
Termination-Insensitive
Computational Indistinguishability

(and applications to computational soundness)

Dominique Unruh
Saarland University

Abstract

We defined a new notion of computational indistinguishability: termination-insensitive
computational indistinguishability (tic-indistinguishability). Tic-indistinguishability
models indistinguishability with respect to distinguishers that cannot distinguish be-
tween termination and non-termination.

We sketch how the new notion allows to get computational soundness results of
symbolic models for equivalence-based security properties (such as anonymity) for pro-
cesses that contain loops, solving an open problem.

This document has an interactive symbol index. Clicking on a symbol in a formula will provide
information on its definition. Try it and click here: ≈M

tic . (On slower computers, you may have
to wait a bit.) If your viewer does not support this feature, try Adobe Acrobat Reader. If you
have problems with this file, download the PostScript version without interactive symbol index.

Contents

1 Introduction 2
1.1 Defining tic-indistinguishability 3
1.2 Machine model independence 5
1.3 Using tic-indistinguishability 5
1.4 Computational soundness . 6

2 Tic-indistinguishability 7

3 Machine-model independence 9

4 Properties 10

5 Computational soundness 11

A Postponed proofs for Section 3 13

B Postponed proofs for Section 4 15

C Postponed definitions for Sec-
tion 5 19

References 22

Index 24

Symbol index 25

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model

Termination-Insensitive
Computational Indistinguishability

(and applications to computational soundness)

Dominique Unruh
Saarland University

Abstract

We defined a new notion of computational indistinguishability: termination-insensitive
computational indistinguishability (tic-indistinguishability). Tic-indistinguishability
models indistinguishability with respect to distinguishers that cannot distinguish be-
tween termination and non-termination.

We sketch how the new notion allows to get computational soundness results of
symbolic models for equivalence-based security properties (such as anonymity) for pro-
cesses that contain loops, solving an open problem.

This document has an interactive symbol index. Clicking on a symbol in a formula will provide
information on its definition. Try it and click here: ≈M

tic . (On slower computers, you may have
to wait a bit.) If your viewer does not support this feature, try Adobe Acrobat Reader. If you
have problems with this file, download the PostScript version without interactive symbol index.

Contents

1 Introduction 2
1.1 Defining tic-indistinguishability 3
1.2 Machine model independence 5
1.3 Using tic-indistinguishability 5
1.4 Computational soundness . 6

2 Tic-indistinguishability 7

3 Machine-model independence 9

4 Properties 10

5 Computational soundness 11

A Postponed proofs for Section 3 13

B Postponed proofs for Section 4 15

C Postponed definitions for Sec-
tion 5 19

References 22

Index 24

Symbol index 25

1 Introduction

We present the notion of termination-insensitive computational indistinguishability (tic-
indistinguishability for short). In a nutshell, two interactive machines A and B are tic-
indistinguishable (written: A ≈tic B) if they cannot be distinguished by a distinguisher
that is computationally limited, and that cannot distinguish between non-termination and
termination of the machines it interacts with. That is, if for example upon some query A
returns 1, and B never returns, A and B will be considered tic-indistinguishable. Further-
more, needing superpolynomial time for answering a request is treated as non-termination.
That is, if B returns 0 after an exponential number of steps, we still have A ≈tic B.

Before we explain how tic-indistinguishability can be formally defined, we present a
motivating example that explains why such a notion can be necessary in the first place.
Assume that we have designed a file server A that supports the following queries: Store
content c under filename f . Read (part of) the content of file f . Concatenate the contents
of two files f1, f2 and store the result in file f3. Encrypt the content of file f1 and store the
result in file f2. (Encryption takes place with respect to some IND-CCA secure encryption
scheme and some publicly known public key; the secret key is not revealed or even used.)

We wish to compare this file server with the file server B which, instead of encrypting
the content of c of file f1, encrypts 0|c|. Intuitively, we would expect that A and B are com-
putationally indistinguishable. Typically, computational indistinguishability of interactive
machines A and B would be defined by requiring that for any polynomial-time machine Z,
Z cannot guess whether it interacts with A or with B. Consider the following Z: Z creates
a file f0 with content 1. Then, through a sequence of concatenation operations, Z creates
polynomially-many files fi such that the content of fi is 12i . Finally, Z produces a file f
containing the encryption of the content 12η of fη (η being the security parameter), and
requests and outputs the first bit of the content of f . Since IND-CCA security only deals
with polynomial-time adversaries, it does not contradict IND-CCA security if the first bit
of the encryption of a message m of length 2η equals the first bit of m. Assume that we are
using such a scheme. Then Z, interacting with A, will output 1. And interacting with B,
Z will output 0. Thus A and B are not computationally indistinguishable.

What options do we have to resolve this issue?
• We could reject all machines that do not run in polynomial time and never even ask the

question whether they are computationally indistinguishable. This would, however,
exclude even such innocuous looking machines as our file server. And we believe that
many practical systems do in fact have specifications that allow to perform operations
that are not a priori bounded in their running time.
• We could try to strengthen the definition of IND-CCA security such that it allows

to make A and B computationally indistinguishable. It is not clear whether such an
approach is feasible in general. Anyway, it seems strange to introduce additional com-
putational assumptions in order to avoid attacks that occur after a superpolynomial
amount of time (from the point of view of cryptography, they never occur).
• One could try to define a notion of computational indistinguishability that requires

2

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

η Security parameter
η Security parameterη Security parameter

η Security parameter

1 Introduction

We present the notion of termination-insensitive computational indistinguishability (tic-
indistinguishability for short). In a nutshell, two interactive machines A and B are tic-
indistinguishable (written: A ≈tic B) if they cannot be distinguished by a distinguisher
that is computationally limited, and that cannot distinguish between non-termination and
termination of the machines it interacts with. That is, if for example upon some query A
returns 1, and B never returns, A and B will be considered tic-indistinguishable. Further-
more, needing superpolynomial time for answering a request is treated as non-termination.
That is, if B returns 0 after an exponential number of steps, we still have A ≈tic B.

Before we explain how tic-indistinguishability can be formally defined, we present a
motivating example that explains why such a notion can be necessary in the first place.
Assume that we have designed a file server A that supports the following queries: Store
content c under filename f . Read (part of) the content of file f . Concatenate the contents
of two files f1, f2 and store the result in file f3. Encrypt the content of file f1 and store the
result in file f2. (Encryption takes place with respect to some IND-CCA secure encryption
scheme and some publicly known public key; the secret key is not revealed or even used.)

We wish to compare this file server with the file server B which, instead of encrypting
the content of c of file f1, encrypts 0|c|. Intuitively, we would expect that A and B are com-
putationally indistinguishable. Typically, computational indistinguishability of interactive
machines A and B would be defined by requiring that for any polynomial-time machine Z,
Z cannot guess whether it interacts with A or with B. Consider the following Z: Z creates
a file f0 with content 1. Then, through a sequence of concatenation operations, Z creates
polynomially-many files fi such that the content of fi is 12i . Finally, Z produces a file f
containing the encryption of the content 12η of fη (η being the security parameter), and
requests and outputs the first bit of the content of f . Since IND-CCA security only deals
with polynomial-time adversaries, it does not contradict IND-CCA security if the first bit
of the encryption of a message m of length 2η equals the first bit of m. Assume that we are
using such a scheme. Then Z, interacting with A, will output 1. And interacting with B,
Z will output 0. Thus A and B are not computationally indistinguishable.

What options do we have to resolve this issue?
• We could reject all machines that do not run in polynomial time and never even ask the

question whether they are computationally indistinguishable. This would, however,
exclude even such innocuous looking machines as our file server. And we believe that
many practical systems do in fact have specifications that allow to perform operations
that are not a priori bounded in their running time.
• We could try to strengthen the definition of IND-CCA security such that it allows

to make A and B computationally indistinguishable. It is not clear whether such an
approach is feasible in general. Anyway, it seems strange to introduce additional com-
putational assumptions in order to avoid attacks that occur after a superpolynomial
amount of time (from the point of view of cryptography, they never occur).
• One could try to define a notion of computational indistinguishability that requires

2

A to answer in polynomial-time whenever B answers in polynomial-time, and that
in this case the answers are indistinguishable. This is, however, not trivial to define,
because there is no strict border between polynomial-time and superpolynomial-time
(that is, one cannot specify a number t such that t steps would be polynomial-time,
and t+ 1 steps would be superpolynomial-time).
• Or, one could use our notion of tic-indistinguishability. We have A ≈tic B because the

encryption scheme can only leak information at a point where A and B are already
considered non-terminating.

One might complain that tic-indistinguishability is too weak a notion because it considers
non-termination and termination to be indistinguishable although in practice, these are
clearly distinguishable: We fix a suitable timeout, and once that timeout has elapsed, we can
assume that the system we are communicating with does not terminate. One should observe,
however, that the same applies when distinguishing machines with polynomial running times
of, say, η2 and η100. These can easily be distinguished by using a timeout, but commonly
we treat them as indistinguishable because we choose to abstract away from timing issues.
The alternative would be to explicitly model the timing; in this case tic-indistinguishability
would not make sense. If we do, however, choose to abstract away from the running time,
it seems natural not to make an exception for exponential running time. That is, if we
cannot distinguish between η2 and η100, we should also not distinguish between, say, η2

and 2η. On the other hand, after 2η steps, the actual answer does not matter any more, so
that answer should not be used to distinguish. This is exactly what tic-indistinguishability
does. Thus, from a more philosophical point of view, natural notions would be some kind
of timing-sensitive indistinguishability (if we consider timing), and tic-indistinguishability
(if we abstract away from timing), while normal computational indistinguishability seems
to model a mixture of two approaches (considering and abstracting away from timing).

On the more practical side, we also explain below (Section 1.4) that tic-indistinguishability
allows to state certain computational soundness results1 that would, with respect to com-
putational indistinguishability, be subject to strong side-conditions.

Our contribution. We present the notion of tic-indistinguishability. We show that the
definition of tic-indistinguishability is machine-model independent. We relate tic-indistinguishability
to computational and statistical indistinguishability; this allows us to perform subproofs
with respect to more familiar indistinguishability notions. We show how tic-indistinguishability
can be used to get computational soundness results for equivalence-based security properties
(such as anonymity) for processes that may contain loops, solving an open problem.

1.1 How to define tic-indistinguishability

In order to understand the definition of tic-indistinguishability, let us first consider a simpler
case: We do not consider computational limitations of the distinguisher, we do not allow

1A computational soundness result is a theorem that states that, if a protocol is shown secure in a
symbolic model (a.k.a. Dolev-Yao model) using formal methods, then this protocol is also secure in a
computational/cryptographic sense.

3

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

η Security parameterη Security parameter

η Security parameterη Security parameter η Security parameter
η Security parameter η Security parameter

A to answer in polynomial-time whenever B answers in polynomial-time, and that
in this case the answers are indistinguishable. This is, however, not trivial to define,
because there is no strict border between polynomial-time and superpolynomial-time
(that is, one cannot specify a number t such that t steps would be polynomial-time,
and t+ 1 steps would be superpolynomial-time).
• Or, one could use our notion of tic-indistinguishability. We have A ≈tic B because the

encryption scheme can only leak information at a point where A and B are already
considered non-terminating.

One might complain that tic-indistinguishability is too weak a notion because it considers
non-termination and termination to be indistinguishable although in practice, these are
clearly distinguishable: We fix a suitable timeout, and once that timeout has elapsed, we can
assume that the system we are communicating with does not terminate. One should observe,
however, that the same applies when distinguishing machines with polynomial running times
of, say, η2 and η100. These can easily be distinguished by using a timeout, but commonly
we treat them as indistinguishable because we choose to abstract away from timing issues.
The alternative would be to explicitly model the timing; in this case tic-indistinguishability
would not make sense. If we do, however, choose to abstract away from the running time,
it seems natural not to make an exception for exponential running time. That is, if we
cannot distinguish between η2 and η100, we should also not distinguish between, say, η2

and 2η. On the other hand, after 2η steps, the actual answer does not matter any more, so
that answer should not be used to distinguish. This is exactly what tic-indistinguishability
does. Thus, from a more philosophical point of view, natural notions would be some kind
of timing-sensitive indistinguishability (if we consider timing), and tic-indistinguishability
(if we abstract away from timing), while normal computational indistinguishability seems
to model a mixture of two approaches (considering and abstracting away from timing).

On the more practical side, we also explain below (Section 1.4) that tic-indistinguishability
allows to state certain computational soundness results1 that would, with respect to com-
putational indistinguishability, be subject to strong side-conditions.

Our contribution. We present the notion of tic-indistinguishability. We show that the
definition of tic-indistinguishability is machine-model independent. We relate tic-indistinguishability
to computational and statistical indistinguishability; this allows us to perform subproofs
with respect to more familiar indistinguishability notions. We show how tic-indistinguishability
can be used to get computational soundness results for equivalence-based security properties
(such as anonymity) for processes that may contain loops, solving an open problem.

1.1 How to define tic-indistinguishability

In order to understand the definition of tic-indistinguishability, let us first consider a simpler
case: We do not consider computational limitations of the distinguisher, we do not allow

1A computational soundness result is a theorem that states that, if a protocol is shown secure in a
symbolic model (a.k.a. Dolev-Yao model) using formal methods, then this protocol is also secure in a
computational/cryptographic sense.

3

for a negligible probability of failure, and assume that the machines A and B that we
distinguish are non-interactive and either output a bit b or run forever. Let pAb and pA⊥
denote the probability that A outputs b or does not terminate, respectively. Define pB
analogously. We will consider A and B as indistinguishable if we can redistribute the
probability of non-termination onto the probabilities for the outputs 0 and 1 in such a way,
that the probability distributions of the outputs of A and B become the same. (I.e., we
treat the non-termination probability as a kind of “wildcard” that can be reinterpreted as
any output.) More precisely, A and B are indistinguishable if there are values p̂Xb ≥ 0 for
b ∈ {0, 1} and X ∈ {A,B} such that p̂A0 + p̂A1 = pA⊥ and p̂B0 + p̂B1 = pB⊥ (this models that the
p̂Xb are a redistribution of the non-termination probability) and such that pA0 +p̂A0 = pB0 +p̂B0
and pA1 + p̂A1 = pB1 + p̂B1 (this models that after redistributing probabilities, the output
distributions of A and B are equal). One easily sees that such p̂Xb exist iff pA0 + pB1 ≤ 1 and
pA1 + pB0 ≤ 1. Thus we can define A and B as indistinguishable iff for all a 6= b we have
pA0 + pB1 ≤ 1 and pA1 + pB0 ≤ 1.

Now, let us consider the case that A and B are arbitrary interactive machines. To cover
this case, we introduce a distinguisher Z whose goal it is two interacts with A and B and
whose output represents a guess whether it is interacting with A or B. We also add the
possibility of a negligible error. This leads to the following definition of indistinguishability:
For any machine Z there is a negligible µ such that for all a 6= b,

Pr[Z +A ⇓ a] + Pr[Z +B ⇓ b] ≤ 1 + µ.

Here Z + A ⇓ a denotes the event that an interaction between Z and A terminates and Z
outputs a.

So far, we have not considered the running time of A, B, or Z, leading to a statistical
notion of indistinguishability. To get a computational notion, we need to ensure two things:
Z runs in polynomial time, and anything that A and B do after polynomial-time is not
counted. In other words, we have to consider a polynomial-time prefix of the interaction
between Z and A or B. This leads to the following definition: For any machine Z and all
polynomials p, q,

Pr[Z +A ⇓p a] + Pr[Z +B ⇓q b] ≤ 1 + µ.

Here Z + A ⇓p a denotes the event that an interaction between Z and A terminates after
at most p steps (counting the running time of both Z and A) and Z outputs a. Notice that
if this condition is violated for some p, q, it is also violated for the polynomials p′ := p+ q
and q′ := p′ = p + q. Thus, without loss of generality, we can assume p = q. Thus our
definition is ready:

Definition 1 (tic-indistinguishability – informal) We call A and B tic-indistinguishable
(A ≈tic B) if for all machines Z and all polynomials p, there is a negligible µ such that for
all a 6= b we have

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b] ≤ 1 + µ.

4

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8⇓t Termination after t steps 9

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

for a negligible probability of failure, and assume that the machines A and B that we
distinguish are non-interactive and either output a bit b or run forever. Let pAb and pA⊥
denote the probability that A outputs b or does not terminate, respectively. Define pB
analogously. We will consider A and B as indistinguishable if we can redistribute the
probability of non-termination onto the probabilities for the outputs 0 and 1 in such a way,
that the probability distributions of the outputs of A and B become the same. (I.e., we
treat the non-termination probability as a kind of “wildcard” that can be reinterpreted as
any output.) More precisely, A and B are indistinguishable if there are values p̂Xb ≥ 0 for
b ∈ {0, 1} and X ∈ {A,B} such that p̂A0 + p̂A1 = pA⊥ and p̂B0 + p̂B1 = pB⊥ (this models that the
p̂Xb are a redistribution of the non-termination probability) and such that pA0 +p̂A0 = pB0 +p̂B0
and pA1 + p̂A1 = pB1 + p̂B1 (this models that after redistributing probabilities, the output
distributions of A and B are equal). One easily sees that such p̂Xb exist iff pA0 + pB1 ≤ 1 and
pA1 + pB0 ≤ 1. Thus we can define A and B as indistinguishable iff for all a 6= b we have
pA0 + pB1 ≤ 1 and pA1 + pB0 ≤ 1.

Now, let us consider the case that A and B are arbitrary interactive machines. To cover
this case, we introduce a distinguisher Z whose goal it is two interacts with A and B and
whose output represents a guess whether it is interacting with A or B. We also add the
possibility of a negligible error. This leads to the following definition of indistinguishability:
For any machine Z there is a negligible µ such that for all a 6= b,

Pr[Z +A ⇓ a] + Pr[Z +B ⇓ b] ≤ 1 + µ.

Here Z + A ⇓ a denotes the event that an interaction between Z and A terminates and Z
outputs a.

So far, we have not considered the running time of A, B, or Z, leading to a statistical
notion of indistinguishability. To get a computational notion, we need to ensure two things:
Z runs in polynomial time, and anything that A and B do after polynomial-time is not
counted. In other words, we have to consider a polynomial-time prefix of the interaction
between Z and A or B. This leads to the following definition: For any machine Z and all
polynomials p, q,

Pr[Z +A ⇓p a] + Pr[Z +B ⇓q b] ≤ 1 + µ.

Here Z + A ⇓p a denotes the event that an interaction between Z and A terminates after
at most p steps (counting the running time of both Z and A) and Z outputs a. Notice that
if this condition is violated for some p, q, it is also violated for the polynomials p′ := p+ q
and q′ := p′ = p + q. Thus, without loss of generality, we can assume p = q. Thus our
definition is ready:

Definition 1 (tic-indistinguishability – informal) We call A and B tic-indistinguishable
(A ≈tic B) if for all machines Z and all polynomials p, there is a negligible µ such that for
all a 6= b we have

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b] ≤ 1 + µ.

4

1.2 Machine model independence

When considering Definition 1, one may fear that the definition is very sensitive to the
underlying machine model. Instead of quantifying over all polynomial-time machines (which
is a class that is equal for all common machine models), we explicitly consider the running
time of the machines A and B and of the distinguisher Z.

Fortunately, it turns out that we have machine-model independence in the following
strong sense: Given two machines A and A′, we call A and A′ time-equivalent (written
A ≈time A

′) if A and A′ compute the same function, and any computations performed by
A are take at most polynomially longer than the same computation performed by A′ and
vice versa. (We give a precise definition in Section 3.) We call two machine models M,M′

time-equivalent if for any machine in model M, there is a time-equivalent machine in model
M′ and vice versa. In other words, whatever can be done in machine model M can also be
done in machine model M′ with only polynomial overhead. Most natural machine models
are time-equivalent. We show the following lemma:

Lemma 2 (Informal) If A ≈tic B with respect to some machine model M, then also
A ≈tic B with respect to any time-equivalent machine model M. Also, if A ≈time A

′ and
A ≈tic B, then A′ ≈tic B (and the same for B).

This lemma allow us to fix some machine model without loss of generality (say, Turing
machines), while still getting results that apply to most natural machine models. Also,
when describing machine A and B that we wish to compare, it is not necessary to exactly
know the algorithm they use, it is only necessary to describe them up to time-equality.
Thus the situation is comparable to the machine model independence that we have with
computational indistinguishability.

1.3 Using tic-indistinguishability

In order to derive tic-indistinguishability of two machines, it is often not necessary to invoke
the definition of tic-indistinguishability directly. Instead, there are a few useful properties
that allow to derive tic-indistinguishability from common indistinguishability notions.

First, we have that if A and B are statistically indistinguishable (no unbounded Z can
guess whether it is talking to A or B), then A ≈tic B. The converse does not hold: For
example, if A terminates but B does not, A and B can be tic-indistinguishable, but not
statistically indistinguishable.

Second, if A and B are reactive polynomial-time machines,2 then A ≈tic B iff A and B
are computationally indistinguishable. This gives an indication that tic-indistinguishability
indeed exactly captures computational indistinguishability augmented with the concept of
not being able to recognize non-termination.

2A machine is reactively polynomial-time [8] if it runs in polynomial-time whenever it interacts with a
polynomial-time machine. Intuitively, this means that a machine reacts to any incoming message with a
polynomial-time computation.

5

≈time Time-equivalence 10

M Usually denotes a machine modelM Usually denotes a machine model
M Usually denotes a machine model

M Usually denotes a machine model M Usually denotes a machine model
M Usually denotes a machine model

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9M Usually denotes a machine model

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9M Usually denotes a machine model≈time Time-equivalence 10
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

1.2 Machine model independence

When considering Definition 1, one may fear that the definition is very sensitive to the
underlying machine model. Instead of quantifying over all polynomial-time machines (which
is a class that is equal for all common machine models), we explicitly consider the running
time of the machines A and B and of the distinguisher Z.

Fortunately, it turns out that we have machine-model independence in the following
strong sense: Given two machines A and A′, we call A and A′ time-equivalent (written
A ≈time A

′) if A and A′ compute the same function, and any computations performed by
A are take at most polynomially longer than the same computation performed by A′ and
vice versa. (We give a precise definition in Section 3.) We call two machine models M,M′

time-equivalent if for any machine in model M, there is a time-equivalent machine in model
M′ and vice versa. In other words, whatever can be done in machine model M can also be
done in machine model M′ with only polynomial overhead. Most natural machine models
are time-equivalent. We show the following lemma:

Lemma 2 (Informal) If A ≈tic B with respect to some machine model M, then also
A ≈tic B with respect to any time-equivalent machine model M. Also, if A ≈time A

′ and
A ≈tic B, then A′ ≈tic B (and the same for B).

This lemma allow us to fix some machine model without loss of generality (say, Turing
machines), while still getting results that apply to most natural machine models. Also,
when describing machine A and B that we wish to compare, it is not necessary to exactly
know the algorithm they use, it is only necessary to describe them up to time-equality.
Thus the situation is comparable to the machine model independence that we have with
computational indistinguishability.

1.3 Using tic-indistinguishability

In order to derive tic-indistinguishability of two machines, it is often not necessary to invoke
the definition of tic-indistinguishability directly. Instead, there are a few useful properties
that allow to derive tic-indistinguishability from common indistinguishability notions.

First, we have that if A and B are statistically indistinguishable (no unbounded Z can
guess whether it is talking to A or B), then A ≈tic B. The converse does not hold: For
example, if A terminates but B does not, A and B can be tic-indistinguishable, but not
statistically indistinguishable.

Second, if A and B are reactive polynomial-time machines,2 then A ≈tic B iff A and B
are computationally indistinguishable. This gives an indication that tic-indistinguishability
indeed exactly captures computational indistinguishability augmented with the concept of
not being able to recognize non-termination.

2A machine is reactively polynomial-time [8] if it runs in polynomial-time whenever it interacts with a
polynomial-time machine. Intuitively, this means that a machine reacts to any incoming message with a
polynomial-time computation.

5

We also have composability: If A ≈tic B, then A + C ≈tic B + C for all C. (A + C
denotes the machine consisting of A and C interacting with each other.)

For example, if we want to show that A ≈tic B were A and B are the file servers from
our initial motivating example, we can proceed as follows: Let C be an implementation
of the file server that invokes an external machine E for performing the encryptions. I.e.,
E behaves like an encryption oracle, and whenever C wishes to encrypt a message m, C
sends m to E and E returns the ciphertext. Since outsourcing a computation incurs only a
polynomial-time overhead, we have that A ≈time C+E. Furthermore, let F be defined like
E, except that F encrypts 0|m| instead of m. Then B ≈time C + F . It is easy to see that
E and F are reactive polynomial-time (their complexity is polynomial in the length of the
messages they have to encrypt). And if the encryption scheme is IND-CCA (or IND-CPA),
E and F are computationally indistinguishable. Thus E ≈tic F , and, using composability,
C + E ≈tic C + F . By Lemma 2, A ≈tic B.

One should not, however, that some kinds of reasoning are excluded: ≈tic is not transi-
tive. This can be easily seen: If M0 is a machine that never terminates, A ≈tic M0 ≈tic B
for all A,B, but not necessarily A ≈tic B. Thus intransitivity is a necessary consequence of
making non-termination indistinguishable from any other behavior. To allow for step-wise
rewriting as often used in cryptographic proofs (game-based proofs), we give the following
lemma:

Lemma 3 (Informal) If A and B are reactive polynomial-time and computationally in-
distinguishable, and if C+A ≈tic D+A (C+A denotes the composition of C and A), then
C +B ≈tic D +B.

This lemma allows to derive a tic-indistinguishability in a simpler setting (where B is
replaced by some simpler but computationally indistinguishable A). This lemma is also
used centrally in our computational soundness proof (see next section).

1.4 Computational soundness

There are two main approaches on how to model and verify the security of protocols. In
the computational approach, protocol machines are modeled as computational entities (e.g.,
Turing machines) that send and receive bitstrings. Cryptographic operations on these
bitstrings are modeled as algorithms on bitstrings; the adversary is allowed to perform any
polynomial-time computation. In the symbolic approach, messages are not modeled as
bitstrings, but as terms over a suitable algebra. The constructors in this algebra model the
various available cryptographic operations (such as encryption). The adversary is limited
to perform certain well-defined symbolic operations on the terms in his knowledge (e.g., an
adversary can derive a plaintext m if and only if he knows the key k and the ciphertext
enc(k,m)). Although the cryptographic approach comes much closer to reality, the symbolic
approach is very popular because it allows for very powerful machine-assisted verification
of the security of protocols. In order to get the best of both worlds, Abadi and Rogaway [1]
suggested so-called computational soundness results. Such a result states, that, if a protocol
is secure in the symbolic setting, that protocol is secure in the computational setting. Most

6

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8+ Composition of two machines 8

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈time Time-equivalence 10+ Composition of two machines 8
≈time Time-equivalence 10+ Composition of two machines 8

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
M0 Machine that never terminates 6≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9M0 Machine that never terminates 6≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9

+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8+ Composition of two machines 8

+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8

We also have composability: If A ≈tic B, then A + C ≈tic B + C for all C. (A + C
denotes the machine consisting of A and C interacting with each other.)

For example, if we want to show that A ≈tic B were A and B are the file servers from
our initial motivating example, we can proceed as follows: Let C be an implementation
of the file server that invokes an external machine E for performing the encryptions. I.e.,
E behaves like an encryption oracle, and whenever C wishes to encrypt a message m, C
sends m to E and E returns the ciphertext. Since outsourcing a computation incurs only a
polynomial-time overhead, we have that A ≈time C+E. Furthermore, let F be defined like
E, except that F encrypts 0|m| instead of m. Then B ≈time C + F . It is easy to see that
E and F are reactive polynomial-time (their complexity is polynomial in the length of the
messages they have to encrypt). And if the encryption scheme is IND-CCA (or IND-CPA),
E and F are computationally indistinguishable. Thus E ≈tic F , and, using composability,
C + E ≈tic C + F . By Lemma 2, A ≈tic B.

One should not, however, that some kinds of reasoning are excluded: ≈tic is not transi-
tive. This can be easily seen: If M0 is a machine that never terminates, A ≈tic M0 ≈tic B
for all A,B, but not necessarily A ≈tic B. Thus intransitivity is a necessary consequence of
making non-termination indistinguishable from any other behavior. To allow for step-wise
rewriting as often used in cryptographic proofs (game-based proofs), we give the following
lemma:

Lemma 3 (Informal) If A and B are reactive polynomial-time and computationally in-
distinguishable, and if C+A ≈tic D+A (C+A denotes the composition of C and A), then
C +B ≈tic D +B.

This lemma allows to derive a tic-indistinguishability in a simpler setting (where B is
replaced by some simpler but computationally indistinguishable A). This lemma is also
used centrally in our computational soundness proof (see next section).

1.4 Computational soundness

There are two main approaches on how to model and verify the security of protocols. In
the computational approach, protocol machines are modeled as computational entities (e.g.,
Turing machines) that send and receive bitstrings. Cryptographic operations on these
bitstrings are modeled as algorithms on bitstrings; the adversary is allowed to perform any
polynomial-time computation. In the symbolic approach, messages are not modeled as
bitstrings, but as terms over a suitable algebra. The constructors in this algebra model the
various available cryptographic operations (such as encryption). The adversary is limited
to perform certain well-defined symbolic operations on the terms in his knowledge (e.g., an
adversary can derive a plaintext m if and only if he knows the key k and the ciphertext
enc(k,m)). Although the cryptographic approach comes much closer to reality, the symbolic
approach is very popular because it allows for very powerful machine-assisted verification
of the security of protocols. In order to get the best of both worlds, Abadi and Rogaway [1]
suggested so-called computational soundness results. Such a result states, that, if a protocol
is secure in the symbolic setting, that protocol is secure in the computational setting. Most

6

computational soundness results that consider security against active attackers only consider
so-called trace properties, e.g., [3, 7, 6, 4, 2]. That is, they show that if, in the symbolic
setting, a certain event does not occur, it does not occur in the computational setting,
either. (Examples for such events would be that the adversary guesses a key or fakes
an authentication.) Many security properties cannot be modeled using trace properties.
Instead, we need equivalence-based properties. For example, anonymity would be modeled
by stating that the protocol using identity a is indistinguishable from the protocol using
identity b. A computational soundness result for such properties has been given by Cortier
and Comon-Lundh [5].

They show that if two processes are indistinguishable in the symbolic setting, then
they are computationally indistinguishable in the computational setting. Their result is,
however, restricted to a small class of processes. In particular, they disallow processes
that contain loops. The reason for this is that, if a process contains a loop, it might
run a superpolynomial number of steps. When comparing two processes P and Q, one of
them might react immediately to any query, while the other might first enter a loop that
takes a superpolynomial number of steps. These processes would be considered equiva-
lent in the symbolic setting (in the symbolic setting there is no notion of polynomial- or
superpolynomial-time). Thus, in order to get a computational soundness result that allows
to deal with such processes, we need a computational notion of indistinguishability that
treats P and Q as indistinguishable. Normal computational soundness cannot be used:
When trying to prove the computational indistinguishability of P and Q, we have to in-
voke computational assumption (such as IND-CCA security) which do not necessarily hold
when P or Q runs in superpolynomial-time (same problem as with the file servers from
the motivating example). It was an open problem how to define the indistinguishability
on the computational side in order to make computational soundness for equivalence-based
security properties possible.3 Tic-indistinguishability solves this problem. We show (for a
toy-calculus), that symbolic indistinguishability implies computational indistinguishability.
The parts of our proof related to computational soundness are quite separate from those
related to tic-indistinguishability; thus our approach can be easily adapted to more complex
settings than our toy-calculus.

2 Termination-insensitive computational indistinguishability

In order to formally define the notion of tic-indistinguishability, we first need to fix a
machine model. As we will see in Section 3, the precise choice of machine model is irrelevant.
However, to derive and formally state this irrelevance, we first need some formalism that

3One way out is, of course, to just disallow processes which run, in the computational setting, more
than a polynomial number of steps. But this approach has several problems: First, we disallow innocuous
seeming processes such as our file servers. Second, checking that a protocol runs in polynomial-time can
be difficult. In particular, one cannot determine this by only considering the symbolic description of the
process. For example, a process that performs η nested encryptions will, if the encryption scheme doubles
the size of the plaintext, need time 2η. If the encryption scheme only adds an additive offset, the nested
encryptions can be computed in polynomial time.

7

η Security parameter
η Security parameter

computational soundness results that consider security against active attackers only consider
so-called trace properties, e.g., [3, 7, 6, 4, 2]. That is, they show that if, in the symbolic
setting, a certain event does not occur, it does not occur in the computational setting,
either. (Examples for such events would be that the adversary guesses a key or fakes
an authentication.) Many security properties cannot be modeled using trace properties.
Instead, we need equivalence-based properties. For example, anonymity would be modeled
by stating that the protocol using identity a is indistinguishable from the protocol using
identity b. A computational soundness result for such properties has been given by Cortier
and Comon-Lundh [5].

They show that if two processes are indistinguishable in the symbolic setting, then
they are computationally indistinguishable in the computational setting. Their result is,
however, restricted to a small class of processes. In particular, they disallow processes
that contain loops. The reason for this is that, if a process contains a loop, it might
run a superpolynomial number of steps. When comparing two processes P and Q, one of
them might react immediately to any query, while the other might first enter a loop that
takes a superpolynomial number of steps. These processes would be considered equiva-
lent in the symbolic setting (in the symbolic setting there is no notion of polynomial- or
superpolynomial-time). Thus, in order to get a computational soundness result that allows
to deal with such processes, we need a computational notion of indistinguishability that
treats P and Q as indistinguishable. Normal computational soundness cannot be used:
When trying to prove the computational indistinguishability of P and Q, we have to in-
voke computational assumption (such as IND-CCA security) which do not necessarily hold
when P or Q runs in superpolynomial-time (same problem as with the file servers from
the motivating example). It was an open problem how to define the indistinguishability
on the computational side in order to make computational soundness for equivalence-based
security properties possible.3 Tic-indistinguishability solves this problem. We show (for a
toy-calculus), that symbolic indistinguishability implies computational indistinguishability.
The parts of our proof related to computational soundness are quite separate from those
related to tic-indistinguishability; thus our approach can be easily adapted to more complex
settings than our toy-calculus.

2 Termination-insensitive computational indistinguishability

In order to formally define the notion of tic-indistinguishability, we first need to fix a
machine model. As we will see in Section 3, the precise choice of machine model is irrelevant.
However, to derive and formally state this irrelevance, we first need some formalism that

3One way out is, of course, to just disallow processes which run, in the computational setting, more
than a polynomial number of steps. But this approach has several problems: First, we disallow innocuous
seeming processes such as our file servers. Second, checking that a protocol runs in polynomial-time can
be difficult. In particular, one cannot determine this by only considering the symbolic description of the
process. For example, a process that performs η nested encryptions will, if the encryption scheme doubles
the size of the plaintext, need time 2η. If the encryption scheme only adds an additive offset, the nested
encryptions can be computed in polynomial time.

7

allows to express machines in different machine models. We will do this by first defining
the concept of a machine, is a fashion independent of a particular machine model. Such
a machine M is specified by a set of interfaces IM (over which it can interact with other
machines), an initial state σM , and a probabilistic state transition function δM . In order
to model non-termination, δM can be partial, that is, the probabilities of the different
outcomes do not need to add up to 1. The “missing probability” is then interpreted as
the non-termination probability. The function δM does not only output the new state
and the message to be sent, but also outputs how much time passed during the current
invocation. This allows to encode different machine models with different running times in
our formalism.

Definition 4 (Machines) A machine M consists of a non-empty set of interfaces IM , an
initial state σM , and a partial probabilistic function δM : N × {0, 1}∗ × IM × {0, 1}∗ →
N × {0, 1}∗ × IM × {0, 1}∗. (Intuitively, an invocation δM (η, σ, ifc,m) means that the
security parameter is η, the current state σ, and the message m arrives on interface ifc.
If δM returns (t, σ′, ifc′,m′), time t has passed, the new state is σ′, and the message m′ is
being sent on interface ifc′.) We call a machine M terminating if δM is total.

Given this notion of a machine, we can easily express different machine models in our
setting. We simply define the set M of machines that exist with respect to the machine
model under consideration.

Definition 5 (Machine model) A machine model is a set of machines.

For example, we can define the machine model MTuring consisting of probabilistic Turing
machines. This model contains all machines M where δM is computable, and the running
time that δM returns corresponds to the running time a Turing machine would need for
that computation.

Another example for a machine model is the model M0. M0 is the set of all machines
with zero running time. More precisely, M ∈ M0 iff for all η, σ, ifc,m, we have Pr[t > 0 :
(t, σ′, ifc′,m′) ← δM (η, σ, ifc,m)] = 0. Notice that M0 is not a realistic machine model (it
imposes no computational restrictions at all).

Next, we need the concept of a network of machines. Since, at least in principle, a
network of machines is nothing else than another machine simulating these machines, we
model networks by just composing different machines. When composing machines A and B,
we simply connect the interfaces that A and B share, and let all other interfaces be external
interfaces (that can be connected with other machines when composing further).

Definition 6 (Composition of machines) Given two machines A and B, we define the
machine A + B as follows: IA+B := IA4IB (symmetric set difference) and σA+B :=
(σA, σB). And δA+B is the probabilistic function described by the following algorithm:

1. Let (η, σ, ifc,m) be the inputs to δA+B.
2. Let M := A if ifc ∈ IA and M := B if ifc ∈ IB.4 Let tsum := 0. Parse σ =: (σA, σB).
4We always have either ifc ∈ IA or ifc ∈ IB , but never both, since ifc ∈ IA+B = IA4IB .

8

M Usually denotes a machine IM Interfaces of machine M 8IM Interfaces of machine M 8
M Usually denotes a machineσM Initial state of machine M 8σM Initial state of machine M 8

M Usually denotes a machine
δM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machineδM State transition function of machine M 8δM State transition function of machine M 8

M Usually denotes a machine
δM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

M Usually denotes a machineIM Interfaces of machine M 8IM Interfaces of machine M 8
M Usually denotes a machineσM Initial state of machine M 8σM Initial state of machine M 8

M Usually denotes a machine
δM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

IM Interfaces of machine M 8IM Interfaces of machine M 8
M Usually denotes a machineIM Interfaces of machine M 8IM Interfaces of machine M 8

M Usually denotes a machine
δM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

η Security parameterσ Usually denotes state of a machineifc Usually dentoes an interface of a machine
η Security parameterσ Usually denotes state of a machineifc Usually dentoes an interface of a machine

δM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

σ Usually denotes state of a machineifc Usually dentoes an interface of a machineσ Usually denotes state of a machine
ifc Usually dentoes an interface of a machineM Usually denotes a machineδM State transition function of machine M 8δM State transition function of machine M 8

M Usually denotes a machine

M Usually denotes a machine model

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine modelM Usually denotes a machineδM State transition function of machine M 8δM State transition function of machine M 8

M Usually denotes a machineδM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model
M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine modelM Usually denotes a machineM0 Machine model with zero running time 8M0 Machine model with zero running time 8

M Usually denotes a machine model
η Security parameterσ Usually denotes state of a machineifc Usually dentoes an interface of a machine

σ Usually denotes state of a machineifc Usually dentoes an interface of a machineδM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine
η Security parameterσ Usually denotes state of a machineifc Usually dentoes an interface of a machineM0 Machine model with zero running time 8M0 Machine model with zero running time 8

M Usually denotes a machine model

+ Composition of two machines 8IM Interfaces of machine M 8IM Interfaces of machine M 8
+ Composition of two machines 8

IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8σM Initial state of machine M 8σM Initial state of machine M 8
+ Composition of two machines 8σM Initial state of machine M 8σM Initial state of machine M 8δM State transition function of machine M 8δM State transition function of machine M 8

+ Composition of two machines 8η Security parameterσ Usually denotes state of a machineifc Usually dentoes an interface of a machineδM State transition function of machine M 8δM State transition function of machine M 8
+ Composition of two machines 8M Usually denotes a machineifc Usually dentoes an interface of a machineIM Interfaces of machine M 8M Usually denotes a machineifc Usually dentoes an interface of a machineIM Interfaces of machine M 8σ Usually denotes state of a machineσM Initial state of machine M 8σM Initial state of machine M 8

ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8IM Interfaces of machine M 8
+ Composition of two machines 8

IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8

allows to express machines in different machine models. We will do this by first defining
the concept of a machine, is a fashion independent of a particular machine model. Such
a machine M is specified by a set of interfaces IM (over which it can interact with other
machines), an initial state σM , and a probabilistic state transition function δM . In order
to model non-termination, δM can be partial, that is, the probabilities of the different
outcomes do not need to add up to 1. The “missing probability” is then interpreted as
the non-termination probability. The function δM does not only output the new state
and the message to be sent, but also outputs how much time passed during the current
invocation. This allows to encode different machine models with different running times in
our formalism.

Definition 4 (Machines) A machine M consists of a non-empty set of interfaces IM , an
initial state σM , and a partial probabilistic function δM : N × {0, 1}∗ × IM × {0, 1}∗ →
N × {0, 1}∗ × IM × {0, 1}∗. (Intuitively, an invocation δM (η, σ, ifc,m) means that the
security parameter is η, the current state σ, and the message m arrives on interface ifc.
If δM returns (t, σ′, ifc′,m′), time t has passed, the new state is σ′, and the message m′ is
being sent on interface ifc′.) We call a machine M terminating if δM is total.

Given this notion of a machine, we can easily express different machine models in our
setting. We simply define the set M of machines that exist with respect to the machine
model under consideration.

Definition 5 (Machine model) A machine model is a set of machines.

For example, we can define the machine model MTuring consisting of probabilistic Turing
machines. This model contains all machines M where δM is computable, and the running
time that δM returns corresponds to the running time a Turing machine would need for
that computation.

Another example for a machine model is the model M0. M0 is the set of all machines
with zero running time. More precisely, M ∈ M0 iff for all η, σ, ifc,m, we have Pr[t > 0 :
(t, σ′, ifc′,m′) ← δM (η, σ, ifc,m)] = 0. Notice that M0 is not a realistic machine model (it
imposes no computational restrictions at all).

Next, we need the concept of a network of machines. Since, at least in principle, a
network of machines is nothing else than another machine simulating these machines, we
model networks by just composing different machines. When composing machines A and B,
we simply connect the interfaces that A and B share, and let all other interfaces be external
interfaces (that can be connected with other machines when composing further).

Definition 6 (Composition of machines) Given two machines A and B, we define the
machine A + B as follows: IA+B := IA4IB (symmetric set difference) and σA+B :=
(σA, σB). And δA+B is the probabilistic function described by the following algorithm:

1. Let (η, σ, ifc,m) be the inputs to δA+B.
2. Let M := A if ifc ∈ IA and M := B if ifc ∈ IB.4 Let tsum := 0. Parse σ =: (σA, σB).
4We always have either ifc ∈ IA or ifc ∈ IB , but never both, since ifc ∈ IA+B = IA4IB .

8

3. Invoke (t, σM , ifc,m)← δM (η, σM , ifc,m).
4. Let tsum := tsum + t.
5. If ifc ∈ IA ∩ IB, let M := M̄ where Ā := B and B̄ := A and goto step 3.
6. Otherwise, return (tmax , (σA, σB), ifc,m).

Once we have composed a network of different machines into a single machine M with a
single interface ifc (which is to be used to transport the initial input to and the final output
of the network), the execution of the whole network is modeled by sending a single message
to M on ifc and waiting for the answer. Machines with a single interface we call closed; the
following definition also introduces notation to speak about the outcome of the execution
of a network.

Definition 7 (Closed machines) A machine M is closed if |IM | = 1. Given a closed
machine M and values z, x ∈ {0, 1}∗ and tmax , η ∈ N, we write Pr[M(η, z) ⇓tmax x] for
Pr[t ≤ tmax ∧ m = x : (t, σ′, ifc′,m) ← δM (η, σM , ifc, z)] where ifc is the element of IM .
Similarly, we write Pr[M(η, z) ⇓tmax] for Pr[t ≤ tmax : (t, σ′, ifc′,m)← δM (η, σM , ifc, z)].

(Intuitively, z is an auxiliary input given to the submachine ofM that has the interface ifc.)
We can finally define tic-indistinguishability. We parametrize the notion over the ma-

chine model M the distinguisher Z is chosen from. Once one has decided on a particular
machine model, M will be fixed.

Definition 8 (Tic-indistinguishability) We write A ∼ B iff A and B are closed and
IA = IB and for all polynomials p, there is a negligible function µ such that for all z, a, b ∈
{0, 1}∗ with a 6= b and all η ∈ N, we have that

Pr[A(η, z) ⇓p(η) a] + Pr[B(η, z) ⇓p(η) b] ≤ 1 + µ(η).

We call Z I-closing if IZ = I ∪ {ifc} for some ifc /∈ I.
We call two machines A and B termination-insensitively computationally indistinguish-

able with respect to a machine model M (short tic-indistinguishable, written A ≈M
tic B) if

IA = IB and for all IA-closing Z ∈M, we have Z +A ∼ Z +B.

3 Machine-model independence

We proceed to show that tic-indistinguishability is independent of the machine model (as-
suming a reasonable machine model). In order to formalize this, we first need to define
what it means for two machines to behave the same and to have polynomially-related run-
ning times (time-equivalence). In order to make the notion independent of the encoding
of the internal state of the machines, we define time-equivalence by requiring that for any
sequence of inputs (modeled by a machine Z that provides the inputs but does not, itself,
use up running time), if one of the machines achieves to perform a certain task (modeled by
Z outputting 1) in polynomial time p, then the other machine can achieve the same task,
with at least the same probability, in another (possibly larger) polynomial time q.

9

σM Initial state of machine M 8σM Initial state of machine M 8
M Usually denotes a machine

ifc Usually dentoes an interface of a machineδM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine
η Security parameterσM Initial state of machine M 8σM Initial state of machine M 8

M Usually denotes a machine
ifc Usually dentoes an interface of a machine

ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8IM Interfaces of machine M 8M Usually denotes a machineM Usually denotes a machine
σM Initial state of machine M 8σM Initial state of machine M 8ifc Usually dentoes an interface of a machine

M Usually denotes a machine
ifc Usually dentoes an interface of a machine

M Usually denotes a machineifc Usually dentoes an interface of a machine

M Usually denotes a machineIM Interfaces of machine M 8IM Interfaces of machine M 8
M Usually denotes a machineM Usually denotes a machine η Security parameterM Usually denotes a machineη Security parameter⇓t Termination after t steps 9

σ Usually denotes state of a machineifc Usually dentoes an interface of a machineδM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine
η Security parameterσM Initial state of machine M 8σM Initial state of machine M 8

M Usually denotes a machine
ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machineIM Interfaces of machine M 8IM Interfaces of machine M 8

M Usually denotes a machineM Usually denotes a machineη Security parameter⇓t Termination after t steps 9σ Usually denotes state of a machineifc Usually dentoes an interface of a machineδM State transition function of machine M 8δM State transition function of machine M 8
M Usually denotes a machine

η Security parameterσM Initial state of machine M 8σM Initial state of machine M 8
M Usually denotes a machine

ifc Usually dentoes an interface of a machine

M Usually denotes a machineifc Usually dentoes an interface of a machine

M Usually denotes a machine model
M Usually denotes a machine model

∼ Intermediate notion of indistinguishability 9
IM Interfaces of machine M 8IM Interfaces of machine M 8

η Security parameter

η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

IM Interfaces of machine M 8ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine

M Usually denotes a machine model≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine modelIM Interfaces of machine M 8IM Interfaces of machine M 8IM Interfaces of machine M 8M Usually denotes a machine model+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8

3. Invoke (t, σM , ifc,m)← δM (η, σM , ifc,m).
4. Let tsum := tsum + t.
5. If ifc ∈ IA ∩ IB, let M := M̄ where Ā := B and B̄ := A and goto step 3.
6. Otherwise, return (tmax , (σA, σB), ifc,m).

Once we have composed a network of different machines into a single machine M with a
single interface ifc (which is to be used to transport the initial input to and the final output
of the network), the execution of the whole network is modeled by sending a single message
to M on ifc and waiting for the answer. Machines with a single interface we call closed; the
following definition also introduces notation to speak about the outcome of the execution
of a network.

Definition 7 (Closed machines) A machine M is closed if |IM | = 1. Given a closed
machine M and values z, x ∈ {0, 1}∗ and tmax , η ∈ N, we write Pr[M(η, z) ⇓tmax x] for
Pr[t ≤ tmax ∧ m = x : (t, σ′, ifc′,m) ← δM (η, σM , ifc, z)] where ifc is the element of IM .
Similarly, we write Pr[M(η, z) ⇓tmax] for Pr[t ≤ tmax : (t, σ′, ifc′,m)← δM (η, σM , ifc, z)].

(Intuitively, z is an auxiliary input given to the submachine ofM that has the interface ifc.)
We can finally define tic-indistinguishability. We parametrize the notion over the ma-

chine model M the distinguisher Z is chosen from. Once one has decided on a particular
machine model, M will be fixed.

Definition 8 (Tic-indistinguishability) We write A ∼ B iff A and B are closed and
IA = IB and for all polynomials p, there is a negligible function µ such that for all z, a, b ∈
{0, 1}∗ with a 6= b and all η ∈ N, we have that

Pr[A(η, z) ⇓p(η) a] + Pr[B(η, z) ⇓p(η) b] ≤ 1 + µ(η).

We call Z I-closing if IZ = I ∪ {ifc} for some ifc /∈ I.
We call two machines A and B termination-insensitively computationally indistinguish-

able with respect to a machine model M (short tic-indistinguishable, written A ≈M
tic B) if

IA = IB and for all IA-closing Z ∈M, we have Z +A ∼ Z +B.

3 Machine-model independence

We proceed to show that tic-indistinguishability is independent of the machine model (as-
suming a reasonable machine model). In order to formalize this, we first need to define
what it means for two machines to behave the same and to have polynomially-related run-
ning times (time-equivalence). In order to make the notion independent of the encoding
of the internal state of the machines, we define time-equivalence by requiring that for any
sequence of inputs (modeled by a machine Z that provides the inputs but does not, itself,
use up running time), if one of the machines achieves to perform a certain task (modeled by
Z outputting 1) in polynomial time p, then the other machine can achieve the same task,
with at least the same probability, in another (possibly larger) polynomial time q.

9

Definition 9 (Time-equivalence) We say A is time-majorized by B (written A .time

B) if IA = IB and for any machine IA-closing Z ∈ M0 and any polynomial p, there
exists a polynomial q and a negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗,
Pr[(A+ Z)(η, z) ⇓q(η) 1] ≥ Pr[(B + Z)(η, z) ⇓p(η) 1]− µ(η).

We say A and B are time-equivalent (written A ≈time B) if A .time B .time A.

Lemma 10 If A .time A
′ and A ∼ B, then A′ ∼ B.

Lemma 11 If A .time B then A+ C .time B + C.

Lemma 12 If A .time A
′ and B .time B

′ and A ≈M
tic B, then A′ ≈M

tic B
′.

Corollary 13 If A ≈time A
′, and B ≈time B

′, then A ≈M
tic B iff A′ ≈M

tic B
′.

Definition 14 Let machine models M and M′ be given. We say that M is time-majorized
by M′ (M .time M′) iff for any B ∈M′ there is an A ∈M such that A .time B.

We call M and M′ time-equivalent (written M ≈time M′) if M .time M′ .time M.

Lemma 15 If M .time M′ and A ≈M
tic B, then A ≈M′

tic B.

Corollary 16 If M ≈time M′ then ≈M
tic =≈M′

tic .

Due to Corollary 16, the exact choice of machine model is irrelevant since most machine
models are time-equivalent to the Turing machine model MTuring. Thus we define ≈tic :=

≈MTuring

tic and concentrate on ≈tic in the following.

4 Properties of tic-indistinguishability

Definition 17 (Closed machine models) We call a machine model M closed if for any
A,B ∈M, there is a C ∈M such that C .time A+B.

Examples of closed machines models are MTuring and M0, as well as any machine model
time-equivalent to MTuring.

Lemma 18 (Composition) Assume that M is a closed machine model. If A ≈M
tic B and

C ∈M, then A+ C ≈M
tic B + C.

Definition 19 (Reactive polynomial-time, following [8]) We call a machine M reac-
tively polynomial-time if M ∈MTuring and for all polynomial-time IM -closing Z,5 there is a
negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗ we have Pr[(M+Z)(η, z) ⇓p(η)]
≥ 1− µ(η).

5Polynomial-time means that Z only runs p(η) steps altogether, for a fixed polynomial p, no matter
what M does. The formal definition is given on page 15.

10

.time Is time-majorized by 10
IM Interfaces of machine M 8IM Interfaces of machine M 8IM Interfaces of machine M 8M0 Machine model with zero running time 8M0 Machine model with zero running time 8

M Usually denotes a machine modelη Security parameter
+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameter
+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameter
η Security parameter

≈time Time-equivalence 10.time Is time-majorized by 10.time Is time-majorized by 10

.time Is time-majorized by 10∼ Intermediate notion of indistinguishability 9∼ Intermediate notion of indistinguishability 9

.time Is time-majorized by 10+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8

.time Is time-majorized by 10.time Is time-majorized by 10≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
≈time Time-equivalence 10≈time Time-equivalence 10≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
M Usually denotes a machine modelM Usually denotes a machine modelM Usually denotes a machine model

M Usually denotes a machine modelM Usually denotes a machine model.time Is time-majorized by 10M Usually denotes a machine modelM Usually denotes a machine modelM Usually denotes a machine model.time Is time-majorized by 10
M Usually denotes a machine modelM Usually denotes a machine modelM Usually denotes a machine model≈time Time-equivalence 10M Usually denotes a machine modelM Usually denotes a machine model.time Is time-majorized by 10M Usually denotes a machine model.time Is time-majorized by 10M Usually denotes a machine model

M Usually denotes a machine model.time Is time-majorized by 10M Usually denotes a machine model≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
M Usually denotes a machine model≈time Time-equivalence 10M Usually denotes a machine model≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
MTuring Machine model with Turing machines 8
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
MTuring Machine model with Turing machines 8
M Usually denotes a machine model

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
M Usually denotes a machine modelM Usually denotes a machine model.time Is time-majorized by 10+ Composition of two machines 8

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model

M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine modelMTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8

M Usually denotes a machine model
M Usually denotes a machine model≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine modelM Usually denotes a machine model+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
M Usually denotes a machine model

+ Composition of two machines 8

M Usually denotes a machine
M Usually denotes a machineMTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8

M Usually denotes a machine model
IM Interfaces of machine M 8IM Interfaces of machine M 8
M Usually denotes a machineη Security parameter M Usually denotes a machine+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameterη Security parameter

η Security parameter
M Usually denotes a machine

Definition 9 (Time-equivalence) We say A is time-majorized by B (written A .time

B) if IA = IB and for any machine IA-closing Z ∈ M0 and any polynomial p, there
exists a polynomial q and a negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗,
Pr[(A+ Z)(η, z) ⇓q(η) 1] ≥ Pr[(B + Z)(η, z) ⇓p(η) 1]− µ(η).

We say A and B are time-equivalent (written A ≈time B) if A .time B .time A.

Lemma 10 If A .time A
′ and A ∼ B, then A′ ∼ B.

Lemma 11 If A .time B then A+ C .time B + C.

Lemma 12 If A .time A
′ and B .time B

′ and A ≈M
tic B, then A′ ≈M

tic B
′.

Corollary 13 If A ≈time A
′, and B ≈time B

′, then A ≈M
tic B iff A′ ≈M

tic B
′.

Definition 14 Let machine models M and M′ be given. We say that M is time-majorized
by M′ (M .time M′) iff for any B ∈M′ there is an A ∈M such that A .time B.

We call M and M′ time-equivalent (written M ≈time M′) if M .time M′ .time M.

Lemma 15 If M .time M′ and A ≈M
tic B, then A ≈M′

tic B.

Corollary 16 If M ≈time M′ then ≈M
tic =≈M′

tic .

Due to Corollary 16, the exact choice of machine model is irrelevant since most machine
models are time-equivalent to the Turing machine model MTuring. Thus we define ≈tic :=

≈MTuring

tic and concentrate on ≈tic in the following.

4 Properties of tic-indistinguishability

Definition 17 (Closed machine models) We call a machine model M closed if for any
A,B ∈M, there is a C ∈M such that C .time A+B.

Examples of closed machines models are MTuring and M0, as well as any machine model
time-equivalent to MTuring.

Lemma 18 (Composition) Assume that M is a closed machine model. If A ≈M
tic B and

C ∈M, then A+ C ≈M
tic B + C.

Definition 19 (Reactive polynomial-time, following [8]) We call a machine M reac-
tively polynomial-time if M ∈MTuring and for all polynomial-time IM -closing Z,5 there is a
negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗ we have Pr[(M+Z)(η, z) ⇓p(η)]
≥ 1− µ(η).

5Polynomial-time means that Z only runs p(η) steps altogether, for a fixed polynomial p, no matter
what M does. The formal definition is given on page 15.

10

Definition 20 (Computational indistinguishability) We call two machines A and B
with IA = IB computationally indistinguishable (short: A ≈comp B) iff for any polynomial-
time IA-closing Z, there exists a negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗
we have that

∣∣Pr[(Z +A)(η, z) ⇓∞ 1]− Pr[(Z +B)(η, z) ⇓∞ 1]
∣∣ ≤ µ(η).

Lemma 21 Fix machines A and B with IA = IB. If A ≈comp B then A ≈tic B. If A
and B are reactively polynomial-time, we have A ≈comp B iff A ≈tic B.

Lemma 22 Fix machines A,B,C,D ∈ MTuring with IA = IB and IC = ID. Assume
that A is reactively polynomial-time, that A ≈comp B, and that C + A ≈tic D + A. Then
C +B ≈tic D +B.

Definition 23 (Statistical indistinguishability) We call two machines A and B with
IA = IB statistically indistinguishable (short: A ≈stat B) iff for any IA-closing Z (not
restricted to any particular machine model), there exists a negligible function µ such that
for all η ∈ N and z ∈ {0, 1}∗ we have that

∣∣Pr[(Z + A)(η, z) ⇓∞ 1]− Pr[(Z + B)(η, z) ⇓∞
1]
∣∣ ≤ µ(η).

Lemma 24 Fix machines A and B with IA = IB. If A ≈stat B then A ≈M
tic B for all

machine models M.

5 Application: Computational soundness

In the following, we sketch how to get a computational soundness result for equivalence-
based security properties (such as anonimity) by using tic-indistinguishability. In our expo-
sition, we will focus on the proof steps related to tic-indistinguishability while omitting those
that relate to established notions such as computational indistinguishability and statistical
indistinguishability and that are thus more or less standard.

To state our result, we introduce a toy-calculus. For our calculus, we assume countably
infinite sets of variables x, y, nonces N , keys K, channels c, randomness symbols R, and
abstract lengths L ∈ L. We assume that the nonces are partitioned into two infinite sets,
the protocol nonces and the adversary nonces. We assume a designated channel net, all
other channels are called private channels. Terms M ∈ terms and processes P,Q are of the
following grammars:

M ::= x | N | (M,M ′) | enc(K,M,R) | garbL(N)

P,Q ::= 0 | (P |Q) | c̄〈M〉.P | c(x).P | !c(x).P | νx.P
| if M = M ′ then P else Q

| let (x, y) = M in P else Q

| let x = DecK(M) in P else Q

| let x = EncK(M) in P

| let x = (M,M ′) in P

11

IM Interfaces of machine M 8IM Interfaces of machine M 8 ≈comp Computational indistinguishability 11
IM Interfaces of machine M 8 η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameter

IM Interfaces of machine M 8IM Interfaces of machine M 8≈comp Computational indistinguishability 11≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

≈comp Computational indistinguishability 11≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model

IM Interfaces of machine M 8IM Interfaces of machine M 8IM Interfaces of machine M 8IM Interfaces of machine M 8
≈comp Computational indistinguishability 11+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8
+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8

IM Interfaces of machine M 8IM Interfaces of machine M 8 ≈stat Statistical indistinguishability 11IM Interfaces of machine M 8

η Security parameter + Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9
η Security parameter

IM Interfaces of machine M 8IM Interfaces of machine M 8≈stat Statistical indistinguishability 11≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine modelM Usually denotes a machine model

Definition 20 (Computational indistinguishability) We call two machines A and B
with IA = IB computationally indistinguishable (short: A ≈comp B) iff for any polynomial-
time IA-closing Z, there exists a negligible function µ such that for all η ∈ N and z ∈ {0, 1}∗
we have that

∣∣Pr[(Z +A)(η, z) ⇓∞ 1]− Pr[(Z +B)(η, z) ⇓∞ 1]
∣∣ ≤ µ(η).

Lemma 21 Fix machines A and B with IA = IB. If A ≈comp B then A ≈tic B. If A
and B are reactively polynomial-time, we have A ≈comp B iff A ≈tic B.

Lemma 22 Fix machines A,B,C,D ∈ MTuring with IA = IB and IC = ID. Assume
that A is reactively polynomial-time, that A ≈comp B, and that C + A ≈tic D + A. Then
C +B ≈tic D +B.

Definition 23 (Statistical indistinguishability) We call two machines A and B with
IA = IB statistically indistinguishable (short: A ≈stat B) iff for any IA-closing Z (not
restricted to any particular machine model), there exists a negligible function µ such that
for all η ∈ N and z ∈ {0, 1}∗ we have that

∣∣Pr[(Z + A)(η, z) ⇓∞ 1]− Pr[(Z + B)(η, z) ⇓∞
1]
∣∣ ≤ µ(η).

Lemma 24 Fix machines A and B with IA = IB. If A ≈stat B then A ≈M
tic B for all

machine models M.

5 Application: Computational soundness

In the following, we sketch how to get a computational soundness result for equivalence-
based security properties (such as anonimity) by using tic-indistinguishability. In our expo-
sition, we will focus on the proof steps related to tic-indistinguishability while omitting those
that relate to established notions such as computational indistinguishability and statistical
indistinguishability and that are thus more or less standard.

To state our result, we introduce a toy-calculus. For our calculus, we assume countably
infinite sets of variables x, y, nonces N , keys K, channels c, randomness symbols R, and
abstract lengths L ∈ L. We assume that the nonces are partitioned into two infinite sets,
the protocol nonces and the adversary nonces. We assume a designated channel net, all
other channels are called private channels. Terms M ∈ terms and processes P,Q are of the
following grammars:

M ::= x | N | (M,M ′) | enc(K,M,R) | garbL(N)

P,Q ::= 0 | (P |Q) | c̄〈M〉.P | c(x).P | !c(x).P | νx.P
| if M = M ′ then P else Q

| let (x, y) = M in P else Q

| let x = DecK(M) in P else Q

| let x = EncK(M) in P

| let x = (M,M ′) in P

11

A term enc(K,M,R) denotes a public-key encryption of message M with the public key
pkK and randomness R. garbL(N) represents an invalid message of abstract length L. P |Q
denotes processes P and Q running in parallel. c(x).P denotes a process that wait for a
message on channel c, assigns the message to the variable x and proceeds as P . !c(x).P
does the same, but forks a new copy of P for each message received. c̄〈M〉.P sends M on c
and proceeds as P . The combination of !c(x).P and c̄〈M〉.P allows to construct processes
that loop. let x = EncK(M) in P assigns enc(K,M,R) to x (with fresh R) and proceeds
as P . let x = DecK(M) in P else Q decrypts M (if M = enc(K,M ′, R)) and proceeds as
P (or as Q if decryption fails). νx.P chooses a fresh protocol nonce N , assigns it to x, and
proceeds as P .

We define a notion of equivalence between two processes, called labeled bisimilarity
(∼=bisi). Intuitively, we have P ∼=bisi Q if in any (symbolic) execution of P or Q, one cannot
distinguish between P and Q given only the terms sent by P and Q. We call a process P
deterministic, if at no point in its symbolic execution, P has two possible successor states
(which could happen if, e.g., P = P1|P2 where both P1 and P2 send a message). We call P
closed if it has no free variables and honest if every term in P is a variable.6 Finally, we
define the computational execution of a process P . It is modeled as a machine MP with
IMP

= net that simulates P , except that it uses bitstrings instead of terms, and, whenever it
encounters a let, performs a corresponding computational operation (e.g., encrypting using
an IND-CCA secure public-key encryption scheme). Similarly, when encountering νx.P ,
a random value is assigned to x. Messages over the public channel net are sent over the
interface net.

Theorem 25 (Computational soundness) Fix closed, honest, and deterministic pro-
cesses P and Q. Then, if P ∼=bisi Q then MP ≈tic MQ.

We sketch how to prove Theorem 25. We first define some auxiliary machines. Note that
MP can be split into two machines: A machine M∗P with IM∗P = {cmd} that simulates P ,
and a machine Mcmd with IMcmd

= {cmd, net} that performs the actual computations on
bitstrings. Over the channel cmd, M∗P instructs Mcmd which operations to perform and
which bitstrings to send over net. A salient point is that M∗P never handles any bitstrings.
All bitstrings are stored in Mcmd and referenced by M∗P via handles. Since M∗P + Mcmd

is the same as MP except that some operations are outsourced to Mcmd , any computation
performed by M∗P takes at most polynomially longer in M∗P +Mcmd and vice versa. Thus
we have the following lemma:

Lemma 26 MP ≈time M
∗
P +Mcmd and MQ ≈time M

∗
Q +Mcmd .

Then we define a machine Msym with IMsym = {cmd, sim}. From the point of view of
M∗P , Msym behaves like Mcmd . Internally, however Msym stores symbolic terms instead
of bitstrings. And instead of sending/receiving bitstrings over net, Msym provides access

6One can transform any process into an honest process by picking nonces using νx, and constructing
terms using let.

12

∼=bisi Labeled bisimilarity 21∼=bisi Labeled bisimilarity 21

MP Computational execution of process P 12
IM Interfaces of machine M 8IM Interfaces of machine M 8
MP Computational execution of process P 12

∼=bisi Labeled bisimilarity 21MP Computational execution of process P 12≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9MP Computational execution of process P 12

MP Computational execution of process P 12M∗P Computational execution of P with outsourced operations 12IM Interfaces of machine M 8IM Interfaces of machine M 8
M∗P Computational execution of P with outsourced operations 12Mcmd Machine for outsourcing bitstring operations 12IM Interfaces of machine M 8IM Interfaces of machine M 8

Mcmd Machine for outsourcing bitstring operations 12M∗P Computational execution of P with outsourced operations 12Mcmd Machine for outsourcing bitstring operations 12
M∗P Computational execution of P with outsourced operations 12

Mcmd Machine for outsourcing bitstring operations 12M∗P Computational execution of P with outsourced operations 12M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12
MP Computational execution of process P 12Mcmd Machine for outsourcing bitstring operations 12
M∗P Computational execution of P with outsourced operations 12M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12

MP Computational execution of process P 12≈time Time-equivalence 10M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12MP Computational execution of process P 12≈time Time-equivalence 10M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12

Msym Variant of Mcmd , working with terms 12IM Interfaces of machine M 8IM Interfaces of machine M 8
Msym Variant of Mcmd , working with terms 12M∗P Computational execution of P with outsourced operations 12Msym Variant of Mcmd , working with terms 12Mcmd Machine for outsourcing bitstring operations 12Msym Variant of Mcmd , working with terms 12

Msym Variant of Mcmd , working with terms 12

A term enc(K,M,R) denotes a public-key encryption of message M with the public key
pkK and randomness R. garbL(N) represents an invalid message of abstract length L. P |Q
denotes processes P and Q running in parallel. c(x).P denotes a process that wait for a
message on channel c, assigns the message to the variable x and proceeds as P . !c(x).P
does the same, but forks a new copy of P for each message received. c̄〈M〉.P sends M on c
and proceeds as P . The combination of !c(x).P and c̄〈M〉.P allows to construct processes
that loop. let x = EncK(M) in P assigns enc(K,M,R) to x (with fresh R) and proceeds
as P . let x = DecK(M) in P else Q decrypts M (if M = enc(K,M ′, R)) and proceeds as
P (or as Q if decryption fails). νx.P chooses a fresh protocol nonce N , assigns it to x, and
proceeds as P .

We define a notion of equivalence between two processes, called labeled bisimilarity
(∼=bisi). Intuitively, we have P ∼=bisi Q if in any (symbolic) execution of P or Q, one cannot
distinguish between P and Q given only the terms sent by P and Q. We call a process P
deterministic, if at no point in its symbolic execution, P has two possible successor states
(which could happen if, e.g., P = P1|P2 where both P1 and P2 send a message). We call P
closed if it has no free variables and honest if every term in P is a variable.6 Finally, we
define the computational execution of a process P . It is modeled as a machine MP with
IMP

= net that simulates P , except that it uses bitstrings instead of terms, and, whenever it
encounters a let, performs a corresponding computational operation (e.g., encrypting using
an IND-CCA secure public-key encryption scheme). Similarly, when encountering νx.P ,
a random value is assigned to x. Messages over the public channel net are sent over the
interface net.

Theorem 25 (Computational soundness) Fix closed, honest, and deterministic pro-
cesses P and Q. Then, if P ∼=bisi Q then MP ≈tic MQ.

We sketch how to prove Theorem 25. We first define some auxiliary machines. Note that
MP can be split into two machines: A machine M∗P with IM∗P = {cmd} that simulates P ,
and a machine Mcmd with IMcmd

= {cmd, net} that performs the actual computations on
bitstrings. Over the channel cmd, M∗P instructs Mcmd which operations to perform and
which bitstrings to send over net. A salient point is that M∗P never handles any bitstrings.
All bitstrings are stored in Mcmd and referenced by M∗P via handles. Since M∗P + Mcmd

is the same as MP except that some operations are outsourced to Mcmd , any computation
performed by M∗P takes at most polynomially longer in M∗P +Mcmd and vice versa. Thus
we have the following lemma:

Lemma 26 MP ≈time M
∗
P +Mcmd and MQ ≈time M

∗
Q +Mcmd .

Then we define a machine Msym with IMsym = {cmd, sim}. From the point of view of
M∗P , Msym behaves like Mcmd . Internally, however Msym stores symbolic terms instead
of bitstrings. And instead of sending/receiving bitstrings over net, Msym provides access

6One can transform any process into an honest process by picking nonces using νx, and constructing
terms using let.

12

to these terms over the channel sim. When Mcmd would send a bitstring over net, Msym

instead allocates a handle for that term and sends it over sim. Then it provides symbolic
operations that allow to a machine connected over sim to perform exactly the operations
and tests on the terms that are considered in the definition of labeled bisimilarity. (For
example, there are queries for splitting a pair or performing an encryption, but not for
decrypting with respect to an unknown key.) Then we construct a simulator Sim with
ISim = {sim, net}. The task of this simulator is to simulate the bitstrings that Mcmd would
send on net by only getting access to the messages sent by Msym on sim. For example,
when Sim is informed by Msym that a message has been sent, Sim inquires whether it is an
encryption, and if so, Sim produces a ciphertext containing an all-zero string of the right
length (since Sim cannot find out what is contained in a symbolic encryption, he is forced
to encrypt fake data). We then prove:

Lemma 27 Mcmd ≈comp Msym + Sim.

Moreover, if we only consider Msym + Sim (without M∗P), we have removed the part of the
system that potentially runs in superpolynomial-time (due to a looping process P). We
have:

Lemma 28 Msym + Sim is reactively polynomial-time.

Finally, since M∗P + Msym is a faithful simulation of the symbolic execution of P , and the
analogously for M∗Q + Msym , and since the machine connected over sim can only perform
operations and tests considered in the definition of ∼=bisi , we get:

Lemma 29 M∗P +Msym ≈stat M
∗
Q +Msym .

We can plug these four lemmas together to get a proof of Theorem 25:

Proof of Theorem 25. By Lemma 29, we haveM∗P +Msym ≈stat M
∗
Q+Msym . By Lemma 24,

we get M∗P + Msym ≈tic M∗Q + Msym . By Lemma 18, we get M∗P + Msym + Sim ≈tic

M∗Q + Msym + Sim. By Lemma 28, Msym + Sim is reactively polynomial-time, and by
Lemma 27, Msym + Sim ≈comp Mcmd . Thus by Lemma 22, M∗P +Mcmd ≈tic M

∗
Q +Mcmd .

By Lemma 26, MP ≈time M∗P + Mcmd and MQ ≈time M∗Q + Mcmd . By Corollary 13,
MP ≈tic MQ follows. �

We stress that the technically difficult parts are the proofs of Lemmas 27 and 29 which
are unrelated to the notion of tic-indistinguishability. Thus we expect that computational
soundness results for more complex calculi can be handled in exactly the same way, without
any additional trouble due to the notion of tic-indistinguishability.

A Postponed proofs for Section 3 (machine-model indepen-
dence)

Proof of Lemma 10. Since A ∼ B and A .time A
′, IA′ = IA = IB = {ifc} for some ifc.

For contradiction, assume A′ 6∼ B. Then there is a polynomial p and sequences aη, bη, zη

13

Mcmd Machine for outsourcing bitstring operations 12Msym Variant of Mcmd , working with terms 12

Sim Simulator in computational soundness proof 13
IM Interfaces of machine M 8IM Interfaces of machine M 8
Sim Simulator in computational soundness proof 13

Mcmd Machine for outsourcing bitstring operations 12
Msym Variant of Mcmd , working with terms 12

Sim Simulator in computational soundness proof 13Msym Variant of Mcmd , working with terms 12Sim Simulator in computational soundness proof 13
Sim Simulator in computational soundness proof 13

Sim Simulator in computational soundness proof 13

Mcmd Machine for outsourcing bitstring operations 12≈comp Computational indistinguishability 11Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13

Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13M∗P Computational execution of P with outsourced operations 12

Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13

M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12
M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12

∼=bisi Labeled bisimilarity 21

M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12≈stat Statistical indistinguishability 11M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12

M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12≈stat Statistical indistinguishability 11M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12
M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13
Msym Variant of Mcmd , working with terms 12+ Composition of two machines 8Sim Simulator in computational soundness proof 13≈comp Computational indistinguishability 11Mcmd Machine for outsourcing bitstring operations 12M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12
MP Computational execution of process P 12≈time Time-equivalence 10M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12MP Computational execution of process P 12≈time Time-equivalence 10M∗P Computational execution of P with outsourced operations 12+ Composition of two machines 8Mcmd Machine for outsourcing bitstring operations 12

MP Computational execution of process P 12≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9MP Computational execution of process P 12

∼ Intermediate notion of indistinguishability 9.time Is time-majorized by 10IM Interfaces of machine M 8IM Interfaces of machine M 8IM Interfaces of machine M 8ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine
∼ Intermediate notion of indistinguishability 9η Security parameterη Security parameterη Security parameter

to these terms over the channel sim. When Mcmd would send a bitstring over net, Msym

instead allocates a handle for that term and sends it over sim. Then it provides symbolic
operations that allow to a machine connected over sim to perform exactly the operations
and tests on the terms that are considered in the definition of labeled bisimilarity. (For
example, there are queries for splitting a pair or performing an encryption, but not for
decrypting with respect to an unknown key.) Then we construct a simulator Sim with
ISim = {sim, net}. The task of this simulator is to simulate the bitstrings that Mcmd would
send on net by only getting access to the messages sent by Msym on sim. For example,
when Sim is informed by Msym that a message has been sent, Sim inquires whether it is an
encryption, and if so, Sim produces a ciphertext containing an all-zero string of the right
length (since Sim cannot find out what is contained in a symbolic encryption, he is forced
to encrypt fake data). We then prove:

Lemma 27 Mcmd ≈comp Msym + Sim.

Moreover, if we only consider Msym + Sim (without M∗P), we have removed the part of the
system that potentially runs in superpolynomial-time (due to a looping process P). We
have:

Lemma 28 Msym + Sim is reactively polynomial-time.

Finally, since M∗P + Msym is a faithful simulation of the symbolic execution of P , and the
analogously for M∗Q + Msym , and since the machine connected over sim can only perform
operations and tests considered in the definition of ∼=bisi , we get:

Lemma 29 M∗P +Msym ≈stat M
∗
Q +Msym .

We can plug these four lemmas together to get a proof of Theorem 25:

Proof of Theorem 25. By Lemma 29, we haveM∗P +Msym ≈stat M
∗
Q+Msym . By Lemma 24,

we get M∗P + Msym ≈tic M∗Q + Msym . By Lemma 18, we get M∗P + Msym + Sim ≈tic

M∗Q + Msym + Sim. By Lemma 28, Msym + Sim is reactively polynomial-time, and by
Lemma 27, Msym + Sim ≈comp Mcmd . Thus by Lemma 22, M∗P +Mcmd ≈tic M

∗
Q +Mcmd .

By Lemma 26, MP ≈time M∗P + Mcmd and MQ ≈time M∗Q + Mcmd . By Corollary 13,
MP ≈tic MQ follows. �

We stress that the technically difficult parts are the proofs of Lemmas 27 and 29 which
are unrelated to the notion of tic-indistinguishability. Thus we expect that computational
soundness results for more complex calculi can be handled in exactly the same way, without
any additional trouble due to the notion of tic-indistinguishability.

A Postponed proofs for Section 3 (machine-model indepen-
dence)

Proof of Lemma 10. Since A ∼ B and A .time A
′, IA′ = IA = IB = {ifc} for some ifc.

For contradiction, assume A′ 6∼ B. Then there is a polynomial p and sequences aη, bη, zη

13

with aη 6= bη such that ν − 1 is not upper-bounded by a negligible function where

ν(η) := Pr[A′(η, zη) ⇓p(η) aη] + Pr[B(η, zη) ⇓p(η) bη].

Let Z ∈M0 be a machine with interfaces IZ = {ifc, ifc′} for some ifc′ 6= ifc and with the
following behavior: When receiving x on ifc′, send x on ifc. When receiving aη on ifc, send
1 on ifc′, and when receiving y 6= aη on ifc, send 0 on ifc′.

Since A .time A
′, there is a polynomial q and a negligible function µ such that for all

η, z, we have

Pr[(A+ Z)(η, z) ⇓q(η) 1] ≥ Pr[(A′ + Z)(η, z) ⇓p(η) 1]− µ(η). (1)

We then have

Pr[A(η, zη) ⇓q(η)+p(η) aη] + Pr[B(η, zη) ⇓q(η)+p(η) bη]

≥ Pr[A(η, zη) ⇓q(η) aη] + Pr[B(η, zη) ⇓p(η) bη]

(∗)
= Pr[(A+ Z)(η, zη) ⇓q(η) 1] + Pr[B(η, zη) ⇓p(η) bη]

(1)

≥ Pr[(A′ + Z)(η, zη) ⇓p(η) 1] + Pr[B(η, zη) ⇓p(η) bη]

(∗)
= Pr[A′(η, zη) ⇓p(η) aη] + Pr[B(η, zη) ⇓p(η) bη]

= ν(η).

For (∗), note that Z, being in M0, does not increase the running time.
Since q + p is a polynomial, and ν is not upper-bounded by a negligible function, it

follows that A 6∼ B. This contradicts A ∼ B, so our assumption that A′ 6∼ B holds was
false. �

Proof of Lemma 11. Assume A .time B. Fix an IA4IC-closing machine Z ∈ M0 and a
polynomial p. To show A + C .time B + C, we have to construct a polynomial q and a
negligible function µ such that

∀η, z. Pr[(A+ C + Z)(η, z) ⇓q(η) 1] ≥ Pr[(B + C + Z)(η, z) ⇓p(η) 1]− µ(η). (2)

Let ifc be the interface such that IZ = (IA4IC) ∪̇ {ifc}. We construct an IA-closing
machine Z∗ ∈M0 that does the following: It simulates C + Z. When Z outputs x on the
interface ifc, Z∗ outputs y on ifc, where y is defined as follows: If x = 1 and the total time
spent by the simulated C is less-equal p(η), y := 1. Otherwise y := 0. (Note: Being in M0,
Z∗ spends zero time performing the simulation. It does, however, keep track of the running
time of C for computing y.)

Since A .time B, there are a polynomial q∗ and a negligible function µ such that

∀η, z. Pr[(A+ Z∗)(η, z) ⇓q∗(η) 1] ≥ Pr[(B + Z∗)(η, z) ⇓p(η) 1]− µ(η). (3)

Note that A + Z∗ outputs 1 in time q∗(η) iff the simulated Z outputs 1, A runs at most
q∗(η) steps, and the simulated C runs at most p(η) steps. Note further that A + C + Z

14

η Security parameterη Security parameter

η Security parameterη Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model

IM Interfaces of machine M 8ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine
ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machineη Security parameterifc Usually dentoes an interface of a machine

ifc Usually dentoes an interface of a machineη Security parameterifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine
.time Is time-majorized by 10

η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

⇓t Termination after t steps 9
η Security parameter

η Security parameter
η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameter
η Security parameterη Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameter
η Security parameter

+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter
η Security parameter

M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model

∼ Intermediate notion of indistinguishability 9∼ Intermediate notion of indistinguishability 9∼ Intermediate notion of indistinguishability 9

.time Is time-majorized by 10IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8

η Security parameter+ Composition of two machines 8+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8∪̇ Disjoint union of setsifc Usually dentoes an interface of a machineIM Interfaces of machine M 8
M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model

+ Composition of two machines 8
ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine

η Security parameterM0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine model

.time Is time-majorized by 10

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

+ Composition of two machines 8η Security parameter
η Security parameter η Security parameter+ Composition of two machines 8+ Composition of two machines 8

with aη 6= bη such that ν − 1 is not upper-bounded by a negligible function where

ν(η) := Pr[A′(η, zη) ⇓p(η) aη] + Pr[B(η, zη) ⇓p(η) bη].

Let Z ∈M0 be a machine with interfaces IZ = {ifc, ifc′} for some ifc′ 6= ifc and with the
following behavior: When receiving x on ifc′, send x on ifc. When receiving aη on ifc, send
1 on ifc′, and when receiving y 6= aη on ifc, send 0 on ifc′.

Since A .time A
′, there is a polynomial q and a negligible function µ such that for all

η, z, we have

Pr[(A+ Z)(η, z) ⇓q(η) 1] ≥ Pr[(A′ + Z)(η, z) ⇓p(η) 1]− µ(η). (1)

We then have

Pr[A(η, zη) ⇓q(η)+p(η) aη] + Pr[B(η, zη) ⇓q(η)+p(η) bη]

≥ Pr[A(η, zη) ⇓q(η) aη] + Pr[B(η, zη) ⇓p(η) bη]

(∗)
= Pr[(A+ Z)(η, zη) ⇓q(η) 1] + Pr[B(η, zη) ⇓p(η) bη]

(1)

≥ Pr[(A′ + Z)(η, zη) ⇓p(η) 1] + Pr[B(η, zη) ⇓p(η) bη]

(∗)
= Pr[A′(η, zη) ⇓p(η) aη] + Pr[B(η, zη) ⇓p(η) bη]

= ν(η).

For (∗), note that Z, being in M0, does not increase the running time.
Since q + p is a polynomial, and ν is not upper-bounded by a negligible function, it

follows that A 6∼ B. This contradicts A ∼ B, so our assumption that A′ 6∼ B holds was
false. �

Proof of Lemma 11. Assume A .time B. Fix an IA4IC-closing machine Z ∈ M0 and a
polynomial p. To show A + C .time B + C, we have to construct a polynomial q and a
negligible function µ such that

∀η, z. Pr[(A+ C + Z)(η, z) ⇓q(η) 1] ≥ Pr[(B + C + Z)(η, z) ⇓p(η) 1]− µ(η). (2)

Let ifc be the interface such that IZ = (IA4IC) ∪̇ {ifc}. We construct an IA-closing
machine Z∗ ∈M0 that does the following: It simulates C + Z. When Z outputs x on the
interface ifc, Z∗ outputs y on ifc, where y is defined as follows: If x = 1 and the total time
spent by the simulated C is less-equal p(η), y := 1. Otherwise y := 0. (Note: Being in M0,
Z∗ spends zero time performing the simulation. It does, however, keep track of the running
time of C for computing y.)

Since A .time B, there are a polynomial q∗ and a negligible function µ such that

∀η, z. Pr[(A+ Z∗)(η, z) ⇓q∗(η) 1] ≥ Pr[(B + Z∗)(η, z) ⇓p(η) 1]− µ(η). (3)

Note that A + Z∗ outputs 1 in time q∗(η) iff the simulated Z outputs 1, A runs at most
q∗(η) steps, and the simulated C runs at most p(η) steps. Note further that A + C + Z

14

outputs 1 in time p(η) + q∗(η) if (but not “iff”) Z outputs 1, A runs at most q∗(η) steps,
and C runs at most p(η) steps. Thus

∀η, z. Pr[(A+ Z∗)(η, z) ⇓q∗(η) 1] ≤ Pr[(A+ C + Z)(η, z) ⇓p(η)+q∗(η) 1]. (4)

Note that if B + C + Z outputs 1 in time p(η), then Z outputs 1, B runs at most p(η)
steps, and C runs at most p(η) steps. Note further that B + Z∗ outputs 1 in time p(η) iff
the simulated Z outputs 1, B runs at most p(η) steps, and the simulated C runs at most
p(η) steps. Thus

∀η, z. Pr[(B + C + Z)(η, z) ⇓p(η) 1] ≤ Pr[(B + Z∗)(η, z) ⇓p(η) 1]. (5)

Let q := p+ q∗. Then (2) follows from (4), (3), and (5). �

Proof of Lemma 12. Fix an IA-closing Z ∈M. By Lemma 11, we have Z+A .time Z+A′

and Z +B .time Z +B′. Since A ≈M
tic B, we have Z +A ∼ Z +B. By Lemma 10, we have

Z +A′ ∼ Z +B′. Since this holds for every Z ∈M, we have A′ ≈M
tic B

′. �

Proof of Corollary 13. Immediate from Lemma 12 �

Proof of Lemma 15. Fix an IA-closing Z ′ ∈M′. Since M .time M′, there is a Z ∈M with
Z .time Z

′. By Lemma 11, Z + A .time Z
′ + A and Z + B .time Z

′ + B. Since A ≈M
tic B

and Z ∈M, we have Z+A ∼ Z+B. By Lemma 10, it follows that Z ′+A ∼ Z ′+B. Since
this holds for every Z ′ ∈M′, we have A ≈M′

tic B. �

Proof of Corollary 16. Immediate from Lemma 15. �

B Postponed proofs and definitions for Section 4 (properties
of tic-indistinguishability)

Proof of Lemma 18. Fix some Z ∈M. To show C +A ≈M
tic C +B, we have to show that

A + C + Z ∼ B + C + Z. Since C,Z ∈ M and M is closed, there is a machine Z ′ ∈ M
such that Z ′ .time C + Z. Since A ≈M

tic B, we have A + Z ′ ∼ B + Z ′. By Lemma 10,
A+ C + Z ∼ B + C + Z. �

Definition 30 (Polynomial-time) We call a machine M polynomial-time with respect
to ifc ∈ IM ifM ∈MTuring and there is a polynomial p such that for all terminating Z ∈M0

with IZ = IM \{ifc}, we have that for all η ∈ N and z ∈ {0, 1}∗, Pr[(M+Z)(η, z) ⇓p(η)] = 1.

We omit specifying ifc if it is clear from the context.

Proof of Lemma 21. We first show that if A ≈comp B, then A ≈tic B.

15

η Security parameterη Security parameter η Security parameter
η Security parameter

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter
⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8+ Composition of two machines 8η Security parameter η Security parameter
η Security parameter + Composition of two machines 8η Security parameter

η Security parameter
η Security parameter

η Security parameter+ Composition of two machines 8+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

IM Interfaces of machine M 8M Usually denotes a machine model+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8
+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8

+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8M Usually denotes a machine model≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model

IM Interfaces of machine M 8M Usually denotes a machine modelM Usually denotes a machine model.time Is time-majorized by 10M Usually denotes a machine modelM Usually denotes a machine model
.time Is time-majorized by 10+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8+ Composition of two machines 8.time Is time-majorized by 10+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine modelM Usually denotes a machine model+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8
M Usually denotes a machine model≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model

M Usually denotes a machine model+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
+ Composition of two machines 8

+ Composition of two machines 8+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8+ Composition of two machines 8M Usually denotes a machine modelM Usually denotes a machine modelM Usually denotes a machine model
.time Is time-majorized by 10+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine model
+ Composition of two machines 8∼ Intermediate notion of indistinguishability 9+ Composition of two machines 8

+ Composition of two machines 8+ Composition of two machines 8+ Composition of two machines 8+ Composition of two machines 8

ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model

M0 Machine model with zero running time 8M0 Machine model with zero running time 8
M Usually denotes a machine modelIM Interfaces of machine M 8IM Interfaces of machine M 8ifc Usually dentoes an interface of a machineη Security parameter + Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9

η Security parameter
ifc Usually dentoes an interface of a machine

≈comp Computational indistinguishability 11≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

outputs 1 in time p(η) + q∗(η) if (but not “iff”) Z outputs 1, A runs at most q∗(η) steps,
and C runs at most p(η) steps. Thus

∀η, z. Pr[(A+ Z∗)(η, z) ⇓q∗(η) 1] ≤ Pr[(A+ C + Z)(η, z) ⇓p(η)+q∗(η) 1]. (4)

Note that if B + C + Z outputs 1 in time p(η), then Z outputs 1, B runs at most p(η)
steps, and C runs at most p(η) steps. Note further that B + Z∗ outputs 1 in time p(η) iff
the simulated Z outputs 1, B runs at most p(η) steps, and the simulated C runs at most
p(η) steps. Thus

∀η, z. Pr[(B + C + Z)(η, z) ⇓p(η) 1] ≤ Pr[(B + Z∗)(η, z) ⇓p(η) 1]. (5)

Let q := p+ q∗. Then (2) follows from (4), (3), and (5). �

Proof of Lemma 12. Fix an IA-closing Z ∈M. By Lemma 11, we have Z+A .time Z+A′

and Z +B .time Z +B′. Since A ≈M
tic B, we have Z +A ∼ Z +B. By Lemma 10, we have

Z +A′ ∼ Z +B′. Since this holds for every Z ∈M, we have A′ ≈M
tic B

′. �

Proof of Corollary 13. Immediate from Lemma 12 �

Proof of Lemma 15. Fix an IA-closing Z ′ ∈M′. Since M .time M′, there is a Z ∈M with
Z .time Z

′. By Lemma 11, Z + A .time Z
′ + A and Z + B .time Z

′ + B. Since A ≈M
tic B

and Z ∈M, we have Z+A ∼ Z+B. By Lemma 10, it follows that Z ′+A ∼ Z ′+B. Since
this holds for every Z ′ ∈M′, we have A ≈M′

tic B. �

Proof of Corollary 16. Immediate from Lemma 15. �

B Postponed proofs and definitions for Section 4 (properties
of tic-indistinguishability)

Proof of Lemma 18. Fix some Z ∈M. To show C +A ≈M
tic C +B, we have to show that

A + C + Z ∼ B + C + Z. Since C,Z ∈ M and M is closed, there is a machine Z ′ ∈ M
such that Z ′ .time C + Z. Since A ≈M

tic B, we have A + Z ′ ∼ B + Z ′. By Lemma 10,
A+ C + Z ∼ B + C + Z. �

Definition 30 (Polynomial-time) We call a machine M polynomial-time with respect
to ifc ∈ IM ifM ∈MTuring and there is a polynomial p such that for all terminating Z ∈M0

with IZ = IM \{ifc}, we have that for all η ∈ N and z ∈ {0, 1}∗, Pr[(M+Z)(η, z) ⇓p(η)] = 1.

We omit specifying ifc if it is clear from the context.

Proof of Lemma 21. We first show that if A ≈comp B, then A ≈tic B.

15

Fix an IA-closing Z ∈MTuring and a polynomial p. To show A ≈tic B, we need to show
that there is a negligible function µ such that for all z, a, b with a 6= b and all η ∈ N, we
have

Pr[(Z +A)(η, z) ⇓p(η) a] + Pr[(Z +B)(η, z) ⇓p(η) b] ≤ 1 + µ(η). (6)

Let ifc be the element of IZ \ IA. Let Zp be a machine that does the following: When
activated with message (z, b) on interface ifc,7 it activates a simulated Z with message z
on interface ifc. Messages sent/received by Z on interfaces other than ifc are forwarded.
When Z runs more than a total number of p(η) steps, Zp aborts and outputs 0 on ifc.
When Z outputs m on ifc, Z checks whether m = b, and, if so, sends 1 on ifc, otherwise it
sends 0 on ifc.

Notice that, since Z ∈ MTuring, Zp can be implemented by a polynomial-time Turing
machine. Thus Zp can be chosen to be polynomial-time.

By construction of Zp, for a 6= b we have that

Pr[(Z +A)(η, z) ⇓p(η) a] ≤ Pr[(Zp +A)(η, (z, b)) ⇓∞ 0] (7)

and
Pr[(Z +B)(η, z) ⇓p(η) b] ≤ Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]. (8)

Since Zp is polynomial-time and A and B are computationally indistinguishable, we have
that there is a negligible µ such that for all z, b ∈ {0, 1}∗ and η ∈ N, we have∣∣Pr[(Zp +A)(η, (z, b)) ⇓∞ 1]− Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]

∣∣ ≤ µ(η). (9)

Then we can show (6) and conclude the proof of A ≈tic B:

Pr[(Z +A)(η, z) ⇓p(η) a] + Pr[(Z +B)(η, z) ⇓p(η) b]

(7,8)

≤ Pr[(Zp +A)(η, (z, b)) ⇓∞ 0] + Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]

≤ 1− Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]
(9)

≤ 1− Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + µ(η)

= 1 + µ(η).

We now show that if A and B are reactively polynomial-time and A ≈tic B, then A ≈comp B.
Fix a polynomial-time Z. To show that A ≈comp B, we have to show that there exists

a negligible µ such that for all z and η,∣∣Pr[(Z +A)(η, z) ⇓∞ 1]− Pr[(Z +B)(η, z) ⇓∞ 1]
∣∣ ≤ µ(η). (10)

Let Z ′ be a machine that internally simulates Z, except that when Z sends m 6= 1
on ifc, Z ′ sends 0 on ifc instead. Since Z is polynomial-time, we can choose Z ′ to be
polynomial-time as well.

7We assume that (m1,m2) is encoded by suitably interleaving the bits of m1 and m2, so that even if mi

is very long, m3−i can be read in time O(|m3−i|).

16

IM Interfaces of machine M 8MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

ifc Usually dentoes an interface of a machineIM Interfaces of machine M 8IM Interfaces of machine M 8
ifc Usually dentoes an interface of a machine

ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine
η Security parameterifc Usually dentoes an interface of a machine

ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine
ifc Usually dentoes an interface of a machine

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine model

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9

η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameter

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9
+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameter
η Security parameter

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈comp Computational indistinguishability 11

≈comp Computational indistinguishability 11
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameter

ifc Usually dentoes an interface of a machineifc Usually dentoes an interface of a machine

Fix an IA-closing Z ∈MTuring and a polynomial p. To show A ≈tic B, we need to show
that there is a negligible function µ such that for all z, a, b with a 6= b and all η ∈ N, we
have

Pr[(Z +A)(η, z) ⇓p(η) a] + Pr[(Z +B)(η, z) ⇓p(η) b] ≤ 1 + µ(η). (6)

Let ifc be the element of IZ \ IA. Let Zp be a machine that does the following: When
activated with message (z, b) on interface ifc,7 it activates a simulated Z with message z
on interface ifc. Messages sent/received by Z on interfaces other than ifc are forwarded.
When Z runs more than a total number of p(η) steps, Zp aborts and outputs 0 on ifc.
When Z outputs m on ifc, Z checks whether m = b, and, if so, sends 1 on ifc, otherwise it
sends 0 on ifc.

Notice that, since Z ∈ MTuring, Zp can be implemented by a polynomial-time Turing
machine. Thus Zp can be chosen to be polynomial-time.

By construction of Zp, for a 6= b we have that

Pr[(Z +A)(η, z) ⇓p(η) a] ≤ Pr[(Zp +A)(η, (z, b)) ⇓∞ 0] (7)

and
Pr[(Z +B)(η, z) ⇓p(η) b] ≤ Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]. (8)

Since Zp is polynomial-time and A and B are computationally indistinguishable, we have
that there is a negligible µ such that for all z, b ∈ {0, 1}∗ and η ∈ N, we have∣∣Pr[(Zp +A)(η, (z, b)) ⇓∞ 1]− Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]

∣∣ ≤ µ(η). (9)

Then we can show (6) and conclude the proof of A ≈tic B:

Pr[(Z +A)(η, z) ⇓p(η) a] + Pr[(Z +B)(η, z) ⇓p(η) b]

(7,8)

≤ Pr[(Zp +A)(η, (z, b)) ⇓∞ 0] + Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]

≤ 1− Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + Pr[(Zp +B)(η, (z, b)) ⇓∞ 1]
(9)

≤ 1− Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + Pr[(Zp +A)(η, (z, b)) ⇓∞ 1] + µ(η)

= 1 + µ(η).

We now show that if A and B are reactively polynomial-time and A ≈tic B, then A ≈comp B.
Fix a polynomial-time Z. To show that A ≈comp B, we have to show that there exists

a negligible µ such that for all z and η,∣∣Pr[(Z +A)(η, z) ⇓∞ 1]− Pr[(Z +B)(η, z) ⇓∞ 1]
∣∣ ≤ µ(η). (10)

Let Z ′ be a machine that internally simulates Z, except that when Z sends m 6= 1
on ifc, Z ′ sends 0 on ifc instead. Since Z is polynomial-time, we can choose Z ′ to be
polynomial-time as well.

7We assume that (m1,m2) is encoded by suitably interleaving the bits of m1 and m2, so that even if mi

is very long, m3−i can be read in time O(|m3−i|).

16

Since Z ′ is polynomial-time and A and B are reactively polynomial-time, there is a
polynomial p and a negligible function µ′ such that

∀η, z. Pr[(Z ′+A)(η, z) ⇓p(η)] ≥ 1−µ′(η) and Pr[(Z ′+B)(η, z) ⇓p(η)] ≥ 1−µ′(η). (11)

Since Z ′ only outputs 0 or 1, this implies

∀η, z. Pr[(Z ′ +B)(η, z) ⇓p(η) 0] + Pr[(Z ′ +B)(η, z) ⇓p(η) 1] ≥ 1− µ′(η) (12)

and
∀η, z. Pr[(Z ′ +A)(η, z) ⇓p(η) 0] + Pr[(Z ′ +A)(η, z) ⇓p(η) 1] ≥ 1− µ′(η). (13)

Since A ≈tic B, there is a negligible µ′′ such that for all z, η we have

Pr[(Z ′ +A)(η, z) ⇓p(η) 1] + Pr[(Z ′ +B)(η, z) ⇓p(η) 0] ≤ 1 + µ′′(η) (14)

and
Pr[(Z ′ +A)(η, z) ⇓p(η) 0] + Pr[(Z ′ +B)(η, z) ⇓p(η) 1] ≤ 1 + µ′′(η). (15)

For all η, z, we then have

Pr[(Z +A)(η, z) ⇓∞ 1]
(∗)
= Pr[(Z ′ +A)(η, z) ⇓∞ 1]
(11)

≤ Pr[(Z ′ +A)(η, z) ⇓p(η) 1] + µ′(η)

(14)

≤ 1− Pr[(Z ′ +B)(η, z) ⇓p(η) 0] + µ′′(η) + µ′(η)

(12)

≤ Pr[(Z ′ +B)(η, z) ⇓p(η) 1] + µ′′(η) + 2µ′(η)

≤ Pr[(Z ′ +B)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η)
(∗)
= Pr[(Z +B)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η).

Here (∗) uses that Z ′ outputs 1 iff the simulated Z does.
Using symmetric reasoning (and (15), (13) instead of (14), (12)), we get

Pr[(Z +B)(η, z) ⇓∞ 1] ≤ Pr[(Z +A)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η)

With µ := µ′′ + 2µ′, (10) follows. �

Proof of Lemma 22. Assume that A is reactively polynomial-time, that A ≈comp B, and
that C+A ≈tic D+A. Let I := IA4IC . For contradiction, assume that C+B ≈tic D+B
does not hold. Then there is an I-closing machine Z ∈ MTuring, a polynomial p, a non-
negligible function ν, and sequences zη, aη, bη with aη 6= bη such that for all η,

Pr[(Z + C +B)(η, zη) ⇓p(η) aη] + Pr[(Z +D +B)(η, zη) ⇓p(η) bη] ≥ 1 + ν(η).

17

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

η Security parameter+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter
+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameterη Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameterη Security parameter

+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9+ Composition of two machines 8η Security parameter⇓t Termination after t steps 9η Security parameterη Security parameter

≈comp Computational indistinguishability 11
+ Composition of two machines 8≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8

MTuring Machine model with Turing machines 8MTuring Machine model with Turing machines 8
M Usually denotes a machine modelη Security parameterη Security parameterη Security parameterη Security parameterη Security parameterη Security parameter

+ Composition of two machines 8+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter+ Composition of two machines 8+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter

Since Z ′ is polynomial-time and A and B are reactively polynomial-time, there is a
polynomial p and a negligible function µ′ such that

∀η, z. Pr[(Z ′+A)(η, z) ⇓p(η)] ≥ 1−µ′(η) and Pr[(Z ′+B)(η, z) ⇓p(η)] ≥ 1−µ′(η). (11)

Since Z ′ only outputs 0 or 1, this implies

∀η, z. Pr[(Z ′ +B)(η, z) ⇓p(η) 0] + Pr[(Z ′ +B)(η, z) ⇓p(η) 1] ≥ 1− µ′(η) (12)

and
∀η, z. Pr[(Z ′ +A)(η, z) ⇓p(η) 0] + Pr[(Z ′ +A)(η, z) ⇓p(η) 1] ≥ 1− µ′(η). (13)

Since A ≈tic B, there is a negligible µ′′ such that for all z, η we have

Pr[(Z ′ +A)(η, z) ⇓p(η) 1] + Pr[(Z ′ +B)(η, z) ⇓p(η) 0] ≤ 1 + µ′′(η) (14)

and
Pr[(Z ′ +A)(η, z) ⇓p(η) 0] + Pr[(Z ′ +B)(η, z) ⇓p(η) 1] ≤ 1 + µ′′(η). (15)

For all η, z, we then have

Pr[(Z +A)(η, z) ⇓∞ 1]
(∗)
= Pr[(Z ′ +A)(η, z) ⇓∞ 1]
(11)

≤ Pr[(Z ′ +A)(η, z) ⇓p(η) 1] + µ′(η)

(14)

≤ 1− Pr[(Z ′ +B)(η, z) ⇓p(η) 0] + µ′′(η) + µ′(η)

(12)

≤ Pr[(Z ′ +B)(η, z) ⇓p(η) 1] + µ′′(η) + 2µ′(η)

≤ Pr[(Z ′ +B)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η)
(∗)
= Pr[(Z +B)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η).

Here (∗) uses that Z ′ outputs 1 iff the simulated Z does.
Using symmetric reasoning (and (15), (13) instead of (14), (12)), we get

Pr[(Z +B)(η, z) ⇓∞ 1] ≤ Pr[(Z +A)(η, z) ⇓∞ 1] + µ′′(η) + 2µ′(η)

With µ := µ′′ + 2µ′, (10) follows. �

Proof of Lemma 22. Assume that A is reactively polynomial-time, that A ≈comp B, and
that C+A ≈tic D+A. Let I := IA4IC . For contradiction, assume that C+B ≈tic D+B
does not hold. Then there is an I-closing machine Z ∈ MTuring, a polynomial p, a non-
negligible function ν, and sequences zη, aη, bη with aη 6= bη such that for all η,

Pr[(Z + C +B)(η, zη) ⇓p(η) aη] + Pr[(Z +D +B)(η, zη) ⇓p(η) bη] ≥ 1 + ν(η).

17

We will abbreviate this as

Pr[Z + C +B ⇓p a] + Pr[Z +D +B ⇓p b] ≥ 1 + ν. (16)

Without loss of generality, there is a bitstring stop such that aη, bη 6= stop for all η. (E.g.,
we can choose stop to be 0, and let Z prefix every output on ifc with 1.)

We construct the following machine ZC p: It has interfaces IZCp = IZ4IC . Internally,
it simulates Z + C, with the following modification: As soon as Z + C runs more than a
total number of p(η) steps (all invocations together), ZC p outputs stop on ifc. Intuitively,
ZC p is the machine that simulates the first p(η) steps of Z + C. Analogously, we define
ZDp, simulating p(η) steps of Z +D.

By construction, every output made by Z + C + B within at most p(η) steps will also
be made by ZC p + B. (Note that we do not claim that ZC p + B makes that output
within p(η) steps. This would not be the case as ZC p + B incurs some computational
overhead for counting the steps of Z + C.) Hence Pr[ZC p + B ⇓∞ a] ≥ Pr[Z + C +
B ⇓p a]. By construction, ZC p is polynomial-time. Since A ≈comp B, this implies that
Pr[ZC p + A ⇓∞ a] ≥ Pr[ZC p + B ⇓∞ a] − µC for some negligible function µC . Since A
is reactively polynomial-time, and ZC p polynomial-time, there is a polynomial qC and a
negligible function µ′C such that ZC p + A runs at most qC steps with probability at least
1−µ′C . Thus Pr[ZC p+A ⇓qC a] ≥ Pr[ZC p+A ⇓∞ a]−µ′C . Since ZC p simulates Z+C and
either outputs on ifc what Z + C would output, or outputs stop 6= a, and since ZC p does
not run faster than Z +C, we have Pr[Z +C +A ⇓qC a] ≥ Pr[ZC p +A ⇓qC a]. Combining
the inequalities derived so far, we get

Pr[Z + C +A ⇓qC a] ≥ Pr[Z + C +B ⇓p a]− µC − µ′C . (17)

Analogously, we derive that

Pr[Z +D +A ⇓qD b] ≥ Pr[Z +D +B ⇓p b]− µD − µ′D (18)

for some polynomial qD and negligible functions µD, µ′D.
Furthermore, for q := qC + qD, we have Pr[Z +C +A ⇓q a] ≥ Pr[Z +C +A ⇓qC a] and

Pr[Z +D +A ⇓q b] ≥ Pr[Z +D +A ⇓qD b]. With (16), (17), (18) we then get

Pr[Z + C +A ⇓q a] + Pr[Z +D +A ⇓q b] ≥ 1 + ν ′.

with ν ′ := ν−µC−µ′C−µD−µ′D. Since ν ′ is non-negligible, this implies that C+A ≈tic D+A
does not hold. This is a contradiction to our assumptions. Thus C + B ≈tic D + B holds.
�

Proof of Lemma 24. Assume that A ≈stat B. We wish to show that A ≈M
tic B for

all M. Fix a machine model M, an IA-closing machine Z ∈M, a polynomial p, sequences
zη, aη, bη ∈ {0, 1}∗ with aη 6= bη for all η. We have to show that there is a negligible function
µ such that

Pr[(Z +A)(η, zη) ⇓p(η) aη] + Pr[(Z +B)(η, zη) ⇓p(η) bη] ≤ 1 + µ(η)

18

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9

η Security parameterη Security parameterη Security parameter
ifc Usually dentoes an interface of a machine

IM Interfaces of machine M 8IM Interfaces of machine M 84 Symmetric difference of setsIM Interfaces of machine M 8
+ Composition of two machines 8 + Composition of two machines 8

η Security parameter ifc Usually dentoes an interface of a machine
η Security parameter+ Composition of two machines 8

η Security parameter+ Composition of two machines 8
+ Composition of two machines 8+ Composition of two machines 8η Security parameter

+ Composition of two machines 8 + Composition of two machines 8
η Security parameter + Composition of two machines 8

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8
⇓t Termination after t steps 9 ≈comp Computational indistinguishability 11

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8
+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8

ifc Usually dentoes an interface of a machine+ Composition of two machines 8
+ Composition of two machines 8+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9
+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8

+ Composition of two machines 8≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9+ Composition of two machines 8

≈stat Statistical indistinguishability 11≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9≈M
tic Termination-insensitive indistinguishability w.r.t. machine model M 9

M Usually denotes a machine modelM Usually denotes a machine modelM Usually denotes a machine modelIM Interfaces of machine M 8M Usually denotes a machine model
η Security parameterη Security parameterη Security parameterη Security parameterη Security parameterη Security parameter

+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameter+ Composition of two machines 8η Security parameterη Security parameter⇓t Termination after t steps 9⇓t Termination after t steps 9
η Security parameter

η Security parameterη Security parameter

We will abbreviate this as

Pr[Z + C +B ⇓p a] + Pr[Z +D +B ⇓p b] ≥ 1 + ν. (16)

Without loss of generality, there is a bitstring stop such that aη, bη 6= stop for all η. (E.g.,
we can choose stop to be 0, and let Z prefix every output on ifc with 1.)

We construct the following machine ZC p: It has interfaces IZCp = IZ4IC . Internally,
it simulates Z + C, with the following modification: As soon as Z + C runs more than a
total number of p(η) steps (all invocations together), ZC p outputs stop on ifc. Intuitively,
ZC p is the machine that simulates the first p(η) steps of Z + C. Analogously, we define
ZDp, simulating p(η) steps of Z +D.

By construction, every output made by Z + C + B within at most p(η) steps will also
be made by ZC p + B. (Note that we do not claim that ZC p + B makes that output
within p(η) steps. This would not be the case as ZC p + B incurs some computational
overhead for counting the steps of Z + C.) Hence Pr[ZC p + B ⇓∞ a] ≥ Pr[Z + C +
B ⇓p a]. By construction, ZC p is polynomial-time. Since A ≈comp B, this implies that
Pr[ZC p + A ⇓∞ a] ≥ Pr[ZC p + B ⇓∞ a] − µC for some negligible function µC . Since A
is reactively polynomial-time, and ZC p polynomial-time, there is a polynomial qC and a
negligible function µ′C such that ZC p + A runs at most qC steps with probability at least
1−µ′C . Thus Pr[ZC p+A ⇓qC a] ≥ Pr[ZC p+A ⇓∞ a]−µ′C . Since ZC p simulates Z+C and
either outputs on ifc what Z + C would output, or outputs stop 6= a, and since ZC p does
not run faster than Z +C, we have Pr[Z +C +A ⇓qC a] ≥ Pr[ZC p +A ⇓qC a]. Combining
the inequalities derived so far, we get

Pr[Z + C +A ⇓qC a] ≥ Pr[Z + C +B ⇓p a]− µC − µ′C . (17)

Analogously, we derive that

Pr[Z +D +A ⇓qD b] ≥ Pr[Z +D +B ⇓p b]− µD − µ′D (18)

for some polynomial qD and negligible functions µD, µ′D.
Furthermore, for q := qC + qD, we have Pr[Z +C +A ⇓q a] ≥ Pr[Z +C +A ⇓qC a] and

Pr[Z +D +A ⇓q b] ≥ Pr[Z +D +A ⇓qD b]. With (16), (17), (18) we then get

Pr[Z + C +A ⇓q a] + Pr[Z +D +A ⇓q b] ≥ 1 + ν ′.

with ν ′ := ν−µC−µ′C−µD−µ′D. Since ν ′ is non-negligible, this implies that C+A ≈tic D+A
does not hold. This is a contradiction to our assumptions. Thus C + B ≈tic D + B holds.
�

Proof of Lemma 24. Assume that A ≈stat B. We wish to show that A ≈M
tic B for

all M. Fix a machine model M, an IA-closing machine Z ∈M, a polynomial p, sequences
zη, aη, bη ∈ {0, 1}∗ with aη 6= bη for all η. We have to show that there is a negligible function
µ such that

Pr[(Z +A)(η, zη) ⇓p(η) aη] + Pr[(Z +B)(η, zη) ⇓p(η) bη] ≤ 1 + µ(η)

18

for all η. We abbreviate this as

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b] ≤ 1 + µ.

Let Zb be the machine that simulates Z, but when Z gives some output x, Zb outputs 1
if x = bη and 0 otherwise. (We do not claim that Zb ∈M.) Then

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b]
≤ Pr[Z +A ⇓∞ a] + Pr[Z +B ⇓∞ b]

= Pr[Z +A ⇓∞ a] + Pr[Zb +B ⇓∞ 1]
(∗)
≤ Pr[Z +A ⇓∞ a] + Pr[Zb +A ⇓∞ 1] + µ

= Pr[Z +A ⇓∞ a] + Pr[Z +A ⇓∞ b] + µ
(∗∗)
≤ 1 + µ.

for some negligible µ. Here (∗) uses the statistical indistinguishability A ≈stat B, and (∗∗)
uses the fact that aη 6= bη and hence that Z+A ⇓∞ a and Z+A ⇓∞ b are exclusive events.
�

C Postponed definitions for Section 5
(computational soundness)

In the definition of processes, we treat | as commutative and associative, and 0 as the
neutral element for |. (I.e., 0|A = A.) And we consider two processes as equal if they are
α-convertible (i.e., equal up to renaming of bound variables).

We assume an efficiently computable function ` : terms → L. (We assume that both
terms and L have some canonical encoding into bitstrings so that speaking of efficient
computability of L makes sense.) `(M) represents some formal abstraction of the compu-
tational concept of a length. Examples for length functions are: `(M) is the term M with
every nonce replaced by ∗ (in this case, ` is an overapproximation of the leakage produced
by knowing the computational length of a bitstring, since from `(M) we can compute the
length of the bitstring corresponding to M .) Or `(M) could be the actual length of the
bitstring corresponding to M .

We define minrand(P) and minnonce(P) to be the smallest randomness symbol R or
protocol nonce N , respectively, that is not contained in P .

Given a sequence S of terms, let ϕS be the substitution that maps xi to Si where xi are
fixed, distinct variables. An adversary term is a term containing no protocol nonces and
no randomness symbols. We define ` as follows: S ` M iff there is an adversary term M ′

such that M = M ′ϕS .

19

η Security parameter

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

η Security parameter M Usually denotes a machine model

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9
+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9
+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9
+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

≈stat Statistical indistinguishability 11
η Security parameterη Security parameter+ Composition of two machines 8⇓t Termination after t steps 9+ Composition of two machines 8⇓t Termination after t steps 9

for all η. We abbreviate this as

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b] ≤ 1 + µ.

Let Zb be the machine that simulates Z, but when Z gives some output x, Zb outputs 1
if x = bη and 0 otherwise. (We do not claim that Zb ∈M.) Then

Pr[Z +A ⇓p a] + Pr[Z +B ⇓p b]
≤ Pr[Z +A ⇓∞ a] + Pr[Z +B ⇓∞ b]

= Pr[Z +A ⇓∞ a] + Pr[Zb +B ⇓∞ 1]
(∗)
≤ Pr[Z +A ⇓∞ a] + Pr[Zb +A ⇓∞ 1] + µ

= Pr[Z +A ⇓∞ a] + Pr[Z +A ⇓∞ b] + µ
(∗∗)
≤ 1 + µ.

for some negligible µ. Here (∗) uses the statistical indistinguishability A ≈stat B, and (∗∗)
uses the fact that aη 6= bη and hence that Z+A ⇓∞ a and Z+A ⇓∞ b are exclusive events.
�

C Postponed definitions for Section 5
(computational soundness)

In the definition of processes, we treat | as commutative and associative, and 0 as the
neutral element for |. (I.e., 0|A = A.) And we consider two processes as equal if they are
α-convertible (i.e., equal up to renaming of bound variables).

We assume an efficiently computable function ` : terms → L. (We assume that both
terms and L have some canonical encoding into bitstrings so that speaking of efficient
computability of L makes sense.) `(M) represents some formal abstraction of the compu-
tational concept of a length. Examples for length functions are: `(M) is the term M with
every nonce replaced by ∗ (in this case, ` is an overapproximation of the leakage produced
by knowing the computational length of a bitstring, since from `(M) we can compute the
length of the bitstring corresponding to M .) Or `(M) could be the actual length of the
bitstring corresponding to M .

We define minrand(P) and minnonce(P) to be the smallest randomness symbol R or
protocol nonce N , respectively, that is not contained in P .

Given a sequence S of terms, let ϕS be the substitution that maps xi to Si where xi are
fixed, distinct variables. An adversary term is a term containing no protocol nonces and
no randomness symbols. We define ` as follows: S ` M iff there is an adversary term M ′

such that M = M ′ϕS .

19

We define the following reduction relation −→ (where S denotes a list of terms and U
a set of nonces and randomness symbols):

S;U ‖ c̄〈M〉.P | c(x).Q −→ S;U ‖ P | Q{M/x} (c private)
S;U ‖ c̄〈M〉.P | !c(x).Q −→ S;U ‖ P | !c(x).Q | Q{M/x} (c private)

S;U ‖ if M = M then P else Q −→ S;U ‖ P
S;U ‖ if M = M ′ then P else Q −→ S;U ‖ Q (M 6= M ′)

S;U ‖ let (x, y) = (M,M ′) in P else Q −→ S;U ‖ P{M/x,M ′/y}
S;U ‖ let (x, y) = M in P else Q −→ S;U ‖ Q (M not a pair)

S;U ‖ let x = DecK(enc(K,M,R)) in P else Q −→ S;U ‖ P{M/x}
S;U ‖ let x = DecK(M) in P else Q −→ S;U ‖ Q (M 6= enc(K, ·, ·))

S;U ‖ let x = EncK(M) in P −→ S;U ∪ {R} ‖ P{enc(K,M,R)/x} (R := minrand(U))

S;U ‖ let x = (M1,M2) in P −→ S;U ‖ P{(M1,M2)/x}
S;U ‖ νx.P −→ S;U ∪ {N} ‖ P{N/x} (N := minnonce(U))

S;U ‖ net〈M〉.P M̄−→ S,M ;U ‖ P

S;U ‖ net(x).P
M−→ S;U ‖ P{M/x} (S `M)

S;U ‖ P | Q α−→ S′;U ′ ‖ P ′ | Q (
α−→∈ { M−→,−→},

S;U ‖ P α−→ S′;U ′ ‖ P ′)

We call a process honest if every term in P is a variable.

Definition 31 The set of deterministic processes is the largest set such that:
• If P is deterministic and P −→ P ′, then P ′ is deterministic.
• If P is deterministic and P −→ Q, P −→ Q′, then Q = Q′.
• If P is deterministic and P M̄−→ Q and P M̄ ′−→ Q′, then M = M ′ and Q = Q′.
• If P is deterministic and P M−→ Q and P M−→ Q′, then Q = Q′.
• If P is deterministic, then the following three statements are mutually exclusive for
all Q1, Q2, Q3,M2,M3: P −→ Q1, P

M̄2−→ Q2, and P
M3−→ Q3.

Notice that determinism does not exclude P M1−→ Q1 and P M2−→ Q2 for M1 6= M2. This is
because the incoming message Mi is chosen by the adversary, not by the protocol.

Definition 32 (Adversary term) A destructor term D is a term of the following gram-
mar:

D ::= x | N | (D,D) | enc(K,D,R) | garbL(N) | fst(D) | snd(D)

An adversary term is a destructor term that does not contain protocol nonces (but may
contain arbitrary keys and adversary nonces).

The evaluation eval(D) of a closed destructor term is defined recursively as follows:
eval(N) := N . eval(D1, D2) := (eval(D1), eval(D2)) or ⊥ if eval(D1) or eval(D2) return

20

−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20

−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20

We define the following reduction relation −→ (where S denotes a list of terms and U
a set of nonces and randomness symbols):

S;U ‖ c̄〈M〉.P | c(x).Q −→ S;U ‖ P | Q{M/x} (c private)
S;U ‖ c̄〈M〉.P | !c(x).Q −→ S;U ‖ P | !c(x).Q | Q{M/x} (c private)

S;U ‖ if M = M then P else Q −→ S;U ‖ P
S;U ‖ if M = M ′ then P else Q −→ S;U ‖ Q (M 6= M ′)

S;U ‖ let (x, y) = (M,M ′) in P else Q −→ S;U ‖ P{M/x,M ′/y}
S;U ‖ let (x, y) = M in P else Q −→ S;U ‖ Q (M not a pair)

S;U ‖ let x = DecK(enc(K,M,R)) in P else Q −→ S;U ‖ P{M/x}
S;U ‖ let x = DecK(M) in P else Q −→ S;U ‖ Q (M 6= enc(K, ·, ·))

S;U ‖ let x = EncK(M) in P −→ S;U ∪ {R} ‖ P{enc(K,M,R)/x} (R := minrand(U))

S;U ‖ let x = (M1,M2) in P −→ S;U ‖ P{(M1,M2)/x}
S;U ‖ νx.P −→ S;U ∪ {N} ‖ P{N/x} (N := minnonce(U))

S;U ‖ net〈M〉.P M̄−→ S,M ;U ‖ P

S;U ‖ net(x).P
M−→ S;U ‖ P{M/x} (S `M)

S;U ‖ P | Q α−→ S′;U ′ ‖ P ′ | Q (
α−→∈ { M−→,−→},

S;U ‖ P α−→ S′;U ′ ‖ P ′)

We call a process honest if every term in P is a variable.

Definition 31 The set of deterministic processes is the largest set such that:
• If P is deterministic and P −→ P ′, then P ′ is deterministic.
• If P is deterministic and P −→ Q, P −→ Q′, then Q = Q′.
• If P is deterministic and P M̄−→ Q and P M̄ ′−→ Q′, then M = M ′ and Q = Q′.
• If P is deterministic and P M−→ Q and P M−→ Q′, then Q = Q′.
• If P is deterministic, then the following three statements are mutually exclusive for
all Q1, Q2, Q3,M2,M3: P −→ Q1, P

M̄2−→ Q2, and P
M3−→ Q3.

Notice that determinism does not exclude P M1−→ Q1 and P M2−→ Q2 for M1 6= M2. This is
because the incoming message Mi is chosen by the adversary, not by the protocol.

Definition 32 (Adversary term) A destructor term D is a term of the following gram-
mar:

D ::= x | N | (D,D) | enc(K,D,R) | garbL(N) | fst(D) | snd(D)

An adversary term is a destructor term that does not contain protocol nonces (but may
contain arbitrary keys and adversary nonces).

The evaluation eval(D) of a closed destructor term is defined recursively as follows:
eval(N) := N . eval(D1, D2) := (eval(D1), eval(D2)) or ⊥ if eval(D1) or eval(D2) return

20

⊥. eval(enc(K,D,R)) := enc(K, eval(D), R) or ⊥ if eval(D) returns ⊥. eval(garbL(N)) :=
garbL(N). eval(fst(D)) := m1 and eval(snd(D)) = m2 if eval(D) = (m1,m2), and eval(fst(D)), eval(snd(D)) :=
⊥ if eval(D) is not a pair.

Definition 33 (Static equivalence) Two substitutions ϕS and ϕT are statically equiva-
lent iff the following holds:
• domϕS = domϕT .
• For all adversary terms D with fv(D) ⊆ domϕS we have that eval(DϕS) = ⊥ iff

eval(DϕT) = ⊥.
• For all adversary terms D with fv(D) ⊆ domϕS we have that `(eval(DϕS)) =
`(eval(DϕT)).
• For all adversary terms D with fv(D) ⊆ domϕS we have that eval(DϕS) and eval(DϕT)
have the same type (where the type of a term is one of encryption, pair, nonce, or
garbage).
• For all adversary terms D with fv(D) ⊆ domϕS and eval(DϕS) = enc(K,M,R) and

eval(DϕT) = enc(K ′,M ′, R′), we have K = K ′.
• For all adversary terms D,D′ with fv(D), fv(D′) ⊆ domϕS, we have that eval(DϕS) =

eval(D′ϕS) iff eval(DϕT) = eval(D′ϕT).

Definition 34 (Labeled bisimilarity) ∼=bisi is the largest symmetric relation such that
S;U‖P ∼=bisi T ;V ‖Q implies:
• ϕS and ϕT are statically indistinguishable.
• If S;U‖P −→ S′;U ′‖P ′, then T ;V ‖Q −→ ∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′
for some T ′, V ′, Q′.
• For all adversary terms D, if S;U‖P DϕS−→ S′;U ′‖P ′ then there are T ′, V ′, Q′ such that
T ;V ‖Q −→ ∗ DϕT−→−→ ∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′ .
• If S;U‖P M̄−→ S′;U ′‖P ′ then there are T ′, V ′, Q′,M ′ such that T ;V ‖Q −→ ∗ M̄ ′−→−→
∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′.
We abbreviate ∅;∅‖P ∼=bisi ∅;∅‖Q as P ∼=bisi Q.

Given a partial function ξ from variables to bitstrings with finite domain, let min(ξ)
denote the smallest variable x /∈ dom ξ. Let min2(ξ) denote the pair consisting of the
two smallest variables x, y /∈ dom ξ. Let pair : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ denote the
pair building functions, and let (KeyGen,Enc,Dec) be an IND-CCA secure public-key
encryption scheme.

Definition 35 (Computational execution) The computational execution of a closed hon-
est deterministic process P is a machine MP with interfaces IMP

= {net} that performs the
following steps:
• At any point, when getting a message (getpk,K) on net (while waiting for some other
message, e.g., (continue) or (input,m)), send (pk, pkK) on net.

21

∼=bisi Labeled bisimilarity 21
∼=bisi Labeled bisimilarity 21

−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20∼=bisi Labeled bisimilarity 21

−→ Reduction relation of the process calculus 20
−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20∼=bisi Labeled bisimilarity 21

−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20−→ Reduction relation of the process calculus 20
∼=bisi Labeled bisimilarity 21

∼=bisi Labeled bisimilarity 21∼=bisi Labeled bisimilarity 21

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22

MP Computational execution of process P 12IM Interfaces of machine M 8IM Interfaces of machine M 8
MP Computational execution of process P 12

⊥. eval(enc(K,D,R)) := enc(K, eval(D), R) or ⊥ if eval(D) returns ⊥. eval(garbL(N)) :=
garbL(N). eval(fst(D)) := m1 and eval(snd(D)) = m2 if eval(D) = (m1,m2), and eval(fst(D)), eval(snd(D)) :=
⊥ if eval(D) is not a pair.

Definition 33 (Static equivalence) Two substitutions ϕS and ϕT are statically equiva-
lent iff the following holds:
• domϕS = domϕT .
• For all adversary terms D with fv(D) ⊆ domϕS we have that eval(DϕS) = ⊥ iff

eval(DϕT) = ⊥.
• For all adversary terms D with fv(D) ⊆ domϕS we have that `(eval(DϕS)) =
`(eval(DϕT)).
• For all adversary terms D with fv(D) ⊆ domϕS we have that eval(DϕS) and eval(DϕT)
have the same type (where the type of a term is one of encryption, pair, nonce, or
garbage).
• For all adversary terms D with fv(D) ⊆ domϕS and eval(DϕS) = enc(K,M,R) and

eval(DϕT) = enc(K ′,M ′, R′), we have K = K ′.
• For all adversary terms D,D′ with fv(D), fv(D′) ⊆ domϕS, we have that eval(DϕS) =

eval(D′ϕS) iff eval(DϕT) = eval(D′ϕT).

Definition 34 (Labeled bisimilarity) ∼=bisi is the largest symmetric relation such that
S;U‖P ∼=bisi T ;V ‖Q implies:
• ϕS and ϕT are statically indistinguishable.
• If S;U‖P −→ S′;U ′‖P ′, then T ;V ‖Q −→ ∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′
for some T ′, V ′, Q′.
• For all adversary terms D, if S;U‖P DϕS−→ S′;U ′‖P ′ then there are T ′, V ′, Q′ such that
T ;V ‖Q −→ ∗ DϕT−→−→ ∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′ .
• If S;U‖P M̄−→ S′;U ′‖P ′ then there are T ′, V ′, Q′,M ′ such that T ;V ‖Q −→ ∗ M̄ ′−→−→
∗T ′;V ′‖Q′ and S′;U ′‖P ′ ∼=bisi T

′;V ′‖Q′.
We abbreviate ∅;∅‖P ∼=bisi ∅;∅‖Q as P ∼=bisi Q.

Given a partial function ξ from variables to bitstrings with finite domain, let min(ξ)
denote the smallest variable x /∈ dom ξ. Let min2(ξ) denote the pair consisting of the
two smallest variables x, y /∈ dom ξ. Let pair : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ denote the
pair building functions, and let (KeyGen,Enc,Dec) be an IND-CCA secure public-key
encryption scheme.

Definition 35 (Computational execution) The computational execution of a closed hon-
est deterministic process P is a machine MP with interfaces IMP

= {net} that performs the
following steps:
• At any point, when getting a message (getpk,K) on net (while waiting for some other
message, e.g., (continue) or (input,m)), send (pk, pkK) on net.

21

• Let η denote the security parameter. We maintain values pkK , skK for all keys K
which are initialized as (pkK , skK)← KeyGen(1η) upon first use. Set Pcurr := P and
ξ := ∅. (ξ is a partial function from variables to bitstrings, initially empty.) Wait
for a message (continue) on net. Then proceed with the main loop.
• Main loop: Repeat the following ad infinitum.

– If Pcurr = c̄〈x〉.P1|c(y).P2|P3 with y = min(ξ):
Let Pcurr := P1|P2|P3 and ξ(x) := ξ(y).

– If Pcurr = c̄〈x〉.P1|!c(y).P2|P3 with y = min(ξ):
Let Pcurr := P1|!c(y).P2|P2|P3 and ξ(x) := ξ(y).

– If Pcurr = (if x = y then P1 else P2)|P3:
If ξ(x) = ξ(y), let Pcurr := P1|P3. Otherwise, let Pcurr := P2|P3.

– If Pcurr = (let (x, y) = z in P1 else P2)|P3 with (x, y) = min2(ξ):
If ξ(z) = pair(m1,m2) for some m1,m2, then let ξ(x) := m1, ξ(y) := m2, and
Pcurr := P1|P3. Otherwise let Pcurr := P2|P3.

– If Pcurr = (let x = DecK(y) in P1 else P2)|P3 with x = min(ξ):
Compute m := Dec(skK , ξ(y)). If Dec fails, let Pcurr := P2|P3. Otherwise let
ξ(x) := m and Pcurr := P1|P3.

– If Pcurr = (let x = (y, z) in P1)|P2 with x ∈ min(ξ):
Let Pcurr := P1|P2 and ξ(x) := pair(ξ(y), ξ(z)).

– If Pcurr = (let x = EncK(z) in P1)|P2 with x = min(ξ):
Let Pcurr := P1|P2 and ξ(x) := Enc(pkK , ξ(z)).

– If Pcurr = P1|net(x).P2 with x = min(ξ):
Send (wantinput) on net. Wait for a message (input,m) on net, let ξ(x) := m
and set Pcurr := P1|P2.

– If Pcurr = P1|net〈x〉.P2:
Send (output, ξ(x)) on net. Wait for a message (continue) on net. Set Pcurr :=
P1|P2.

– If Pcurr = P1|νx.P2 with x = min(ξ):
Pick m $← {0, 1}η. Let ξ(x) := m and set Pcurr := P1|P2.

– All other cases:
Do nothing (i.e., loop).

References

[1] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[2] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework
for computational soundness proofs. In ACM CCS 2009, pages 66–78. ACM Press,
November 2009. Full version on IACR ePrint 2009/080.

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic
library with nested operations (extended abstract). In Proc. 10th ACM Conference on

22

η Security parameter
η Security parameter

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22ξ Substitution storing process’s environment 22
ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22

ξ Substitution storing process’s environment 22
η Security parameterξ Substitution storing process’s environment 22

• Let η denote the security parameter. We maintain values pkK , skK for all keys K
which are initialized as (pkK , skK)← KeyGen(1η) upon first use. Set Pcurr := P and
ξ := ∅. (ξ is a partial function from variables to bitstrings, initially empty.) Wait
for a message (continue) on net. Then proceed with the main loop.
• Main loop: Repeat the following ad infinitum.

– If Pcurr = c̄〈x〉.P1|c(y).P2|P3 with y = min(ξ):
Let Pcurr := P1|P2|P3 and ξ(x) := ξ(y).

– If Pcurr = c̄〈x〉.P1|!c(y).P2|P3 with y = min(ξ):
Let Pcurr := P1|!c(y).P2|P2|P3 and ξ(x) := ξ(y).

– If Pcurr = (if x = y then P1 else P2)|P3:
If ξ(x) = ξ(y), let Pcurr := P1|P3. Otherwise, let Pcurr := P2|P3.

– If Pcurr = (let (x, y) = z in P1 else P2)|P3 with (x, y) = min2(ξ):
If ξ(z) = pair(m1,m2) for some m1,m2, then let ξ(x) := m1, ξ(y) := m2, and
Pcurr := P1|P3. Otherwise let Pcurr := P2|P3.

– If Pcurr = (let x = DecK(y) in P1 else P2)|P3 with x = min(ξ):
Compute m := Dec(skK , ξ(y)). If Dec fails, let Pcurr := P2|P3. Otherwise let
ξ(x) := m and Pcurr := P1|P3.

– If Pcurr = (let x = (y, z) in P1)|P2 with x ∈ min(ξ):
Let Pcurr := P1|P2 and ξ(x) := pair(ξ(y), ξ(z)).

– If Pcurr = (let x = EncK(z) in P1)|P2 with x = min(ξ):
Let Pcurr := P1|P2 and ξ(x) := Enc(pkK , ξ(z)).

– If Pcurr = P1|net(x).P2 with x = min(ξ):
Send (wantinput) on net. Wait for a message (input,m) on net, let ξ(x) := m
and set Pcurr := P1|P2.

– If Pcurr = P1|net〈x〉.P2:
Send (output, ξ(x)) on net. Wait for a message (continue) on net. Set Pcurr :=
P1|P2.

– If Pcurr = P1|νx.P2 with x = min(ξ):
Pick m $← {0, 1}η. Let ξ(x) := m and set Pcurr := P1|P2.

– All other cases:
Do nothing (i.e., loop).

References

[1] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[2] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework
for computational soundness proofs. In ACM CCS 2009, pages 66–78. ACM Press,
November 2009. Full version on IACR ePrint 2009/080.

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic
library with nested operations (extended abstract). In Proc. 10th ACM Conference on

22

Computer and Communications Security, pages 220–230, 2003. Full version in IACR
Cryptology ePrint Archive 2003/015, Jan. 2003.

[4] Michael Backes and Dominique Unruh. Computational soundness of symbolic zero-
knowledge proofs against active attackers. In 21st IEEE Computer Security Foundations
Symposium, CSF 2008, pages 255–269, June 2008. Preprint on IACR ePrint 2008/152.
To appear in the Journal of Computer Security.

[5] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observa-
tional equivalence. In Proc. ACM CCS, pages 109–118, 2008.

[6] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Computation-
ally Sound Symbolic Secrecy in the Presence of Hash Functions. In Proceedings of
the 26th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2006), volume 4337 of Lecture Notes in Computer Science, pages
176–187. Springer, 2006.

[7] Vèronique Cortier and Bogdan Warinschi. Computationally sound, automated proofs
for security protocols. In Proc. 14th European Symposium on Programming (ESOP),
pages 157–171, 2005.

[8] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Polynomial runtime and
composability. IACR ePrint 2009/023, 2009.

23

Computer and Communications Security, pages 220–230, 2003. Full version in IACR
Cryptology ePrint Archive 2003/015, Jan. 2003.

[4] Michael Backes and Dominique Unruh. Computational soundness of symbolic zero-
knowledge proofs against active attackers. In 21st IEEE Computer Security Foundations
Symposium, CSF 2008, pages 255–269, June 2008. Preprint on IACR ePrint 2008/152.
To appear in the Journal of Computer Security.

[5] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observa-
tional equivalence. In Proc. ACM CCS, pages 109–118, 2008.

[6] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Computation-
ally Sound Symbolic Secrecy in the Presence of Hash Functions. In Proceedings of
the 26th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2006), volume 4337 of Lecture Notes in Computer Science, pages
176–187. Springer, 2006.

[7] Vèronique Cortier and Bogdan Warinschi. Computationally sound, automated proofs
for security protocols. In Proc. 14th European Symposium on Programming (ESOP),
pages 157–171, 2005.

[8] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Polynomial runtime and
composability. IACR ePrint 2009/023, 2009.

23

Index
adversary term, 20

bisimilarity
labeled, 12

closed (machine model), 10
closed (machine), 9
closed (process), 12
closing, 9
composition, 10
composition (of machines), 8
computational indistinguishability, 11

termination-insensitive, 9

destructor term, 20
deterministic (process), 12, 20

equivalent
time-, 5
time- (machine), 10

honest (process), 12, 20

indistinguishability
computational, 11
statistical, 11
termination-insensitive computational, 9
tic-, 9

labeled bisimilarity, 12

machine, 8
machine model, 8
majorized

time- (machine model), 10
time- (machine), 10

model
machine, 8

polynomial-time, 15
reactive, 10

reactive polynomial-time, 10

statistical indistinguishability, 11

terminating, 8
termination-insensitive computational indis-

tinguishability, 9
tic-indistinguishability, 9
time-equivalent, 5
time-equivalent (machine), 10
time-majorized (machine model), 10
time-majorized (machine), 10
trace property, 7

24

Index
adversary term, 20

bisimilarity
labeled, 12

closed (machine model), 10
closed (machine), 9
closed (process), 12
closing, 9
composition, 10
composition (of machines), 8
computational indistinguishability, 11

termination-insensitive, 9

destructor term, 20
deterministic (process), 12, 20

equivalent
time-, 5
time- (machine), 10

honest (process), 12, 20

indistinguishability
computational, 11
statistical, 11
termination-insensitive computational, 9
tic-, 9

labeled bisimilarity, 12

machine, 8
machine model, 8
majorized

time- (machine model), 10
time- (machine), 10

model
machine, 8

polynomial-time, 15
reactive, 10

reactive polynomial-time, 10

statistical indistinguishability, 11

terminating, 8
termination-insensitive computational indis-

tinguishability, 9
tic-indistinguishability, 9
time-equivalent, 5
time-equivalent (machine), 10
time-majorized (machine model), 10
time-majorized (machine), 10
trace property, 7

24

Symbol index

M Usually denotes a machine model
M Usually denotes a machine
η Security parameter
σ Usually denotes state of a machine
ifc Usually dentoes an interface of a machine
M0 Machine that never terminates 6
∪̇ Disjoint union of sets
4 Symmetric difference of sets
IM Interfaces of machine M 8
σM Initial state of machine M 8
δM State transition function of machine M 8
MTuring Machine model with Turing machines 8
M0 Machine model with zero running time 8
+ Composition of two machines 8
⇓t Termination after t steps 9
∼ Intermediate notion of indistinguishability 9
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
.time Is time-majorized by 10
≈time Time-equivalence 10
≈tic Termination-insensitive computational indistinguishability (short for ≈MTuring

tic) 10
≈comp Computational indistinguishability 11
≈stat Statistical indistinguishability 11
MP Computational execution of process P 12
M∗P Computational execution of P with outsourced operations 12
Mcmd Machine for outsourcing bitstring operations 12
Msym Variant of Mcmd , working with terms 12
Sim Simulator in computational soundness proof 13
−→ Reduction relation of the process calculus 20
∼=bisi Labeled bisimilarity 21
ξ Substitution storing process’s environment 22

25

Symbol index

M Usually denotes a machine model
M Usually denotes a machine
η Security parameter
σ Usually denotes state of a machine
ifc Usually dentoes an interface of a machine
M0 Machine that never terminates 6
∪̇ Disjoint union of sets
4 Symmetric difference of sets
IM Interfaces of machine M 8
σM Initial state of machine M 8
δM State transition function of machine M 8
MTuring Machine model with Turing machines 8
M0 Machine model with zero running time 8
+ Composition of two machines 8
⇓t Termination after t steps 9
∼ Intermediate notion of indistinguishability 9
≈M

tic Termination-insensitive indistinguishability w.r.t. machine model M 9
.time Is time-majorized by 10
≈time Time-equivalence 10
≈tic Termination-insensitive computational indistinguishability (short for ≈MTuring

tic) 10
≈comp Computational indistinguishability 11
≈stat Statistical indistinguishability 11
MP Computational execution of process P 12
M∗P Computational execution of P with outsourced operations 12
Mcmd Machine for outsourcing bitstring operations 12
Msym Variant of Mcmd , working with terms 12
Sim Simulator in computational soundness proof 13
−→ Reduction relation of the process calculus 20
∼=bisi Labeled bisimilarity 21
ξ Substitution storing process’s environment 22

25

	Introduction
	Defining tic-indistinguishability
	Machine model independence
	Using tic-indistinguishability
	Computational soundness

	Tic-indistinguishability
	Machine-model independence
	Properties
	Computational soundness
	Appendix
	Postponed proofs for Section 3
	Postponed proofs for Section 4
	Postponed definitions for Section 5
	References
	Index
	Symbol index

