p- (o)

In short, the probability ascribed to each state is just the
probability ascribed to that state by § but multiplied by p.
For probabilistic conditionals, we sum the distributions of the
two branches, scaling them according to the odds ¢ and 1 —gq.

The semantics of a single iteration of a while loop is
essentially that of if B then S else skip and the semantics of
the entire loop is the fixpoint of a function that composes the
distributions produced by each iteration. That such a fixpoint
exists is proved by Clarkson et al. [9].

Finally, the semantics of uniform x n; ng, introduced in
Section V is given as

[uniform z ny ng]d = (0 [V —{z}) x ¢’

Where V is the set of variables of §, and ¢’ is defined as
follows.

1
§ =MXo.if n; <o(z) <ny then —— else 0
Nng — Ny + 1

APPENDIX
ALTERNATIVE (FLAWED) THRESHOLD SECURITY POLICY

As an alternative to Definition 3, suppose we used the
following instead:

Vo, € support(8' | L). (normal(¢’|oy | H))(om) <t

Here is an example that illustrates why this definition is not
safe, as it could underestimate the information a querier can
learn.

Suppose Bob’s threshold for his birth year byear is ¢t =
0.05. He models a social networking site X as believing his
age is more likely between 20 and 40 than between 40 and 60,
e.g., 1971 < byear < 1991 with probability 0.6 (thus, 0.03
per possibility) and 1951 < byear < 1971 with probability
0.4 (thus, 0.02 per possibility). If user Bob was born in 1965,
then X’s believes his is actual birth year not as likely a
more recent year, say 1975; in any case X does not currently
believe any possibility above Bob’s threshold. Now suppose
X submits program S that determines whether Bob’s birth
year is even. The revised belief will include only even (when
output = True) or odd (when output = False) birthdays,
increasing the likelihood of years in the range [1971,1991)
to be 0.06 per point, and the likelihood of years in the range
[1951,1971) to be 0.04 per point. Bob’s birthday is 1965,
and its probability 0.04 is less than ¢, so according to the
flawed definition the agent would respond to this query. But
if this query result is returned, X will see that there are ten
possibilities of birth year that are above Bob’s threshold. X
can deduce that none of these possibilities is Bob’s actual birth
year, or else the query would have been rejected. Excluding
these possibilities, he knows that Bob’s birth year is one of
ten possibilities between 1951 and 1971 ascribing to each a
probability 0.1 which exceeds Bob’s threshold of 0.05.



