
ETH Library

Integrated Specification and
Verification of Security Protocols
and Policies

Report

Author(s):
Frau, Simone; Torabi Dashti, Muhammad

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006804400

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006804400
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Integrated Specification and Verification of Security
Protocols and Policies

Simone Frau
ETH Zürich

Mohammad Torabi-Dashti
ETH Zürich

Abstract—We propose a language for formal specification
of service-oriented architectures. The language supports the
integrated specification of communication level events, policy
level decisions, and the interaction between the two. We show
that the reachability problem is decidable for a fragment of
service-oriented architectures. The decidable fragment is well
suited for specifying, and reasoning about, security-sensitive
architectures. In the decidable fragment, the attacker controls
the communication media. The policies of services are centered
around the trust application and trust delegation rules, and can
also expressRBAC systems with role hierarchy. The fragment is
of immediate practical relevance: We report on the specification
and verification of two security-sensitive architectures, stemming
from the e-government and e-health domains.

I. I NTRODUCTION

Context.Security protocols and authorization logics are two
major techniques used in securing software systems. A central
role of any (security) protocol is to give meaning to the
messages that are exchanged in the course of the protocol [1].
For example, a signed X.509 certificate sent by a certificate
authority is in many security protocolsmeantto imply that the
authority endorses the public key and its owner, mentioned in
the certificate. There are several ways to make the meanings of
messages, and in general actions, of a protocol explicit, e.g. by
associating epistemic effects to the actions [2]. In this paper,
we propose a formal language for specifying service-oriented
architectures, in which

• the messages received by a service are interpreted in
terms of policy statements of the service, and

• the authorization policies of the service constrain the
actions the service can perform.

The proposed language is well suited for integrated spec-
ification of security protocols and authorization policiesin
service-oriented architectures. We see a service-oriented ar-
chitecture as a collection of finitely many services which
communicate over insecure media. Each service consists of a
number of processes that run in parallel and share apolicy
engine. Processes communicate by sending and receiving
messages, as it is usual in asynchronous message passing envi-
ronments. Each send event is constrained by aguard, and each
receive event leads to anupdate. Guards and updates belong
to the policy level, as opposed to send and receive events
which constitute thecommunication level. In anthropomorphic
terms, services “think” at the policy level, and “talk” at the
communication level.

From an operational point of view, guards are predicates
which, if derivable by the policy engine of a service, allow the
service to perform a corresponding send action, cf. Dijkstra’s
guarded command language. Updates are also predicates at
the policy level. When a service receives a message in one of
its processes, it adds the corresponding update predicatesto
its policy engine. Intuitively, updates associate meanings to the
messages a service receives in terms of predicates in the policy
level. The notion of updates is similar to theassumptions
which are relied upon after receiving a message, in the trust
management model of Guttman et al. [3].

Motivations. The separation between the communication
and policy levels is a useful abstraction for better under-
standing each of these levels. Indeed, distributed authorization
logics, such as [4]–[6], typically abstract away the communi-
cation level events by assuming that all the policy statements
exchanged among the participants are signed certificates. This
frees the modelers from specifying the exact routes through
which the statements travel, etc. The abstraction however
obscures how each of the policy statements are represented (as
messages) in a given application, how messages are interpreted
as policy statements, whether there is a place for misinterpre-
tation, etc. For instance, one would expect that the statement
“Ann says employee(Piet)” is added to the policy engine of
a service, only after the service receives a message which is
meantto indicate that Piet is Ann’s employee. However, the
meanings of messages (determined by their format, who has
signed them, etc.) is often not specified in the policy level.
Therefore, in a concrete environment, it is unclear whether
or not the attacker can fake a message which would mean
that Piet is Ann’s employee, even though he is not. Similarly,
formal specifications of security protocols, e.g. as in [7],[8],
fully detail the format of the exchanged messages, while the
meanings of messages in terms of policy statements are left
unspecified.

While maintaining the separation between the communica-
tion and policy levels, we believe that, for a thorough security
analysis, the interaction between the two levels must also be
defined precisely. A typical specification in our proposed lan-
guage thus consists of three components: communication level
events, policy level decisions, and the interface between the
two. As the interface between the levels is explicitly present in
the specifications, a more precise security analysis of service-
oriented architectures becomes possible. This singles outour
specification language from the formalisms which focus on

either the communication or the policy level, and hence neglect
their interactions.

Decision procedure.We assume that the attacker is in direct
control of the communication media, i.e. messages are passed
through the attacker. The message composition capabilities of
the attacker may, for example, reflect the Dolev-Yao threat
model [9]. The attacker can indirectly affect the policies of the
participating services, by sending tampered messages which in
turn affect the update predicates.

A generic reachability problem is defined for service-
oriented architectures specified in the language. The reacha-
bility problem subsumes the secrecy problem for security pro-
tocols and the safety problem for authorization policies (these
notions are defined in the paper). The reachability problem
turns out to be undecidable in general, even when assuming a
finite bound on the number of participating services. We give
a decision algorithm for the reachability problem under the
following two conditions: (1) the message composition and
decomposition capabilities of the attacker reflect the Dolev-
Yao threat model, and (2) policy engines of (honest) services
are centered around thetrust applicationand trust delegation
rulesà la DKAL [6], besidestype-1theories (formally defined
in section IV). Type-1 theories are sufficiently expressivefor
modelling, e.g.,RBAC systems with role hierarchy. The trust
application and trust delegation rules, which are the core of
many distributed authorization logics [4]–[6], intuitively state
that

• (Trust application) If Ann trusts Mike on statementf ,
and Mike saysf , then Ann believesf holds.

• (Trust delegation) If Ann trusts Mike on statementf , and
Mike delegates the right to statef to, e.g., Piet, then Ann
trusts Piet on statementf .

Trust delegation often contributes to the resilience and flexibil-
ity of access control systems. In practice, however, for a given
application, trust delegation may, or may not, be allowed. Our
formalism and decision algorithm can be adapted to exclude
(transitive) trust delegation, if desired.

The decidable fragment is of practical interest: several
industrial service-oriented architectures studied in thecontext
of AVANTSSAR [10] (The EU Project on Automated Validation
of Trust and Security of Service-oriented Architectures) fall
into this fragment. As a comprehensive example, a case
study on specifying and verifying an on-line car registration
service [10], stemming from the European initiative forpoints
of single contact, is reported in this paper.

To prove our decidability result, we encode the derivation
of authorization predicates in the policy engine of a service
into message inference trees induced by the Dolev-Yao de-
duction rules. The encoding benefits us in two ways: (1) it
simplifies the decidability proof, and (2) it allows us to build
upon existing tools which have been originally developed for
verifying security protocols. In particular, we have extended
the constraint solver of Millen and Shmatikov [7] in Prolog
to validate service-oriented architectures.

Note that verification algorithms for correctness of security
protocols and authorization logics have been mostly developed

in isolation. For instance, it has been shown that the secrecy
problem is decidable for security protocols with a bounded
number of sessions [7], [8]. For these results the local compu-
tational power of the processes is limited to pattern matching,
hence not fully accounting for authorization policies of the
participants. Likewise, (un)decidability results for thesafety
problem in the HRU access control matrix model [11], and
authorization logics such as [4]–[6] abstract away communi-
cation level events and their effects on policy level decisions.
In contrast, our decision algorithm for reachability takesthe
communication and policy levels into account, and also covers
the interface between them.

Related work.Our proposed language can be used to specify
security protocols as it is common in the literature, e.g. see [7].
Authorization policies are modeled as logic programs in the
language. Logic programs have been extensively used for
specifying and reasoning about policies, e.g. see BINDER [4],
SECPAL [5], and DKAL [6].

Recent progress in analyzing business processes, augmented
with authorization policies, is related to our work, e.g. see [12],
[13]. These studies focus on using specific formalisms and
techniques for selected case studies, and thus do not consider
decidability issues in general. A notable exception to this
is [14], where workflows, policy level predicates and their
interfaces are all formalized in first-order logic. Reachability
is not considered in [14].

Road map.Section II describes an on-line car registration
service: this serves as our running example. Section III intro-
duces the syntax and semantics of the language we propose
for specifying service-oriented architectures. There, wealso
formally define the reachability problem. A decidable fragment
of architectures is identified in section IV. Section V givesa
formal specification of the running example in the decidable
fragment. A constraint solving algorithm for deciding reach-
ability in the fragment is given in section VI. Section VII
concludes the paper. Some of the proofs are relegated to
appendix A in order not to disrupt the flow of the paper.

II. A RUNNING EXAMPLE: CRP

We give an informal description of a service-oriented archi-
tecture for online car registration procedure, originatedfrom
the European initiative forpoints of single contact, see [10].
We refer to the case study as CRP. A formal model of CRP
and its verification results are given in subsequent sections.

CRP involves a number of parties: Mike the new owner of
a car, Piet the employee of the car registration office, Ann
the head of the car registration office, the human resources
department of the office, calledhr , and the central repository
server, referred to ascr .

Mike buys a car, but before he is allowed to drive it, he must
register the car at the car registration office. The office provides
an online registration service. After producing a document
containing all the necessary data for registering the car, Mike
sends the document to one of the employees of the office,
Piet. If the document is valid, Piet sends it to the central
repository server to be permanently stored. Thecr allows only

the employees of the car registration office to write on the
server, and Piet is not initially known to thecr as an employee.
The cr trusts Ann, the head of the office, on who is an
employee of the office. Ann, however, has decided to delegate
this task (or, right) to the human resources departmenthr ,
and communicates this decision to thecr with a certificate.
Consequently, thecr inquiries thehr on the status of Piet, to
which thehr replies with a certificate stating that Piet is an
employee of the office. Finally, thecr accepts Piet’s request to
store the document. After storing the document, thecr sends
back an acknowledgement to Piet. Piet, in turn, sends a token
of successful completion of the registration to Mike.

Below, we present the message exchange pattern for the
CRP. The usual primitives for security protocols are employed:
asymmetric encryptions{·}·, signaturessig(·, ·), public key
constructorspk(·), hash functionsh(·) and pairing(·, ·). When
confusion is unlikely, we simply writex, y for the pair
(x, y), and write [x]a for a, x, sig(a, x). We assume these
cryptographic operators are ideal,à la Dolev and Yao [9].
Below, terms in sans-serif are flags, i.e. unique constants which
denote the purpose of their accompanying messages.

mike→ piet : {mike, doc}pk(piet), [h(doc)]mike

piet→ cr : {mike, doc}pk(cr), [ann, h(mike, doc)]piet
cr → piet : [h(mike, doc)]cr

piet→ mike : [h(mike, doc), success token]piet

The delegation of Ann’s right to thehr , and thehr ’s attes-
tation that Piet is an employee, go over a separate exchange.

cr → ann : piet, empl status

ann→ cr : [piet, is empl, delegated to, hr]ann
cr → hr : piet, empl status

hr → cr : [piet, is empl]hr

This specification falls short of capturing the internal rea-
sonings of the participants involved, as described informally
above. For instance, it is not clear how the participants must
interpret the messages they receive, and how thecr ascertains
Piet’s right to store. These relations are often formalizedin
authorization logics, such asDKAL . However, specifying the
internal reasoning in, e.g.SECPAL andDKAL , would fall short
of determining the actual messages exchanged, or how the
messages are related to policy statements.

In section V, we specify CRP in our formal language. Then,
we can answer questions such as: whether the attacker can
take the CRP system into a state in which, Eve, who is not
an employee of the office, can write into the repository. Such
questions cannot be meaningfully posed when considering the
communication or the policy levels of CRP in isolation.

III. A LANGUAGE FOR SPECIFYING SERVICE ORIENTED

ARCHITECTURES

The syntax and semantics of the language are defined below.
A typical architecture specified in the language consists of
communication events of services, how received messages are
interpreted, how services make logical decisions, and how
these decisions affect the communication events.

A. Syntax

A signatureis a tuple(Σ,V,P), whereΣ is a countable set
of functions,V is a countable set of variables,P is a nonempty
finite set of predicates, and these sets are pairwise disjoint.
We use the capital lettersA,B, . . . to denote the elements
of V. The free term algebra induced byΣ, with variablesV, is
denotedTΣ(V). A messageis an element ofTΣ(∅), i.e. a ground
term. The set ofatomsAΣ(V) is defined as{p(t1, · · · , tn) |
p ∈ P, ti ∈ TΣ(V), arity of p is n}. The total functionvar :
TΣ(V) ∪ AΣ(V) → 2V gives the set of variables appearing in
terms and atoms. Afact is an atom with no variables.

Fix a signature. Aneventis of either of the following forms:

• g1 ∨ · · · ∨ gk ◮ s(t),
• r(t)� u

wheret ∈ TΣ(V), eachgi, with 1 ≤ i ≤ k andk ≥ 0, is a finite
set of atoms, andu is a finite set of atoms. Intuitively, an event
of the formg1 ∨ · · · ∨ gk ◮ s(t) denotesguarded send, where
term t is sent to the network only if theguard g1 ∨ · · · ∨ gk is
evaluated to “true” (for the exact definition, see section III-B).
An event of the formr(t) � u denotesreceive followed by
update, where receiving termt results in adding the update
u to the policy level. The functionvar extends to events as
var(g1 ∨ · · · ∨ gk ◮ s(t)) =

⋃
1≤i≤k var(gi) ∪ var(t) and

var(r(t)� u) = var(t) ∪ var(u).
We writeE for the set of all events, andE∗ for the set of

all finite sequences of events. Aprocessis a finite sequence
of eventse = e1 · · · en where

• If ei = g1 ∨ · · · ∨ gk ◮ s(t), then var(ei) ⊆⋃
1≤j<i var(ej), for all 1 ≤ i ≤ n.

• If ei = r(t) � u, thenvar(u) ⊆ var(t)
⋃

1≤j<i var(ej),
for all 1 ≤ i ≤ n.

These conditions intuitively state that the behavior of any
process depends deterministically on its input.

A serviceπ is a tuple(ηπ,Ωπ, Iπ), whereηπ is a finite set of
processes,Ωπ is a finite set of facts, called theknowledgeof π,
and Iπ is a finite set of Horn clauses, called theintensional
knowledgeof π. A Horn clause is of the forma← a1, · · · , an,
with n ≥ 0, anda, a1, · · · , an being atoms.

An attacker modelA is a service with no processes, i.e.
it is a pair (ΩA, IA), where ΩA is a finite set of facts,
called the knowledge of the attacker, andIA is a finite set
of Horn clauses, referred to as the intensional knowledge of
the attacker. The attacker is also able to send and receive
messages; these capabilities are reflected in the execution
model described in section III-B.

A (service-oriented) architecture is a tu-
ple ((Σ,V,P),Π,A), where(Σ,V,P) is a signature,Π is a
finite nonempty set of services andA is an attacker model,
where Π and A are defined using the signature(Σ,V,P).
In order to avoid trivial name clashes, it is assumed that
variables that appear in different processes of an architecture
are distinct.

We assume that for any architecture((Σ,V,P),Π,A), the
predicateK, of arity 1, belongs toP. This predicate is in
particular used to model the knowledge of the attackerA.

B. Semantics

Let s be a finite set of facts, andI be a finite set of Horn
clauses. Theclosureof s underI, denoted⌈s⌉I, is the smallest
set that containss and moreover∀(a ← a1, · · · , an) ∈
I.∀σ. a1σ, · · · , anσ ∈ ⌈s⌉

I =⇒ aσ ∈ ⌈s⌉I, whereσ is a
total (grounding) substitution function for the Horn clausea←
a1, · · · , an; that isσ : (var(a)

⋃
1≤i≤n var(ai))→ TΣ(∅). The

existence of⌈s⌉I follows immediately from the monotonicity
of Horn theories [15]. Theground deductionproblem for a
finite set of Horn clausesI, asks whethera ∈ ⌈s⌉I, for an
arbitrary facta and a finite set of factss.

Let ((Σ,V,P),Π,A) be an architecture, consisting of ser-
vices Π = {1, · · · , ℓ}, with π = (η0π,Ω

0
π, Iπ) for π ∈ Π,

and A = (Ω0
A
, IA). A configuration of the architecture is

a tuple ((η1,Ω1), · · · , (ηℓ,Ωℓ),ΩA), whereηi is a finite set
of processes, for1 ≤ i ≤ ℓ, and ΩA and Ωi are finite
sets of facts. Theinitial configuration of the architecture is
z0 = ((η01 ,Ω

0
1), · · · , (η

0
ℓ ,Ω

0
ℓ),Ω

0
A
).

Each architecture((Σ,V,P),Π,A) is attributed with a
Kripke structure which represents all the executions of the
architecture. This is explained informally in the following.
Suppose a process belonging to serviceπ ∈ Π can perform a
guarded send eventg1 ∨ · · · ∨ gk ◮ s(t). Then, the guard
is evaluated against the policy engine ofπ. The guard is
interpreted as the “disjunction” of the “conjunctions” of atoms
in eachgi, with 1 ≤ i ≤ k. If the guard can be derived in
the policy engine (i.e. the guard evaluates to “true”), thenthe
process sends the termt to the network; that is,t is imme-
diately added to the knowledge of the attacker. We remark
that variables appearing in a guarded send event originate in
previous receive events in the process. Therefore, the variables
in term t have already been instantiated with ground values.
Therefore, only messages (i.e. terms with no variables) are
sent to the network. Now, suppose a process belonging to
serviceπ ∈ Π can perform a receive eventr(t) � u. If there
exists a grounding substitutionσ such thattσ can be derived
from the attacker’s knowledge, then the process receivestσ

and the predicatesuσ are added to the knowledge set of
serviceπ. The formal definition is given below.

An architecture((Σ,V,P),Π,A), with Π = {1, · · · , ℓ},
induces a Kripke structure(S, S0, T), whereS andT are the
smallest sets satisfying

• S0 = z0, z0 ∈ S.
• If z = ((η1,Ω1), · · · , (ηi,Ωi), · · · , (ηℓ,Ωℓ),ΩA) ∈ S,

then

– If e ∈ ηi with e = (g1 ∨ · · · ∨ gk ◮ s(t))e′, e′ ∈ E∗,
and∃j. 1 ≤ j ≤ k ∧ gj ⊆ ⌈Ωi⌉

Ii , thenz′ ∈ S and
(z, z′) ∈ T , with z′ = ((η1,Ω1), · · · , (η

′
i,Ωi), · · · ,

(ηℓ,Ωℓ),ΩA ∪ {K(t)}), andη′i = ηi \ {e} ∪ {e
′}.

– If e ∈ ηi with e = (r(t) � u)e′, e
′ ∈ E∗, and

there exists a substitutionσ whereK(tσ) ∈ ⌈ΩA⌉IA ,
then z′ ∈ S and (z, z′) ∈ T , where the configura-
tion z′ is defined asz′ = ((η1,Ω1), · · · , (η

′
i,Ωi ∪

uσ), · · · , (ηℓ,Ωℓ),ΩA) andη′i = ηi \ {e} ∪ {e
′σ}.

Given a configurationZ and Kripke structure(S, S0, T), we

sayZ is reachablein (S, S0, T) iff (S0, Z) ∈ T ∗, whereT ∗

is the reflexive transitive closure ofT .

C. The reachability decision problem

Given an architecturearch = ((Σ,V,P),Π,A), with Π =
{1, · · · , ℓ}, and a factf ∈ AΣ(∅), the reachability problem
REACH〈arch, a, f〉, with a ∈ Π ∪ {A}, asks whether there
exists a reachable configuration((η1,Ω1), · · · , (ηℓ,Ωℓ),ΩA)
in the Kripke structure induced by the architecture such that
f ∈ ⌈Ωa⌉

Ia , or not. These cases are respectively denoted by
REACH〈arch, a, f〉 = T and REACH〈arch, a, f〉 = F.

The decision problem REACH subsumes the secrecy
problem for security protocols and the safety prob-
lem for authorization logics. The secrecy problem asks
whether the attacker can learn a (supposedly secret) mes-
sage m via interacting with other services. This can be
represented as REACH〈arch,A,K(m)〉. The safety prob-
lem asks whether an authorization predicatef (e.g.
knows(can read(ann,file12))) can be derived by a service,
sayπ, with π ∈ Π. This corresponds to REACH〈arch, π, f〉.

Due to the computational power of Horn clauses, it is
in general undecidable whether a guard evaluates to “true”
or not. Therefore, REACH is in general undecidable (even
though any architecture consists of finitely many services).
However, if the ground deduction problem is decidable for the
intensional knowledge sets of the participants and the attacker,
then a semi-decision algorithm can be constructed for REACH

using dovetailing. This is due to the fact that any architecture
induces a finite number of interleavings of events (althoughan
architecture in general induces an infinitely-branching Kripke
structure); cf.symbolic tracesdefined in section VI-B.

IV. A DECIDABLE FRAGMENT

In this section, we identify a fragment of intensional knowl-
edge (for the participants and the attacker) that admits decision
algorithms for the reachability problem. In this decidable
fragment, referred to asA1, the intensional knowledge of the
attacker is fixed to the standard Dolev-Yao (DY) deduction
rules, as formalized in, e.g., [7]. The policies (i.e. intensional
knowledge) of honest services are centered aroundtrust appli-
cationTA, and (transitive)trust delegationTD rules, adopted
and adapted fromDKAL , and can also express typicalRBAC

systems with role hierarchy. Next, we introduce the notion of
infons, cf. [6], [16].

Infons are pieces of information; for example,
can read(piet ,file12) stipulating that Piet can read a
certainfile12 . An infon does not admit a truth value, i.e. it is
never false or true. Instead, infons are the interfaces between
the communication level and policy level for honest services.
That is, if the policy engine of a service, say Ann, derives the
predicateknows(can read(piet ,file12)), then Ann “knows”
that Piet may read this file, and may thus grant him read
access tofile12 . Note that “knows” in this context, and also
in DKAL , is a predicate symbol and not a modality as in
logics of knowledge. In fact, “knows” here is closer to the
notion of belief rather thanknowledge, in epistemic terms.

Infons are different from predicates (i.e. policy statements)
in that they can benested, i.e. infons are constructed by
applyinginfon constructorsto message terms and other infons.
We assume that in any signature(Σ,V,P), the setΣ can
be partitioned intoΣmsg and Σinfon , so thatΣinfon is the
set of infon constructor functions, andΣmsg is the set of
message constructor functions. The set of infonsInfons is
formally defined as the smallest set satisfying the property:
if t1, · · · , tn ∈ TΣmsg(V) ∪ Infons and f ∈ Σinfon with
arity of f being n, then f(t1, · · · , tn) ∈ Infons . Note
that Infons ∩ TΣmsg(V) = ∅; in particular messages are not
infons.

We assume that for honest services the policy statements
(i.e. the inhabitants of the policy level) are predicates over
Infons . That is, for these services, the knowledge ranges
over pieces of information. In contrast, the knowledge of the
attacker ranges directly over message terms. Below, disjoint
union of two sets is denoted by⊔.

Definition 1. FragmentA1 consists of all architecturesarch =
((Σ,V,P),Π,A), which satisfy the following syntactical con-
ditions:

• (Σ,V,P) is a signature, withΣ = Σmsg ⊔ Σinfon , and:

– A finite subset of constants inΣmsg , denoted by
Agents , represents the set of the names of the
services inΠ. 1

– Apart from nullary functions (i.e. constants),Σmsg

only contains the functions{·}·, {|·|}·, sig(·, ·), pk(·),
h(·), (·, ·). These represent respectively asymmetric
and symmetric encryption, digital signature, public
key constructor, hash and pairing functions, inter-
preted as usual.

– Σinfon contains in particular the functionsθ(·, ·) and
σ(·, ·). These intuitively stand fortrusted onandsaid,
respectively, withθ, σ : Agents × Infons → Infons .

– P = {K}, with K being a unary predicate. Intu-
itively, K stands for “knows”.

• Any serviceπ = (η0π,Ω
0
π, Iπ) in Π meets the conditions:

– For all processes inη0π, all the terms sent and
received are elements ofTΣmsg(V).

– Ω0
π is a finite set of ground atoms of the formK(i),

with i ∈ Infons .
– Iπ includes theTA and TD rules, respectively

represented byK(X) ← K(θ(A,X)),K(σ(A,X)),
and K(θ(A, θ(B,X))) ← K(θ(A,X)). The set of
all the other rules inIπ constitutes atype-1 theory,
as defined below, andσ and θ do not appear in
this set.

• A = (Ω0
A
, IA), whereΩ0

A
is a finite subset of{K(t) |

t ∈ TΣmsg(∅)}, andIA consists of the rules that reflect the
capabilities of the standard DY attacker as formalized in

1Intuitively, one (or more) public key is attributed to each element of
Agents. The public keys are known to everyone, and to the attacker in
particular. Using the public key ofa ∈ Agents one can encrypt messages for
a and can verify the authenticity of the messages signed bya.

can read

can write

classified

public

admin

user

Fig. 1. Dependency graph, example 1.

appendix A or [17]; for instance,K(X) ← K((X,Y)),
andK({|X|}Y)← K(X),K(Y).

We define type-1 theories in order to extend the policies
of (honest) services beyondTA and TD , e.g. to express
typical RBAC systems with role hierarchy.

Definition 2. A finite set of Horn clausesT , defined over
signature (Σ,V,P), with Σ = Σmsg ⊔ Σinfon , is called a
type-1 theory, iff

(a) All clauses inT have the formp(t)← p1(t1), · · · , pℓ(tℓ),
wherep, p1, · · · , pℓ ∈ P, and t, t1, · · · , tℓ ∈ Infons .

(b) For all a ← a1, · · · , aℓ in T ,
⋃

i∈{1,··· ,ℓ} var(ai) ⊆
var(a).

(c) The infon dependency graphof T is acyclic. The infon
dependency graph ofT is a directed graph defined by the
pair (Σinfon ,Edges) with (f, g) ∈ Edges iff there exists
a Horn clause inT usingg in its head, andf in its body.

We remark that neitherTA norTD fall into type-1 theories,
due to conditions(b) and (c) in definition 2, respectively.

Example 1. Consider a file server which implements anRBAC

system with two roles,user and admin. Users may read any
public file, admins may read anyclassifiedfile, and admins
may also write to any file. Admins inherit all the rights
attributed to users. Below, we give a type-1 theory which
describes thisRBAC system.

K(user(A)) ← K(admin(A))
K(can read(A,F)) ← K(user(A)),K(public(F))
K(can read(A,F)) ← K(admin(A)),K(classified(F))
K(can write(A,F)) ← K(admin(A))

Here Σmsg contains the set of identities of involved ser-
vices, and names of files, whileP = {K}, and Σinfon =
{user , admin, public, classified , can read , can write} with
obvious arities. The infon dependency graph for this theory,
shown in figure 1, is indeed acyclic. •

The type-1 policy of example 1 iscentralizedin the sense
that it describe the policies of a single entity, i.e. the file
server. In the context of an architecture, this type-1 theory
may represent the policies of a single service, cf. section V.

In section VI, we give a decision algorithm for the reacha-
bility problem for architectures in fragmentA1. The decision
algorithm is based upon encoding policy level computations
of services into message derivation trees of the standard DY
model. Let us now continue with a formal specification of
CRP (section II) as anA1 architecture.

V. A FORMAL SPECIFICATION OFCRP

We give a formal specification of CRP by defining the
architecturecrp = ((Σ,V,P),Π,A). The architecture, as we
will see, indeed falls into theA1 fragment. The signatureΣ
contains the standard cryptographic primitives{·}·, {|·|}·, pk(·),
h(·), sig(·, ·), (·, ·) ∈ Σmsg , and the infon constructors, namely
can store(·), empl(·), head(·), σ(·, ·), θ(·, ·) ∈ Σinfon . The
set of constantsΣC ⊂ Σmsg used incrp is defined asΣC =
{mike, piet , ann, cr , hr , eve, doc, empl status, is empl,

delegated to, success token} with eve being the identity of
the attacker.

The setP contains only one unary predicate,K, used for
modelling the knowledge of the services and the attacker. Note
that the knowledge of each of the services and the attacker are
stored separately. In order to avoid unnecessary cluttering, we
suppress the predicate symbolK.

The attackerA = (Ω0
A
, IA) has the initial knowledgeΩ0

A
=

ΣC \ {doc} ∪ {pk(A) | A ∈ {mike, piet , ann, cr , hr , eve}},
and her intensional knowledge reflects the usual DY message
derivation rules. Despite the fact that the attacker’s knowledge
set is always finite, she can generate an infinite set of terms
by pairing, hashing, signing and encrypting the terms that are
known to her (cf. appendix A).

The intensional knowledge formike, piet , andann consists
of the TA andTD rules only. The intensional knowledge of
the hr contains the type-1 theory{empl(X) ← head(X)},
besidesTA and TD . The intensional knowledge of the
cr , in addition to TA and TD contains the type-1 theory
{empl(X) ← head(X), can store(X) ← empl(X)}, which
constitute a simple hierarchicalRBAC system, where employ-
ees have the right to store documents in thecr , and heads of
the office inherit all rights of employees.

Below, we describe the processes executed by the partici-
pating services, and their initial knowledge. Recall that capital
letters denote variables. To avoid name clashes, variables
appearing in different processes should be tagged with process
names. The tagging is however omitted in the following to ease
the presentation.

Citizen (mike). Mike’s initial knowledge is empty.

∅ ◮ s({mike, doc}pk(piet), [h(doc)]mike)
r([h(mike, doc), success token]piet)� ∅

Mike sends documentdoc to Piet, in order to be stored
in the cr . He then waits to receive a “success” token from
Piet. The namesmike andpiet , and alsodoc are constants in
Mike’s specification.

Employee (piet). Piet’s initial knowledge is empty.

r({C,D}pk(piet), [h(D)]C)� ∅
∅ ◮ s({C,D}pk(cr), [ann, h(C,D)]piet)
r([h(C,D)]cr)� ∅
∅ ◮ s([h(C,D), success token]piet)

After Piet receives a request, from a citizenC, to store
a documentD, he sends a corresponding request to thecr .
Then he waits for confirmation (of successful storing) from

the cr , after which he notifies the citizen on the completed
transaction.

Head (ann). Ann’s initial knowledge is empty.

r(E, empl status)� ∅
∅ ◮ s([E, is empl, delegated to, hr]ann)

When Ann receives a request for information on the status
of a principalE, she replies that the task of providing such
information has been delegated to thehr . Ann would typically
execute a few instances of this process in parallel.

Human Resources (hr). The initial knowledge ofhr con-
tains all employees and heads of the office. That is, thehr ’s
initial knowledge is{empl(piet), head(ann)} .

r(E, empl status)� ∅
{empl(E)} ◮ s([E, is empl]hr)

After receiving a request for the status of a principalE, thehr
confirms thatE is an employee of the office by sending the
message[E, is empl]hr , only if empl(E) can be derived in
the policy engine of thehr .

Central Repository (cr). The cr service consists of two
processes, executed in parallel. The initial knowledge of thecr
is {head(ann)}.
Central Repository’s main process.

r({C,D}pk(cr), [H,h(C,D)]E) � {θ(H, empl(E))}
{head(H)} ◮ s(E, empl status)

r([E, is empl]F) � {σ(F, empl(E))}
{can store(E)} ◮ s([h(C,D)]cr)

After receiving the first message fromE, requesting to store
a documentD as an employee of the office headed byH,
the cr asserts thatH is trusted on whetherE is an employee
of the office, or not. Next, ifH is indeed the head of the
office, then thecr asksH for clarifying the employment status
of E. If the cr , after receiving the third message, ascertains
thatE has the right to store, then the document is stored (not
formalized here), andE is notified.
Central Repository’s delegation handler.

r([E, is empl, delegated to,HR]H) �
{σ(H, θ(HR, empl(E)))}

This process receives, independently of the other process,
messages from an office headH to delegate to theHR the
right to declare the employment status ofE.

The formalization given above models the inquiries which
the cr conducts via a “broadcast” send. Namely, when thecr

sends the message(E, empl status), the message is intended
for H (i.e. ann), but it is received also byF (i.e. the hr).
This is becauseann replies to the message with a delegation
certificate, which is consumed by the delegation handler
process of thecr . It is thus F (i.e. the hr) who actually
responds to the message(E, empl status) in the cr ’s main
process.

The derivation tree of figure 2 shows how thecr ascertains
Piet’s right to write into the repository; the correspondence
between derivation trees and computing closures under Horn

θ(ann, empl(piet))
TD

θ(ann, θ(hr , empl(piet))) σ(ann, θ(hr , empl(piet)))
TA

θ(hr , empl(piet)) σ(hr , empl(piet))
TA

empl(piet)
type-1

can store(piet)

Fig. 2. A derivation tree for the CRP case study

clauses is immediate. The rules (e.g.TA or type-1 theory of
the cr) used in each derivation step are also shown in the
figure.

Remark 1. The formalization can be further extended by
adding the following process to the service Ann:

r(E, empl status)� ∅
{empl(E)} ◮ s([E, is empl]ann)

We also add the factempl(piet) to the initial knowledge of
Ann. In this extension Ann can decide whether to relegate
the task to ascertain that Peter is an employee of the office
to the Human Resources department or to carry out the task
herself (or both). It is immediate that the main process ofcr

remains the same in both these scenarios: it need not be a
priori “aware” of whether the delegation takes place or not.

VI. D ECIDING REACHABILITY

In this section, we give an algorithm for deciding REACH

in A1 architectures. We start with presenting an encoding
from policy statements into (message) terms. Then, we extend
the constraint solving algorithm of Millen and Shmatikov for
deciding reachability in the “encoded”A1 architectures.

The purpose of the encoding is to replace the logic programs
of the participating services in anA1 architecture with the
derivation rules of the DY model. Then, intuitively, the attacker
and all the services would be equipped with the reasoning
power of the DY model, which is well understood and comes
with decision algorithms for reachability.

A. Encoding policy level computations

Below, to simplify the presentation, we suppress the pred-
icate symbolK from facts, and work directly with infons;
indeedK is the only predicate symbol inA1 architectures.
The encoding consists of two functions:ζ which maps infons
to TΣ(V), andE which maps infons to guards. We start with
an initial encoding for trust application only. Then, we extend
the encoding to trust delegation and type-1 theories.

TA only.We recursively define the encoding for infoni:

ζ(i) =

{|ζ(X), sig(Ā, ζ(X))|}ζ(θ(A,X)) if i = σ(A,X)
θ(Ā, ζ(X)) if i = θ(A,X)
i otherwise

where ·̄ : Agents→ Agents is a bijection which associates a
unique name to each element ofAgents . Elements ofAgents
belong toTΣmsg(∅), and are defined solely for the encoding
function ζ, i.e. they do not appear in the specifications of

architectures. In particular, the attacker does not have the
private keys associated to the members ofAgents .

Here, the encoding of the infonσ(a, x) is the ciphertext
{|x, sig(ā, x)|}θ(ā,x) from which the infonx (i.e. what service
a said) can be obtained using thesymmetric decryption(Sdec)
rule of DY only if the keyθ(ā, x) (i.e. a is trusted onx) is
obtained first. This indicates that ifTA is applicable on a set
of facts at the policy level, then the DY rule

K(X)← K({|X|}K),K(K) Sdec

is applicable to the terms resulting from the encoding. In-
tuitively, the role of sig is to ensure that terms of the
form {| x, sig(ā, x) |}θ(ā,x) can be constructed using the DY
rules only if a correspondingσ(a, x) can be derived in the
policy level. Recall that the attacker does not know the private
key of ā.

TA, TD and type-1 theories.In order to includeTD and
type-1 theories in the encoding, we define anexpansion
function E that for any atom returns a guard. We motivate
the expansion function via a simple example. Suppose the
fact θ(a, i) is present in the policy engine of a service, and
the guardθ(a, θ(b, i)) is to be evaluated. TheTD rule implies
that the guard can be derived, while there is no corresponding
inference tree (in the DY model) forζ(θ(a, θ(b, i))), given
ζ(θ(a, i)). The set of infons which yieldθ(a, θ(b, i)) via apply-
ing only theTD rule is however finite. This finite set of infons
can be seen as a guard, namely{θ(a, θ(b, i))} ∨ {θ(a, i)}.
The fact thatθ(a, i) yields θ(a, θ(b, i)) in the policy engine
is reflected in the DY model by: eitherζ(θ(a, θ(b, i))) or
ζ(θ(a, i)), or both, are obtained fromζ(θ(a, i)).

The expansion functionEP (Q, i) is defined for finite sets
of Horn clausesP andQ, and infoni:

EP (∅, i) = {i}
EP ({r ← r1, . . . , rℓ} ⊔Q′, i) =

EP (Q
′, i)∨(
EP (P, r1ρ) ∪ · · · ∪ EP (P, rℓρ)

)
if i = rρ

EP (Q
′, i) if ¬∃ρ. i = rρ

where∪ distributes over∨, i.e.S∪(S1∨S2) = (S1∨S2)∪S =
(S1 ∪ S)∨ (S2 ∪ S). HereQ is a support theory used only to
ensure that the expansion of any infon results in a finite set;
see lemma 1 below.

Lemma 1. Let P = P 1 ∪ {TD}, with P 1 being the type-1
theory in a service of anA1 architecture. Then,EP (P, i) is a
finite set for any infoni.

Proof: Immediate, since the dependency graph ofP 1 is
acyclic, P 1 does not containθ, and the Horn clause which
encodesTD strictly decreases the number ofθ functions.

We write E(i) for EP (P, i), when P is clear from the
context. We writeg ∈v E(i) if E(i) = g1 ∨ · · · ∨ g ∨ · · · ∨ gn,
with n ≥ 1.

Example 2. Consider the infoni = can read(a,file) along
with the type-1 theory of example 1. Then,

E(i) = {user(a), public(file)} ∨ {admin(a), public(file)}∨
{admin(a), classified(file)} ∨ {can read(a,file)}

Write E(i) = g1 ∨ g2 ∨ g3 ∨ g4, with g1 =
{user(a), public(file)}, etc. The guardE(i) is interpreted
as: can read(a,file) holds, i.e. a can read file in ex-
ample 1, iff at least one of the following conditions
holds: [g1] user(a) and public(file) are known, or [g2]
admin(a) andpublic(file) are known, or [g3] admin(a) and
classified(file) are known, or [g4] can read(a,file) is known
via an inference outside theRBAC system of example 1.
Similarly, we get E(can write(a,file)) = {admin(a)} ∨
{can write(a,file)}. •

We refine the functionζ (introduced above) by incorporating
the expansion functionE into ζ. This intuitively ensures that
ζ(i), for infon i, is obtainable fromζ(σ(a, i)) if there exist at
least oneg ∈v E(θ(a, i)) such thatζ(g) can be obtained first.
Hence, we define:

ζ(i)=

{|ζ(X), sig(Ā, ζ(X))|}ζ(EP (P,θ(A,X))) if i = σ(A,X)
θ(Ā, ζ(X)) if i = θ(A,X)
i otherwise

Here,{|x|}k1∨···∨kℓ
stands for the tuple{|x|}k1

, · · · , {|x|}kℓ
, func-

tion ζ distributes over∨, andP = P 1∪{TD} with P 1 being
the type-1 theory at hand. For a finite set of infonsg, ζ(g)
is defined as the concatenation ofζ(i), for all i ∈ g. We
remark that elements ofEP (P, θ(A,X)) in the definition
of ζ are singletons. This is because in anyA1 architecture,
EP (P, θ(a, i)) = E{TD}({TD}, θ(a, i)), asθ does not appear
in P 1.

Correctness of the encoding.We remark that the purpose
of the proposed encoding is to replace the logic programs of
services with the derivation rules of the Dolev-Yao model.

The following theorem ensures that if a policy fact is deriv-
able in the logic program of a service, then its corresponding
encoded term can be derived using the DY inference rules,
and vice versa. We consider the standard DY capabilities
for the term algebraTΣ(V), which comprises both infon
and message constructors. That is, the infon constructors are
seen as uninterpreted functions, while message constructors
(e.g.{|·|}·) have their standard meaning in the DY model.

In the rest of the paper,T ⊢ u denotes thatu is derivable
from a set of termsT with the standard DY inference rules as
formalized, e.g., in appendix A and [7].

Theorem 1. Let P be the intensional knowledge of a service
in an A1 architecture, withP = {TA}∪Q, Q = {TD}∪P 1

and P 1 being a type-1 theory. For any (ground) infonf and
finite set of (ground) infonsG,

K(f) ∈ ⌈K(G)⌉P ⇐⇒ ∃g ∈v EQ(Q, f). ζ(G) ⊢ ζ(g),

whereK(G) stands for the set{K(fi) | fi ∈ G}.

Proof: Fix the policy setP . We writeG f for K(f) ∈
⌈K(G)⌉P , suppressK when confusion is unlikely, and write
E(f) for EQ(Q, f). Below, we talk aboutproof treesfor f ,
givenG. The correspondence between finding proof trees and
computing closures is immediate. The proof is split into two
directions.

⇒ We use structural induction on proof trees forf ,
given G. If f ∈ G, then the implication is trivial.
Otherwise, consider the last rule applied in the proof
tree:

• (TA) ThenG σ(a, f), θ(a, f), for somea ∈
Agents . By induction hypotheses,

∃s ∈v E(σ(a, f)), t ∈v E(θ(a, f)). ζ(G) ⊢ ζ(s), ζ(t).

Observe thats = σ(a, f). The termζ(σ(a, f))
is the tuple {| ζ(f), sig(a, ζ(f)) |}E(θ(a,f)).
Since t ∈v E(θ(a, f)), through unpairing, we
obtain the ciphertext{| ζ(f), sig(a, ζ(f)) |}ζ(t)
from ζ(σ(a, f)). Fromζ(G) ⊢ ζ(t), by applying
theSdec rule and unpairing we getζ(G) ⊢ ζ(f).
Clearly f ∈v E(f).

• (TD) Then f = θ(a, θ(b, i)) for somea, b ∈
Agents and i ∈ Infons , and G θ(a, i). By
induction hypotheses,∃t ∈v E(θ(a, i)). ζ(G) ⊢
ζ(t). Now, the claim follows since for any
infon t, t ∈v E(θ(a, i)) implies t ∈v
E(θ(a, θ(b, i))).

• (Type-1) Let R = r ← r1, . . . , rℓ ∈ P 1

be the last rule applied. Thenf = rρ and
G r1ρ, · · · , rℓρ, for some grounding substi-
tution ρ (cf. condition (b) in definition 2). By
induction hypotheses,∃r′1 ∈v E(r1ρ), · · · , r

′
ℓ ∈v

E(rℓρ). ζ(G) ⊢ ζ(r′1), · · · , ζ(r
′
ℓ). By definition

of E , {r′1, · · · , r
′
ℓ} ∈v E(f), hence follows the

claim.

⇐ First, we claim thatζ(G) ⊢ ζ(g) implies G

g. Notice that theζ(g) is either of the form{|
ζ(x), sig(a, ζ(x)) |}E(θ(a,x)), or of the form i(x),
with i being an infon constructor. The claim fol-
lows by case analysis on the DY attacker’s message
(de)composition abilities. In particular, note that (1)
to fabricate{|ζ(x), sig(a, ζ(x))|}E(θ(a,x)), the attacker
needs to constructsig(a, ζ(x)), which is impossible
as the attacker does not own the private key for
any ā ∈ Agents , and (2) infon constructors are
uninterpreted functions in the DY model, i.e. they
can neither be applied by the attacker, nor their
application can be deconstructed. The other cases
are straightforward; we thus omit them here. Finally,

notice that ifG g and g ∈v E(f), thenG f ;
hence follows the claim.

This completes our proof.

B. A constraint solving algorithm for deciding reachability

We begin with a brief description of Millen and Shmatikov’s
constraint solving algorithm for deciding reachability incryp-
tographic protocols [7]. Recall that participants are specified
as sequences of communication (i.e. send and receive) events
in [7], and the reachability problem, given a messages, asks
whether there exists a reachable configurationz of the protocol
whereT (z) ⊢ s, with T (z) being the attacker’s knowledge in
z.

The algorithm of [7] searches the finite set of interleavings
of (symbolic) actions performed by the participants and a
fictitious test process, which receivess and then sendsstop
to the search algorithm. For each interleaving, a sequenceC

of attacker constraintsis constructed. An attacker constraint
is a pair〈m :T 〉, wherem is a term that the attacker should
derive from the set of termsT , using her inference capabilities.
The constraint sequence is built for each interleaving as: when
a participant sends a message term, the term is added to
the attacker term set, and when a receive action occurs, a
constraint〈m : T 〉 is enqueued toC, with m being the term
that is to be received andT is the current attacker term set.

A solution for constraint sequenceC = 〈m1 :T1〉 · · · 〈mi :
Ti〉 · · · 〈mn : Tn〉, with mi = s, is a (grounding) substitution
σ : var(〈m1 :T1〉 · · · 〈mi :Ti〉)→ TΣ(∅) such thatTjσ ⊢ mjσ,
for 1 ≤ j ≤ i; here, var(c1 · · · ci) is the set of variables
appearing in the constraintsc1, · · · , ci. In our presentation,
therefore, we account forpartial executions as well, cf. [18].
Millen and Shmatikov’s algorithm applies a number of re-
duction rules which reduceC to a sequence of immediately
(un)satisfiable constraints. In the following, we refer to their
reduction procedure asMSReduce. If MSReduce does not
succeed forC (i.e. C is unsatisfiable), next interleaving is
considered, until all the interleavings are exhausted. If one of
the constraint sequences is satisfiable, then the (supposedly)
secret messages is revealed to the attacker. That is, an attack is
found. Otherwise the protocol is correct, i.e.s is not revealed
to the attacker, for the instantiation at hand.

The following two observations enable us to use Millen and
Shmatikov’s procedure (with minor extensions) for deciding
reachability forA1 architectures:

1) Checking guards in, and making updates to, policy en-
gines of the services can be emulated by communication
actions. Namely, sending an infon to the knowledge
set of a service reflects updating the policy engine of
that service, while receiving an infon derived from the
knowledge set reflects querying the policy engine of the
service for evaluating a guard.

2) The encoding presented in section VI-A entails that the
same inference rules which are used for the attacker
(namely the standard DY message derivation capabilities)
can model the computations of the participants at their
policy level. Therefore, the send and receive actions

which would emulate checking guards and updating
knowledge sets of services (mentioned above) can be
treated with the constraint solving procedure that one
would use for the attacker knowledge (here,MSReduce).

Algorithm 1 Constraint solving for deciding reachability in
A1 fragment

REQUIRES: REACH〈arch, a, f〉, arch = ((Σ,V,P),Π,A)
expand(Π)
I := interleavings(Π, a, f)
for all ι ∈ I do
flatten(ι)
C := constraint sequence(ι)
trace := MSReduce1(C)
if trace 6= ∅ then

return (reach :trace)
return (unreach)

Algorithm 1 details our constraint solving procedure for
deciding reachability inA1 architectures. The input to the
algorithm is a reachability problem REACH〈arch, a, f〉, with
arch = ((Σ,V,P),Π,A) being anA1 architecture. The algo-
rithm either returns atrace witnessing REACH〈arch, a, f〉 =
T, or returnsunreachif REACH〈arch, a, f〉 = F.

In algorithm 1, expand(Π) expands the guards in each
process, for all the services inΠ. A guard g1 ∨ · · · ∨ gn in
a service with policyP , is expanded to

∨
1≤j≤n EQ(Q, gj),

whereQ = P \{TA} andEQ(Q, g) for a finite set of infonsg
is defined as the union ofEQ(Q, i), for all i ∈ g. Recall that∪
distributes over∨ (cf. section VI-A). Theexpand procedure
thus rewrites guards into guards. For example, the guard{a, b}
in a service with intensional knowledge{TA,TD , a← c, b←
d} is expanded to{a, b} ∨ {c, b} ∨ {a, d} ∨ {c, d}.

The procedureinterleavings(Π, a, f) computes the finite
set of interleavings of events of the participants inΠ. Fur-
thermore, this procedure(1) adds atestingprocess whose sole
purpose is to indicate that the search has reached a config-
uration in which f ∈ ⌈Ω(a)⌉Ia , given REACH〈arch, a, f〉;
that is, if a = A and f = K(m), then the testing process
simply receivesm and then sendsstop to the search algorithm.
If a 6= A, then the testing process{f} ◮ s(stop) is
added to servicea. (2) The interleavings procedure treats the
disjunction operator∨ inside guards as branching points, e.g.
the interleavinge1 · (g ∨ g′ ◮ s(m)) · e2, with e1, e2 ∈ E∗,
gives rise to two interleavingse1 · (g ◮ s(m)) · e2 and
e1 · (g

′ ◮ s(m)) · e2. Consequently, no∨ appears in guards for
any interleavingι ∈ I in algorithm 1.

For each interleaving, the procedureflatten intuitively
“flattens” the two levels of specification into one. That is, a
sequence of events (i.e. guarded sends, and receives coupled
with updates) is translated into a sequence ofannotatedsend
and receive actions. The annotations indicate the knowledge
set with which the communication is carried out:A for
network communications through the attacker, andπ ∈ Π for

each serviceπ.

({a1, . . . , aℓ} ◮ s(m)) maps to rπ(ζ(a1), · · · , ζ(aℓ)) · sA(m)
(r(m)� {a1, . . . , aℓ}) maps to rA(m) · sπ(ζ(a1), · · · , ζ(aℓ))

The annotated send and receive actions are used in the
reduction procedureMSReduce1, which is a barely syntac-
tic modification ofMSReduce. The modification consists in
allocating one term set for each service inΠ, and one set
for the attacker. This is in contrast toMSReduce where only
one term set, denoting the attacker knowledge, is considered.
In MSReduce1, annotated sends and receives communicate
with the term set that is determined by their annotation.

After flatten ing, the procedureconstraint sequence gen-
erates a constraint sequence for the interleaving (as it is
done in [7]). The resulting constraint sequence is fed to the
procedureMSReduce1.

Example 3. Consider a file server servicefs , with intensional
knowledgeP = {TA,TD} ∪ P 1, whereP 1 is the type-1
theory of example 1. A typical event of the main process
of the fs service is {can read(A,F)} ◮ s({F}pk(A)),
whereA and F denote, respectively, a client of the service
and a file stored onfs . For this event theexpand procedure
returns {user(A), public(F)} ∨ {admin(A), public(F)} ∨
{admin(A), classified(F)} ∨ {can read(A,F)} ◮

s({F}pk(A)); see example 2.
The interleavings procedure then creates a branch for

each g ∈v the resulting guard, while interleaving this
event with other events of the architecture. For each
of the branches theflatten procedure maps the events
into communication actions. For example, the guarded
send {user(A), public(F)} ◮ s({F}pk(A)) maps to
rfs(user(A), public(F)) · sA({F}pk(A)). •

The following theorem states that algorithm 1 is terminating
on decision problems forA1 architectures; moreover the algo-
rithm is correct (i.e. sound and complete) w.r.t. the semantics
of A1 architectures.

Theorem 2. Given decision problemREACH〈arch, a, f〉, with
arch being anA1 architecture, algorithm 1 terminates, and
returns atrace iff REACH〈arch, a, f〉 = T.

The proof of theorem 2 is relegated to appendix A. Below,
we sketch the main idea of the proof. LetKS = (S, S0, T)
be the Kripke structure induced byarch. A trace in KS is
a sequencez0e1z1 · · · enzn, wherez0 = S0, (zj−1, zj) ∈ T ,
for 1 ≤ j ≤ n, and the system evolves fromzj−1 into zj
when eventej occurs, as defined in section III-B. Asymbolic
trace st is a trace which may contain non-ground terms.
We sayst is realizable in KS iff there exists a grounding
substitution σ, such thatstσ is a trace inKS. Given a
symbolic tracest and a sequence of constraintsC we de-
fine their correspondenceinductively: if st = z0, then the
empty sequence, i.e.C = nil, corresponds tost. Now, let
st = z0e1 · · · znez, with n ≥ 0, and C ′ be a sequence of
constraints that corresponds toz0 · · · zn. If e = g ◮ s(m),
then anyC = C ′ · 〈ζ(gi) : ζ(Ω@zn

π)〉 corresponds tost,

whereπ is the service that performse, gi ∈v E(g) is calculated
w.r.t. the intensional knowledge ofπ, andΩ@zn

π refers to the
knowledge ofπ at symbolic configurationzn. The correspon-
dence between evente and constraint〈ζ(gi) :ζ(Ω@zn

π)〉 hinges
upon theorem 1, which tells us that the encoding function
ζ is such thatζ(G) ⊢ ζ(gi) for at least onegi ∈v E(g) if
K(g) ∈ ⌈K(G)⌉P , given anyG ⊆ AΣ(∅). If e = r(m) � u,
then C = C ′ · 〈m : Ω@zn

A
〉 corresponds tost, whereΩ@zn

A

refers to the attacker knowledge at symbolic configurationzn.
We remark that for the attacker knowledge the (suppressed)
predicateK ranges directly over messages.

From the definition above, clearly there are finitely many
constraint sequences (created due to the∨ operator in guards)
corresponding to any symbolic tracest. The proof of theorem 2
intuitively goes by showing that for each symbolic tracest,
created by an interleaving of events of services inarch, st

is realizable inKS iff a constraint sequence corresponding
to st is satisfiable in algorithm 1. In the following we give an
informal explanation of why the constraint reduction system
of Millen and Shmatikov can be applied to the constraint se-
quences generated from architectures inA1. See the appendix
for a formal proof.

Any constraint sequenceC generated from architectures
in A1 can be partitioned into two subsetsCA andCP . These
subsets respectively refer toattacker constraintsand policy
constraints, and these are syntactically distinguishable. Intu-
itively, for each symbolic trace, constraints inCA correspond
to messages that must be generated by the attacker so that the
symbolic trace is realizable, and constraints inCP correspond
to guards that need to be evaluated to true in honest services
so that the symbolic trace is realizable.

The Millen-Shmatikov reduction system is readily applica-
ble to the elements of the setCA, intuitively because these are
attacker constraints. For the setCP , however, we notice that
for any constraint of the form〈q :K〉 in CP , with V being
a variable appearing inK, there exists a constraint〈m : T 〉
in CA, whereV is a subterm ofm. This is because all variables
in our specifications are originally instantiated at a receive
event in an honest process. The key idea in using Millen-
Shmatikov’s reduction procedure for architectures inA1 is that
all the variables appearing in policy constraints are wrapped
with infon constructors (which are seen as uninterpreted
function constructors by the reduction procedure). Hence,the
only applicable reduction rule on a policy constraint〈q :K〉 is
the unification rule (see the appendix) as far asq is an infon.
Therefore, the policy constraints are ultimately either removed
from C as they can be solved using unification, or they are
unsatisfiable as the infon constructors are not available tothe
attacker. Recall that due to our expansion procedure (which
is a “backward proof search”) the set of premises from which
infons can be inferred have already been closed under the
policy rules, before the constraint reduction procedure starts.

We proceed with the CRP case study.

C. Verification results

We have implemented algorithm 1 in Prolog. The imple-
mentation extends the constraint solver developed by Millen
and Shmatikov [7]. The tool and the formal specifications
of two case studies (including CRP) are available on-line
at http://www.infsec.ethz.ch/people/fraus. Below, we briefly
describe our verification results.

1) CRP: We have verified the following properties of the
CRP case study (specified in section V):

• Executability. We replaced the last event in the specifica-
tion of the citizen with

r([h(mike, doc), success token]piet)� {stored(doc)}

and checked if REACH〈crp,mike, stored(doc)〉 = T; that
is, whethermike knows that his document has been
successfully stored in thecr . The tool returns a trace
showing that this property indeed holds in the CRP
architecture.

• Secrecy. We have checked if REACH〈crp, eve, doc〉 = T,
i.e. whether the attackereve can discoverdoc. No (attack)
trace is found.

• Safety. We have checked whether the attackereve

can obtain the right to store in thecr . That is, if
REACH〈crp, cr , can store(eve)〉 = T. No (attack) trace
is found.

It is worth mentioning that inA1 architectures, e.g. the
formalization of CRP in section V, only a finite number
of services are allowed. Our decidability result would in
fact fall apart if an unbounded number of services were
considered inA1 architectures. This immediately follows from
the undecidability of reachability in security protocols with an
unbounded number of sessions.

2) A flawed variant of CRP:Minor changes in the CRP
scenario (explained in section V) may lead to misinterpretation
of the received messages, and ultimately to wrong policy
decisions. For instance, if the documentD is omitted from the
signed message in the main process ofcr (and correspondingly
omitted from the main process of Piet) as:

r({C,D}pk(cr), [H,h(C)]E) � {θ(H, empl(E))}
{head(H)} ◮ s(E, empl status)

r([E, is empl]F) � {σ(F, empl(E))}
{can store(E)} ◮ s([h(C,D)]cr)

Then the attackereve can pass a fake document to be stored
at cr , although she does not have (nor gain) the right to store
documents at the repository. This attack has indeed been found
using our tool.

3) An electronic health record system:We have formalized
a simple scenario of the electronic health records system
described in [10]. The formalization is available on-line (see
above). In this health records system, there are three “services”
involved: the doctord who is treating a patientp, the specialist
doctors who is meant to further check the health status ofp,
and the hospital’s data centerdc. The attackereve is also
present in the system. The health records of the patients are

stored in the hospital’s data center, and they are accessible
to their treating doctors. Any other access to health records is
prohibited, except when a treating doctor delegates the right to
access the records to another doctor or specialist. We consider
the following scenario: The doctord, who is treating patientp,
asks the specialists whethers would examine the health status
of p. We assumes is willing to do so. Then,d delegates tos
the right to accessp’s health record. Meanwhiles requestsp’s
health record fromdc. The data center runs two threads: one
for handling delegation requests, and one for managing access
to the health records. The data center grants access to the
health records ofp iff at least one of the following conditions
hold: the requester is the doctor who is treatingp, or the doctor
who is treatingp has indeed delegated the right to read the
health record associated top to the requester. These rules are
encoded in the policy engine ofcr as:

can read ehr(X,P) ← delegated(X,P)
can read ehr(X,P) ← doctor(X,P)

Here can read ehr(X,P) states thatX can read the health
record of patientP , doctor(X,P) means thatX is the treating
doctor ofP , while delegated(X,P) stands for the fact that
the right to read the record ofP has been delegated toX.
We remark that the right to access patient’s records cannot be
further delegated.

We have verified three properties for this scenario: (1)
Executability. We have checked if the specialist can indeed
access the health record of the patient. That is, the dele-
gation mechanism operates as expected. The tool returns a
trace showing that this property does hold. (2)Non-transitive
delegation.We have checked that the right to read the patient’s
health record cannot be further delegated. That is, a specialist
cannot delegate this right to another entity. No attack traces are
found for this property. (3)Secrecy. We have checked if the
attacker can learn the health record of the patient. No attack
traces are found in this case.

VII. C ONCLUSION

We have presented a language for formal specification of
service-oriented architectures. The language allows us tospec-
ify communication level events, policy level decisions, and the
interface between the two. We have shown that the reachability
problem is decidable for a fragment of architectures specified
in the language. The decidable fragment is of immediate
practical relevance. Deciding reachability in service-oriented
architectures is an NP-hard problem, because it subsumes
the reachability problem for security protocols (which is an
NP-complete problem [8]). The decision procedure for the
fragment of architectures given in this paper uses an encoding
which in worst-case is exponential in the size of the input.
The efficiency of the decision algorithm has so far not been
a major concern in our study. For the case studies we report
in this paper, the tool can find attacks in less than a minute
on a typical machine, while for showing that no attacks exists
(hence exploring the state space exhaustively) the tool can
take up to a day, depending on the specification. We intend to

investigate more efficient (in asymptotic terms) decision algo-
rithms for this fragment. In particular, partial order reduction
techniques to reduce the number of interleavings would be
effective in this respect.

In this decidable fragment, the policies of the (honest)
services are limited to trust application and trust delegation
rules, besides a finite set of Horn clauses oftype-1. Type-
1 Horn theories are characterized here by placing certain
syntactic conditions on the form of the clauses. As we show
in the paper, these conditions are indeed sufficient; they are
however in general not necessary for deciding reachability. We
intend to investigate how, without undermining our decidabil-
ity result, the policies of honest services can be extended to
theories beyond type-1. A more ambitious goal is to formally
characterize the set of policies for which the reachability
problem is decidable.

Revocation of rights is not expressible in a natural way
in authorization logics which are based on Horn theories,
cf. [19] for an overview. We are currently working towards
accommodating rights revocation in our language.

We (similar to, e.g.,SECPAL and DKAL) see “know” as
a predicate, as opposed to a modality as it is common in
epistemic logics. This causes a discrepancy between the syn-
tactic form of “knowledge”, represented by predicates, andthe
semantic notion of knowledge. It must therefore be interesting
to investigate how our proposed formalism can be connected
to the standard epistemic models.

Acknowledgements:We are grateful to D. Basin, S. Burri, S.
Ranise and E. Zalinescu for their comments on this paper. The
work has been supported by the EU FP7 projects AVANTSSAR

(no. 216471) and SPACIOS (no. 257876).

REFERENCES

[1] R. Parikh and R. Ramanujam, “A knowledge based semantics of
messages,”Journal of Logic, Language and Information, vol. 12, no. 4,
2003.

[2] H. Ditmarsch, W. Hoek, and B. Kooi,Dynamic epistemic logic, 1st ed.
Springer, 2007.

[3] J. Guttman, F. Thayer, J. Carlson, J. Herzog, J. Ramsdell, and B. Sniffen,
“Trust management in strand spaces,” inESOP ’04, ser. LNCS, vol.
2986, 2004, pp. 325–339.

[4] J. DeTreville, “Binder, a logic-based security language,” in IEEE Sym-
posium on Security and Privacy ’02, 2002, p. 105.

[5] M. Becker, C. Fournet, and A. Gordon, “Design and semantics of a
decentralized authorization language,” inCSF ’07. IEEE Computer
Society, 2007, pp. 3–15.

[6] Y. Gurevich and I. Neeman, “DKAL: Distributed-knowledgeauthoriza-
tion language,” inCSF ’08. IEEE Computer Society, 2008, pp. 149–162.

[7] J. Millen and V. Shmatikov, “Constraint solving for bounded-process
cryptographic protocol analysis,” inCCS ’01. ACM Press, 2001, pp.
166–175.

[8] M. Rusinowitch and M. Turuani, “Protocol insecurity with finite number
of sessions is NP-complete,” inCSFW ’01. IEEE CS, 2001, p. 174.

[9] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Trans. on Information Theory, vol. IT-29, no. 2, pp. 198–208, 1983.

[10] AVANTSSAR, “Deliverable D5.1: Problem cases and theirtrust and
security requirements,” 2008, available at http://www.avantssar.eu.

[11] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating sys-
tems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

[12] A. Armando and S. Ponta, “Model checking of security-sensitive busi-
ness processes,” inFAST ’09, ser. LNCS, vol. 5983. Springer, 2010,
pp. 66–80.

[13] A. Schaad, V. Lotz, and K. Sohr, “A model-checking approach to
analysing organisational controls in a loan origination process,” in
SACMAT ’06, 2006, pp. 139–149.

[14] M. Barletta, S. Ranise, and L. Viganò, “Verifying the interplay of
authorization policies and workflow in service-oriented architectures,”
in CSE (3). IEEE Computer Society, 2009, pp. 289–296.

[15] M. van Emden and R. Kowalski, “The semantics of predicate logic as
a programming language,”J. ACM, vol. 23, no. 4, pp. 733–742, 1976.

[16] Y. Gurevich and I. Neeman, “The logic of infons,”Bulletin of the EATCS,
vol. 98, pp. 150–178, 2009.

[17] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” inCSFW ’01. IEEE Computer Society, 2001, pp. 82–96.

[18] R. Corin and S. Etalle, “An improved constraint-based system for the
verification of security protocols,” inSAS ’02, ser. LNCS, vol. 2477.
Springer, 2002, pp. 326–341.

[19] J. Halpern and V. Weissman, “Using first-order logic to reason about
policies,” ACM Trans. Inf. Syst. Secur., vol. 11, no. 4, 2008.

APPENDIX

Below, we list the capabilities of the Dolev-Yao attacker
model. The following rules describe the intensional knowledge
(i.e. the deduction capabilities) of the attacker, cf. [17]. The
attacker is calledeve here.

Analysis

x ← (x, y) φproj1

y ← (x, y) φproj2

x ← {x}pk(eve) φpdec

x ← {|x|}y, y φsdec

Synthesis

(x, y) ← x, y φpair

{x}y ← x, y φpenc

{|x|}y ← x, y φsenc

h(x) ← x φhash

sig(pk(eve), x) ← x φsig

Below, we present the proof of theorem 2. The proof relies
upon a lemma on correctness and termination ofMSReduce1.

Proof of theorem 2: Termination of algorithm 1 is
immediate, as the procedureinterleavings produces a finite
number of (symbolic) interleavings, and all the functions
applied to interleavings, in particularMSReduce1 (see lemma
2, below) andexpand (due to lemma 1), terminate in finitely
many steps.

Notice that algorithm 1 exhaustively considers all possible
symbolic traces ofarch, and for each symbolic tracest, the
algorithm considers all constraint sequences corresponding
to st. We write ŝt for the set of all constraint sequences which
corresponds tost.

The proof is split into two directions.

⇒ Assume REACH〈arch, a, f〉 = T. Then, there exists
a symbolic tracest = z0e1 · · · enzn, and a nonempty
set of substitutionsS = {σ1, σ2, . . .} wherestσj is
a trace inKS, for any σj ∈ S. Then, there exists
at least one constraint sequenceC ∈ ŝt, which is
satisfiable by any substitutionσj ∈ S, and that is
considered by algorithm 1. It now remains to show
thatMSReduce1 returns a witness trace forC. This
holds due to lemma 2, below.

⇐ Let C be a constraint sequence generated in algo-
rithm 1. Then,C ∈ ŝt, for some symbolic tracest.

SupposeMSReduce1 returns a witness trace, show-
ing thatC is satisfiable under (non-ground) substitu-
tion ρ (see lemma 2 on applicability ofMSReduce1,
below). By theorem 1 and the fact that solving
constraint〈m :T 〉 impliesT ⊢ m, it follows thatstσ
is a trace inKS, for any ground substitutionσ that
refinesρ. That is, REACH〈arch, a, f〉 = T.

This completes the proof.
Lemma 2, below, concerns the applicability ofMSReduce1.

Given a reduction system for constraint sequences, we write
C → C ′ iff C is reduced, using a rule in the reduction system,
to C ′. A reduction system is

• terminating iff it admits no infinite reductions;
• soundiff C → C ′ implies that for anyσ that is a solution

of C ′, σ is also a solution ofC;
• completeiff for any σ that is a solution ofC, there exists

a reduction stepC → C ′ such thatσ is a solution ofC ′.

Lemma 2. MSReduce1 is terminating, sound and complete
for the constraint sequences generated in algorithm 1.

We prove lemma 2 by revising the proofs of termination and
correctness (i.e. soundness and completeness) ofMSReduce,
originally presented in [7]. We start by giving an overview
of MSReduce in appendix A. There, we also single out the
differences betweenMSReduce and MSReduce1. Then, the
proofs of termination and correctness ofMSReduce1 are
given, respectively, in appendices B and C.

A. Overview ofMSReduce

Extended attacker model.The attacker model considered in
[7] is based on the standard Dolev-Yao attacker model, as
formalized in appendix A. In addition, Millen and Shmatikov
consider anencryption hidingoperator, here denoted‖ · ‖·,
that serves as a technical means to avoid non-termination of
the constraint solving algorithm. Consequently, the following
attacker capabilities are also considered:

Encryption hiding

{|x|}y ← ‖x‖y φopen

‖x‖y ← {|x|}y φhide

Given a set of messagesT we denote byF(T) the set
of messages that the attacker can derive fromT using her
capabilities. In terms of the formalization introduced in the
paper,F(T) = ⌈T ⌉IA .

Reduction procedure.In the following we give a short
description of theMSReduce algorithm (see algorithm 2). The
algorithm takes an initial constraint sequenceIC as input,
and builds the tree of all possible reductions forIC . Each
node is labelled by a pair(C, σ) whose first element is a
constraint sequence, and the second element is a substitution
for the variables inC. Starting from the root(IC , ∅), the tree
is explored with a depth first search. Notice that the algorithm
2 uses a stack structure, rather than a tree structure, as it
is usual in the depth first search. The exploration terminates
successfully (i.e. node(C, σ) corresponds to an attack) when
C is simple; that is, every constraint inC is of the form〈V :T 〉

where V is a variable. Simple constraint sequences (under
the monotonicity and origination assumptions, see below) are
immediately solvable.

Algorithm 2 MSReduce

REQUIRES: initial constraint sequenceIC
stack := ∅
stack .push((IC , ∅))
repeat
(C, σ) := stack.pop
let c = 〈m : t〉 be the first constraint inC

s.t.m is not a variable
if c not foundthen

return (satisfiable :(C, σ))
apply rule(elim) to c until no longer applicable
for all r ∈ R do

if r is applicable to Cthen
stack.push(r(C, σ))

until stack.empty
return (unsatisfiable)

Initially, the root of the tree is set to the pair(IC , ∅)
(i.e. (IC , ∅) is the only element of the stack). Then, the tree
is explored as follows. A node(C, σ) is popped from the
stack, and theactive constraint (that is, the first constraint
c = 〈m : T 〉 ∈ C with a non-variablem) is picked. If
no such constraint exists inC, then C is simple hence the
node is returned as a solution for the constraint sequence. If
c is found, then all occurrences of stand-alone variables are
removed from the term setT . Subsequently, for any applicable
reduction ruler (see paragraph Reduction rules, below), the
new node resulting from the application ofr to the current
node is pushed on top of the stack. When no nodes are left
in the stack, all possible reductions have been considered,so
the algorithm returns “unsatisfiable” and terminates.

Reduction rules.In the following we present the reduction
rules used byMSReduce. The rules read from top to bottom,
that is, a ruler

(C< · c · C>, σ)
r

(C ′
< · c

′ · C ′
>, σ

′)

says that constraint sequenceC<·c·C>, wherec is the active
constraint andC< and C> are respectively the constraints
preceding and followingc, is reduced toC ′

< · c
′ · C ′

>, and
substitutionσ is refined byσ′.

(C< · 〈m :T ⊔ {V }〉 · C>, σ)
elim

(C< · 〈m :T 〉 · C>, σ)

whereV is a variable

(C< · 〈m :T 〉 · C>, σ)
un

(C<τ · C>τ, σ ∪ τ)

whereτ = mgu(m, t), for somet ∈ T

(C< · 〈(m1,m2) :T 〉 · C>, σ)
pair

(C< · 〈m1 :T 〉 · 〈m2 :T 〉 · C>, σ)

(C< · 〈h(m) :T 〉 · C>, σ)
hash

(C< · 〈m :T 〉 · C>, σ)

(C< · 〈{m}k :T 〉 · C>, σ) penc
(C< · 〈k :T 〉 · 〈m :T 〉 · C>, σ)

(C< · 〈{|m|}k :T 〉 · C>, σ)
senc

(C< · 〈k :T 〉 · 〈m :T 〉 · C>, σ)

(C< · 〈sig(pk(eve)) :T 〉 · C>, σ)
sig

(C< · 〈m :T 〉 · C>, σ)

(C< · 〈m :T ∪ {(t1, t2)}〉 · C>, σ)
split

(C< · 〈m :T ∪ {t1, t2}〉 · C>, σ)

(C< · 〈m :T ∪ {{t}pk(eve)}〉 · C>, σ)
pdec

(C< · 〈m :T ∪ {t}〉 · C>, σ)

(C< · 〈m :T ∪ {{t}k}〉 · C>, σ)
ksub

(C<τ · 〈mτ :Tτ ∪ {{tτ}kτ}〉 · C>τ, στ)

whereτ = mgu(k, pk(eve)), k 6= pk(eve)

(C< · 〈m :T ∪ {{|t|}k}〉 · C>, σ)
pdec

(C< · 〈k :T 〉 · 〈m :T ∪ {k, t}〉 · C>, σ)

Properties ofMSReduce. For applying MSReduce to a
sequence of constraintsC, it is required that [7]:

• (Monotonicity) If constraint〈m : T 〉 precedes〈m′ : T ′〉
in C, thenF(T) ⊆ F(T ′).

• (Origination) For any constraint of the form〈m :T 〉 in C,
with V being a variable appearing inT , there exists a
preceding constraint〈m′ :T ′〉 in C, whereV is a subterm
of m′ andF(T ′) ⊂ F(T).

MSReduce preserves the aforementioned properties at each re-
duction step. Notice that the monotonicity and the origination
property are necessary to grant solvability of simple constraint
sequences.

Overview ofMSReduce1. MSReduce andMSReduce1 dif-
fer only in the properties of the constraint sequences that are
passed to them as input.

Let C be a constraint sequence generated by algorithm 1.
C can always be partitioned into two disjoint sequences of
constraintsCA and CP , that we call respectively “attacker
constraints” and “policy constraints”.

Formally, an attacker constraint〈m : T 〉 models a receive
event at the communication level, wherem is a term that an
attacker should construct from a finite set of termsT . Here,
bothm and the terms inT are message terms, i.e.m ∈ TΣ(V)

andT ⊆ TΣ(V).
A policy constraint models the evaluation of a query at

the policy level. Differently from an attacker constraint,for
a policy constraint〈q : K〉 the termq and the terms inK
are the result of the application of functionζ to Infons . In
particular, all terms in policy constraints contain constructors
belonging toΣInfons (cf. sections IV and VI-A), while terms
in attacker constraints never contain infon constructors.It is
hence possible to distinguish between them with a simple
syntactical check.

We note thatCA satisfies the monotonicity and origination
properties. This is immediate from the syntax and semanticsof
our language; see section III. The origination and monotonicity
properties do not hold forCP , in general. However, for any
constraint of the form〈q :K〉 in CP , with V being a variable
appearing inK, there exists a preceding constraint〈m′ : T ′〉
in CA, where V is a subterm ofm′. This is because all
variables in specifications of service-oriented architectures are
originally instantiated at a receive event in an honest process.

We remark that the monotonicity and the origination proper-
ties hold for simple constraint sequences obtained by applying
MSReduce1 to constraint sequences generated by algorithm
1. The resulting simple constraint sequences are thus immedi-
ately solvable. This is because:

• policy constraints, for which the monotonicity property
does not hold, are eliminated by the reduction pro-
cedure. This is due to the fact that the variables in
policy constraints are always subterms of applications of
infon constructors. Infon constructors are uninterpreted
functions for the attacker’s inference rules; hence they
are never constructed or deconstructed by the reduction
system. If such constraints are satisfiable, then they will
be eliminated using the unification ruleun.

• the reduction procedure preserves the monotonicity of the
attacker constraints, as shown in [7].

B. Proof of termination

The proof of termination ofMSReduce1 follows closely
the termination proof ofMSReduce. The proof is based on
a termination measure(Nv, Ns) of a constraint sequenceC.
Here,Nv andNs are naturals. In particular,Nv is the number
of distinct variables occurring inC and Ns is a special
expansionmeasure. Tuples are ordered lexicographically.

The expansion measure hinges upon another measure, the
size |m| of a termm, that is the number of operator applica-
tions plus the number of constants and variable inm. Then
the expansion measureNs of constraint sequenceC is the
sum of the expansion measures of its constraints; in turn, the
expansion measure of a constraint〈m :T 〉 is |m| ·χ(T), where
χ is defined as follows:

χ(t) = 2 if t is a variable or constant
χ({t1, . . . , tn}) = χ(t1) · · ·χ(tn)
χ((t1, t2)) = χ(t1)χ(t2) + 1
χ({t}k) = χ(t)
χ(‖t‖k) = 1
χ(sig(k, t)) = χ(t) + 1
χ(h(t)) = χ(t) + 1
χ({|t|}k) = χ(t)χ(k) + |k|+ 1

We show now that the termination measure decreases
strictly at each application of a reduction rule. Ruleelim
removes a stand-alone variable, hence reducesNs; rule un
either substitutes a variable, hence decreasingNv, or decreases
Ns by removing the constraint; rulessig, pair, hash, pencand
sencreduceNs by splitting the constraint in constraints whose
sum of expansion measures is smaller; rulessplit and pdec

decreaseNs by replacing a term with terms whose product of
expansion measures is smaller; ruleksubsubstitutes a variable,
hence decreasesNv. Finally rule sdec replaces a constraint
c = 〈m : T ∪ {| t |}k〉 with constraintsc′ = 〈k : T ∪ ‖t‖k〉
and c′′ = 〈m : T ∪ {t, k}〉. The expansion measure ofc is
|m|χ(T)(χ(t)χ(k)+ |k|+1), while the product of the expan-
sion measures ofc′ and c′′ is |k|χ(T) + |m|χ(T)χ(t)χ(k).
Since |k| < |m|(|k| + 1), the expansion is strictly decreased
in eachsdecreduction step.MSReduce1 thus terminates.

C. Proof of correctness

In the following, for ease of presentation, we ignore the
encryption hiding operator and related attacker capabilities.
The encryption hiding operator is used in [7] merely to avoid
non-termination, as mentioned above.

1) Proof of soundness:We show here that if a rule of
MSReduce1 reduces constraint sequenceC to constraint se-
quenceC ′, then any solutionσ of C ′ is also a solution ofC.
In other words,MSReduce1 does not introduce new solutions.

We condition on the rule applied:

• Rule elim removes a stand-alone variableV from T ∪
{V }, for the active constraint beingc = 〈m :T ∪ {V }〉.
We need to distinguish two cases:

– c is an attacker constraint. We show thatF(T∪V) =
F(T). It is obvious thatF(T) ⊆ F(T ∪ {V }), we
show then thatF(T ∪{V }) ⊆ F(T). By origination
property, there exists an earlier constraintc′ = 〈m′ :
T ′〉, such thatV does not appear inT ′ andV appears
in m′. In particular,m′ = V (all constraints earlier
thanc are simple). Due to idempotency of closure, it
suffices to show thatT ∪{V } ⊆ F(T), and we only
need to show thatV ⊆ F(T), sinceT ⊆ F(T). By
the monotonicity propertyT ′ ⊆ T ∪ {V }, and since
V 6∈ T ′ thenT ′ ⊆ T . But V ∈ F(T ′), therefore also
V ∈ F(T).

– c is a policy constraint. Then ruleelim is never
applied, because all variables inT appear under
the application of an infon constructor. Furthermore,
infon constructors are uninterpreted functions, hence
can not be be deconstructed to yield the variables
they contain.

• Rulessplit and pdecare sound sinceF is closed under
φpair andφpenc .

• Rule un removesc = 〈m :T 〉 whenm is unifiable with
some termt ∈ T . Let τ = mgu(m, t). If σ is a solution
for C ′, thenστ is a solution forC provided thatTστ ⊢
mστ . This is obvious sinceTτ ⊢ mτ .

• Rulespair, hash, penc, sencand sig are sound sinceF
is closed under the correspondingφ rules of the attacker.

• Rulesdecreplaces the active constraintc = 〈m :T 〉, with
{|t|}k ∈ T , with the constraints〈k :T 〉 and〈m :T ∪{k, t}〉.
This rule is sound because ifk ∈ F(T), thenF(T) =
F(T ∪ {k}); moreover, sinceF is closed underφsdec ,
we haveF(T) = F(T ∪ {k, t}) given k ∈ F(T).

2) Proof of completeness:We show here that for every
constraint sequenceC and solutionσ of C, there exists a
rule r that reducesC to C ′, and σ is a solution ofC ′. In
other words, all solutions forC are preserved in at least one
reduction path.

Let 〈m :T 〉 be the active constraint inC. The proof relies
on the existence of anormal proof of Tσ ⊢ mσ, that is, a
proof tree such that no label appears more than once in any
path from the root to a leaf [7]:

Proposition 1. Let t be a ground term andT a set of ground
terms. If t 6∈ T and t ∈ F(T) then there exists a normal
sequenceφ1, · · · , φn such thatt ∈ φn(· · ·φ1(T)) and one of
the following conditions holds:

• φn is a synthesis rule
• φ1 is an analysis rule
• φi, for some1 ≤ i ≤ n, is φsdec and φ1, · · · , φi−1 are

synthesis rules

The proposition intuitively states that any normal sequence
φ1, · · · , φn such thatt ∈ φn(· · · , φ1(T)) can be reordered so
that analysis rules always appear earlier than synthesis rules,
except in the case whereφsdec is used (i.e. synthesis rules
appear beforeφsdec to construct a non-atomic key).

Finding an applicable rule.Let c = 〈m : T 〉 be the active
constraint inC and σ a solution ofC. Thenmσ ∈ F(Tσ).
Intuitively, MSReduce1 tries to apply a sequence of reduction
rules that reflects the order of a normal proof ofTσ ⊢ mσ as
indicated by proposition 1.

Recall that by definitionc does not contain stand-alone
variables neither on the left hand side (it is chosen as the
first constraint whose left hand side is not a variable) nor on
the right hand side (as all stand-alone variables are removed
by application of theelim rule). It follows that every term in
{m} ∪ T has a well-definedtop level structure, i.e. outermost
function application, against which applicability of a rule can
be checked.

If mσ ∈ Tσ, then ruleun is applicable. Ifmσ 6∈ Tσ then
we can assume a normal sequence of operatorsφ1, · · · , φn as
described in proposition 1. Ifφ1 is an analysis rule then there is
a termt ∈ T with corresponding top level structure, hence the
corresponding analysis rule can be applied. Similarly forφn

being a synthesis rule, sincem has a well-defined top structure
the corresponding synthesis rule can be applied. Finally, if φi

is φsdec then there is a term{| x |}y ∈ T that enables rule
sdec. Preserving the solution.Proving that each applicable rule
preserves the solution proceeds by cases, onφ1 if the rule is
an analysis rule, or onφn if the rule is a synthesis rule. For
brevity, we omit the details and explain only the proof for the
case ofsdec, i.e. in whichφi is φsdec andφ1 · · ·φi−1 are all
synthesis rules. Rulesdecreplaces the active constraintc =
〈m :T 〉 with constraintsc′ = 〈k :T 〉 andc′′ = 〈m :T ∪{k, t}〉,
for term {| t |}k ∈ T . Observe thatkσ ∈ φi−1(· · ·φ1(Tσ)),
otherwise rulesdecwould not be applicable, and consequently
σ is also a solution forc′. Also, sincekσ ∈ F(Tσ) andF is
idempotent, thenF(Tσ) = F(Tσ ∪ {kσ, tσ}), which shows
that σ is a solution forc′′.

