

Edinburgh Research Explorer

A Formal Framework for Provenance Security

Citation for published version:
Cheney, J 2011, A Formal Framework for Provenance Security. in Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium. Institute of Electrical and Electronics Engineers (IEEE),
Washington, DC, USA, pp. 281-293. https://doi.org/10.1109/CSF.2011.26

Digital Object Identifier (DOI):
10.1109/CSF.2011.26

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2011 IEEE 24th Computer Security Foundations Symposium

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/CSF.2011.26
https://doi.org/10.1109/CSF.2011.26
https://www.research.ed.ac.uk/en/publications/1c536d6d-fdf8-4775-9d80-ad71955f9c86

A formal framework for provenance security

James Cheney
Laboratory for Foundations of Computer Science

University of Edinburgh
Edinburgh, Scotland

Email: jcheney@inf.ed.ac.uk

Abstract—Provenance, or information about the origin,
derivation, or history of data, is becoming an important topic
especially for shared scientific or public data on the Web. It
clearly has implications on security (and vice versa) yet these
implications are not well-understood. A great deal of work has
focused on mechanisms for recording, managing or using some
kind of provenance information, but relatively little progress
has been made on foundational models that define provenance
and relate it to security goals such as availability, confidentiality
or privacy. We argue that such foundations are essential to
making meaningful progress on these problems and should
be developed. In this paper, we outline a formal model of
provenance, propose formalizations of security properties for
provenance such as disclosure and obfuscation, and explore
their implications in domains based on automata, database
queries and workflow provenance graphs.

Keywords-provenance; semantics; security

I. INTRODUCTION

Provenance is, informally, information about the history,
derivation, origin, or context of an artifact. In computational
settings, provenance is data that describes some other data,
or the computation or process that produced it. Absence of
provenance, or incorrect provenance, can lead to a new class
of failures in computer systems, which we call provenance
failures. For example:

• Absence of date information on news articles has
led to old news being reused by aggregators such
as Google News. This in turn can lead to economic
losses if investors misinterpret this information, for
example when the old news is about a company’s
near-bankruptcy [1]. Even simple forms of provenance
such as “when was this data created” are not currently
maintained effectively on the Web.

• Lack of transparency or information needed to repeat
scientific computations makes it difficult for reviewers
to evaluate scientific contributions and for authors to
avoid unintentional error. Bugs in programs or scripts
have already led to publication of articles with hard-to-
find errors that ultimately had to be retracted [2]. Many
provenance techniques are aimed at aiding repeatability
or transparency in scientific computation.

• Privacy or confidentiality can be violated if prove-
nance information is unintentionally made available,
for example, if government documents are accidentally

published as Word documents with embedded change
history [3].

A number of researchers and organizations, including
the W3C, have suggested developing a provenance infras-
tructure or systems and standards that make it possible
to determine the provenance of data on the Web [4], [5].
Further details and examples of provenance failures, and our
views on the need for further research on these issues, are
summarized in the paper [6].

The question of how to make these informal motivations
formal, or to precisely characterize what makes some mech-
anism for provenance suitable for enforcing a desired policy,
has largely been ignored in the literature on provenance. A
great deal of work has focused on design of efficient tech-
niques for recording some additional so-called provenance
information, often in the context of a specific system (see
e.g. [7]–[11]); other work has emphasized defining formal
models of provenance and exploring their properties [12],
[13], or identifying and solving particular decision problems
that arise for forms of data frequently used as provenance,
such as directed acyclic graphs [14], [15]. However, the
wide variety of such models and the applications that have
inspired them begs several questions:

1) What is (and isn’t) provenance?
2) Are there natural choices for the “best” or most

informative provenance for a given system?
3) How do we know whether a system records correct

provenance, or records enough provenance for a given
application?

4) How can we compare provenance techniques in terms
of expressiveness or generality?

5) What kinds of security properties (availability, confi-
dentiality, privacy, nonrepudiation) should provenance
have, and what kinds of policies can be defined and
effectively enforced?

It is important to note that these are really questions about
the semantics of provenance, and they will only become
more important as provenance technology becomes deployed
on the Web or other distributed settings. Among these, the
first three seem to address subjective concerns where there
is not necessarily a unique way of framing the problem
or deriving solutions. The many different models for and

implementations of provenance in different systems, such
as databases [12], [13], workflow management systems [7],
[8], and storage systems [10], [11], suggests that there may
be no single definition that applies to all these situations,
nor an obvious choice of “best” or most general provenance
mechanism even for a specific system. Indeed, it seems
likely that the answer to question (2) is actually “no”, since
any real system can be modeled at finer and finer levels of
granularity.

Concerning the third question, most work on particular
systems seems to assume that it is obvious that some
information can be interpreted usefully as provenance, but
when data and provenance crosses systems boundaries this
implicit knowledge may be lost, and there may be many new
avenues for corrupting provenance records through errors,
inconsistencies or attacks. Moreover, as the fourth question
highlights, when different approaches to provenance are
investigated, it is important to be able to relate both their
performance and their expressiveness or generality, to avoid
apples-to-oranges comparisons.

Finally, as raised by the fifth question, these concerns
become especially pressing when we wish to consider the
interaction between provenance and security. The impli-
cations of provenance for security (and vice versa) have
only recently begun to be investigated [16]–[20]. Obviously,
provenance information may need to be protected just like
any other data produced or consumed by computer systems.
Less obviously, as discussed by Braun et al. [17] provenance
may have subtle interactions with confidentiality of ordinary
data (e.g. provenance may permit new inferences leading to
information leakage) or with privacy (e.g. there may be a
tension between making provenance information available
and protecting the identities of principals contributing to
computations). These situations are especially complex when
provenance crosses system boundaries or domains of control
involving principals with different goals and needs, or for
stateful systems such as scientific databases, which grow
or change over time as a result of contributions by many
contributors [21].

Most work on provenance security so far has essentially
reapplied known mechanisms such as access control, digital
signatures, information flow control, or privacy without
seeking to answer the above semantic questions. One impor-
tant exception is Chong’s proposals of definitions of prove-
nance security policies [22], drawing on the trace model
introduced by Acar, Ahmed and Cheney [23]. Some work
on provenance has also been inspired by ideas in security,
such as dependency provenance [24], which provides a
noninterference-like criterion for ensuring that all possible
dependencies of a part of the output are tracked. Davidson
et al. [25] propose adapting ideas from database privacy and
anonymity and give candidate formal definitions of privacy
policies for workflow provenance. Nevertheless, these only
represent first steps.

Addressing these questions properly requires a semantic
framework that makes some reasonable assumptions about
the subjective parts of the picture. In this paper, we develop
such a framework, and propose some general semantic
definitions of security properties for provenance. The main
contribution of this paper is the framework and definitions
themselves, but we justify our view that the framework
is general and useful by exploring its ramifications using
example domains including finite automata and transducers,
database queries, and simple workflow-like programs.

We assume that a number of principals interact with some
system equipped with a set of possible behaviors, called
traces. Traces are expected to contain all information about
the system behavior in which any principal is potentially
interested. This is a subjective judgement, and so the design
of the language of traces needs to be agreed by the principals
or system designers. Thus, the trace forms a “most general”
form of provenance for the system, at least as far as the prin-
cipals interacting with it are concerned. However, different
kinds of traces might be suitable for different applications,
and we do not prescribe a strategy for designing or imple-
menting provenance tracking mechanisms. Much research on
provenance focuses on exactly these problems. We also do
not assume that there is necessarily a practical strategy for
recording the traces. They are only an abstraction used for
relating other more specific forms of provenance, including
the ones of practical interest.

In principle, one could make the complete trace available
to each principal authorized to use the system. However,
this default strategy might be impractical or undesirable.
For example, it is typically not practical to record traces at
the level of individual instructions in production systems,
particularly scientific computations where performance is
paramount. Moreover, the principals may have different
privileges concerning what aspects of system behavior they
are allowed to observe. These observations may permit
principals to draw inferences about aspects of the system that
they are not allowed to observe directly, leading to security
vulnerabilities.

In the absence of security concerns, provenance is some-
what loosely specified: we can simply try to make as much
trace information available as is practical, and let users make
whatever sense of it they can. Likewise, if security is the
only concern, then provenance is also loosely specified: we
can protect the system best by not making any additional
provenance information available, and using conventional
techniques for security. However, if some knowledge about
system behavior needs to be protected while other informa-
tion is disclosed, there is a basic tension between provenance
and security, which further constrains the problem. The
main contribution of this paper is to explain what it means
for a provenance tracking system to successfully disclose
some information that users require while obfuscating other
sensitive information.

To make these constraints precise, we introduce the notion
of a provenance query Q, which is simply a set of traces that
share some property that needs to be obfuscated or disclosed.
Furthermore, we consider spaces of provenance views PA

which are essentially functions on traces that hide some of
the trace information, describing what information is made
available by the system to principal A.

Using these ingredients we define the notion of a prove-
nance framework and of a system that is an instance of the
framework. We can consider provenance policies including:

• Disclosure: Ensuring that a given principal A can
always determine whether the actual trace satisfies a
given provenance query Q. (That is, ensuring Q is
always answerable using PA.)

• Obfuscation: Ensuring that a given principal A can
never be certain whether the actual trace satisfies a
given provenance query Q. (That is, ensuring that Q
can never be answered by observing PA.)

Moreover, we further focus attention on trace-invariant
queries and policies that are independent of the provenance
information itself, such as queries about the input or source
program used to derive a given output. We ultimately want
to understand a number of different classes of trace-invariant
policies:

• availability: how can we ensure that some information
about the input is disclosed to a principal?

• confidentiality: how can we ensure that confidential
information is never indirectly disclosed to a principal?
This is essentially what is studied by Chong’s “data
security” [22].

• integrity: how can provenance records increase trust in
the integrity of a process that created some data, and
how can such records be protected from corruption?
This is a motivation for work on provenance in curated
databases [26] and security aspects of this situation
are also considered by Zhang et al. [18] and Hasan et
al. [10], [16].

• reverse-engineering: how much information does the
provenance (and possibly input and output) provide
about the program that produced the results? This is
a motivation for work on workflow provenance secu-
rity [25].

• explanation: how much information does the prove-
nance reveal about the possible result values in hy-
pothetical, counterfactual situations? This is part of
the motivation for dependency provenance [24] and
provenance traces [23], and is an implicit motivation
for viewing provenance graphs as conveying causal
information [14], [27].

We develop specific instances of our framework with these
provenance queries in mind, focusing on the availability and
confidentiality properties. We model a principal’s knowledge
by sets of possible worlds (i.e., sets of traces) and measure

the knowledge gain in terms of the worlds considered
possible by each principal after observing the provenance.
In particular our examples show that provenance can enforce
trace-invariant policies that cannot be enforced otherwise.

Although the examples discussed earlier have largely
drawn on motivations for provenance on the Web for
inspiration, provenance is also widely studied in several
other settings, including workflows, databases, and storage
systems. In the long term, as these systems become more
tightly integrated over the Web, we will need provenance
models that transcend the details of these different models.
In this paper, we seek to abstract from the specific details
of these systems in order to gain an understanding of
the common security issues that arise in any system that
tracks provenance. Our complexity results show that these
definitions play out in subtly different ways in different
settings, including automata traces, workflow runs and anno-
tated databases, leading to different answers to questions of
decidability and complexity for provenance. One could argue
that this suggests that our trace formalism is too general and
flexible to model provenance well; however, even if this is
the case, this kind of exploration is a necessary first step
towards identifying the right level of abstraction.

We also draw a distinction between static provenance
that describes a single run or behavior of a system, versus
dynamic provenance that describes a sequence of runs or
concurrent interactions between the system, principals and
possibly other systems. In this paper, we focus on developing
a unifying model and identifying security properties for the
easier (but still nontrivial) static case. In fact, most work on
provenance in extant database and workflow systems focuses
on the static case, so it is reasonable to focus on this case.
We leave the development of a formal model for dynamic
provenance security for future work.

The structure of the rest of this paper is as follows. In
Section II we describe our general model, including the
idea of provenance frameworks, systems, and definitions
of the disclosure and obfuscation properties, as well as
trace-invariant special cases. In Section III we introduce the
three main examples we will use to illustrate the model.
In Section IV we present the main technical results, which
explore the ramifications of the model using the example
settings. In Section V we discuss related work and in
Section VI we summarize and discuss some directions for
future work.

II. PROVENANCE FRAMEWORK

In this section we present our model. We assume that a
system designer or community agrees on a set of traces T of
possible executions of the system. These traces constitute a
record of system behavior that is assumed to be sufficiently
informative for all principals involved. This is an assumption
of the model, not a theorem, and we do not further prescribe

design criteria for the space of traces or means of associ-
ating them with computations. We believe these decisions
ultimately need to be informed both by domain knowledge
and principles of clean specifications.

A provenance query is a set of traces, or equivalently a
function from T → B where B = {0, 1}. A provenance
interpretation is a function P : T → Ω where Ω is some set
of observations associated with P .

A provenance framework (T , T0,Q,O,P) consists of a
set of traces T , a set of realizable traces T0, a collection
Q of subsets of T called trace queries, a collection O of
observation sets Ω, along with a collection of transformers
h : Ω → Ω′ that includes identity maps and is closed under
composition, and P is a set of provenance views P : T → Ω
that is closed under composition with observation transform-
ers. We also assume that O contains a singleton set {?} and
is closed under Cartesian products. 1

For example, given a set T of traces we can construct a
default provenance framework where T0 = T , the queries
are all subsets of T , and the objects of P are all functions
of the form P : T → X where X is any set, and
the arrows are all possible functions over sets. However,
the queries and observables might be more restricted, for
example in the framework AUT we will consider later,
T is a set of strings and T0 is the language of traces of
a given automaton; queries are regular languages; and the
category of observations has regular languages as objects and
transformations definable by finite transducers as arrows.

We assume that principals know the possible traces but do
not have direct access to the trace t realized in a particular
scenario. Instead, a principal A can make certain observa-
tions of the trace, given by a fixed provenance interpretation
PA : T → ΩA, mapping traces to elements of some set ΩA

of observables for A.
A provenance system (PA,ΩA) extends a provenance

framework by fixing a provenance interpretation and obser-
vations PA : T → ΩA for each principal A. We will focus
on the case where there is just one principal, and sometimes
omit subscripts. We often just write P and leave its range
Ω implicit.

We define a quasiorder (reflexive and transitive, but not
antisymmetric) on provenance views P : T → Ω, P ′ : T →
Ω′ by defining P v P ′ to mean that there exists a function
h : Ω′ → Ω such that h◦P ′ = P . Modulo isomorphism, this
has a semilattice structure with least element ⊥ : T → {?}
(for some constant ?) and greatest element > = λt.t. The
least upper bound of P1 : T → Ω1 and P2 : T → Ω2 is
given by P1 t P2 : T → Ω1 × Ω2.

We now develop provenance policies that given systems
may or may not satisfy. We write KA or just K for the

1Note that this is simply a long-winded way of saying that O is a
category. Likewise, P is a cartesian subcategory of the coslice category
T ↓ O. Category theory is not needed for understanding the technical
results but could be used here to shorten notation.

initial knowledge of principal A. This is a set of possible
worlds, that is, traces, as understood by A. This could just
be T itself, or could be a subset reflecting knowledge the
user has already acquired about the possible behaviors of
the system. The only requirement is that T0 ⊆ KA ⊆ T .

Now, we define the knowledge of A after observation of
ω to be:

K̂A(ω) = {t′ ∈ KA | PA(t′) = ω}

We define a policy P to be a collection of pairs (KA,ΦA)
where ΦA ⊆ P(T) is a set of sets of traces, for each A.
Each element φ of ΦA can be thought of as a set of worlds
which the policy permits A to consider possible after making
an observation. Formally, we say that a provenance system
satisfies policy (KA,ΦA) if:

∀A.∀t ∈ T0.K̂A(PA(t)) ∈ ΦA

Given a system, we define a policy that it enforces as
follows. For each A, define KA as T and define ΦA as
{{t′ ∈ T | P (t) = P (t′)} | t ∈ T0}. We say that a
provenance policy is enforceable if there is some provenance
system that satisfies it, and definable if there is a provenance
system that realizes it exactly.

Given a policy, we say that it partitions T0 if the set
{S ∩ T0 | S ∈ Φ} is a partition of T0. It is not difficult to
show that:

Theorem 1. A provenance policy is enforceable if and only
if a subset of it partitions T0, and it is definable if and only
if it partitions T0.

A. Disclosure and obfuscation

We now propose formal definitions of two basic prove-
nance security problems. In the following discussion, fix a
provenance system.

Given principal A and query Q, we define the provenance
disclosure problem, meaning the problem of determining
whether PA(t) = PA(t′) implies Q(t) = Q(t′) for every
t, t′ ∈ T . In words, this means that if two traces have the
same provenance as viewed by A, then they have the same
value with respect to Q. That is, the provenance query is (in
principle at least) answerable from PA.

Similarly, given query Q and principal A, we define the
provenance obfuscation problem of determining that Q can
never be answered using PA. This means that for every trace
t ∈ T , there exists a trace t′ such that PA(t) = PA(t′) yet
Q(t) 6= Q(t′).

Lemma 1. Disclosure and obfuscation are mutually exclu-
sive: that is, a query cannot be both disclosed to A and
obfuscated for A. However, they are not complementary.

Proof: The first part is straightforward. For the sec-
ond, consider T = {1, 2, 3}, ΩA = {even, odd} and
PA = {(1, odd), (2, even), (3, odd)}. This system does not

disclose Q = {odd} because both 1 and 3 map to odd, but
it also does not obfuscate Q because when t = 2 we can
always infer t /∈ Q from PA(t) = even.

The next few lemmas explore the disclosure property,
which has several convenient properties stated in terms of
the information ordering:

Lemma 2. If P v P ′ and P discloses Q then P ′ discloses
Q.

Proof: Suppose P discloses Q and choose h : Ω′ → Ω
with h ◦ P ′ = P . Let t, t′ be given and assume P ′(t) =
P ′(t′). Then P (t) = h(P ′(t)) = h(P ′(t′)) = P (t′) so
Q(t) = Q(t′) since P discloses Q.

Corollary 1. The top query > discloses any Q. If P and
P ′ disclose Q then P t P ′ discloses Q.

Proof: The first parts are straightforward. The proof for
P t P ′ is immediate using the previous lemmas.

Now we turn to properties of obfuscation. Obfuscation is
antitone (that is, preserved by decreasing information), and
the bottom element obviously obfuscates all queries.

Lemma 3. If P v P ′ and P ′ obfuscates Q then so does P .

Proof: Assume P ′ obfuscates Q and choose h : Ω′ → Ω
with h◦P ′ = P . Let t be given. Since P ′ obfuscates Q there
is a t′ satisfying P ′(t) = P ′(t′) and Q(t) 6= Q(t′). Hence,
P (t) = h(P (t′)) = h(P ′(t′)) = P (t′) also holds, so P
obfuscates Q.

We consider the following decision problems involving
disclosure and obfuscation, with respect to a given prove-
nance framework.

1) Disclosure checking: Given a query Q and framework
PSys, determine whether Q is disclosed to A by PA.
Then we say that PSys |= disclose(Q,A).

2) Obfuscation checking: Given a query Q and frame-
work PSys, determine whether Q is obfuscated by A.
Then we say that PSys |= obfusc(Q,A).

Each of these can also be considered as an algorithmic
problem where the goal is to construct a provenance system
that discloses or obfuscates a query. Also, the problem of
checking simultaneous satisfiability of Boolean combina-
tions of constraints could be considered, but as we will see
already the above problems give us plenty to talk about.

B. Provenance-independent queries and policies

Later in the paper we focus on an important special
case: understanding how provenance can convey information
about the conventional system behavior. For example, often
the behavior of the system is described by an input-output
function or relation, assigned via a semantics interpreting
programs to functions or relations. Principals are usually
able to observe some or all inputs or outputs, and it may
be more natural to frame policies involving provenance in

terms of these concepts that usually already exist rather than
in terms of a novel trace mechanism.

A provenance framework has observable input and output
(or is an IO-framework) if there exist observables IN and
OUT describing the input and output sets, together with
provenance views in : T → IN and out : T → OUT that
provide the input and output from a trace.

In an IO-framework, we can define queries that are trace-
invariant. A trace-insensitive query is a property of traces
that actually only depends on the input and output. In that
case, we may abuse notation by considering such a query to
be a subset Q ⊆ IN × OUT, which can be implicitly iden-
tified with the set of traces {t ∈ T | (in(t), out(t)) ∈ Q}.
Similarly, we define a trace-invariant view PA : T → ΩA

as one that is answerable from in × out, and we define
trace-invariant policies (KA,ΦA) where KA ⊆ IN × OUT
and ΦA ⊆ P(IN × OUT), which we identify with the
corresponding trace-based policies in the obvious way.

We say that A knows the input (respectively, output) if
in v PA (or respectively out v PA).

We define the knowledge gain of A after observation ω
given as follows:

K̄A(ω) = {(in(t), out(t)) ∈ KA | PA(t) = ω}

Moreover, a trace-invariant policy is satisfied in a prove-
nance system if

∀A.∀t.K̄A(P (t)) ∈ ΦA

This condition is almost the same as for ordinary policies;
only the types are different.

Note that a provenance system can provide useful infor-
mation even if we only care about queries and policies that
are trace-invariant. An example is given in Theorem 17.

Consider a setting where a principal knows the query and
output, but does not know the input. Then the principal
can learn about the input through observing provenance.
Moreover, an input query is any query that is answerable
using only in(t). We may want to ensure disclosure of certain
input queries while requiring that others are obfuscated.

Consider a setting where a principal knows the input and
output, but not the exact semantics of the system — that
is, some of the traces considered possible by A are never
actually displayed by the system. By observing provenance,
the principal may be able to learn about the program.

Or, the principal may not be able to narrow down the
set of possible programs, but may still be able to use the
provenance to improve its knowledge of how the query
would evaluate other inputs to other outputs.

Finally, given certainty about the program and input, the
principal might still be uncertain that a given output is the
only possible output (or if not, what are the possibilities).
This can only happen if the underlying model of compu-
tation is nondeterministic. So we consider the knowledge
about the output gained by providing provenance.

We will consider the following policy decision problems
over trace-invariant frameworks:

1) Input disclosure: Assuming A knows the program and
output, determine whether PA discloses a given input
query Q ⊆ IN.

2) Input obfuscation: Assuming A knows the program
and output, determine whether PA obfuscates a given
input query Q ⊆ IN.

3) Output disclosure: Assuming A knows the program
and output, determine whether PA discloses a given
output query Q ⊆ OUT.

4) Output obfuscation: Assuming A knows the program
and input, determine whether PA obfuscates a given
input query Q ⊆ OUT.

Note that output disclosure and obfuscation problems are
easy in the common case where programs are deterministic:
A can simply rerun the program and check the answer. For
this reason we will mostly focus on input disclosure and
obfuscation in this paper, but the output problems are also
of interest when the computation is nondeterministic.

III. EXAMPLES

The above framework is too abstract to offer much traction
on specific computational situations. In order to study algo-
rithms or mechanisms for analyzing or constructing prove-
nance policies we need to provide additional detail about the
components of provenance frameworks. We consider three
instances:

• Sequential traces of finite automata
• Workflow graphs annotated with values
• Annotated relational queries

In each case, the sets of traces and provenance transfor-
mations can be described computationally using different
formal languages, making it possible for us to study com-
plexity and decidability issues in the next section. We rely on
standard facts about regular languages and finite automata,
but provide more details about the workflow graphs and
database settings.

A. Sequential traces

We first consider a provenance framework AUT where
the traces are sets of sequences (Q∪Σ)∗. These, intuitively,
describe the sequences of states and transitions of a given
finite automaton M with alphabet Σ and states Q. For
example, consider a two-state automaton that checks whether
the length of a sequence is even. The realizable traces of
any finite automaton again form a regular language, in this
example it is q0((0 + 1)q1(0 + 1)q0)∗.

Note that in this framework, we do not introduce any
nonstandard concepts, since the standard notion of “run” of a
finite automaton already seems adequate as a full explanation
why the automaton accepts a string.

Sequential traces generated by automata lead to a prove-
nance framework AUT where the queries are regular sets

and the provenance views are given by the category of
regular sets and transducer-definable functions. This frame-
work also has input and output observations, obtainable by
discarding the states from the trace (to obtain the input) and
by checking the final state is an accept state (to obtain the
output).

B. Workflow provenance graphs

We consider another form of traces based on graphical
models of provenance as employed in a number of scientific
workflow systems (e.g. Kepler [8] and Taverna [7] among
many others); the Open Provenance Model [14] is a popular
format for this kind of provenance but in this paper, we will
focus on a simple form of OPM-like graphs. Our presenta-
tion draws primarily on the model introduced by Davidson
et al. [?] which interprets workflow graphs (essentially) as
straight-line code; this semantics for workflow graphs was
also explored in more detail in [27] and related to structural
causal models, but we will not pursue this connection in this
paper.

Traces consist of directed acyclic graphs annotated with
labels defining processes, input and output values. More
formally, a graph is described by a set of processes P ,
disjoint sets of input and output ports I and O respectively,
a function mapping each port to its associated process
p : I∪O → P , and an edge relation E ⊆ O×I linking some
output ports to input ports, such that each input is linked to
at most one output. (We could also model E as a partial
function from inputs to outputs.) We expect the graph to be
acyclic in the obvious sense. A trace is a graph equipped
with an additional function mapping each port to its value
at run time, such that (i, o) ∈ E implies v(i) = v(o). The
external inputs of the graph are the input ports that are not
linked to any output and the external outputs are those output
ports that are not linked to any input.

We consider simple queries of the form Q(a, x) = {v |
v(a) = x} that simply ask for the value of a given port.
Moreover, we consider views of the form v|V where V ⊆
I ∪O, that is, v restricted to port names from V .

We can impose a category structure on these views where
the objects are simply the sets V and the arrows are reverse
inclusions. Thus, the most informative V is I ∪ O, which
leaves all values in place, and the least informative V
is the empty set, which erases all information about the
values encountered at run time, yielding the empty relation.
This provenance framework has input and output as well,
definable as projection to the external inputs and external
outputs respectively.

Workflows may be uninterpreted, that is, arbitrary graphs
labeled with arbitrary values, or they may adhere to some
interpretation fixing the input-output relationships between
the inputs and outputs of a given process. Formally, for
each process p with inputs Ip = {i1, . . . , in} and outputs
Op = {o1, . . . , om}, let Fp : V alIp → V alOp be a given

function; then we say that a trace v is consistent with this
interpretation if for each p, we have Fp(v(i1), . . . , v(in)) =
(v(o1), . . . , v(om)). Nondeterminism can easily be accom-
modated by weakening the functions Fp to relations Rp.

We write WF(G) be the provenance IO-framework gen-
erated by a workflow graph G. If in addition we expect the
traces of G to obey a functional or relational interpretation
we write WF(G, F) or WF(G, R) for the resulting frame-
work.

C. Annotated relations

The semiring-annotated database model introduced by
Green et al. [13] provides a convenient abstraction of a
number of forms of provenance, including lineage [28], why-
provenance [12], and how-provenance [13]. It can also be
mapped to our framework. Let U = {a, b, c, . . .} be a set of
field names and finite sets U, V ⊆ U be called sorts. Let D
be a set of data values. A record over U is a function from
U to D, sometimes written as a set of pairs (a1 : d1, . . .).
We write t[U] for the record obtained by restricting t to
field names from U , and t[a/b] for the record obtained by
renaming a in t to b.

Consider the syntax of positive relational algebra queries,
given as follows:

q ::= R | σa=b(q) | πV (q) | ρa/b(q) | q ∪ q′ | q 1 q′

Here R is a relation variable name, σa=b(q) selects records
whose a and b fields are equal, πV (q) projects the records in
q down to the fields mentioned in V , and ρa/b(q) renames
records. Also, ∪ and 1 are the relational union and join
operations respectively. A join simply considers all pairs
of records from the two input relations (which may have
different sorts) and merges all of the compatible records.
If the sorts of the arguments are disjoint then join is the
same as the cartesian product of the two relations. Query
expressions can be sort-checked in a straightforward way;
for example, if R : U and S : V then σa=b(R) : U if
a, b ∈ U , and πV (R) : V if V ⊆ U , and R ∪ S : U if
U = V , and R 1 S : U ∪ V .

Database queries are normally interpreted over finite re-
lations, that is, finite sets of records having the same type
U . Any such relation can be thought of as a function from
records over U to B, that is, as a characteristic function. For
finite relations, characteristic functions have a finite support
property, that is, r(x) = 0 for all but finitely many records
x. Moreover, finite multisets can be viewed as finitely-
supported functions from records to N. Green et al. [13]
observed that this approach can be generalized further so that
for any commutative semiring K, we can view a function
from tuples to K as a table in which each row is annotated
with a nonzero element of K. (An annotation with value 0
represents a tuple not present in the table.)

Recall that a commutative semiring is a structure
(K, 0, 1,+, ·) such that (K, 0,+) and (K, 1, ·) are commuta-

tive monoids, that · distributes over + and that 0 annihilates
·. From now on we will just write semiring instead of com-
mutative semiring. Typical examples of semirings include
the natural numbers N, the Booleans B, and the free semiring
N[X] consisting of polynomials with coefficients from N and
generators X .

Queries can be evaluated over annotated databases where
the annotations are drawn from a commutative semiring.
A positive database query can be interpreted as a function
taking relation-valued variables and yielding a relation. For
each finite set of attribute names U and semiring K, we
model U -ary relations as finitely-supported functions:

Rel(U) = DU →fs K

= {r : DU → B | {t | r(t) 6= 0} is finite}

Specifically, the positive relational operations over K-
annotated relations are interpreted as follows:

σK
a=b(r) = λt.if t.a = t.b then r(t) else 0

πK
V (r) = λt.

∑
u:U,u[V]=t

r(u)

ρK
a/b(r) = λt.r(t(b/a))

r ∪K s = λt.r(t) + s(t)
r 1K s = λt.r(t[U]) · s(t[V])

Here, we assume that r : U and s : V and we assume
that the relational expressions are well-sorted as discussed
above. In the equation for projection, note that the sum is
well-defined since there are at most finitely many u in the
domain of r such that r(u) 6= 0.

Let q be a fixed, positive query. The set of traces is the
set of pairs (DB, qN[X](DB)) where DB is a distinctly
annotated database instance with annotations from X , and
qN[X](DB) is the result of evaluating query expression q
on DB using the N[X]-valued relational operations defined
above.

The queries we are concerned with in this setting will
simply be Boolean relational queries over the input database
and result. The reason we limit attention here to queries
that can be answered only from the ordinary relations is
that very little is known so far about Boolean queries over
K-relations.

The observables will consist of collections K-REL of
semiring-valued input-output pairs for each K and mappings
among them generated by homomorphisms among semir-
ings. Then the category of provenance views P : T →
K-REL will essentially be generated by homomorphisms
from N[X] → K, which in turn are uniquely defined by
functions from X → K.

The conventional input and output of a query can be
observed by first applying the semiring homomorphism
from N[X] to B and then projecting the input component
or respectively the output component. This yields an IO-
framework.

IV. MAIN RESULTS

A. Sequential traces

We first consider the disclosure and obfuscation problems
for sequential traces. Here, some positive results can be
obtained using standard elements of the theory of finite
automata and transducers.

Theorem 2. The disclosure checking problem for AUT is
decidable.

Proof: Given Q and P , realized by an automaton and
transducer respectively, we form transducers T and T ′ such
that T behaves as P restricted to Q while T ′ behaves as P
restricted to T −Q. Then the range of T is the regular set
X of possible P -values of elements of Q and that of T ′ is
the regular set X ′ of possible P -values of traces not in Q.
Then P discloses Q if and only if X ∩X ′ is empty, which
is decidable.

Corollary 2. Input and output disclosure are decidable for
AUT.

Theorem 3. The obfuscation checking problem is decidable
if P has a finite range.

Proof: Given Q and P : T → Ω, if Ω is finite then
we can enumerate all pre-images P−1[ω] of observations
ω. These are regular, so for each ω we can decide whether
P−1[ω] ⊆ Q or P−1[ω] ⊆ T −Q. If this is the case for any
t, then we know that P fails to obfuscate Q, otherwise P
does obfuscate Q.

Corollary 3. Output obfuscation is decidable for AUT.

It is not clear whether obfuscation checking (even re-
stricted to input queries) is decidable in general for AUT
so we leave this as an open question.

B. Provenance graphs

We now turn to the provenance framework WF(G) of
runs of a given workflow graph G. In the case where
the workflow semantics is unknown, both disclosure and
obfuscation turn out to be very easy:

Theorem 4. Disclosure and obfuscation are decidable in
polynomial time for an unrestricted workflow graph.

Proof: For unrestricted interpretations, we first assume
that each a can assume two or more values. A query Q(a, x)
is disclosed by V precisely when a ∈ V or some port linked
by an edge to a in E is in V . Since there are no restrictions
on traces v other than compatibility with E, as soon as a
is hidden we cannot tell whether v(a) = x. Similarly, a
query Q(a, x) is obfuscated by V precisely when a and all
of the ports linked to it by E are hidden in V , because as
soon these ports are hidden, we can be sure that there is
another trace that is equivalent modulo V but not modulo

Q. If a given a has only one possible value then it is always
disclosed and cannot be obfuscated.

This suggests that these problems are only really interest-
ing in the (more realistic) situation where the principal has
some domain knowledge about the workflow’s semantics. To
investigate the complexity of disclosure and obfuscation in
the presence of an interpretation, we need to restrict attention
to some computationally sensible class of interpretations.
We will consider workflows that are essentially Boolean
circuits. This means that each process is interpreted as a gate
such as conjunction, disjunction or negation, and has exactly
one output. In general, workflows could be much more
complex than Boolean circuits, but studying this special case
will give us lower bounds for the general case. We write
WF(G, B) for a workflow setting where the processing
steps are interpreted as Boolean gates.

Theorem 5. Disclosure and obfuscation checking are de-
cidable for Boolean circuit graph settings WF(G, B).

Proof: There are finitely many (but doubly exponential)
sets of possible valuations. So, we can decide whether a
given Q is disclosed by enumerating all possible valuations
consistent with each observation induced by the given view
V , and checking that all of them either satisfy Q or all of
them satisfy its complement. The reasoning for obfuscation
checking is similar.

Theorem 6. Output disclosure checking is trivial for any
WF(G, F).

Proof: Given an output query, if the input is known then
we can evaluate the output query by evaluating the circuit
on the input, and then checking whether the output query
is satisfied. That is, any query is always disclosed once we
know the input.

Theorem 7. Input disclosure checking is NP -hard
and coNP -hard for Boolean circuit workflow settings
WF(G, B).

Proof: Given a 3CNF instance C, add nodes a and
b where b = C ∨ a. Then the output view is just b and
the input query we are interested in is Q = (a = 1).
Now, if C is unsatisfiable, we can clearly determine whether
a = 1 holds from observing b, since then b = 0 ∨ a = a.
Conversely, if we can always determine whether a = 1 holds
by observing b, then C cannot be satisfiable, since if C
has a satisfying assignment then there are two valuations
v, v′ matching C but with v(a) = 0 and v′(a) = 1 and
v(b) = 1 = v(0). A similar argument suffices for coNP -
hardness, using conjunction instead of disjunction.

Corollary 4. Disclosure checking is also NP -hard and
coNP -hard.

Now we turn to obfuscation checking. As before, output
obfuscation checking is trivial since we can always just rerun

the graph and check whether the output satisfies the query.

Theorem 8. The output obfuscation problem is trivial for
Boolean circuit settings WF(G, F).

Proof: Similar to the proof for output disclosure check-
ing, due to determinacy. An output query can never be
obfuscated if the input and program are known.

Theorem 9. Input obfuscation is NP -hard and coNP -hard
for Boolean circuit setting WF(G, F).

Proof: The proof is similar to that for disclosure check-
ing. For NP -hardness, given a circuit C we build b = a∧C
and also consider all of the outputs of C to be observable
outputs by copying. Then if C is unsatisfiable then a is
obfuscated since b will always be 0 and a can be anything.
Conversely, if a is obfuscated then C can never evaluate to 1
since in that case we would be able to infer that a = 1 from
b. Note that it is important to treat the inputs to C as part of
the output in order to ensure that a = 1 is inferrable from
b = 1. This is not an imposition since we can for example
simply add output nodes connected to the inputs to C by
two negation gates.

Finally, we note that if we consider a relational inter-
pretation for processes instead of a functional one, we can
get the same complexity lower bounds for both output and
input obfuscation checking. The reason is that if we can use
relations, then the problems are completely symmetric in
input and output: we can reuse the same ideas in the proofs
above, just reversing the directions of the circuits. This
shows that nondeterministic output disclosure or obfuscation
checking is nontrivial in general.

C. Annotated relations

Now we turn to the problem of deciding disclosure
and obfuscation problems over annotated relations. In this
section we will consider the problem of determining whether
a given Q is disclosed or obfuscated by specific classes
of provenance views. The reason for doing this is that the
space of possible provenance views (i.e., semirings and
homomorphisms) is large, and it is not clear how they
should be represented in general. We also assume that the
underlying relational query that is used to generate the
outputs from the inputs is known to principals.

As before, output disclosure is trivial since the queries are
deterministic, so we say no more about it. Input disclosure
and obfuscation turn out to be rather difficult to analyze
for relational queries, especially if infinite data domains are
considered. If the domain is finite, then these properties are
at least decidable:

Theorem 10. Input disclosure and obfuscation are decid-
able for relational queries over a finite domain, for any
computable semiring provenance interpretation.

Proof: There are at most finitely many input relations

possible over a finite domain, so we can evaluate all of them
and group them by equal output, and then check whether a
given input query is disclosed or obfuscated by evaluating
it on all of the grouped sets.

We will now restrict attention to a simple case that
nevertheless helps illustrate the main ideas. We consider
input queries that ask for the presence or absence of a
single tuple, often just written as R(t). We also consider the
disclosure or obfuscation behavior of queries that involve a
single relational step, using inputs that are distinct variables.

First, we consider what is inferrable about the input with-
out any assistance from provenance: namely, the disclosure
and obfuscation properties of the relational operators in the
classical B-valued semantics.

Theorem 11. Input tuple disclosure with respect to B is
characterized as follows for individual operators:

1) R discloses R(t) for any R(t).
2) σa=b(R) discloses R(t) if and only if t.a = t.b.
3) πV (R) discloses R(t) if and only if R : V .
4) ρa/b(R) always discloses R(t).
5) R ∪ S does not disclose R(t) for any t.
6) R 1 S does not disclose R(t) for any t.

Proof: For each disclosure case, it suffices to exhibit a
way to find tuple t′ that is in the output if and only if R(t)
is in the input for some t′. In cases (1) and (2), t′ = t, and
in case (2) we need the assumption that t.a = t.b because
otherwise t will not appear in the output. In case (4), t′ =
t(a/b). For case (3), if V includes all the attributes of R
then the projection is essentially the same as just returning
R. Conversely, if V ⊂ U where R : U then (assuming data
domain with at least two elements) we can always find two
instantiations for R that project to the same value but such
that one contains t and the other does not. For union, we
cannot tell whether an occurrence of t in the output comes
from R, S or both. In the final case for join, we cannot
tell whether the absence of a tuple t′ with t′[U] = t in the
output is due to the absence of t from R or to the absence
of a matching tuple t′[V] in S.

Theorem 12. Input obfuscation with respect to B is char-
acterized as follows for individual relational operators:

1) R does not obfuscate R(t) for any R(t).
2) σa=b(R) obfuscates R(t) if and only if t.a 6= t.b.
3) πV (R) does not obfuscate R(t).
4) ρa/b(R) does not obfuscate R(t) for any R(t).
5) R ∪ S does not obfuscate R(t) for any R(t).
6) R 1 S does not obfuscate R(t) for any R(t).

Proof: The first and fourth cases are obvious since the
operations are invertible. In the second, assume t.a 6= t.b.
Then σa=b(R) cannot distinguish between R = ∅ and R =
{t}. In the third case, if R = ∅ then whenever πV (R) = ∅
we have t /∈ R. In the fifth case, if R = ∅ = S then we
can determine that t /∈ R from the fact that R ∪ S = ∅.

Similarly, in the sixth case we can deduce that t ∈ R from
the presence of any tuples t′ with t′[U] = t in R 1 S.

Now we consider disclosure and obfuscation with respect
to the view obtained by taking the N[X]-annotated output
and discarding the input. So, the question is, what can
we learn about the input solely by inspecting the N[X]-
annotations on the output, and without necessarily knowing
which annotations from X correspond to which tuples in
the input? Perhaps surprisingly, the presence of provenance
annotations on their own does not seem to increase what we
can infer about the input, at least if we consider one-step
queries:

Theorem 13. Input tuple disclosure with respect to N[X] is
characterized as follows for individual operators:

1) R discloses R(t) for any R(t).
2) σa=b(R) discloses R(t) if and only if t.a = t.b.
3) πV (R) discloses R(t) if and only if R : V .
4) ρa/b(R) always discloses R(t).
5) R ∪ S does not disclose R(t) for any t.
6) R 1 S does not disclose R(t) for any t.

Proof: The proofs of (1), (2), (3), and (4) are the same
as before. For part (5), if the output contains t with an atomic
annotation x, we cannot determine whether t is present in R
or S. Similarly, for part (6), if the output does not contain a
tuple extending t, we cannot tell whether this is because t is
not in R or because there is no matching tuple in S, because
the result does not contain any annotations generated by t.

Theorem 14. Input obfuscation with respect to N[X] is
characterized as follows for individual relational operators:

1) R does not obfuscate R(t) for any R(t).
2) σa=b(R) obfuscates R(t) if and only if t.a 6= t.b.
3) πV (R) does not obfuscate R(t).
4) ρa/b(R) does not obfuscate R(t) for any R(t).
5) R ∪ S does not obfuscate R(t) for any R(t).
6) R 1 S does not obfuscate R(t) for any R(t).

Proof: Most cases are straightforward or similar to
previous cases.

Finally, we consider disclosure problems involving prove-
nance views mapping N[X] to B, where we first apply
the homomorphism (possibly employing information about
the input annotations) and then discard the input. Such a
homomorphism is defined uniquely by a function X → B,
that is, a subset of X . Moreover, since each X corresponds
to a unique tuple in the input, we can represent such a
homomorphism by a collection of Boolean queries over the
input tables. Thus, if the input tables are r1, . . . , rn then we
say that h : N[X] → B is represented by Boolean queries
q1, . . . , qn provided that h(ri(t)) = qi(t).

Another way of thinking about this setting is to imagine
we have a database with some input tuples marked secret
(mapped to 0 by h) and others marked public (mapped to

1 by h). Then the provenance view is the result produced
by the query when restricted to public input tuples. This
may be different from (but must be contained in) the real
output. This approach allows some limited use to be made of
the connection between the annotations in the input and the
result: although A cannot directly view the input, her view
is allowed to set the annotations to Boolean values based
on the result of an input query and tell A the result that the
underlying database query would have if run on the public
inputs.

Theorem 15. The input disclosure problem for homomor-
phisms to B is characterized as follows for individual
operators:

1) R discloses R(t) for any R(t).
2) σa=b(R) discloses R(t) if and only if t.a = t.b.
3) πV (R) discloses R(t) if and only if for any u.

h(r(u)) = 1 and u[V] = t[V] implies u = t.
4) ρa/b(R) always discloses R(t).
5) R ∪ S discloses R(t) if and only if h(r(t)) = 1 and

h(s(t)) = 0.
6) R 1 S does not disclose R(t) for any R(t).

Proof: Parts (1,2,4) are similar to previous arguments.
For part (3), we need to show that if R(t) is disclosed

by πV (R) then R(t) is the only tuple selected by the
homomorphism that can project to t[V]. If there is more
than one such tuple then we could violate disclosure using
it. If h does not accept any tuples that are equivalent to t
modulo projection to V then we cannot be certain which of
these tuples was actually present in the input. Thus, if the
projection discloses R(t) then h must select R(t) and no
other tuple R(u) with t[V] = u[V]. The reverse direction is
straightforward.

For part (5), suppose that R ∪ S discloses R(t). Then
we know that h(r(t)) ∨ h(s(t)) = h(r′(t)) ∨ h(s′(t))
implies r(t) = r′(t), for any r, s, r′, s′ providing values
for R,S. Restricting attention to the Boolean values of t
in r, s, r′, s′, we can see there are sixteen possibilities. If
h(s(t)) is nonzero then we can obtain a counterexample to
the disclosure assumption, and similarly if h(r(t)) is zero.
Conversely, clearly taking h(r(t)) = 1 and h(s(t)) = 0
suffices to ensure that h discloses R(t) since it ensures that
the provenance value tells us the contents of R only.

For part (6), we need to confirm that a clever choice of
homomorphism is still not enough to be able to determine
whether R(t) is in the input by looking at R 1 S. Let h be
given and choose t : U ∪V in the range of R 1 S. Consider
r = {t[U]}, s = ∅, r′ = ∅, s′ = {t[V]}. Then the joins r 1 s
and r′ 1 s′ have the same result ∅ and their h-values are
also equal, but r(t) holds and r′(t) does not.

Theorem 16. The input obfuscation problem for homomor-
phisms to B is is characterized as follows for individual
relational operators:

1) R does not obfuscate R(t) for any R(t).
2) σa=b(R) obfuscates R(t) if and only if t.a 6= t.b.
3) πV (R) does not obfuscate R(t).
4) ρa/b(R) does not obfuscate R(t) for any R(t).
5) R ∪ S does not obfuscate R(t) for any R(t).
6) R 1 S does not obfuscate R(t) for any R(t).

Proof: Similar to previous arguments. Unlike for disclo-
sure, we cannot make use of the homomorphism to improve
obfuscation because we only have the ability to consider
hypothetical deletions from the database, and such deletions
do not tell us anything useful about obfuscation.

We conclude with a brief discussion of the implications of
these results. As discussed above, it may seem surprising that
simply providing the output with the most general possible
semiring annotations does not provide more information
about the input than the conventional B-valued semantics
(at least to a first approximation using single-step queries).
This may be partly an artifact of the fact that the semiring
model was not designed with input query answerability in
mind. Nevertheless, it would be interesting to investigate the
disclosure and obfuscation properties of other provenance
models for databases, as well as to explore other forms of
annotation propagation based on semirings or richer classes
of input queries. These problems appear challenging. On the
other hand, the results above show how provenance can be
useful for enforcing policies that are stated only in terms of
input-output behavior:

Theorem 17. Consider the semiring provenance framework
for query R ∪ S. The input query R(t) ∈ DB is disclosed
by the B-homomorphism generated by a query that accepts
all tuples in R and rejects all tuples in S.

Proof: This is essentially part (5) of Theorem 15.

V. RELATED AND FUTURE WORK

There exists a large literature on provenance, and we
direct readers to recent surveys and summaries such as
Moreau [5] and the W3C Provenance Incubator Group
report [4] for an introduction to the area, and to our previous
paper [6] for an overview of open semantics and security
problems involving provenance.

Work on database provenance is distinctive in that sev-
eral different formal models have now been defined for
database query languages with well-understood semantics.
This makes it easier to compare, relate and generalize these
approaches, though such comparisons are only starting to ap-
pear [13], [29]. For most of these models, there are semantic
guarantees (or even exact semantic characterizations) relat-
ing the provenance records to the denotation of the program.
However, even for the semiring model, basic questions such
as query equivalence for annotated relations [30] and how
to implement provenance and query provenance-annotated
databases [31], [32] are only beginning to be addressed.

For workflow provenance, many implementations ex-
ist [7], [8] but formal definitions of the meaning of workflow
programs have only started to appear recently (see for
example [33], [34]), while the provenance semantics of
these tools is usually specified informally, at best [7]. As a
result there is a variety of models and styles of provenance
for workflows. Recently, a community effort to develop
a common data model for provenance has converged on
the Open Provenance Model (OPM) [14], but so far this
effort has focused on the syntax or structure of provenance
graphs and not on their semantics or their relationship to the
behavior of the systems that generate them. Our previous
paper [27] made one proposal for interpreting OPM-style
provenance graphs in terms of structural causal models [35],
and Davidson et al. [25] adopt a similar model; however,
both approaches stop well short of addressing the all of the
features employed by workflow provenance systems.

Provenance security has been considered by a number
of authors. Hasan et al. [16] and Braun et al. [17] set
out a number of research questions, as does a more recent
position paper by Davidson et al. [20]. Hasan et al. [10]
develop a mechanism for securing the provenance describing
a chain of revisions of a document (say, a file in a file
system), using appropriate encryption and digital signatures
to allow auditors to check the integrity of the provenance
without necessarily having access to the underlying data
or vice versa. Zhang et al. [18] develop tamper-detection
techniques for provenance in databases. Cirillo et al. [36]
study provenance policies based on logics of knowledge
for distributed object calculi. Corcoran et al. [19] support
provenance-tracking as one of a number of label-based
security policies in a cross-tier Web programming language
SELinks. However, most of this work focuses on applying
existing security mechanisms to provenance data, rather than
on understanding security policies involving provenance.

As far as we know, there is no prior proposal for a formal
framework for provenance security that is as general as ours.
Chong [22] proposed semantic definitions of provenance
security policies, formulated in terms of a syntactic model
of traces based on previous (unpublished) work by Cheney
et al. [23]. Chong discussed simple policies expressing that
either data or its provenance are high- and low-security, and
formalized properties such as “provenance security” stating
that the provenance of a run of a system is not inferrable
from the data, versus “data security” stating that the high-
security input data of a system is not inferrable from its
provenance. Part of the motivation for the present paper
is to generalize and abstract Chong’s definitions beyond
the small language originally considered. More recently,
Lyle and Martin [37] gave a detailed comparative survey
of topics in provenance and in security, pointing out many
parallel developments. Some other topics in security, such
as non-repudiation [38], plausible deniability or differential
privacy [39], also appear analogous to our disclosure and ob-

fuscation properties, and this connection could be explored.
Some previous work on provenance (including work on

where-provenance [40], how-provenance [13], [41], and
dependency-provenance [24]) explicitly cites security mo-
tivations. Some other work, particularly that of Davidson
et al. [25], proposes formal definitions of specific privacy
(confidentiality) policies for workflow provenance but does
not seek to provide a framework that applies to other
provenance models. Conversely, provenance-like techniques
seem to arise naturally in dynamic information-flow settings
where labels are propagated dynamically in order to support
more flexible enforcement of a security policy [19], [36],
[42]. However, previous work on provenance has not been
used directly to enforce ordinary security policies, nor have
dynamic labeling techniques been employed as a way of
implementing provenance (although dependency provenance
comes close to this).

Our framework is defined primarily with static provenance
situations in mind: that is, we consider a fixed, stateless
system and consider what a principal can learn from ob-
serving some approximation of one run of the system. In
particular, our model does not have much to say about
dynamic provenance in extant systems that seek to record
all changes to some shared data [26], or to maintain the
integrity of provenance records in a stateful system (e.g. file
system) and prevent forgery [10]. We believe that modeling
this kind of situation will require further extensions to our
model to permit principals to both read and write data and
communicate with one another, and to model what can be
learned by multiple interactions with the system or other
principals.

Moreover, we assume that the system designer and other
principals are not actively trying to mislead one another, or
to corrupt or leak data. Thus, we leave out issues such as
authentication, encryption, digital signatures/hashing and so
on. While these assumptions are reasonable for this initial
assay since it helps focus attention on the novel issues, it
will obviously be important to relax them and develop an
understanding of how provenance fits into the lager picture
of system security.

VI. CONCLUSIONS

The question of how to define and implement effec-
tive provenance-tracking mechanisms has received a great
deal of attention in the last few years. It appears likely
that some new standards or infrastructures for managing
provenance on the Web will be deployed as a result —
indeed, the W3C has now commissioned a Provenance
Working Group to standardize an interchange format for
provenance. However, as several authors have pointed out
already, this obviously introduces a number of concerns for
security. In this paper, we have developed a relatively high-
level and generic framework for provenance that abstracts
away many of the distracting details of particular systems,

and makes it possible to identify some commonalities and
general properties of such systems. We have also explored
three instances of this framework, based on regular expres-
sions and transducers, simple workflows, and provenance-
annotated relational queries. This exploration helps validate
the model and justify its design rather than to provide new
insight into existing approaches to provenance. Nevertheless,
we believe that this first step represents progress towards a
proper formalization of secure provenance.

ACKNOWLEDGMENT

The author is supported by a Royal Society University
Research Fellowship.

REFERENCES

[1] S. Carey and G. Rogow, “UAL shares fall as old
story surfaces online,” Wall Street Journal, September
2008, http://online.wsj.com/article/-
SB122088673738010213.html.

[2] G. Miller, “A scientist’s nightmare: Software problem leads to
five retractions,” Science, vol. 314, no. 5807, pp. 1856–1857,
December 2006.

[3] S. Varghese, “UK government gets bitten by
Microsoft Word,” Sydney Morning Herald, July 2003,
http://www.smh.com.au/articles/2003/07/-
02/1056825430340.html.

[4] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles, L. Moreau,
and P. Pinheiro da Silva et al., “Provenance XG final report,”
2010.

[5] L. Moreau, “The foundations for provenance on the web,”
Foundations and Trends in Web Science, vol. 2, no. 2–3, 2010.

[6] J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansum-
meren, “Provenance: A future history,” in OOPSLA Compan-
ion (Onward! 2009), 2009, pp. 957–964.

[7] P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. A. Goble,
“Data lineage model for Taverna workflows with lightweight
annotation requirements,” in IPAW, 2008, pp. 17–30.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific work-
flow management and the Kepler system.” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp.
1039–1065, 2006.

[9] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and
J. Widom, “Databases with uncertainty and lineage,” VLDB
J., vol. 17, no. 2, pp. 243–264, 2008.

[10] R. Hasan, R. Sion, and M. Winslett, “Preventing history
forgery with secure provenance,” Trans. Storage, vol. 5, pp.
12:1–12:43, December 2009.

[11] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer, “Provenance-aware storage systems,” in USENIX
Annual Technical Conference. USENIX, June 2006, pp. 43–
56.

[12] P. Buneman, S. Khanna, and W. Tan, “Why and where: A
characterization of data provenance,” in ICDT, ser. LNCS,
no. 1973. Springer, 2001, pp. 316–330.

[13] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance
semirings,” in PODS. ACM, 2007, pp. 31–40.

[14] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale,
Y. Simmhan, E. Stephan, and J. Van den Bussche, “The
open provenance model core specification (v1.1),” Future
Generation Computer Systems, vol. 27, no. 6, pp. 743–756,
2011.

[15] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara,
“Querying and managing provenance through user views in
scientific workflows,” in ICDE. IEEE, 2008, pp. 1072–1081.

[16] R. Hasan, R. Sion, and M. Winslett, “Introducing secure
provenance: problems and challenges,” in Proceedings of the
2007 ACM workshop on Storage security and survivability
(StorageSS 2007). New York, NY, USA: ACM, 2007, pp.
13–18.

[17] U. Braun, A. Shinnar, and M. Seltzer, “Securing provenance,”
in Proceedings of the 3rd conference on Hot topics in security.
Berkeley, CA, USA: USENIX Association, 2008, pp. 4:1–4:5.

[18] J. Zhang, A. Chapman, and K. Lefevre, “Do you know where
your data’s been? — tamper-evident database provenance,”
in Proceedings of the 6th VLDB Workshop on Secure Data
Management (SDM 2010). Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 17–32.

[19] B. J. Corcoran, N. Swamy, and M. Hicks, “Cross-tier, label-
based security enforcement for web applications,” in SIG-
MOD, 2009.

[20] S. B. Davidson, S. Khanna, S. Roy, and S. C. Boulakia,
“Privacy issues in scientific workflow provenance,” in Pro-
ceedings of the 1st International Workshop on Workflow
Approaches to New Data-centric Science (WANDS 2010).
New York, NY, USA: ACM, 2010, pp. 3:1–3:6.

[21] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren,
“Curated databases,” in Proceedings of the 2008 Symposium
on Principles of Database Systems (PODS 2008), 2008, pp.
1–12.

[22] S. Chong, “Towards semantics for provenance security,” in
Workshop on the Theory and Practice of Provenance, J. Ch-
eney, Ed. USENIX, 2009.

[23] J. Cheney, U. Acar, and A. Ahmed, “Provenance traces (ex-
tended report),” Tech. Rep., 2008, arXiv:0812.0564v1.

[24] J. Cheney, A. Ahmed, and U. A. Acar, “Provenance as
dependency analysis,” Mathematical Structures in Computer
Science, 2011, in press.

[25] S. B. Davidson, S. Khanna, S. Roy, J. Stoyanovich, V. Tannen,
and Y. Chen, “On provenance and privacy,” in Proceedings of
the 14th International Conference on Database Theory (ICDT
2011). New York, NY, USA: ACM, 2011, pp. 3–10.

[26] P. Buneman, A. Chapman, and J. Cheney, “Provenance man-
agement in curated databases.” in SIGMOD, 2006, pp. 539–
550.

[27] J. Cheney, “Causality and the semantics of provenance,”
in Proceedings of the 2010 Workshop on Developments in
Computational Models, 2010.

[28] Y. Cui, J. Widom, and J. L. Wiener, “Tracing the lineage
of view data in a warehousing environment.” ACM Trans.
Database Syst., vol. 25, no. 2, pp. 179–227, 2000.

[29] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in
databases: Why, how, and where,” Foundations and Trends
in Databases, vol. 1, no. 4, pp. 379–474, 2009.

[30] T. J. Green, “Containment of conjunctive queries on annotated
relations,” in ICDT, Saint Petersburg, Russia, March 2009.

[31] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying data
provenance,” in SIGMOD Conference, 2010.

[32] B. Glavic and G. Alonso, “Perm: Processing provenance and
data on the same data model through query rewriting,” in
ICDE. IEEE, 2009.

[33] J. Sroka, J. Hidders, P. Missier, and C. Goble, “A formal
semantics for the Taverna 2 workflow model,” Journal of
Computer and System Sciences, vol. In Press, Corrected
Proof, 2009.

[34] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and
J. Van den Bussche, “A formal model of dataflow reposito-
ries,” in DILS, ser. LNCS, vol. 4544. Springer, 2007, pp.
105–121.

[35] J. Pearl, Causality. Cambridge University Press, 2000.

[36] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely, “Tapido:
Trust and authorization via provenance and integrity in dis-
tributed objects,” in ESOP, 2008, pp. 208–223.

[37] J. Lyle and A. Martin, “Trusted computing and provenance:
better together,” in Proceedings of the 2nd conference on
Theory and practice of provenance (TAPP 2010). Berkeley,
CA, USA: USENIX Association, 2010.

[38] S. Schneider, “Formal analysis of a non-repudiation protocol,”
in Proceedings of the 11th IEEE workshop on Computer Se-
curity Foundations. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 54–65.

[39] C. Dwork, “A firm foundation for private data analysis,”
Commun. ACM, vol. 54, pp. 86–95, January 2011.

[40] P. Buneman, J. Cheney, and S. Vansummeren, “On the
expressiveness of implicit provenance in query and update
languages,” ACM Transactions on Database Systems, vol. 33,
no. 4, p. A28, November 2008.

[41] J. N. Foster, T. J. Green, and V. Tannen, “Annotated XML:
queries and provenance,” in PODS, 2008, pp. 271–280.

[42] P. Shroff, S. F. Smith, and M. Thober, “Dynamic dependency
monitoring to secure information flow,” in CSF. IEEE, 2007,
to appear.

