
Securing Interactive Programs

Willard Rafnsson Daniel Hedin Andrei Sabelfeld
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

Abstract—This paper studies the foundations of information-
flow security for interactive programs. Previous research as-
sumes that the environment is total, that is, it must always be
ready to feed new inputs into programs. However, programs
secure under this assumption can leak the presence of input.
Such leaks can be magnified to whole-secret leaks in the
concurrent setting. We propose a framework that generalizes
previous research along two dimensions: first, the framework
breaks away from the totality of the environment and, second,
the framework features fine-grained security types for commu-
nication channels, where we distinguish between the security
level of message presence and message content. We show that
the generalized framework features appealing compositionality
properties: parallel composition of secure program results in a
secure thread pool. We also show that modeling environments
as strategies leads to strong compositionality: various types
of composition (with and without scoping) follow from our
general compositionality result. Further, we propose a type
system that supports enforcement of security via fine-grained
security types.

I. INTRODUCTION

Motivation: Is program inH(x); outL(1) secure? This
program receives an input on a secret (high-confidentiality)
channel H , stores it in variable x, and outputs constant 1
on a public (low-confidentiality) channel L. Upon observing
the low output, the attacker can deduce that a high input has
been received. Hence, the presence of high input is revealed
(but not its value). This kind of leak is often undesirable. For
example, whether or not any communication with a medical
web site takes place in a given browser tab should not be
revealed to any web sites that are opened in the other tabs
of the browser.

Further, this leak can be magnified in the presence of
concurrency. Consider the following two programs:

inH0(x); outL(0) and inH1(x); outL(1)

where both H0 and H1 are high channels. Say these pro-
grams are run in parallel with the following thread:

inH(x); if x then outH1
(1) else outH0

(1)

First, a secret value is received and stored in the variable
x. Depending on its value, a message is sent on either H1

or H0. The parallel composition (where the scope of H0

and H1 is made internal to the thread pool) is obviously
insecure. Indeed, the parallel composition leaks whether or

not the secrets entered on the high channel H is zero. The
result of the leak is sent out on the low channel L. It is
straightforward to turn this example into a whole-secret leak
by wrapping the above threads into loops. The last thread
can then walk through the bits of a secret and the first two
threads output the bits on the public channel. (A similar
example can be constructed with a single high channel.)

while 1 do (inH0(x); outL(0))

|| while 1 do (inH1(x); outL(1))

|| inH(h); (1)
for b in bits(h) do

if b then outH1(1) else outH0(1)

As simple as this, the example points out a gap in
the research on security for interactive programs. Clearly,
when the presence of messages is secret, the program
inH(x); outL(1) is leaky. Surprisingly, the state-of-the-
art in security for interactive programs [OCC06], [CH08]
imposes the assumption of totality of the environment,
prescribing that the environment must always be ready
to feed new inputs into programs. (Note that totality of
environments is not to be confused with the notion of input
totality [McC87], which requires that a system in any state
can accept an input.)

On the other side of the spectrum is work that dis-
tinguishes between the security of message presence and
content [SM02], [AHS08], [RS11]. Such a distinction is
important for modeling encryption, where the observation
of a ciphertext reveals message presence but not its original
content. However, an unaddressed limitation of this work is
that it does not model full interaction with users or programs,
but simply assumes all input is precomputed and provided
by streams of values. In addition, there is also work that
neither models strategies nor protects the presence of secret
input [AHS08], [AS09], [BPS+09].

We propose a framework that bridges this gap and gen-
eralizes previous research along two dimensions: breaking
away from the totality of the environment and featuring
fine-grained security types for communication channels. The
rest of this section provides background on the security
of interactive programs, positions our contributions, and
overviews the results contained in the paper.

Background: We study reactive programs that are ca-
pable of consuming input from the environment, perform in-
ternal computation, and produce output to the environment.

Despite a body of work on interaction in process cal-
culi [FG95], [RS99], [HVY00], [Rya01], [HY02], [Pot02],
[Kob03] and event-based systems [Man00], [Man01],
[SM02], relatively little has been done on tracking the flow
of information through language constructs in interactive
languages. The state of the art in the area of security for
interactive programs is primarily the work by O’Neill et
al. [OCC06] and Clark and Hunt [CH08]. O’Neill et al. argue
for the need of direct reasoning on the security of interactive
programs, to complement the body of work on the security
of interactive systems in general. Inspired by Wittbold and
Johnson’s nondeducibility on strategies [WJ90], O’Neill et
al. investigate the security of interactive programs in the
presence of user strategies. A key example that shows
intricacies of reasoning about interactive programs originates
from Wittbold and Johnson:

while 1 do (

x := 0 8 x := 1;

outH(x); (2)
inH(y);

outL(x� y))

where 8 is nondeterministic choice. Assume the program
operates on binary values. Given an observation of low
output, any high input is consistent on the high channel.
However, the environment can make the program propagate
a secret value z to the low channel. All the environment
needs to do is to take the output (value of x) and xor it with
z and provide x � z as input. This example motivates the
need to reason about security of programs in the presence
of strategies [WJ90]. Clark and Hunt [CH08] focus on
reducing the security for interactive programs to the security
of programs that operate on streams of inputs (without
feedback). They prove that it makes no difference in a
deterministic setting whether the environment is represented
by strategies or streams.

Let us draw closer attention to the interactive setting of
the previous work [OCC06], [CH08]. Programs interact with
strategies using communication channels. The strategies are
functions that, given a trace that is observed on a certain
channel (or generally, a set of channels at a given observation
level), produce a value that serves as the next input for the
program. A critical assumption in this work is the totality of
the environment, which demands that strategies must always
be able to produce new inputs: there is no way for the
environment to block the program by not supplying an input,
as demonstrated earlier.

We argue that the assumption of totality limits the space
of possible attacks in an undesirable way. Recall the pro-
gram inH(x); outL(1). This program is considered secure

in [OCC06], [CH08]. However, when the environment has
the possibility of providing or not providing an input on the
secret channel, the program is clearly insecure. The output
on the low channel leaks the (one-bit) information about
whether or not an input is provided on the high channel.

Further, the impact of totality impedes on the compo-
sitionality of security definitions. Recall the example with
the three threads that opens this section. Similarly to the
initial program, these programs are considered secure. Yet
their parallel composition leaks high information on the low
channel.

Consider a possible modification of the previous models
to mimic nontotal environments by providing a special “no
further input available” value. With such a modification,
program inH(x); outL(1) can be ruled out as insecure,
provided that the input construct adequately treats the “no
further input available” value by blocking or crashing. We
choose to explicitly model the possibility for the environ-
ment to block the program, so that we do not need to modify
the semantics for input.

Contributions: This paper presents a generalized
framework for security via strategies, where the totality as-
sumption is dropped: the framework includes both total and
nontotal strategies. Further, we parametrize our policies in
the level of message presence. In other words, we distinguish
between the security level of message presence (existence)
and message content.

We illustrate that our generalized framework does not
break the relation to deterministic strategies and streams
from the work by Clark and Hunt for total strategies. Indeed,
we are able to “replay” the results by Clark and Hunt
(summarized below).

We show that the generalized framework features ap-
pealing compositionality properties: parallel composition of
secure program results in a secure thread pool. The power
of strategies gives us strong compositionality: we illustrate
that various types of composition (with and without scoping)
follow from our general compositionality result.

Finally, we provide a type system to illustrate how security
can be enforced for our framework. The fine-grained types
distinguish between the levels of message presence and
content and provide elegant rules for typing the parallel
composition.

Overview: Our results, combined with the results from
previous work, form the following big picture, displayed by
the diagram in Figure 1. The leftmost column in the diagram
comes from Clark and Hunt’s work [CH08]. The diagram
relates sets of programs that correspond to the security
conditions and the type system. As we walk through the
diagram, we will informally introduce the notation for the
sets. This notation is formalized later in the paper.

Our main security condition is strategy-based noninterfer-
ence. The set of secure programs according to this condi-
tion is Strat-NI. The first series of results (presented in

StratT-NI Strat-NI

= =

DST-NI
lp
=
)

DS-NI ⊇ TS

det
=⊆ det
=⊆

SST-NI) SS-NI

Figure 1. Overview

Section III) positions our condition with respect to other
strategy-based definitions. We show that it makes no dif-
ference for the security of a program whether the definition
only considers deterministic strategies (which corresponds to
the set DS-NI). This generalizes the result for total strate-
gies [CH08]. We establish that our condition captures attacks
that are not captured by programs StratT-NI secure under
total strategies. Hence the inclusions DST-NI) DS-NI and
StratT-NI) Strat-NI. At the same time, we show that
our condition is a conservative extension of noninterference
on total strategies, in the sense that the definitions coincide if
secrets are restricted to travel on channels with low-presence
levels (lp).

The series of the results (from Section IV) that cor-
responds to the last row in the diagram focuses on the
relation to stream models. We show that the results in the
total setting [CH08] are preserved in our generalization.
In particular, it makes no difference for the security of
deterministic programs (det) whether we use a strategy or
stream-based noninterference.

The next series of results (reported in Section V) is
about compositionality (marked by a box in the picture).
We show that the totality of the environment impedes on
compositionality properties in the previous work. In our
setting, we restore compositionality for a general type of
thread composition.

The final contribution is a type system (Section VI).
Typable programs are secure, hence the TS ⊆ DS-NI
inclusion. The novel rules are for the parallel composition
and for the treatment of presence levels on channels. The
compositionality results leverage high modularity of the type
system.

We proceed by setting up the framework (Section II),
followed by the main technical results (Sections III–VI). We
discuss related work (Section VII) and wrap the paper up
with concluding remarks (Section VIII).

II. FRAMEWORK

As outlined above, our aim is to secure information flows
in interactive programs. We address this issue in an adaption
of a standard framework for interactive programs [OCC06],
[CH08], [BPS+09], [RS11]. Here, information can only
enter and exit programs through channel-based message

passing. Each channel comes with a label expressing the
confidentiality level of the information it carries. We then
ensure that confidential information in inputs does not in-
fluence which public inputs and outputs the program can
perform.

A. Interactive Programs

Inputs i, outputs o, and messages a, last of which we also
refer to as (inter)actions, are given by

i ::= α?v o ::= α!v | τ a ::= i | o

where α?v (resp. α!v) denotes a message received (resp.
sent) on channel α carrying value v, and τ denotes a com-
putation step other than an interaction with an environment.
Here, α and v respectively range over the (unspecified
nonempty) sets C and V. Channels are the only external
interface to our systems, and are therefore the only medium
by which information can enter and exit our systems.

Our model of computation is a labeled transition system
(LTS). An LTS is a triple (S,A, { a−→| a ∈ A}), where S
is a set of states, A a set of actions, and for all a ∈ A,
a−→⊆ S × S. We write s a−→ when s a−→ s′ for some s′. The

behavior of an interactive program can be given as an LTS
as follows.

Definition II.1. An input-output LTS (IOLTS) is a LTS, with
A ranged by a, which is input-neutral, that is for all s ∈ S,
if ∃v . s α?v−−→, then ∀v . s α?v−−→.

Intuitively, if s is an IOLTS state which can, as its next
computation step, input i and enter state s′, then s

i−→ s′.
Likewise, s o−→ s′ if s can output o and enter s′. Practical
computation models native to this paradigm include event
loops and programs written in Erlang and JavaScript. Here,
states correspond to program configurations, that is, code
(and possibly a code pointer) paired with its environment,
and actions express an interaction of a running program
with its context. Section VI demonstrates how to give the
semantics of programs written in a simple nondeterministic
imperative programming language as an IOLTS.

Definition II.2. An IOLTS is deterministic iff
1) If s a1−→ s1, s a2−→ s2 and a1 6= a2, then a1 = α?v1 and

a2 = α?v2 for some α, v1 and v2.
2) If s a−→ s1, s a−→ s2, then s1 = s2.

Pt. 1) says that if s α?v−−→, then s a−→ iff a ∈ {α?v | v ∈ V},
and implicitly, if s o−→, then s a−→ iff a = o. Pt. 2) says that
s has no internal nondeterminism.

Let Tr denote the set a∗ of traces, ranged by t. We write
s

t−→ s′ when we have s a1−→ s1
a2−→ · · · an−−→ sn for some

t = a1. · · · .an and s1, . . . , sn with sn = s′. We let t �?,
t �! and t �α denote the inputs, outputs and α-messages,
in t, respectively. That is, if t = α?0.α′!1.α′?2.α!3, then
t�?= α?0.α′?2, t�!= α′!1.α!3 and t�α= α?0.α!3. We write
t ≤ t′′ when, for some t′, t′′ = t.t′.

B. Observables

The observables of an interactive program are its inputs
and outputs. Whether a message on a channel is observable
or not is indicated by the security levels associated with the
channel. We assume a lattice of security levels (L,v), with
L ranged by l, expressing levels of confidentiality. In our
examples, L = {L,H } and v= {(L,L), (L,H), (H ,H)},
H for “high” and L for “low” confidentiality. The channel-
to-levels labeling is denoted γ : C→v. Here, if γ(α) = ll21 ,
with ll21 abbreviating (l2, l1), then l1 is the confidentiality
level of values (content) passed on α, and l2 the confiden-
tiality level of the presence of a message on α. In examples,
we will frequently represent a channel by its security label.
We abbreviate LL, H L and HH by L, M and H, respectively.
No observer can see τ actions.

The security labels express who can observe what. An
observer is associated a security level l, indicating that the
observer is capable of observing values on α if l1 v l,
and the presence of messages on α if l2 v l, where
γ(α) = ll21 . We denote the l-observables in t by t �l. For
t = L?0.H!1.M?2.L!3, t�L= L?0.M?� .L!3. Here, � 6∈ V is
a “blank”, representing an unobservable value.

Definition II.3. t1 and t2 are l-equivalent, written t1 =l t2,
iff t1 �l= t2 �l.

So, l-equivalent traces are observably equivalent to an l-
observer. We write t ≤l t′′ if t =l t

′ for some t′ ≤ t′′.

C. Strategies

The inputs to our systems come from the environment
in which the system runs. The environment might vary the
input on a channel α depending on which interaction trace
t the environment has observed. Further, the environment
might pick an input value nondeterministically, or not input
any value at all. We model an environment as a mapping
from interaction traces t and channels α to the (possibly
empty) set of values V from which the environment draws
a value to input on request on α after observing t. To ensure
that an observer can attribute observably different interaction
traces to a leak in the interactive program, we place two
restrictions on the environments we take into consideration
in our framework. First, if the observer can observe values
passed on α, then the environment must be defined the same
way on α for all observably equivalent traces. Second, if
the observer can observe the presence of messages passed
on α, then the environment must, for each set of observably
equivalent traces, map all of them to (possibly different)
values, or map none of them to a value1. We refer to these
environments as strategies.

1Not considering strategies which, given an interaction trace t and an
input request on channel α, either return a value, or no value, does not
affect our security results (as our policy is possibilistic).

Definition II.4. A strategy is a function ω : C→Tr→P(V)
such that, for all α; γ(α) = ll21 , with ωα denoting ω(α),

t1 =l1 t2 =⇒ ωα(t1) = ωα(t2)

t1 =l2 t2 =⇒ ωα(t1)
.
= ωα(t2).

Here, A .
= B is defined as A = ∅ ⇐⇒ B = ∅, and

satisfies the following property.

A = B =⇒ A
.
= B. (3)

Let Strat denote the set of strategies. A strategy which
always inputs on α the number of past α-outputs can be
defined as ωα(t) = |t�α�!|.

Definition II.5. ω and ω′ are l-equivalent, written ω =l ω
′,

iff, for all α; γ(α) = ll21 and t,

l1 v l =⇒ ωα(t) = ω′α(t)

l2 v l =⇒ ωα(t)
.
= ω′α(t).

It is instructive to look at strategies as restrictions on
which traces are possible; t is consistent with ω, written
ω |= t, iff for all α?v, t′ and t′′ for which t = t′.α?v.t′′,
v ∈ ωα(t′). Running a system under a strategy thus con-
strains the traces which the system can perform, as system
inputs must come from the strategy; s produces t under ω,
written ω |= s

t−→, iff s t−→ and ω |= t.

D. Noninterference

Our security policy of interest is that of possibilistic
noninterference from [CH08], which is a generalization of
Definition 1 from [OCC06]. The policy states that under
observably equivalent strategies, drawn from W ⊆ Strat,
the respective sets of traces s produces under either of them
are observably equivalent.

Definition II.6. s is W -noninterfering iff

∀l .∀ω1, ω2 ∈W .ω1 =l ω2 =⇒

∀t1 .ω1 |= s
t1−→ =⇒ (NI)

∃t2 .ω2 |= s
t2−→ ∧ t1 =l t2.

The larger W is, the larger the space of attacks a W -
noninterfering s is protected from.

Definition II.7. A W -attack is a 4-tuple (l, ω1, ω2, t1) where
ω1, ω2 ∈W , ω1 =l ω2 and ω1 |= t1. It is an attack on s iff

1) ω1 |= s
t1−→, and

2) ∀t2 .ω2 |= s
t2−→ =⇒ t2 6=l t1.

It is easy to see that s is W -noninterfering iff there
is no W -attack on s. Let W -NI denote the set of W -
noninterfering programs. We say s is noninterfering iff
s ∈ Strat-NI.

We get the following lemma from Definition II.6, since a
W1-attack on s is a W2-attack on s, for any W1 ⊆W2.

Lemma II.8. For all W1,W2 ⊆ Strat, we have

W1 ⊆W2 =⇒ W2-NI ⊆W1-NI.

III. GENERALIZED STRATEGIES FOR NONINTERFERENCE

We now study the interplay between interactive programs,
channel labelings and strategies.

A. Total Strategies

First, we contrast Strat with the total strategies consid-
ered in [CH08], a subset of which is considered in [OCC06].

Definition III.1. ω is total iff ∀α, t .ωα(t) 6= ∅.

Let WT denote the set of total strategies in W . The set
of all total strategies is thus StratT. As outlined in the
introduction, programs which are protected against StratT-
attacks may still have Strat-attacks.

Theorem III.2. Strat-NI (StratT-NI.
Proof: Lemma II.8 gives Strat-NI ⊆ StratT-NI. We

now show the existence of a program in StratT-NI which
is not in Strat-NI. Program inH x; outL 0 is such a
program. It is in StratT-NI since totality of strategies in
StratT gives

∀ω ∈ StratT .∃v .ω |= s
H?v−−→,

and thus

∀ω ∈ StratT .∃v .ω |= s
H?v.L!0−−−−−→ .

So (NI) holds with l instantiated to L. (NI) with l instantiated
to H follows from ω1 =H ω2 =⇒ ω1 = ω2. However, this
program is not Strat-NI. In particular, consider

ω1α(t) =

{
{42} , if α = H
∅ , otherwise ω2α(t) = ∅

Clearly, ω1 =L ω2. However,

ω1 |= s
H?42.L!0−−−−−→

and
∀t .ω2 |= s

t−→ =⇒ t = ε 6=L H?42.L!0.

Thus (L, ω1, ω2,H?42.L!0) is a Strat-attack on this pro-
gram. This program is thus not in Strat-NI.

It is worth noting at this point that if we consider the
class of channel labelings where the presence and content
of messages are labeled with the same security level,

img(γ) = {ll | l ∈ L},

then by (3), the definition of strategies and l-equivalence
becomes the same as the one given in [CH08] and [OCC06].
Furthermore, StratT-noninterference becomes the same
policy as the one given in Definition 8 in [CH08] and,
for a subset StratN of StratT (called “narrow” strate-
gies in [CH08]) and for deterministic programs, StratN-
noninterference becomes the same policy as the one given

in Definition 1 in [OCC06]. Since inH x; outL 0 has no
StratT-attacks and is deterministic, it is secure according
to both these policies.

B. Deterministic Strategies

We have just witnessed the existence of a program which
has no StratT-attacks, but which has Strat-attacks, mean-
ing that there are interesting attacks in the space between
StratT- and Strat-attacks. We now take a closer look at
this space, characterizing a small subset of it as being of
interest. We first consider deterministic strategies.

Definition III.3. ω is deterministic iff ∀α, t . |ωα(t)| ≤ 1.

Let DS denote the set of deterministic strategies. We
sometimes write ωα(t) = ⊥ instead of ωα(t) = ∅ when ω is
deterministic. [CH08] shows that when considering whether
a s is protected against StratT-attacks or not, it is sufficient
to consider DST-attacks; this is Theorem 1 therein.

Proposition III.4 ([CH08]). StratT-NI = DST-NI.

It turns out that the same holds for strategies in general.

Theorem III.5. Strat-NI = DS-NI.
Proof: Same as proof of Theorem 1 in [CH08], as

totality is never invoked in the proof.

This theorem rules out the need to take into considera-
tion attacks which utilize nondeterminism to cause a leak.
However, the theorem does not make clear which abilities
the attacker must have in order to create a leak in interactive
programs which are not in Strat-NI. For instance, do some
programs need an infinite supply of input, perhaps only on
some channels and not others, to leak? Do we need to take
into consideration strategies which “discriminate” against
some interaction traces by, say, providing input only if an
even number of L-outputs has occurred prior?

The answer to both of these questions is no. We only need
to consider those DS-attacks (l, ω1, ω2, t1) where ω1α and
ω2α always feed α-input on request, as long as the interac-
tion trace has fewer α-inputs than t1 has. Furthermore, ω2

does not need to feed input on channels with 6v l presence
at all. The proof of this can be found in the appendix.

Lemma III.6. If (l, ω1, ω2, t1) is a Strat-attack on s, then
for some ω′1 and ω′2, where for all t and α; γ(α) = ll21 ,

(|t�α�?| < |t1 �α�?| ⇐⇒ ω′1α(t) 6= ∅),

l2 v l =⇒ (|t�α�?| < |t1 �α�?| ⇐⇒ ω′2α(t) 6= ∅), and

l2 6v l =⇒ ω′2α(t) = ∅,

(l, ω′1, ω
′
2, t1) is a DS-attack on s.

C. Public Presence Labels

The presence of an input on a channel with a secret
presence label has a significant impact on the space of
attacks to be considered to determine whether an interactive

program is noninterfering or not. Consider for instance the
class of channel labelings where message presence is always
public. We refer to these γ as lp labelings.

img(γ) = {l⊥ | l ∈ L}.

It turns out that when a program is labeled with such
a labeling, then it is sufficient to consider only StratT-
attacks to determine whether an interactive program is in
Strat-NI or not. Before proving this claim, we establish
two simple, but useful, lemmas. The first lemma states that
when ω1 =l ω2, then for any α with l-observable presence,
ω1α and ω2α will be (un)defined on exactly the same traces.

Lemma III.7. If ω1 =l ω2, then for all t and α; γ(α) = ll21 ,
if l2 v l, then ω1α(t) = ∅ ⇐⇒ ω2α(t) = ∅.

Proof: Follows from (3) and Definition II.5.

It is never the case that an attack works as a consequence
of one strategy supplying input on a channel with observ-
able presence, and the other strategy not doing so (on an
observably equivalent trace).

Lemma III.8. For all s, Strat-attacks (l, ω1, ω2, t1) on s,
α; γ(α) = ll21 and t, if l2 v l, then

∀v .ω2 |= s
t−→ s′ ∧ s′ α?v−−→ ∧ω2α(t) = ∅ =⇒ (4)

t.α?v 6≤l t1

Proof: Let s, and Strat-attack (l, ω1, ω2, t1) on s, be
given. By Definition II.7 Pt. 1), we have ∀t, α, v,

t.α?v ≤ t1 =⇒ v ∈ ω1α(t) 6= ∅.

By Definition II.4 we get ∀t, t′, α; γ(α) = ll21 ; l2 v l,

t =l2 t
′ =⇒ (ωjα(t) = ∅ ⇐⇒ ωjα(t′) = ∅).

Since ω1 =l ω2, Lemma III.7 yields ∀t, α; γ(α) = ll21 ; l2 v l,

ω1α(t) = ∅ ⇐⇒ ω2α(t) = ∅.

Together, this gives ∀t, α; γ(α) = ll21 ; l2 v l, v,

t.α?v ≤l t1 =⇒ ω2α(t) 6= ∅.

By contraposition, we get ∀t, α; γ(α) = ll21 ; l2 v l, v,

ω2α(t) = ∅ =⇒ t.α?v 6≤l t1.

(4) follows by specializing the premise of the implication.

We are now ready to prove the above-stated claim.

Theorem III.9. Strat-NI = StratT-NI for lp γ.
Proof: We prove DS-NI = DST-NI; the result

will then follow from Theorem III.5 and Proposition III.4.
DST ⊆ DS by definition of DST. By Lemma II.8,
DS-NI ⊆ DST-NI. We now show DS-NI ⊇ DST-NI, i.e.,

∀s . s ∈ DST-NI =⇒ s ∈ DS-NI.

We show instead the contrapositive. That is,

∀s . s 6∈ DS-NI =⇒ s 6∈ DST-NI. (5)

Let s 6∈ DS-NI be given. Then s has some DS-attack
(l, ω1, ω2, t1), that is, for some l, deterministic ω1 and ω2,
and t1,

1) ω1 =l ω2,
2) ω1 |= s

t1−→,
3) ∀t2 .ω2 |= s

t2−→ =⇒ t2 6=l t1.
By Lemmas III.7 and III.8, and by lp, we get ∀t, α,

ω1α(t) = ⊥ ⇐⇒ ω2α(t) = ⊥ (6)

and ∀t, α, v,

ω2 |= s
t−→ s′ ∧ s′ α?v−−→ ∧ω2α(t) = ⊥ =⇒ t.α?v 6≤l t1,∀v.

(7)
In particular, this holds if we fix v to a constant k. Let

ω′jα(t) =

{
k , if ωjα(t) = ⊥
ωjα(t) , otherwise.

We show that (l, ω′1, ω
′
2, t1) is a DST-attack on s, that is,

i) ω′1 =l ω
′
2

ii) ω′j is a deterministic total strategy,

iii) ω′1 |= s
t1−→

iv) ∀t2 .ω′2 |= s
t2−→ =⇒ t2 6=l t1.

It is easy to see that ∀t, α,

ω1α(t) = ω2α(t) = ⊥ =⇒ ω′1α(t) = ω′2α(t)

This, 1) and (6) gives i). For α for which γ(α) = ll21 , since
t =l2 t′ =⇒ ωjα(t) = ⊥ ⇐⇒ ωjα(t′) = ⊥ and
t =l1 t

′ =⇒ t =l2 t
′, then either ω′jα(t) = ω′jα(t′) = k or

ω′jα(t) = ωjα(t) and ω′jα(t′) = ωjα(t′). Thus, since ωj are
strategies, so are ω′j . By definition of ω′j , ω

′
j is total. Since

ωj is deterministic, then by definition of ω′j , so is ω′j . So ii)
holds. It is easy to see that ∀t, α,

ωjα(t) 6= ⊥ =⇒ ωjα(t) = ω′jα(t)

This, and 1), gives iii). By (7), iv) holds.
Thus s 6∈ DST-NI. Since s was arbitrary, (5) holds.

As a consequence, programs such as inM x; outL 0,
which we already know is StratT-noninterfering, are thus
Strat-noninterfering, since all interaction occurs on public
presence channels, and now flow of message content occurs.

IV. RELATION TO STREAMS FOR NONINTERFERENCE

As we saw in (2), in the presence of nondeterminism,
an attack (l, ω1, ω2, t1) sometimes needs to adapt to ob-
served nondeterministic choices, to then force the program
down different control flow paths, to then make a trace t1
producible under ω1 not matchable under ω2. However, as
demonstrated in [CH08] Theorem 2, in the StratT setting, if
the program in question is deterministic (as many programs

are), there are no nondeterministic choices made by the
program for an attack to cleverly adapt to. The space of
attacks we need to consider is thus much simpler; it suffices
to consider strategies which can be expressed as a (possibly
infinite) list of messages on each input channel, independent
on interaction traces. These are stream strategies.

Definition IV.1. ω is a stream strategy iff it is deterministic
and for all α, |t1 �α�?| = |t2 �α�?| =⇒ ωα(t1) = ωα(t2).

Proposition IV.2 ([CH08]). StratT-NI = SST-NI for
deterministic s.

We prove this result in the Strat setting. First we estab-
lish an insightful lemma; it says that, when a deterministic
program is run under a deterministic strategy, then it pro-
duces a unique (possibly infinite) sequence of interactions,
of which all interaction traces are prefixes. This is Lemma 4
in [CH08].

Lemma IV.3 ([CH08]). If s and ω are deterministic, then
if ω |= s

t1−→ and ω |= s
t2−→, then t1 ≤ t2 or t2 ≤ t1.

Proof: Same as proof of Lemma 4 in [CH08], as totality
is never invoked in the proof.

We now prove the above-stated result in the Strat setting.
The proof borrows the idea from [CH08] of “streamifying”
deterministic strategies on the set of traces on which they
are defined. Lemma IV.3 then gives us that this change does
not affect the set of traces a deterministic program produces
under the modified strategies.

Theorem IV.4. Strat-NI = SS-NI for deterministic s.
Proof: We prove DS-NI = SS-NI; the result will then

follow from Theorem III.5. SS ⊆ DS by definition of SS. By
Lemma II.8, DS-NI ⊆ SS-NI. We show DS-NI ⊇ SS-NI.
That is,

∀s . s ∈ SS-NI =⇒ s ∈ DS-NI.

We show instead the contrapositive. That is,

∀s . s 6∈ DS-NI =⇒ s 6∈ SS-NI.

Let s 6∈ DS-NI be given. Then there is a DS-attack
(l, ω1, ω2, t1) on s, that is,

1) ω1 =l ω2,
2) ω1 |= s

t1−→,
3) ∀t2 .ω2 |= s

t2−→ =⇒ t2 6=l t1.
and, by Lemma III.6,

|t�α�?| < |t1 �α�?| ⇐⇒ ω1α(t) 6= ∅,
l2 v l =⇒ (|t�α�?| < |t1 �α�?| ⇐⇒ ω2α(t) 6= ∅) (8)
l2 6v l =⇒ ω2α(t) = ∅.

Let

ω′jα(t) = {v | ωj |= s
t′.α?v−−−−→ for some

t′ with |t�α�?| = |t′ �α�?| }

We must show that
i) ω′1 =l ω

′
2,

ii) ω′j is a strategy,

iii) ω′1 |= s
t1−→,

iv) ω′2 |= s
t2−→ =⇒ t1 6=l t2, ∀t2.

For α = ll21 , since t =l2 t′ =⇒ |t�α�?| = |t′ �α�?| and
t =l1 t′ =⇒ t =l2 t′, then either ωjα(t) = ωjα(t′) =
ω′jα(t) = ω′jα(t′) = ⊥ or ω′1α(t) = ω′2α(t) = V for some
set V 6= ∅ of values. Thus, since ωj are strategies, ii) holds.

Before proceeding with proving i), we show that ω′j is
deterministic, and at the same time a stream strategy. We
first show ω′j is deterministic. Assume the contrary. Then
there are some t′1, t′2, v1, v2 such that

a) ω′j |= s
t′1.α?v1−−−−−→, ω′j |= s

t′2.α?v2−−−−−→,
b) |t′1 �α�?| = |t′2 �α�?|, and
c) v1 6= v2.

Lemma IV.3 gives t′1.α?v1 ≤ t′2.α?v2 or t′2.α?v2 ≤ t′1.α?v1.
Assume wlg. that t′1.α?v1 ≤ t′2.α?v2. Two cases to consider.
t′1.α?v1 < t′2.α?v2: Then t′1.α?v1 ≤ t′2. But

|t′1.α?v1 �α�?| = |t′1 �α�?|+ 1 > |t′1 �α�?| = |t′2 �α�?| ,

contradicting b).
t′1.α?v1 = t′2.α?v2: Then t′1 = t′2. But now Definition II.2

Pt. 1) gives v1 = v2, contradicting c).
So ω′j is deterministic. By definition, ω′j is also a stream
strategy. By (8),

|t�α�?| < |t1 �α�?| ⇐⇒ ω′1α(t) 6= ∅
l2 v l =⇒ (|t�α�?| < |t1 �α�?| ⇐⇒ ω′2α(t) 6= ∅) (9)
l2 6v l =⇒ ω′2α(t) = ∅.

We return to proving i). Let t be arbitrary. To show i), we
must show that for all α; γ(α) = ll21 for which l2 v l,
a’) ωα(t)

.
= ω′α(t),

b’) l1 v l =⇒ ωα(t) = ω′α(t).
There are three cases to consider.
1’) There exists no t′ for which we have |t′ �α�?| = |t�α�?|,

ω1 |= s
t′.α?v1−−−−→, ω2 |= s

t′.α?v2−−−−→, for any v1, v2. Then
ω′1α(t) = ω′2α(t) = ⊥, satisfying a’), and satisfying b’)
regardless of whether l1 v l holds or not.

2’) There exists a t′ for which we have |t′ �α�?| = |t�α�?|,
ω1 |= s

t′.α?v1−−−−→, ω2 |= s X t
′.α?v2−−−−→, for some v1 and all

v2. Then ω1α(t′) = v1 and ω2α(t′) = ⊥, contradicting
1), regardless of whether l1 v l holds or not. So a’) and
b’) hold. (the proof of the symmetric case is analogous,
so we omit it wlg.)

3’) There exists a t′ for which we have |t′ �α�?| = |t�α�?|,
ω1 |= s

t′.α?v1−−−−→, ω2 |= s
t′.α?v2−−−−→, for some v1, v2. Then

ω′1α(t) = v1 6= ⊥ and ω′2α(t) = v2 6= ⊥, satisfying a’).
Assume l1 v l. Then by 1), ω1α(t′) = ω2α(t′) = v for
some v. Then v1 = v and v2 = v, so ω′1α(t) = ω′2α(t).

So i) holds.
It remains to show iii) and iv). To do this, we show

ωj |= s
t−→⇐⇒ ω′j |= s

t−→ (10)

We proceed by induction in n = |t�?|.
n = 0: Assume ωj |= s

t−→. Then s
t−→. Since ω′j |= t

holds vacuously, ω′j |= s
t−→ holds. This proves the

forward implication of (10). The proof for the reverse
implication is analogous. Thus (10) holds.

n+ 1, assuming n: Assume (10) holds ∀t with |t�?| = n.
This is our induction hypothesis (IH). We prove (10) for
t with |t�?| = n+ 1. Let t = t′.α?v.t′′ with |t′′ �?| = 0.
Then |t′ �?| = n, so (10) holds with t set to t′.
Assume that ωj |= s

t−→ holds. Then s t−→ and ωj |= t.

Thus for any t̂ for which t̂ ≤ t, s t̂−→ and ωj |= t̂. In

particular, s t′.α?v−−−−→, ωj |= t′.α?v, and s t′−→, ωj |= t′.

Thus ωj |= s
t′.α?v−−−−→ and ωj |= s

t′−→. From the former,
we have ωjα(t′) = v. From the latter and by (IH), we

get ω′j |= s
t′−→. Since, by definition of ω′j , v ∈ ω′jα(t′)

and ω′j is deterministic, we get that ω′jα(t′) = v. Thus

ω′j |= s
t′.α?v−−−−→. Since s

t′.α?v−−−−→, ω′j |= t′.α?v and

|t′′ �?| = 0, we get s t−→, ω′j |= t, and thus ω′j |= s
t−→.

So the forward implication of (10) holds.
The proof for the reverse implication of (10) is nearly
symmetric.

iii) and iv) now follow from (10).

Notice, however, that even if we restrict ourselves to
deterministic programs, then there are still programs which
are protected against SST-attacks which may have SS-
attacks. The program presented in the proof of Theorem III.2
is an example of such a deterministic program.

Corollary IV.5. SS-NI (SST-NI.
Proof: Follows from Theorem III.2.

However, the construction of ω′j in the proof of Theo-
rem IV.4, together with (9), gives us that the space of attacks
to consider when securing deterministic interactive programs
is a small one; namely those with stream strategies supplying
a finite number of inputs on each input channel.

V. COMPOSITIONALITY

A common scenario for interactive programs is when
they interact with other interactive programs. It is therefore
of key importance to ensure that the interaction of secure
interactive programs does not create an information leak.
As we saw in the introduction, a seemingly innocuous leak
through message presence in one program can be magnified
when that program is run in parallel with other interactive
programs. We show that Strat-NI is compositional. That is,
the parallel composition of noninterfering programs yields
a noninterfering program. We thus guarantee the absence

s1
a−→ s′1

s1 ‖ s2
a−→ s′1 ‖ s2

s2
a−→ s′2

s1 ‖ s2
a−→ s1 ‖ s′2

Figure 2. Labeled Reduction Relation for Interactive Programs in Parallel

of high-bandwidth leaks through message presence in the
concurrent setting.

In theory and practice, there are scenarios and primitives
for almost any wirings of output channels to input channels,
fixed or runtime-changing, scoped or unscoped. To stay as
general as possible, we leave it to the environment to decide
how to route messages. This yields the very simple semantics
displayed in Figure 2. Here, any message outputted by
resp. inputted to the parallel composition s1 ‖ s2 of s1

and s2 is produced resp. consumed by exactly one of the
parallel components s1 and s2. A parallel composition of
interactive programs is then itself an interactive program,
and thus, all the results from Sections II through IV apply
to them. This “strategies as glue” approach has much appeal
for our security purposes; since all plugging and routing
is performed by strategies, and since strategies are general,
we can, by picking the right strategy, model different types
of composition. For instance, (1), with H 0, H 1, H and
L aliased H0, H1, M and L, would in practice ideally
scope channels H0 and H1 to be internal to the parallel
composition, and wire output-Hj to input-Hj , leaving input
channel M and output channel L as the external interface. A
strategy can achieve this wiring by implementing a buffer on
H0 and H1. A strategy for α which implements a message
buffer2 for channel α is given below, defined using pattern-
matching syntax similar to that of Haskell and ML.

ωα (t.α!v.t′.α?v.t′′) | (t�α= t′ �?�α= ε) = ωα t
′.t′′

ωα (t.α!v.t′) | (t�α= t′ �?�α= ε) = v

ωα t = ⊥

Using the above definition for H0 and H1, we obtain the
desired wiring, where no externals influence the communi-
cation on H0 and H1 (the reason for scoping them).

Note that our compositionality result can only be used to
reason about the security of programs which are running in
parallel. Consider sA[sB]: a program sA which after some
computation steps forks sB as a new thread. The behavior
of sA[sB] can be given as an IOLTS in terms of parallel
composition. When the forking occurs, q becomes a parallel
component. Thus, a secure sA[sB], in parallel with any
IOLTS, yields a secure composition. However, sB is not a
parallel component until sA[sB] has forked sB. Indeed, if
sA[sB]

t−→ s′A ‖ sB, then even if s′A and sB, and thus s′A ‖ sB,
are secure, then this does not imply the security of sA[sB] as

2Inputting from an empty buffer is impossible, and messages in the buffer
are inputted in FIFO order.

the occurrence of t can leak information. We discuss how to
track information flows in the presence of a forking construct
in Section VI.

We now prove our compositionality result. The idea here
is that given an attack on sA ‖ sB, we obtain an attack
on either sA or sB by incorporating sA into the attack
environment to produce an attack on sB, and vice versa.

Theorem V.1. For all sA and sB,

sA, sB ∈ Strat-NI =⇒ sA ‖ sB ∈ Strat-NI.

Proof: We show the contrapositive. That is,

sA ‖ sB 6∈ Strat-NI =⇒ sA 6∈ Strat-NI ∨ sB 6∈ Strat-NI.

Assume sA ‖ sB 6∈ Strat-NI. sA ‖ sB 6∈ DS-NI by
Theorem III.5. Then there is a DS-attack (l, ω1, ω2, t1) on
sA ‖ sB. Particularly,

∀t2 .ω2 |= sA ‖ sB
t2−→ =⇒ t2 6=l t1. (11)

By Lemma III.6,

∀α; γ(α) = ll21 . l2 6v l =⇒ ω2α = ∅.

Assume (towards a contradiction) that sA, sB ∈ Strat-NI.
Then, by Definition II.6, we have for k ∈ {A, B},

∀l′ .∀ω1k, ω2k ∈ Strat .ω1k =l′ ω2k =⇒

∀t1k .ω1k |= sk
t1k−−→ =⇒

∃t2k .ω2k |= sk
t2k−−→ ∧ t1k =l′ t2k. (12)

Pick t1A and t1B such that sA
t1A−−→, sB

t1B−−→ and t1A9t1 t1B.
Here, for any t̂, t̂1 and t̂2, t̂19t̂ t̂2 iff t̂ is an interleaving of t̂1
and t̂2. Recall that ω1 |= sA ‖ sB

t1−→. We construct ω1A, ω2A,
ω1B and ω2B for which ω1A =l ω2A and ω1B =l ω2B which, by
(12), contradict (11). Let j ∈ {1, 2}, k, k̄ ∈ {A, B}, k 6= k̄,
and, with α def

= ll21 ,

ωjkα(t) = {v | ∃t′1, t′k, t′k̄ . t =l2 t
′
k ∧ t′k 9t′1 t

′
k̄

∧ t′k.α?v ≤l t1k ∧ sk
t′k.α?v−−−−→

∧ t′k̄ ≤l t1k̄ ∧ sk̄
t′
k̄−→

∧ t′1.α?v ≤l t1 ∧ ωj |= sA ‖ sB
t′1.α?v−−−−→ }.

We show that ωjk are strategies. Let t =l2 t′. Assume
ωjkα(t) 6= ∅. Then for some v, v ∈ ωjkα(t). Let t′1, t′k and t′

k̄
be the evidence that v ∈ ωjkα(t) The only condition on t for
v ∈ ωjkα(t) to hold is t =l2 t

′
k. Since t =l2 t

′, t =l2 t
′
k by

transitivity. Thus t′1, t′k and t′
k̄

are evidence of v ∈ ωjkα(t′).
So v ∈ ωjkα(t′) 6= ∅. So ωjkα(t) = ωjkα(t′). Let t =l1 t

′.
Since l2 v l1, t =l2 t

′. Thus ωjkα(t) = ωjkα(t′).
We show that ω1k =l ω2k. Let t and α; γ(α) = ll21 be

arbitrary. Case on l.

l1 v l: Assume wlg. that v ∈ ω1kα(t). v ∈ ω2kα(t) must be
shown. Define pj such that

(∃t′1 . pj(t, t′1, v̂) ∧ ωj |= sA ‖ sB
t′1.α?v̂−−−−→)

⇐⇒ v̂ ∈ ωjkα(t).

Observe that p1 = p2. Since v ∈ ωjkα(t), we get for
some t′1,

p1(t, t′1, v) ∧ ω1 |= sA ‖ sB
t′1.α?v−−−−→ .

Since ω1 =l ω2, we get ω2 |= sA ‖ sB
t′1.α?v−−−−→. Since

p2 = p1, we get p2(t, t′1, v). Thus v ∈ ω2kα(t). Thus
we have

∀v . v ∈ ω1kα(t) ⇐⇒ v ∈ ω2kα(t).

l1 6v l and l2 v l: Assume wlg. that v ∈ ω1kα(t). We must
show v′ ∈ ω2kα(t). Define pj such that ∃t′1, t′k . pj(t, t′1, t′k) ∧ t′k.α?v̂ ≤l t1k ∧ sk

t′k.α?v̂−−−−→

∧t′1.α?v̂ ≤l t1 ∧ ωj |= sA ‖ sB
t′1.α?v̂−−−−→


⇐⇒ v̂ ∈ ωjkα(t).

Observe that p1 = p2. Since v ∈ ωjkα(t), we get for
some t′1 and t′k, p1(t, t′1, t

′
k) ∧ t′k.α?v ≤l t1k ∧ sk

t′k.α?v−−−−→

∧t′1.α?v ≤l t1 ∧ ω1 |= sA ‖ sB
t′1.α?v−−−−→


Since ω1 |= sA ‖ sB

t′1.α?v−−−−→, we have sA ‖ sB
t′1.α?v−−−−→

and v ∈ ω1α(t′1). Since ω1 =l ω2, we get v′ ∈ ω2α(t′1)

for some v′. By input neutrality, sA ‖ sB
t′1.α?v′−−−−→. So

ω2 |= sA ‖ sB
t′1.α?v′−−−−→. Since t′k.α?v =l t

′
k.α?v′,

t′k.α?v′ ≤l t1k. Likewise, since t′1.α?v =l t
′
1.α?v′,

t′1.α?v′ ≤l t1. Since sk
t′k.α?v−−−−→, we get by input

neutrality that sk
t′k.α?v′−−−−→. Since p2 = p1, we get

p2(t, t′1, t
′
k). Thus v′ ∈ ω2kα(t). Thus we have

(∃v . v ∈ ω1kα(t)) ⇐⇒ (∃v′ . v′ ∈ ω2kα(t)).

l2 6v l: The condition on t and α in Definition II.5 is
vacuously true in this case.

Since t and α were arbitrary, we get ω1k =l ω2k.
We show that ω1A |= sA

t1A−−→. We already have sA
t1A−−→,

sB
t1B−−→, t1A 9t1 t1B and ω1 |= sA ‖ sB

t1−→. We proceed by
induction in n = |t1A �?|.
n = 0: Since sA

t1A−−→ and t1A has no inputs, ω1A |= sA
t1A−−→

holds vacuously.
n+ 1, given n: Assume ω1A |= sA

t1A−−→ for t1A with
|t1A �?| = n; this is our induction hypothesis (IH). For
some t′′1A with |t′′1A �?| = 0, t1A = t′1A.α?v.t′′1A. By (IH)

we have ω1A |= sA
t′1A−−→. By definition of t′1A, we have

for some t′1B and t′1 for which t′1B ≤ t1B, t′1 ≤ t1, and

t′1A 9t′1 t
′
2B that ω1A |= sA ‖ sB

t′1.α?v−−−−→. By sA
t1A−−→ and

sB
t1B−−→ we get sA

t1A.α?v−−−−→ and sB
t′1B−−→. Since ≤⊆≤l,

we get by definition of ω1A that v ∈ ω1A(t
′
1A). Thus

ω1A |= sA
t′1A.α?v−−−−→. Since |t′′1A �?| = 0 and sA

t1A−−→, we
get ω1A |= sA

t1A−−→.

Likewise (swap As and Bs), ω1B |= sB
t1B−−→.

Assume that ω2A |= sA
t2A−−→ and ω2B |= sB

t2B−−→ such that
t1A =l t2A and t1B =l t2B. We show that there then is a
t2 for which t2 =l t1 and ω2 |= sA ‖ sB

t2−→, contradicting
(11). We consider the interesting case where |t2A �?| > 0 and
|t2B �?| > 0 (if, say, |t2A �?| = 0, then sA ‖ sB 6∈ DS-NI ⇐⇒
sB 6∈ DS-NI). Let t2A = t′2A.iA.t

′′
2A and t2B = t′2B.iB.t

′′
2B

such that |t′′2A �?| = 0 and |t′′2B �?| = 0. Let iA = αA?vA
and iB = αB?vB. By definition of (ω2A)αA

and (ω2B)αB
, we

have vA ∈ (ω2A)αA
(t′2A) and vB ∈ (ω2B)αB

(t′2B). Thus for
some tA1 and tB1 for which tA1.iA ≤l t1 and tB1.iB ≤l t1, we

have ω2 |= sA ‖ sB
tA1.iA−−−→ and ω2 |= sB ‖ sB

tB1.iB−−−→. Since
ω2α′ = ∅ for all α′ = l′1

l′2 with l′2 6v l, tA1.iA �?= tA1.iA �?�l
and tB1.iB �?= tB1.iB �?�l. Since tA1.iA ≤l t1 and tB1.iB ≤l t1,
then either tA1.iA ≤l tB1.iB ≤l t1 or tB1.iB ≤l tA1.iA ≤l t1.
Assume tB1.iB ≤l tA1.iA ≤l t1 wlg.. Then by definition of tA1
and tB1, tA1.iA �?�l = t1 �?�l (iA is l-equivalent with the last
observable input in t1). Thus t1 = t′1.t

′′
1 for some t′1 and t′′1

for which tA1.iA =l t
′
1 and |t′′1 �?�l| = 0. Now, there is some

t̂′′1 for which t̂′′1 =l t
′′
1 and t′′2A9t̂′′1 t

′′
2B. For any such t̂′′1 , since∣∣t̂′′1 �?

∣∣ = 0 and, as established before, ω2 |= sA ‖ sB
tA1.iA−−−→,

ω2 |= sA ‖ sB
tA1.iA.t̂

′′
1−−−−→. But tA1.iA.t̂

′′
1 =l t1, contradicting

(11). So, either

∀t2A .ω2A |= sA
t2A−−→ =⇒ t2A 6=l t1A, or

∀t2A .ω2B |= sB
t2B−−→ =⇒ t2A 6=l t1A.

Thus, either sA 6∈ Strat-NI or sB 6∈ Strat-NI.

It is worth noting that the compositionality result does
not condition on whether the interactive programs are de-
terministic or not. This means that programmers can write
deterministic programs, establish that the programs are se-
cure using an enforcement mechanism for deterministic pro-
grams, freely compose the programs, and obtain a guarantee
that the composition is secure, even though ‖ introduces
nondeterministic behavior.

VI. ENFORCEMENT

This section presents a small nondeterministic imperative
programming language with input and output primitives,
and develops a type system that differentiates between the
security of the presence of messages and the security of their
content. We show that the type system enforces DS-NI. In
addition, we show how the language (and type system) can
be safely extended with top-level parallelism, and establish

soundness of the extension. Finally, we illustrate how to
track flows in the presence of a fork command.

A. Syntax

Assume a standard expression language ranged over by
e. The commands form a while language, extended with
nondeterministic choice (c1 8c2), input (inα(x)), and output
(outα(e)).

c ::= x := e | inα(x) | outα(e) | c1; c2 | c1 8 c2
| if e then c1 else c2 | while e do c

B. Semantics

Let V be any set containing 0, and let σ range over
variable environments, i.e., maps from variables to values.
Following [OCC06] let σ(e) denote the evaluation of e in
σ. The configurations are pairs of variable environments
and commands. The semantics of commands is of the form
〈σ1, c1〉

a−→ 〈σ2, c2〉, read the configuration 〈σ1, c1〉 evaluates
in one step to the configuration 〈σ2, c2〉 with action a.

The rules of the semantics can be found in Table I. Most
rules are entirely standard. Nondeterminism and input is
modeled by underspecification. In the former case, either of
the rules nd1 and nd2 can be chosen to evaluate nondeter-
ministic choice. In the latter case, the strategy the program is
run against selects which input transitions are possible, see
Section II. Terminal configurations contain special-purpose
command skip.

The relation in Table I forms an IOLTS in the sense of
Section II with 〈σ, c〉 as states and τ−→ denoted −→. The
behavior of c is modeled as an IOLTS by 〈〈〉, c〉, where
〈〉 = λx . 0 (the initial configuration of c).

C. Type system

Let the type environments Γ be maps from variables
to security levels, l. For clarity let pc denote the security
context, used to track implicit flows, and let τ denote
security levels of values.

The expression typing judgments are given as Γ ` e : τ ,
where Γ(x) v τ for each x occurring in e, and the typing
judgments for commands have the form pc, l,Γ `γ c : l′,
where the lexical context pc is a lower bound of the effects
(assignments, inputs and outputs) in c, the blocking context l
is a lower bound of the actions (inputs and outputs) of c, and
the blocking level l′ an upper bound of the security level of
the blocking behavior of c. In addition, the typing judgments
are parametrized on a channel labeling γ that ranges over
L, M, and H.

The type rules for commands are found in Table II. They
are standard apart from the addition of the blocking context
and the blocking level. Rule asn prohibits implicit flows by
taking the security context into account, where the security

nd1
〈σ, c1 8 c2〉 → 〈σ, c1〉

nd2
〈σ, c1 8 c2〉 → 〈σ, c2〉

asn
〈σ, x := e〉 → 〈σ[x 7→ σ(e)], skip〉

if1
σ(e) 6= 0

〈σ, if e then c1 else c2〉 → 〈σ, c1〉
if2

σ(e) = 0

〈σ, if e then c1 else c2〉 → 〈σ, c2〉
seq1

〈σ1, c1〉
a−→ 〈σ2, c′1〉 c′1 6= skip

〈σ1, c1; c2〉
a−→ 〈σ2, c′1; c2〉

wh1
σ(e) 6= 0

〈σ, while e do c〉 → 〈σ, c; while e do c〉
wh2

σ(e) = 0

〈σ, while e do c〉 → 〈σ, skip〉
seq2

〈σ1, c1〉
a−→ 〈σ2, skip〉

〈σ1, c1; c2〉
a−→ 〈σ2, c2〉

in
〈σ, inα(x)〉 α?v−−−→ 〈σ[x 7→ v], skip〉

out
〈σ, outα(e)〉 α!σ(e)−−−−→ 〈σ, skip〉

Table I
SEMANTICS OF COMMANDS

nd
pc, l1,Γ `γ c1 : l2 pc, l1,Γ `γ c2 : l2

pc, l1,Γ `γ c1 8 c2 : l2
asn

Γ ` e : τ pc t τ v Γ(x)

pc, l,Γ `γ x := e : L
seq

pc, l1,Γ `γ c1 : l2 pc, l1 t l2,Γ `γ c2 : l3

pc, l1,Γ `γ c1; c2 : l2 t l3

inL
γ(α) = L

L,L,Γ `γ inα(x) : L
inM

γ(α) = M H v Γ(x)

L,L,Γ `γ inα(x) : L
inH

γ(α) = H H v Γ(x)

pc, l1,Γ `γ inα(x) : l2

outL
γ(α) = L Γ ` e : L

L,L,Γ `γ outα(e) : L
outM

γ(α) = M

L,L,Γ `γ outα(e) : L
outH

γ(α) = H

pc, l,Γ `γ outα(e) : L

if

Γ1 ` e : τ pc t τ, l1,Γ `γ c1 : l2
pc t τ, l1,Γ `γ c2 : l2

pc, l1,Γ `γ if e then c1 else c2 : l2
wh

Γ ` e : τ pc t τ, l1,Γ `γ c : l2 l2 v l1
pc, l1,Γ `γ while e do c : pc t τ t l2

sb

pc2, l2,Γ `γ c : l3
pc1 v pc2 l1 v l2 l3 v l4

pc1, l1,Γ `γ c : l4

Table II
TYPE RULES OF COMMANDS

context is raised to the security level of the expressions
guarding the control flow in rules if, and wh.

The blocking level expresses whether the blocking be-
havior of a command depends on secrets or not. Hence,
a command with secret blocking level, pc, l,Γ `γ c : H ,
may diverge and/or input-block, depending on secrets. This
implies that any succeeding commands cannot be allowed
to have public actions, i.e., the succeeding command must
be typable in a secret blocking context, as seen in rule seq.
Otherwise a leak occurs, as demonstrated in the introduction.
There the example program inH(x); outL(1) was used,
but any source of secret blocking must lead to the same
restrictions, as illustrated by rules inH and wh.

In contrast to previous work [OCC06], our type system
allows secret blocking levels. A program well-typed with
a secret blocking level can block depending on secret
information, but that blocking will not influence public
actions performed by the program. This discipline is similar
to the handling of while loops by Boudol and Castel-
lani [BC02] and Smith [Smi01], where assignments to public
variables are prevented from happening after any possibility
of entering loops with high guards. A key difference in
our approach is the blocking context, which distinguishes
internal side effects (due to assignment) from external side
effects (due to output and input, which are not treated by
Boudol, Castellani, or Smith). Assuming h is secret and l
is public, it allows us to rightfully accept secure programs

like inH(x); l := 1 and (while h do h := h); l := 1, which
are problematic in the shared-memory concurrency setting
considered by Boudol, Castellani, and Smith.

All commands with public actions — rules inL, inM,
outL, and outM — are constrained to run in public se-
curity and blocking level. This means that the program
inH(x); outL(1) is not accepted by the type system,
whereas inM (x); outL(1) is. Also, the order of instructions
matters as indicated by the threading in rule seq. Hence,
outL(1); inH(x) is accepted by the type system since the
secret-presence input occurs after the public output.

Theorem VI.1. Soundness of the type system.

pc, l1,Γ `γ c : l2 =⇒ 〈〈〉, c〉 ∈ DS-NI

Proof: The proof can be found in the appendix.

D. Parallel Composition

We add top-level parallel composition to the language. A
program p is a command or two programs in parallel.

p ::= c | p1 ‖ p2

We obtain a semantics for parallel composition by lifting the
parallel composition operator to the level of IOLTSs; with

JcK = 〈〈〉, c〉 Jp1 ‖ p2K = Jp1K ‖ Jp2K,

the semantics for parallel composition is as presented in
Section V. Typing parallel composition is done by typing all
participating commands using the same channel labeling.

parc
pc, l1,Γ `γ c : l2

`γ c
par
`γ p1 `γ p2

`γ p1 ‖ p2

Since the type system guarantees DS-NI, the soundness of
parallel composition follows from the soundness of the type
system and the compositionality result of Section V.

Theorem VI.2. Soundness of parallel composition.

`γ p =⇒ JpK ∈ DS-NI

Proof: Immediate from Theorems VI.1 and V.1.

E. Fork command

On a last note, say our language contains a fork(c)
primitive, which, when executed, will cause 〈σ, c〉 to run
in parallel with the executing IOLTS, where σ is either 〈〉
or (a copy of) the variable environment of the executing
IOLTS. If c produces L effects, and fork(c) is executed
in a H context, then an information leak can occur, as in
inM(h); if h then fork(outL(0)) else h := h. To track
flows in the presence of fork(c), we suggest typing c under
the context of creation of 〈σ, c〉, as in the following rule.

fork
pc, l,Γ `γ c : l′

pc, l,Γ `γ fork(c) : l

Note the l′ because c cannot, by blocking, constrain the
behavior of the IOLTS executing fork(c).

VII. RELATED WORK

Security of interactive systems has been investigated in
the context of process calculi [FG95], [RS99], [HVY00],
[Rya01], [HY02], [Pot02], [Kob03] and event-based abstrac-
tions [Man00], [Man01], [SM02]. Connections with security
models for more concrete programming languages have been
made [MS03], [FRS05]. However, relatively little has been
done on tracking the flow of information through language
constructs in interactive languages.

Strategy-based models: Wittbold and Johnson [WJ90]
are the first to define strategy-based information-flow secu-
rity. In a language-based setting, O’Neill et al. [OCC06] in-
vestigate the security of interactive programs in the presence
of user strategies. They present a strategy-based security
condition and a type system that guarantees security. Our
framework generalizes this work by distinguishing the secu-
rity level for message presence and removing the assumption
of the totality for strategies. Compared to the type system by
O’Neill et al., our type system (i) tracks the level of message
presence, (ii) handles parallel composition, and (iii) has more
permissive rules for loops.

Clark and Hunt [CH08] prove that it makes no differ-
ence in a deterministic setting whether the environment is
represented by strategies or streams. Our results can be

seen as a generalization along two dimensions. The first
dimension allows both total and nontotal strategies. The
second dimension parametrizes in the presence level for
channels.

Stream-based models: Streams are commonly used for
representing the interaction environment of programs. Our
generalization of Clark and Hunt’s results ensures that using
streams does not sacrifice generality, as long as programs are
deterministic.

Sabelfeld and Mantel [SM02] investigate the impact of
different types of channels (secret, encrypted, public) and
different types of communication (synchronous and asyn-
chronous) on information-flow security. The encrypted chan-
nel is similar to our low-presence channel, where only the
presence (not the content) of messages is visible to attackers.
The origins of presence and content levels are in security
labels for datatypes. For example, Jif [Mye99], [MZZ+01]
allows arrays, where the length of the array is public but the
individual elements are secret.

Communication is modeled by streams in security formal-
izations by Askarov et al. [AHS08] for a language with cryp-
tographic primitives, and by Askarov and Sabelfeld [AS09]
for a language with dynamic code evaluation and declassi-
fication primitives.

Askarov et al. [AHSS08] clarify the impact of leaking
information via intermediate output. They investigate a
condition that is insensitive to computation progress and
show that the attacker cannot learn secret information in
polynomial time in the size of the secret. This implies
that restrictions on language constructs that might result in
abnormal termination or divergence, originating in classical
security analysis [DD77], [VSI96] and supported in modern
information-flow tools Jif [MZZ+01], FlowCaml [Sim03],
and the SPARK Examiner [Bar03], [CH04], are not strong
enough to prevent brute-force attacks.

Bohannon et al. [BPS+09] propose security definitions for
reactive systems that correspond to four indistinguishability
relations on streams. They emphasize CP-security (sensitive
to computation progress) and ID-security (insensitive to
computation progress and thus similar to the one by Askarov
et al. [AHSS08]).

In a stream-based setting, Rafnsson and Sabelfeld [RS11]
distinguish the security level of message presence and con-
tent, accommodate new handler creation, and deploy output
buffering to reduce leaks through intermediate output to at
most one bit per consumed public input.

Devriese and Piessens [DP10] suggest splitting the ex-
ecution of a program onto threads operating at different
security levels. Only the thread at a given level is allowed
to produce output on a channel labeled with the level. An
input at a given security level is processed by the thread
at that level and forwarded to threads that are above in the
security hierarchy. With some care taken when scheduling
the threads (as spelled out by Kashyap et al. [KWH11]), it

is possible to achieve both timing- and termination-sensitive
noninterference.

Local interaction: Almeida Matos et al. [ABC07]
consider local synchronous composition of threads under
cooperative scheduling. They study a reactive setting, where
treads can broadcast and react to local signals. They propose
a formalization of noninterference for this setting and a type
system that enforces it. The focus is primarily on suspension
features and leaks associated with them.

VIII. CONCLUSION

We have presented a generalized framework for securing
interactive programs. The framework drops the assumption
from previous work that strategies must be always able to
feed new input into the system. Further, the framework en-
ables fine-grained security types for channels, distinguishing
between the security level of message presence and content.

We have established compositionality of the security
condition: assorted compositions of secure threads result in
a secure thread pool. We have showed an enforcement of
the condition via a type system. The type system capitalizes
on the distinction between the security level of message
presence and content, as well as on the compositionality
properties.

Future work is focused on exploring the impact of non-
determinism on the security condition. We are interested in
tight stream-based approximations of strategy-based security
as well as in a type system that tracks the interplay between
nondeterminism and interaction.

ACKNOWLEDGMENTS

This work was funded by the European Community under
the WebSand project and the Swedish research agencies SSF
and VR.

REFERENCES

[ABC07] A. Almeida Matos, G. Boudol, and I. Castellani. Typing non-
interference for reactive programs. Journal of Logic and
Algebraic Programming, 72:124–156, 2007.

[AHS08] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-
masked flows. Theoretical Computer Science, 402:82–101,
August 2008.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proc.
European Symp. on Research in Computer Security, vol-
ume 5283 of LNCS, pages 333–348. Springer-Verlag, October
2008.

[AS09] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In Proc.
IEEE Computer Security Foundations Symposium, July
2009.

[Bar03] J. Barnes. High Integrity Software: The SPARK Approach
to Safety and Security. Addison-Wesley Longman Publish-
ing Co., Inc. Boston, MA, USA, 2003.

[BC02] G. Boudol and I. Castellani. Non-interference for concurrent
programs and thread systems. Theoretical Computer Sci-
ence, 281(1):109–130, June 2002.

[BPS+09] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg,
Stephanie Weirich, and Steve Zdancewic. Reactive noninter-
ference. In ACM Conference on Computer and Commu-
nications Security, pages 79–90, November 2009.

[CH04] R. Chapman and A. Hilton. Enforcing security and safety
models with an information flow analysis tool. ACM SIGAda
Ada Letters, 24(4):39–46, 2004.

[CH08] D. Clark and S. Hunt. Noninterference for deterministic
interactive programs. In Workshop on Formal Aspects in
Security and Trust (FAST’08), October 2008.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Comm. of the ACM, 20(7):504–513,
July 1977.

[DP10] D. Devriese and F. Piessens. Non-interference through secure
multi-execution. In Proc. IEEE Symp. on Security and
Privacy, May 2010.

[FG95] R. Focardi and R. Gorrieri. A classification of security
properties for process algebras. J. Computer Security,
3(1):5–33, 1995.

[FRS05] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-
based and process calculi security. In Proc. Foundations
of Software Science and Computation Structure, volume
3441 of LNCS, pages 299–315. Springer-Verlag, April 2005.

[HVY00] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information
flow as typed process behaviour. In Proc. European Symp.
on Programming, volume 1782 of LNCS, pages 180–199.
Springer-Verlag, 2000.

[HY02] K. Honda and N. Yoshida. A uniform type structure for secure
information flow. In Proc. ACM Symp. on Principles of
Programming Languages, pages 81–92, January 2002.

[Kob03] N. Kobayashi. Type-based information flow analysis for the
pi-calculus. Technical Report TR03-0007, Tokyo Institute of
Technology, October 2003.

[KWH11] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a new
approach. In Proc. IEEE Symp. on Security and Privacy,
2011.

[Man00] H. Mantel. Possibilistic definitions of security – An assembly
kit –. In Proc. IEEE Computer Security Foundations
Workshop, pages 185–199, July 2000.

[Man01] H. Mantel. Information flow control and applications—
Bridging a gap. In Proc. Formal Methods Europe, volume
2021 of LNCS, pages 153–172. Springer-Verlag, March 2001.

[McC87] D. McCullough. Specifications for multi-level security and
hook-up property. In Proc. IEEE Symp. on Security and
Privacy, pages 161–166, April 1987.

[MS03] H. Mantel and A. Sabelfeld. A unifying approach to the secu-
rity of distributed and multi-threaded programs. J. Computer
Security, 11(4):615–676, September 2003.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. ACM Symp. on Principles of Program-
ming Languages, pages 228–241, January 1999.

[MZZ+01] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[OCC06] K. O’Neill, M. Clarkson, and S. Chong. Information-flow
security for interactive programs. In Proc. IEEE Com-
puter Security Foundations Workshop, pages 190–201,
July 2006.

[Pot02] F. Pottier. A simple view of type-secure information flow
in the pi-calculus. In Proc. IEEE Computer Security
Foundations Workshop, pages 320–330, June 2002.

[RS99] P. Ryan and S. Schneider. Process algebra and non-
interference. In Proc. IEEE Computer Security Founda-
tions Workshop, pages 214–227, June 1999.

[RS11] W. Rafnsson and A. Sabelfeld. Limiting information leakage
in event-based communication. In Proc. ACM Workshop
on Programming Languages and Analysis for Security
(PLAS), June 2011.

[Rya01] P. Ryan. Mathematical models of computer security—tutorial
lectures. In R. Focardi and R. Gorrieri, editors, Foundations
of Security Analysis and Design, volume 2171 of LNCS,
pages 1–62. Springer-Verlag, 2001.

[Sim03] V. Simonet. The Flow Caml system. Software release. Located
at http://cristal.inria.fr/∼simonet/soft/flowcaml, July 2003.

[SM02] A. Sabelfeld and H. Mantel. Static confidentiality enforcement
for distributed programs. In Proc. Symp. on Static Analy-
sis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
September 2002.

[Smi01] G. Smith. A new type system for secure information flow. In
Proc. IEEE Computer Security Foundations Workshop,
pages 115–125, June 2001.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

[WJ90] J. T. Wittbold and D. M. Johnson. Information flow in
nondeterministic systems. In Proc. IEEE Symp. on Security
and Privacy, pages 144–161, 1990.

APPENDIX

A. Notation

In the following, $::=? |!. The inputs in t, written t�?, is
given by

α$v.t′ �? =

{
α$v.(t′ �?) , if $ =?
t�? , otherwise.

The outputs in t, written t �!, is defined analogously. The
α-messages in t, written t�α, is given by

α$v.t′ �′α =

{
α$v.(t′ �α) , if α′ = α
t�α , otherwise.

The l-observables in t, written t�l, is given by

α$v.t�l =

 α$v.(t�l) , if γ(α) = ll21 and l1 v l
α$ � .(t�l) , if γ(α) = ll21 and l2 v l
t�l , otherwise.

For all of these �-operators, ε�= ε and (τ.t)�= t�. P(A) is
the powerset of A. |A| is the number of elements of A. |t|
is the number of actions in t. t′ ≤ t if there is some t′ for
which t = t′t′′.

B. Bounded Strategies

Consider strategies which, for each α, are total on the set
of traces traces which contains a number of α-inputs less
than some bound n. We refer to these as bounded strategies.

Definition A.1. ω is bounded if for all α, there is an n for
which |t�α�?| < n ⇐⇒ ωα(t) 6= ∅.

Let WB denote the set of bounded strategies in W .

Definition A.2. ω refines ω′, written ω ≤ ω′, iff for all α
and t, ωα(t) ⊆ ω′α(t).

Lemma A.3 ([CH08]). If ω ≤ ω′ and ω |= s
t−→, then

ω′ |= s
t−→.

It turns out we only need to consider attacks containing
deterministic, bounded strategies when checking for insecure
flows in an interactive program.

Proposition A.4. Strat-NI = DSB-NI.
Proof: We prove DS-NI = DSB-NI; the result will

then follow from Theorem III.5. DSB ⊆ DS by definition of
StratB. By Lemma II.8, DS-NI ⊆ DSB-NI. We now show
DS-NI ⊇ DSB-NI. That is,

∀s . s ∈ DSB-NI =⇒ s ∈ DS-NI.

We show instead the contrapositive. That is,

∀s . s 6∈ DS-NI =⇒ s 6∈ DSB-NI. (13)

Let s 6∈ DS-NI be given. Then there is a DS-attack
(l, ω1, ω2, t1) on s. Particularly,

1) ω1 =l ω2,
2) ω1 |= s

t1−→,
3) ∀t2 .ω2 |= s

t2−→ =⇒ t2 6=l t1.

Let

ω′jα(t) =

{
⊥ , if |t�α�?| ≥ |t1 �α�?|
ωjα(t) , otherwise.

We must show that

i) ω′1 =l ω
′
2,

ii) ω′j is a strategy,

iii) ω′1 |= s
t1−→,

iv) ∀t2 .ω′2 |= s
t2−→ =⇒ t1 6=l t2.

We have i) from 1) since, for all t and α,

ω1α(t) 6= ω′1α(t) = ⊥ =⇒ ω′2α(t) = ⊥
ω2α(t) 6= ω′2α(t) = ⊥ =⇒ ω′1α(t) = ⊥.

For α for which γ(α) = ll21 , since t =l2 t
′ =⇒ |t�α�?| =

|t′ �α�?| and t =l1 t
′ =⇒ t =l2 t

′, then either ωjα(t) =
ωjα(t′) = ω′jα(t) = ω′jα(t′) = ⊥ or ω′jα(t) = ωjα(t) and
ω′jα(t′) = ωjα(t′). Thus, since ωj are strategies, ii) holds.
Since for all α?v and t, t.α?v ≤ t1 =⇒ |t�α�?| < |t1 �α�?|,
we get ω′1α(t) = ω1α(t) = v. Thus ω1 |= t1. Since s t1−→,
we get iii) by definition of s t1−→. We have iv) by Lemma A.3
since ω′2 ≤ ω2.

By Lemmas III.7 and III.8, ∀t, α; γ(α) = ll21 ; l2 v l,

ω′1α(t) = ⊥ ⇐⇒ ω′2α(t) = ⊥ (14)

and ∀t, α; γ(α) = ll21 ; l2 v l, v,

ω′2 |= s
t−→ s′ ∧ s′ α?v−−→ ∧ω′2α(t) = ⊥ =⇒ t.α?v 6≤l t1,∀v.

(15)

In particular, this holds if we fix v to a constant k. Let

ω̂′jα(t) =

{
k , if |t�α�?| < |t1 �α�?| ∧ ω′jα(t) = ⊥,
ω′jα(t) , otherwise.

ω′′1α(t) = ω̂′1α(t)

ω′′2α(t) =

{
⊥ , if α = ll21 ∧ l2 6v l,
ω̂′2α(t) , otherwise.

We must show that
a) ω′′1 =l ω

′′
2 ,

b) ω′′j is a strategy,

c) ω′′1 |= s
t1−→,

d) ω′′2 |= s
t2−→ =⇒ t1 6=l t2, ∀t2.

We have a) from i) since, for all t and α; γ(α) = ll21 ; l2 v l,

ω′1α(t) 6= ω′′1α(t) = ⊥ =⇒ ω′′2α(t) = ⊥
ω′2α(t) 6= ω′′2α(t) = ⊥ =⇒ ω′′1α(t) = ⊥.

It is easy to see that ∀t, α; γ(α) = ll21 ; l2 v l,

ω′1α(t) = ω′2α(t) = ⊥ =⇒ ω′′1α(t) = ω′′2α(t)

This, i) and (14) gives a). It is easy to see that ∀t, α,

ω′1α(t) 6= ⊥ =⇒ ω′1α(t) = ω′′jα(t).

This, and a), gives c). By (15) and by definition of ω′′2α , d)
holds.

By definition of ω′j and ω′′j , ω′′1 and ω′′2 are deterministic,
and bounded, strategies. Thus s 6∈ DSB-NI. Since s was
arbitrary, (13) holds.

Lemma III.6 follows from the proof of Proposition A.4.

C. Soundness of the type system

We perform the proof in the instrumented semantics of
O’Neill et al. [OCC06] (c, σ, ψ, t, ω) extended with our
richer model of channels. This extension is straightforward
and does not significantly change the proofs.

In essence our type system is the type system of O’Neill
et al. extended with the blocking context and blocking level.
For programs typed pc, L,Γ `γ c : L their soundness proof
applies with minor modifications, since a public blocking
context guarantees that the program is free from secret
blocking. We begin by establishing a few lemmas relating
our type system and semantics to the type system of O’Neill
et al.

Lemma A.5. If channels α s.t. γ(α) = M on the left hand
side are interpreted as H on the right hand side we have
the following result.

pc, L,Γ `γ c : L =⇒ Γ ` c : pc cmd

Proof: By structural induction on c.
Here, Γ ` c : pc cmd is the typing judgment of [OCC06].
Semantically, we have the following correspondence be-

tween our semantics and the semantics of [OCC06].

Lemma A.6. It holds that

ω |= 〈σ, c〉 t−→ =⇒
∃ψ,ψ′, c′, σ′ . (c, σ, ψ, 〈〉, ω)→ (c′, σ′, ψ′, t, ω)

Proof: The existence of ψ and ψ′ corresponding to the
nondeterministic choices is immediate. The result follows.

For programs free from blocking the correspondence goes
the other direction.

Lemma A.7. For commands c s.t. pc, L,Γ `γ c : L it holds
that

(c, σ, ψ, 〈〉, ω) → (c′, σ′, ψ′, t, ω) =⇒ ω |= 〈σ, c〉 t−→

Proof: The result follows from the fact that c is free
from secret blocking, which is given by pc, L,Γ `γ c : L.

Theorem A.8. Soundness of the type system.

pc, l1,Γ `γ c : l2 =⇒ 〈〈〉, c〉 ∈ DS-NI

Proof: Let ∼L be defined as in [OCC06] with the
exception that ω1 ∼L ω2 is taken to be ω1 =L ω2. The
proof proceeds by case analysis on pc, l1,Γ `γ c : l2.
pc, L,Γ `γ c : L This case is equivalent to the proof of

[OCC06]. Given ω1 =L ω2, and σ1 ∼L σ2, for
ω1 |= 〈σ1, c〉

t1−→ show that ω2 |= 〈σ2, c〉
t2−→ s.t.

t1 ∼L t2 exists. Now, Lemma A.6 gives us that
there exists ψ1, ψ

′
1, c
′
1, σ
′
1, s.t. (c, σ1, ψ1, 〈〉, ω1) →

(c′1, σ
′
1, ψ
′
1, t1, ω1), and Lemma A.5 gives us that Γ `

c : pc cmd . Now, Theorem 2 of [OCC06] gives
us that there exists there exists ψ2, ψ

′
2, c
′
2, σ
′
2, s.t.

(c, σ2, ψ2, 〈〉, ω2) → (c′2, σ
′
2, ψ
′
2, t2, ω2) and t1 ∼L

t2. Now, Lemma A.7 allows us to establish ω2 |=
〈σ2, c〉

t2−→ and the result follows.
pc,H,Γ `γ c : l Immediate, since c is low-silent.
pc, L,Γ `γ c : H Assume ω1 =L ω2, and σ1 ∼L σ2, and

two executions ω1 |= 〈σ1, c〉
t1−→, and ω2 |= 〈σ2, c〉

t2−→.
It is easy to show that there exists a prefix c′, and two
suffixes c1, c2 such that ω1 |= 〈σ1, c

′; c1〉
t1−→, and ω2 |=

〈σ2, c
′; c2〉

t2−→, where pc, L,Γ `γ c′ : L, pc, L,Γ `γ
c1 : H , and pc, L,Γ `γ c2 : H , and where c1, c2 is
prefixed by either outH(x) a secret conditional or a
secret while. In either case, we have that c1 and c2
are low-silent (the secret conditional, or secret while
are low-silent in the bodies, since they constitute secret
contexts; any suffixes typed pc,H,Γ `γ c : H and are,
hence, low-silent. Now, the result for pc, L,Γ `γ c′ : L
from above allows us to establish low-equivalence on
the parts of the traces leading up to c1 and c2; from
this t1 ∼L t2 follows.

