
Provably Secure and Practical Onion Routing

Michael Backes
Saarland University and MPI-SWS

Saarbrücken, Germany
backes@cs.uni-saarland.de

Ian Goldberg
University of Waterloo

Waterloo, Canada
iang@cs.uwaterloo.ca

Aniket Kate
MPI-SWS

Saarbrücken, Germany
aniket@mpi-sws.org

Esfandiar Mohammadi
Saarland University

Saarbrücken, Germany
mohammadi@cs.uni-saarland.de

Abstract—The onion routing network Tor is undoubtedly
the most widely employed technology for anonymous web
access. Although the underlying onion routing (OR) protocol
appears satisfactory, a comprehensive analysis of its security
guarantees is still lacking. This has also resulted in a significant
gap between research work on OR protocols and existing OR
anonymity analyses. In this work, we address both issues with
onion routing by defining a provably secure OR protocol, which
is practical for deployment in the next generation Tor network.

We start off by presenting a security definition (an ideal
functionality) for the OR methodology in the universal compos-
ability (UC) framework. We then determine the exact security
properties required for OR cryptographic primitives (onion
construction and processing algorithms, and a key exchange
protocol) to achieve a provably secure OR protocol. We show
that the currently deployed onion algorithms with slightly
strengthened integrity properties can be used in a provably
secure OR construction. In the process, we identify the concept
of predictably malleable symmetric encryptions, which might
be of independent interest. On the other hand, we find the
currently deployed key exchange protocol to be inefficient and
difficult to analyze and instead show that a recent, significantly
more efficient, key exchange protocol can be used in a provably
secure OR construction.

In addition, our definition greatly simplifies the process
of analyzing OR anonymity metrics. We define and prove
forward secrecy for the OR protocol, and realize our (white-
box) OR definition from an OR black-box model assumed in
a recent anonymity analysis. This realization not only makes
the analysis formally applicable to the OR protocol but also
identifies the exact adversary and network assumptions made
by the black box model.

Keywords-onion routing; security proof; universal compos-
ability

I. INTRODUCTION

Over the last few years the onion routing (OR) network
Tor [28] has emerged as a successful technology for anony-
mous web browsing. It currently employs more than two
thousand dedicated relays, and serves hundreds of thousands
of users across the world. Despite its success, the existing
Tor network still lacks a rigorous security analysis, as its se-
curity properties have neither been formalized cryptograph-
ically nor proven. (See [3], [11], [23] for previous attempts
and their shortcomings.) In this paper, we define security
for the third-generation OR protocol Tor, and construct a
provably secure and practical OR protocol.

An OR network consists of a set of routers or OR nodes
that relay traffic, a large set of users, and directory servers
that provide routing information for the OR nodes to the
users. A user (say Alice) constructs a circuit by choosing
a small sequence of (usually three) OR nodes, where the
chosen nodes route Alice’s traffic over the path formed. The
crucial property of an OR protocol is that a node in a circuit
can determine no circuit nodes other than its predecessor and
its successor. Alice sends data over the constructed circuit
by sending the first OR node a message wrapped in multiple
layers of symmetric encryption (one layer per node), called
an onion, using symmetric keys agreed upon during an initial
circuit construction phase. Consequently, given a public-
key infrastructure (PKI), cryptographic challenges in onion
routing are to securely agree upon such symmetric keys, and
then to use the symmetric keys to achieve confidentiality and
integrity.

In the first generation onion routing [25], circuits are
constructed in a single pass. However, the scalability issues
while pursuing forward secrecy [7] in the single-pass con-
struction prompted Dingledine, Mathewson and Syverson [9]
to use a telescoping approach for the next-generation OR
protocol Tor. In this telescoping approach, they employed a
forward secret, multi-pass key agreement protocol called the
Tor authentication protocol (TAP) to negotiate a symmetric
session key between user Alice and a node. Goldberg [13]
presented a security proof for individual instances of TAP.
The security of TAP, however, does not automatically imply
the security of the Tor protocol. (For a possible concurrent
execution attack, see [30].) The Tor protocol constitutes a
sequential execution of multiple TAP instances as well as
onion construction and processing algorithms, and thus its
security has to be analyzed in a composability setting.

In this direction, Camenisch and Lysyanskaya [3] de-
fined an anonymous message transmission protocol in the
universal composability (UC) framework, and presented a
protocol construction that satisfies their definition. They
motivated their choice of the UC framework for a security
definition by its versatility as well as its appropriateness
for capturing protocol compositions. However, Feigenbaum,
Johnson and Syverson [11], [12] observe that the protocol
definition presented by Camenisch and Lysyanskaya [3] does
not correspond to the OR methodology, and a rigorous

security analysis of an OR protocol still remains an unsolved
problem.

Studies on OR anonymity such as [11], [23], [26] assume
simplified OR black-box models to perform an analysis
of the anonymity guarantees of these models. Due to the
complexity of an OR network’s interaction with the network
and the adversary, such black-box models are not trivially
realized by deployed OR networks, such as Tor. As a
result, there is a gap between deployed OR protocols and
anonymity analysis research that has to be filled.

A. Our Contributions

Our contribution is threefold. First, we present a security
definition for the OR methodology as an ideal functionality
FOR in the UC framework. This ideal functionality in partic-
ular gives appropriate considerations to the goals of various
system entities. After that, we identify and characterize
which cryptographic primitives constitute central building
blocks of onion routing, and we give corresponding security
definitions: a one-way authenticated key exchange (1W-
AKE) primitive, and onion construction and processing al-
gorithms. We then describe an OR protocol ΠOR that follows
the current Tor specification and that relies on these building
blocks as black boxes. We finally show that ΠOR is secure
in the UC framework with respect to FOR, provided that
these building blocks are instantiated with secure realizations
(according to their respective security definitions).

Second, we present a practical OR protocol by instan-
tiating ΠOR with the following OR modules: a 1W-AKE
protocol ntor [14], employed onion construction and pro-
cessing algorithms in Tor with a slightly enhanced integrity
mechanism. We show that these instantiations fulfill the
security definitions of the individual building blocks that we
identified before. This yields the first practical and provably
secure OR protocol that follows the Tor specification. As
part of these proofs, we identify a novel security definition
of symmetric encryption notion we show to be sufficient
for showing ΠOR secure. This notion strictly lies between
CPA-security and CCA-security and characterizes stateful
deterministic countermode encryptions. We call this notion
predictably malleable encryptions, which might be of an
independent interest.

Third, we illustrate the applicability of the abstraction
FOR by introducing the first cryptographic definition of
forward circuit secrecy for onion routing, which might be
of independent interest. We utilize the abstraction FOR and
the UC composability theorem for proving that ΠOR satisfies
forward circuit secrecy by means of a simple proof. As a
second application, we close the gap between the OR black-
box model, prevalently used in anonymity analyses [11],
[12], [23], [26], and a cryptographic model (ΠOR) of onion
routing. Again, we utilize our abstraction FOR and the UC
composability theorem for proving that against local, static
attackers the recent analysis of the OR black-box model [12]

also applies to our OR protocol ΠOR instantiated with secure
core building blocks.

Compared to previous work [3], we construct an OR
circuit interactively in multiple passes, whereas previous
work did not consider circuit construction at all, and hence
does not model the widely used Tor protocol. The previous
approach, and even single-pass circuit construction in gen-
eral, restricts the protocol to eventual forward secrecy, while
a multi-pass circuit construction ensures forward secrecy
immediately after the circuit is closed. Second, we show that
their hop-to-hop integrity verification is not mandatory, and
that an end-to-end integrity verification suffices for onion
routing. Finally, they do not consider backward messages
(from web-servers to Alice), and their onion wrapping and
unwrapping algorithms also do not work in the backward
direction.

There has also been work on universally composable Mix-
Nets by Wikström [29]. That work has some similarities to
our work, but it only considers Mix-Nets, e.g., it does not
need to cope with circuits and sessions.

Another important approach for analyzing onion routing
has been conducted by Feigenbaum, Johnson, and Syver-
son [10]. In contrast to our work, the authors analyze an I/O
automaton that use idealized encryption, pre-shared keys,
and assume that every party only constructs one circuit
to one destination. Moreover, the result in that work only
holds in the stand-alone model against a local attackers
whereas our result holds in the UC model against global
and partially global attackers. In particular, by the UC
composability theorem our result even holds with arbitrary
protocols surrounding and against an attacker that controls
parts of the network.

Outline of the Paper. Section II provides background
information relevant to onion routing, 1W-AKE, and the
UC framework. Section III, presents our security definition
for onion routing. Section IV, presents cryptographic defini-
tions for predictably malleable encryptions and secure onion
construction and processing algorithms. Section V, states
that given a set of secure OR modules we can construct
a secure OR protocol. Section VII utilizes our security
definition to analyze some security and anonymity properties
of onion routing. Finally, we discuss some further interesting
directions in Section VIII. In this work, many proofs have
been omitted due to space constraints, which can be found
in the full version [1].

II. BACKGROUND

In this paper, we often omit the security parameter κ when
calling an algorithm A; i.e., we abbreviate A(1κ, x) by A(x).
We write y ← A(x) for the assignment of the result of A(x)

to a variable y, and we write y
$← S for the assignment

of a uniformly chosen element from S to y. For a given
security parameter κ, we assume a message space M(κ) that

2

is disjoint from the set of onions. We assume a distinguished
error message ⊥; in particular, ⊥ is not in the message space.
For some algorithms, we write Alg(a, b, c, [d]) and mean that
the argument d is optional. Finally, for stateful algorithms,
we write y ← A(x) but we actually mean (y, s′)← A(x, s),
where s′ is used in the next invocation of A as a state, and s
is the stored state from the previous invocation.We assume
that for all algorithms s ∈ {0, 1κ}.
A. Onion Routing Circuit Construction

In the original Onion Routing project [16], [17], [25],
[27], circuits were constructed in a single pass. However,
such a single-pass circuit construction does not provide
forward secrecy: if an adversary corrupts a node and obtains
the private key, the adversary can decrypt all of the node’s
past communication. Although changing the public/private
key pairs for all OR nodes after a predefined interval is a
possible solution (eventual forward secrecy), this solution
does not scale to realistic OR networks such as Tor, since at
the start of each interval every user has to download a new
set of public keys for all the nodes.

Pairing-based onion routing (PB-OR) [21] and certificate-
less onion routing (CL-OR) [6] attempt to provide better
single-pass constructions. However, both approaches do not
yield satisfactory solutions: CL-OR suffers from the same
scalability issues as the original OR protocol [20]; PB-OR
requires a distributed private-key generator [19] that may
lead to inefficiency in practice.

Another problem with the single-pass approach is its
intrinsic restriction to eventual forward secrecy [22]; i.e., if
the current private key is leaked, then past sessions remain
secret only if their public and private keys have expired. A
desirable property is that all past sessions that are closed
remain secret even if the private key is leaked; such a
property is called immediate forward secrecy.

In the current Tor protocol, circuits are constructed using
a multi-pass approach that is based on TAP. The idea is
to use the private key only for establishing a temporary
session key in a key exchange protocol. Together with the
private key, additional temporary (random) values are used
for establishing the key such that knowing the private key
does not suffice for reconstructing the session key. These
temporary values are erased immediately after the session
key has been computed. This technique achieves immediate
forward secrecy in multi-pass constructions, which however
was never formally defined or proven before.

The multi-pass approach incurs additional communication
overhead. However, in practice, almost all Tor circuits are
constructed for a circuit length of ` = 3, which merely
causes an overhead of six additional messages.1 With this
small overhead, the multi-pass circuit construction is the pre-
ferred choice in practice, due to its improved forward secrecy

1The overhead reduces to four additional messages if we consider the
“CREATE FAST” option available in Tor.

guarantees. Consequently, for our OR security definition we
consider a multi-pass circuit construction as in Tor.

B. One-Way Authenticated Key Exchange – 1W-AKE

In a multi-pass circuit construction, a session key is
established via a Diffie–Hellman key exchange. However,
the precise properties required of this protocol were not for-
malized until recently. Goldberg, Stebila and Ustaoglu [14]
formalized the concept of 1W-AKE, presented an efficient
instantiation, and described its utility towards onion routing.
We review their work here and we refer the readers to [14]
for a detailed description.

An authenticated key exchange (AKE) protocol estab-
lishes an authenticated and confidential communication
channel between two parties. Although AKE protocols in
general aim for key secrecy and mutual authentication, there
are many practical scenarios such as onion routing where
mutual authentication is undesirable. In such scenarios, two
parties establish a private shared session key, but only
one party authenticates to the other. In fact, as in Tor,
the unauthenticated party may even want to preserve its
anonymity. Their 1W-AKE protocol constitutes this precise
primitive.

The 1W-AKE protocol consists of three procedures:
Initiate , Respond , and ComputeKey . With procedure
Initiate , Alice (or her onion proxy) generates and sends
an authentication challenge to the server (an OR node). The
OR node responds to the challenge by running the Respond
procedure, and returning the authentication response. The
onion proxy (OP) then runs the ComputeKey procedure
over the received response to authenticate the OR node and
compute the session key.

The security of a 1W-AKE is defined by means of a
challenger that represents all honest parties. The attacker
is then allowed to query this challenger. If the attacker is
not able to distinguish a fresh session key from a randomly
chosen session key, we say that the 1W-AKE is secure.
This challenger is constructed in a way that security of the
1W-AKE implies one-way authentication of the responding
party.

For the definition of one-way anonymity we introduce
a proxy, called the anonymity challenger, that relays all
messages from and to the usual 1W-AKE challenger except
for a challenge party C. The attacker can choose two
challenge parties, out of which the anonymity challenger
randomly picks one, say i∗. Then, the anonymity challenger
relays all messages that are sent to C to Pi∗ (via the 1W-
AKE challenger).

In the one-way anonymity experiment, the adversary can
issue the following queries to the challenger C. All other
queries are simply relayed to the 1W-AKE challenger. The
session Ψ∗ denotes the challenge session. The two queries
are for activation and communication during the test session.
We say that a 1W-AKE is one-way anonymous if the attacker

3

cannot guess which party has been guessed with more than
1/2 + µ(κ) probability, where µ is a negligible function.

In terms of instantiation, Goldberg et al. showed that an
AKE protocol suggested for Tor—the fourth protocol in
[24]—can be attacked, leading to an adversary determining
all of the user’s session keys. They then fixed the protocol
(see Figure 13) and proved that the fixed protocol (ntor) sat-
isfies the formal properties of 1W-AKE. In our OR analysis,
we use their formal definition and their fixed protocol.

C. The UC Framework: An Overview

The UC framework is designed to enable a modular
analysis of security protocols. In this framework, the security
of a protocol is defined by comparing it with a setting in
which all parties have a direct and private connection to
a trusted machine that computes the desired functionality.
As an example consider an authenticated channel between
Alice and Bob with a passive attacker. In the real world
Alice would call a protocol that signs the message m to
be communicated and sends the signed message over the
network such that Bob would verify the signature. In the
setting with a trusted machine T , however, Alice sends the
message m directly to T ; T notifies the attacker about m,
and T directly sends m to Bob. This trusted machine is
called the ideal functionality.

Security in the UC framework is defined as follows: a
protocol π UC-realizes an ideal functionality F if for all
probabilistic poly-time (PPT) attackers A there is a PPT
simulator S such that no PPT machine can distinguish an
interaction with π and A from an interaction with F and
S. The distinguisher is connected to the protocol and the
attacker (or the simulator).

In contrast to typical UC proofs, our attacker model
considers a more fine-grained network topology. Typically,
a global attacker is assumed in UC; however, as we also
want to be able to argue about local attackers, we prove our
result for partially global attackers, i.e., in particular also
for completely global attackers. A network over which the
attacker does not have full control is modelled by a network
functionality FNETq in which the attacker can adaptively
compromise up to q links between honest onion routers.
This network functionality is a global setup assumption;
consequently, we have to consider the generalized UC
framework (GUC) by Canetti, Dodis, Pass, and Walfish [5].2

Throughout this work, if we say that a protocol ρ UC realizes
a protocol π we actually mean that ρ GUC realizes π. (For
a thorough definition of GUC, we refer to [5].)

D. The OR Protocol

We describe an OR protocol ΠOR that follows the Tor
specification [8]. We do not present the cryptographic algo-

2The authors show that composability also holds true in the presence
of global functionalities as long as the environment has access to these
functionalities, i.e., they are not simulated by the simulator.

E Fscs
Freg

A

Πor

Fnet

a bidirectional link

a corruption link

Figure 1. Overview of the set-up

rithms, e.g., wrapping and unwrapping onions, in this section
but only present the skeleton of the protocol. A thorough
characterization of these cryptographic algorithms follows
in Section IV.

We describe our protocols using pseudocode and assume
that a node maintains a state for every execution and
responds (changes the state and/or sends a message) upon
receiving a message as per its current state. In Figure 1, we
give an overview of the setup that we consider.

As an attacker model we consider a partially global at-
tacker in contrast to the global attacker that is typically used
in UC analyses. For modelling a partially global attacker,
we introduce an ideal functionality FNETq that allows the
attacker to compromise at most q links.

There are two types of messages that the protocol gen-
erates and processes: the first type contains input actions,
which carry inputs to the protocol from the user (Alice),
and output actions, which carry outputs of the protocol to
Alice. The second message type is a point-to-point network
message (a cell in the OR literature), which is to be delivered
by one protocol node to another. To enter a wait state, a
thread may execute a command of the form wait for a
network message.

With this methodology, we are able to effortlessly extract
an OR protocol (ΠOR) from the Tor specification by cate-
gorizing actions based on the OR cell types (see Figure 2).
For ease of exposition, we only consider Tor cells that are
cryptographically important and relevant from the security
definitional perspective. In particular, we consider create,
created and destroy cells among control cells, and data,
extend and extended cells among relay cells. We also
include two input messages cc and send, where Alice uses
cc to create OR circuits and uses send to send messages
m over already-created circuits. We do not consider streams
and the SOCKS interface in Tor as they are extraneous to
the basic OR methodology. We unify instructions for an OP
(onion proxy) node and an OR node for the simplicity of
discussion. Moreover, for the sake of brevity, we restrict
ourselves to messages m ∈ M(κ) that fit exactly in one
cell. It is straight-forward to extend our result to a protocol
that accepts larger messages. The only difference is that the
onion proxy and the exit node divide messages into smaller

4

upon an input (setup):
Generate an asymmetric key pair (sk , pk)← G.
send a cell (register, P, pk) to the FNREG functionality
wait for a cell (registered, 〈Pj , pk j〉nj=1) from FNREG

output (ready,N = 〈Pj〉nj=1)

upon an input (cc,P = 〈P, 〈Pj〉`j=1〉):
store P and C ← 〈P 〉; call ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):
if Used(cid1) < ttlC then

look up the keys (〈kj〉`j=1) for cid1

O ←WrOn(m, (kj)
`
j=1); Used(cid1)++

send a cell (cid1, relay, O) to P1 over FSCS

else
call DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a cell (cid , create, X) from Pi over FSCS:
〈Y, knew〉 ← Respond(pkP , skP , X)

store C ← 〈Pi
cid,knew⇐⇒ P 〉

send a cell (cid , created, Y, t) to Pi over FSCS

upon receiving a cell (cid , created, Y, t) from Pi over FSCS:
if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(〈extended, Y, t〉, k′)
send a cell (cid ′, relay, O) to P ′ over FSCS

else if prev(cid) = ⊥ then
knew ← ComputeKey(pk i, Y, t)
update C with knew; call ExtendCircuit(P, C)

upon receiving a cell (cid , relay, O) from Pi over FSCS:
if prev(cid) = ⊥ then

if getkey(cid) = (kj)
`′
j=1 then

(type,m) or O ← UnwrOn(O, (kj)
`′
j=1)

(P ′, cid ′) or ⊥ ← next(cid)
else if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(O, k′) /* a backward onion */

switch (type)
case extend:

get 〈Pnext , X〉 from m; cidnext
$← {0, 1}κ

update C ← 〈Pi
cid,k⇐⇒ P

cidnext⇐⇒ Pnext〉
send a cell (cidnext , create, X) to Pnext over FSCS

case extended:
get 〈Y, t〉 from m; get Pex from (C,P)
kex ← ComputeKey(pk ex, Y, t)
update C with (kex); call ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S,m′)

generate or lookup the unique sid for cid
send (P, S, sid ,m′) to FNETq

case corrupted : /*corrupted onion*/
call DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
send a cell (cid ′, relay, O) to P ′ over FSCS

upon receiving a msg (sid ,m) from FNETq :

get C ← 〈P ′ cid,k⇐⇒ P 〉 for sid ; O ←WrOn(m, k)
send a cell (cid , relay, O) to P ′ over FSCS

upon receiving a cell (cid ,destroy) from Pi over FSCS:
call DestroyCircuit(C, cid)

Figure 2. ΠOR: The OR Protocol for Party P

pieces and recombine them in an appropriate way.
Function calls Initiate , Respond and ComputeKey cor-

ExtendCircuit(P = 〈Pj〉`j=1, C = 〈P cid1,k1⇐⇒ P1
k2⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉)
else
X ← Initiate(pkP`′+1

, P`′+1)

if P`′+1 = P1 then
cid1

$← {0, 1}κ
send a cell (cid1, create, X) to P1 over FSCS

else
O ←WrOn({extend, P`′+1, X}, (kj)`

′
j=1)

send a cell (cid1, relay, O) to P1 over FSCS

DestroyCircuit(C, cid):
if next(cid) = (Pnext , cidnext) then

send a cell (cidnext , destroy) to Pnext over FSCS

else if prev(cid) = (Pprev , cidprev) then
send a cell (cidprev , destroy) to Pprev over FSCS

discard C and all streams

Figure 3. Subroutines of ΠOR for Party P

respond to 1W-AKE function calls described in Section II-B.
Function calls WrOn and UnwrOn correspond to the prin-
cipal onion algorithms. WrOn creates a layered encryption
of a payload (plaintext or onion) for given an ordered list
of ` session keys for ` ≥ 1. UnwrOn removes ` layers of
encryptions from an onion to output a plaintext or an onion
given an input onion and a ordered list of ` session keys
for ` ≥ 1. Moreover, onion algorithms also ensure end-
to-end integrity. The cryptographic requirements for these
onion algorithms are presented in Section IV-B.

Tor uses a centralized approach to determine valid OR
nodes and distribute their public keys. Every OR node has
to be registered in so-called directory servers, where each
registration is checked by an administrator. These directory
servers then distribute the list of valid OR nodes and the
respective public keys. We abstract the key registration
procedure by assuming that the directory servers expect a
fixed set of parties upon setup. Formally, we model these
directory servers as an ideal functionality FNREG, which is
basically defined as by Canetti [4] except that FNREG rejects
all parties that are not in N and only sends the public
keys around once all parties in N registered.3 Tor does
not guarantee any anonymity once these directory servers
are compromised. Therefore, we concentrate on the case
in which these directory servers cannot be compromised.4

As in Tor, we assume that the list of valid OR nodes is
given to the directory servers from outside, in our case
from the environment. However, for the sake of simplicity
we assume that the OR list is only synchronized initially.

3Technically, we also extend FNREG such that upon each (register, sid , v)-
message, FNREG notifies the attacker. And only after the attacker confirmed
this message, FNREG registers v with P .

4Formally, this ideal functionality FNREG does not accept compromise-
requests from the attacker.

5

In detail, we slightly extend the functionality as follows.
FNREG initially receives a list of OR nodes from the envi-
ronment, waits for each of these parties for a public key,
and distributes the list of OR nodes and their public keys
as (registered, 〈Pj , pk j〉nj=1). Each OR node, on the other
hand, initially computes its long-term keys (sk , pk) and
registers the public part at FNREG. Then, the node waits to
receive the message (registered, 〈Pj , pk j〉nj=1) from FNREG

before declaring that it is ready for use.5

OPs develop circuits incrementally, one hop at a time,
using the ExtendCircuit function defined in Figure 3. To
create a new circuit, an OP sends a create cell to the first
node, after calling the Initiate function of 1W-AKE; the first
node responds with a created cell after running the Respond
function. The OP then runs the ComputeKey function. To
extend a circuit past the first node, the OP sends an extend
relay cell after calling the Initiate function, which instructs
the last node in the circuit to send a create cell to extend
the circuit.

Circuits are identified by circuit IDs (cid ∈ {0, 1}κ) that
associate two consecutive circuit nodes. We denote circuit at
a node Pi using the terminology C = Pi−1

cidi,ki⇐⇒ Pi
cidi+1⇐⇒

Pi+1, which says that Pi−1 and Pi+1 are respectively the
predecessor and successor of Pi in a circuit C. ki is a session
key between Pi and the OP, while the absence of ki+1

indicates that a session key between Pi+1 and the OP is not
known to Pi; analogously the absence of a circuit id cid in
that notation means that only the first circuit id is known,
as for OP, for example. Functions prev and next on cid
correspondingly return information about the predecessor
or successor of the current node with respect to cid ; e.g.,
next(cid i) returns (Pi+1, cid i+1) and next(cid i+1) returns
⊥. The OP passes on to Alice 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉.

Within a circuit, the OP and the exit node use relay cells
created using WrOn to tunnel end-to-end commands and
connections. The exit nodes use some additional mecha-
nisms (abstracting the streams used in Tor) to synchronize
communication between the network and a circuit C. We
represent that using sid . With this auxiliary synchronization,
end-to-end communication between OP and the exit node
happens with a WrOn call with multiple session keys and
a series of UnwrOn calls with individual session keys in
the forward direction, and a series of WrOn calls with
individual session keys, and finally a UnwrOn call with
multiple session keys in the backward direction. Communi-
cation in the forward direction is initiated by a send message
by Alice to the OP, while communication in the backward
direction is initiated by a network message to the exit node.
Cells are exchanged between OR nodes over a secure and
authenticated channels, e.g., a TLS connection. We abstract
such a channel in the UC framework by a functionality FSCS

5The functionality FNREG additionally answers upon a request retrieve
with the full list of participants 〈Pj , pkj〉nj=1.

upon receiving a msg (compromise,NA) from A:
set compromised(P)← true for every P ∈ NA
set b← |NA|

|NOR|
upon an input (send, S) from the environment for party U :

with probability b2, send (sent, U, S) to A
with probability (1− b)b, send (sent,−, S) to A
with probability b(1− b), send (sent, U,−) to A
with probability (1− b)2, send (sent,−,−) to A

Figure 4. Black-box OR Functionality BOR [12]

as proposed by Canetti [4] with the only difference that FSCS

does not output the leakage to the attacker but to FNETq , i.e.,
the network functionality.6 We write storeX ← v for either
introducing a new variable X with value v, or assign a value
v to a variable X in case X was not previously defined.

To tear down a circuit completely, an OR or OP sends
a destroy cell to the adjacent nodes on that circuit with
appropriate cid using the DestroyCircuit function defined
in Figure 3. Upon receiving an outgoing destroy cell, a node
frees resources associated with the corresponding circuit. If
it is not the end of the circuit, it sends a destroy cell to
the next node in the circuit. Once a destroy cell has been
processed, the node ignores all cells for the corresponding
circuit. Note that if an integrity check fails during UnwrOn ,
the destroy cells are sent in the forward and backward
directions in a similar way.

In the Tor the OP has a time limit (of ten minutes) for
each established circuit; thereafter, the OP constructs a new
circuit. However, the UC framework does not provide a
notion of time. We model such a time limit in the UC
framework by only allowing a circuit to transport at most a
constant number (say ttlC) of messages measured using the
used function call. Afterwards, the OP discards the circuit
and establishes a fresh circuit.

E. An OR Black Box Model

Anonymity in a low-latency OR network does not only
depend upon the security of the onions but also upon the
magnitudes and distributions of users and their destination
servers. In the OR literature, considerable efforts have been
put towards measuring the anonymity of onion routing [10]–
[12], [23], [26].

Feigenbaum, Johnson, and Syverson used for an analy-
sis of the anonymity properties of onion routing an ideal
functionality BOR [12]. This functionality emulates an I/O-
automata model for onion routing from [10], [11]. Figure 4
presents this functionality BOR.

Let NOR be the set of onion routers, and let NA of those
be eavesdropped, where b = |NA|/|NOR| defines the fraction
of compromised nodes. It takes as input from each user U
the identity of a destination S. For every such connection
between a user and a destination, the functionality may

6As leakage function l for FSCS , we choose l(m) := |m|.

6

reveal to the adversary the identity of the user (sent, U,−)
(i.e., the first OR router is compromised), the identity
of the destination (sent,−, S, [m]) (i.e., the exit node is
compromised), both (sent, U, S, [m]) (i.e., the first OR router
and the exit node are compromised) or only a notification
that something has been sent (sent,−,−) (i.e., neither the
first OR router nor the exit node is compromised).

We stress that this functionality only abstracts an OR
network against local attackers. As the distribution of the
four cases only depends on the first and the last router
being compromised but not on the probability that the
attacker controls sensitive links between honest parties, BOR

only models OR against local adversaries. As an example
consider, the case in which the attacker only wiretaps the
connection between the exit node and the server. In this
case, the attacker is able to determine which message has
been sent to whom, i.e., the abstraction needs to leak
(sent,−, S, [m]); however, the probability of this event is
c, where c is the fraction of observed links between honest
onion routers and users and servers. Therefore, BOR cannot
be used as an abstraction for onion routing against partially
global attackers.

We actually present BOR in two variants. In the first variant
BOR does not send an actual message but only a notification.
This variant has been analyzed by Feigenbaum, Johnson, and
Syverson. We additionally consider the variant in which BOR

sends a proper message m. We denote these two variants by
marking the message m as optional, i.e., as [m].

In order to justify these OR anonymity analyses that
consider an OR network as a black box, it is important to
ascertain that these black boxes indeed model onion routing.
In particular, it is important under which adversary and
network assumptions these black boxes model and securely
abstract real-world OR networks. In this work, we show that
the black box BOR can be UC-realized by a simplified version
of the Tor network.

III. SECURITY DEFINITION OF OR

In this section, we first describe our system and adversary
model for all protocols that we analyze (Section III-A).
Thereafter, we present a composable security definition of
OR by introducing an ideal functionality (abstraction) FOR

in the UC framework (Section III-B).
Tor was designed to guarantee anonymity even against

partially global attackers, i.e., attackers that do not only
control compromised OR nodes but also a portion of the
network. Previous work, however, only analyzed local, static
attackers [10]–[12], such as the abstraction BOR presented
in Figure 4. In contrast, we analyze onion routing against
partially global attackers. As our resulting abstraction FOR

has to faithfully reflect that an active attacker can hold back
all onions that it observes, FOR is naturally more complex
than BOR.

A. System and Adversary Model

We consider a fully connected network of n parties N =
{P1, . . . , Pn}. For simplicity of presentation, we consider
all parties to be OR nodes that also can function as OPs to
create circuits and send messages. It is also possible to use
our formulation to model separate user OPs that only send
and receive messages but do not relay onions.

Tor has not been designed to resist against global at-
tackers. Such an attacker is too strong for many practical
purposes as it can simply break the anonymity of an OR
protocol by holding back all but one onion and tracing that
one onion though the network. However, in contrast to pre-
vious work, we do not only consider local attackers, which
do not control more than the compromised OR routers, but
also partially global attackers that control a certain portion
of the network. Analogous to the network functionality FSYN

proposed by Canetti [4], we model the network as an ideal
functionality FNETq , which bounds the number of attacker-
controlled links to q ∈ [0,

(
n
2

)
]. For attacker-controlled links

the messages are forwarded to the attacker; otherwise, they
are directly delivered. In Section VII we show that previous
black-box analyses of onion routing against local attackers
applies to our setting as well by choosing q := 0. Let S rep-
resent all possible destination servers {S1, . . . , S∆} which
reside in the network abstracted by a network functionality
FNETq .

We stress that the UC framework does not provide a
notion of time; hence, the analysis of timing attacks, such
as traffic analysis, is not in the scope of this work.

Adaptive Corruptions. Forward secrecy [7] is an important
property for onion routing. In order to analyze this property,
we allow adaptive corruptions of nodes by the attacker A.
Such an adaptive corruption is formalized by a message
compromise, which is sent to the respective party. Upon
such a compromise message the internal state of that party
is deleted and a long-term secret key sk for the node is
revealed to the attacker. A can then impersonate the node
in the future; however, A cannot obtain the information
about its ongoing sessions. We note that this restriction arises
due to the currently available security proof techniques and
the well-known selective opening problem with symmetric
encryptions [18], and the restriction is not specific to our
constructions [2], [15]. We could also restrict ourselves to a
static adversary as in previous work [3]; however, that would
make an analysis of forward secrecy impossible.

B. Ideal Functionality

The presentation of the ideal functionality FOR is along the
lines of the description OR protocol ΠOR from Section II-D.
We continue to use the message-based state transitions
from ΠOR, and consider sub-machines for all n nodes in
the ideal functionality. To communicate with each other
through messages and data structures, these sub-machines

7

upon an input (setup):
draw a fresh handle h; a set registered flag← true
store lookup(h)← (dir, registered,N)
send (h, register, P) to A
wait for a msg (dir, registered,N) via a handle
output (ready, (Pj)

n
j=1) = (ready,N)

upon an input (cc,P = 〈P, P1, . . . , P`〉):
store P and C ← 〈P 〉; ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):
if Used(cid1) < ttlC then

Used(cid1)++; SendMessage(P1, cid1, relay, 〈data,m〉)
else

DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a handle 〈P, Pnext , h〉 from FNETq :
send (msg)← lookup(h) to a receiving submachine Pnext

upon receiving a msg (Pi, cid , create) through a handle:

store C ← 〈Pi
cid⇐⇒ P 〉; SendMessage(Pi, cid , created)

upon receiving a msg (Pi, cid , created) through a handle:
if prev(cid) = (P ′, cid ′) then

SendMessage(P ′, cid ′, relay, extended)
else if prev(cid) = ⊥ then

ExtendCircuit(P, C)
upon receiving a msg (Pi, cid , relay, O) through a handle:

if prev(cid) = ⊥ then
if next(cid) = ⊥ then

get (type,m) from O
else {P ′, cid ′} ← next(cid)

else
(P ′, cid ′)← prev(cid)

switch (type)
case extend:

get Pnext from m; cidnext
$← {0, 1}κ

update C ← 〈Pi
cid⇐⇒ P

cidnext⇐⇒ Pnext〉
SendMessage(Pnext , cidnext , create)

case extended:
update C with Pex; ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S,m′)

generate or lookup the unique sid for cid
send (P, S, sid ,m′) to FNETq

case corrupted : /*corrupted onion*/
DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
SendMessage(P ′, cid ′, relay, O)

upon receiving a msg (sid ,m) from FNETq :

obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
SendMessage(P ′, cid , relay, 〈data,m〉)

upon receiving a msg (Pi, cid , destroy) through a handle:
DestroyCircuit(C, cid)

upon receiving a msg (Pi, P, h, [corrupt, T (·)])from A:
(message)← lookup(h)
if corrupt = true then

message ← T (msg); set corrupted(message)← true
process message as if the receiving submachine was P

upon receiving a msg (compromise, P) from A:
set compromised(P)← true
delete all local information at P

Figure 5. The ideal functionality FNOR (short FOR) for Party P

ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, C)
else

if P`′+1 = P1 then
cid1

$← {0, 1}κ; SendMessage(P1, cid1, create)
else

SendMessage(P1, cid1, relay, {extend, P`′+1})
DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
SendMessage(Pnext , cidnext , destroy)

else if prev(cid) = (Pprev , cidprev) then
SendMessage(Pprev , cidprev , destroy)

discard C and all streams

SendMessage(Pnext , cidnext , cmd, [relay-type], [data]):
create a msg for Pnext from the input
draw a fresh handle h and set lookup(h)← msg
if compromised(Pnext) = true then
Plast is the last node in the complete continuous
compromised path starting Pnext

if (Plast = OP) or Plast is the exit node then
send the entire msg to A

else
send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉 to A

else
send 〈P, Pnext , h〉 to the network

Figure 6. Subroutines of FOR for Party P

upon receiving a msg (obverse, P, Pnext) from A:
set observedLink(P, Pnext)← true

upon receiving a msg (compromise, S) from A:
set compromised(S)← true; send A all existing sid

upon receiving a msg (P, Pnext/S,m) from FOR:
if Pnext/S is a FOR node then

if observedLink(P, Pnext) = true then
forward the msg (P, Pnext ,m) to A

else
reflect the msg (P, Pnext ,m) to FOR

else if Pnext/S is a FNETq server then
if compromised(S) = true then

forward the msg (P, S,m) to A
else

output (P, S,m)

upon receiving a msg (P/S, Pnext ,m) from A:
forward the msg (P/S, Pnext ,m) to FOR

Figure 7. The Network Functionality FNETq

share a memory space in the functionality. The sub-machine
pseudocode for the ideal functionality appears in Figure 5
and three subroutines are defined in Figure 6. As the
similarity between pseudocodes for the OR protocol and the
ideal functionality is obvious, rather than explaining the OR
message flows again, we concentrate on the differences.

The only major difference between ΠOR and FOR is
that cryptographic primitives such as message wrapping,
unwrapping, and key exchange are absent in the ideal world;
we do not have any keys in FOR, and the OR messages

8

WrOn and UnwrOn as well as the 1W-AKE messages
Initiate , Respond , and ComputeKey are absent.

The ideal functionality also abstracts the directory server
and expects on the input/output interface of FNREG (from the
setting with ΠOR) an initial message with the list 〈Pi〉ni=1 of
valid nodes. This initial message corresponds to the list of
onion routers that have been approved by an administrator.
We call the part of FOR that abstracts the directory servers
dir. For the sake of brevity, we do not present the pseudocode
of dir. Upon an initial message with a list 〈Pi〉ni=1 of valid
nodes, dir waits for all nodes Pi (i ∈ {1, . . . , n}) for a
message (register, Pi). Once all nodes registered, dir sends
a message (registered, 〈Pi〉ni=1) with a list of valid and
registered nodes to every party that registered, and to every
party that sends a retrieve message to dir.

Messages from A and FNETq . In Figure 5 and Figure 7,
we present the pseudocode for the attacker messages and the
network functionality, respectively. For our basic analysis,
we model an adversary that can control all communication
links and servers in FNETq , but cannot view or modify
messages between parties due to the presence of the secure
and authenticated channel. Therefore, sub-machines in the
functionality store their messages in the shared memory,
and create and send handles 〈P, Pnext , h〉 for these messages
FNETq . The message length does not need to be leaked as
we assume a fixed message size (for all M(κ)). Here, P
is the sender, Pnext is the receiver and h is a handle or a
pointer to the message in the shared memory of the ideal
functionality. In our analysis, all FNETq messages flow to
A, which may choose to return these handles back to FOR

through FNETq at its own discretion. However, FNETq also
maintains a mechanism through observedLink flags for the
non-global adversary A. The adversary may also corrupt or
replay the corresponding messages; however, these active
attacks are always detected by the receiver due to the
presence of a secure and authenticated channel between any
two communicating parties and we need not model these
corruptions.

The adversary can compromise a party P or server S
by sending a compromise message to respectively FOR and
FNETq . For party P or server S, the respective functionality
then sets the compromised tag to true . Furthermore, all
input or network messages that are supposed to be visible
to the compromised entity are forwarded to the adversary.
In principle, the adversary runs that entity for the rest of
the protocol and can send messages from that entity. In that
case, it can also propagate corrupted messages which in ΠOR

can only be detected during UnwrOn calls at OP or the exit
node. We model these corruptions using corrupted(msg) =
{true, false} status flags, where corrupted(msg) status
of messages is maintained across nodes until they reach
end nodes. Furthermore, for every corrupted message, the
adversary also provides a modification function T (·) as the

end nodes run by the adversary may continue execution even
after observing a corrupted flag. In that case, T (·) captures
the exact modificaiton made by the adversary.

We stress that FOR does not need to reflect reroutings
and circuit establishments initiated by the attacker, because
the attacker learns, loosely speaking, no new information
by rerouting onions.7 Similar to the previous work [3], a
message is directly given to the adversary if all remaining
nodes in a communication path are under adversary control.

IV. SECURE OR MODULES

We identify the core cryptographic primitives for a se-
cure OR protocol. In this section, we present a crypto-
graphic characterization of these core cryptographic primi-
tives, which we call secure OR modules. Secure OR modules
consist of two parts: first, secure onion algorithm, and sec-
ond, a one-way authenticated key exchange primitive (1W-
AKE), a notion recently introduced by Goldberg, Stebila,
and Ustaoglu [14].

Onion algorithms typically use several layers of encryp-
tions and possibly integrity mechanisms, such as message
authentication codes. Previous attempts [3] for proving the
security OR protocols use mechanisms to ensure hop-to-
hop integrity, such as non-malleable encryption schemes.
The widely-used Tor network, however, does not use hop-
to-hop integrity but only end-to-end integrity. In the analysis
of OR protocols with only end-to-end integrity guarantees,
we also have to consider the cases in which the end
node is compromised, thus no integrity check is performed
at all. In order to cope with these cases, we identify a
new notion of predictably malleable encryption schemes.
Predictable malleability allows the attacker to change the
ciphertexts but requires the resulting changes to the plaintext
to be efficiently predictable given only the changes of the
ciphertext. In Section IV-A we rigorously define the notion
of predictably malleable encryption schemes.

Inspired by Section IV-A, we introduce in Section IV-B
the notion of secure onion algorithms.

In the following definitions, we assume the PPT machines
to actually be oracle machines. We write AB to denote that
A has oracle access to B.

A. Predictably Malleable Encryption

Simulation-based proofs often face their limits when
dealing with malleable encryption schemes. The underlying
problem is that malleability induces an essentially arbitrarily
large number of possibilities to modify ciphertexts, and the
simulator has no possibility to predict the resulting changes
to the corresponding plaintext.

7More formally, the simulator can compute all responses for rerouting
or such circuit establishments without requesting information from FOR

because the simulator knows all long-term and session keys. The only
information that the simulator does not have is the routing information,
which the simulator gets in case of rerouting or circuit establishment.

9

upon (initialize)

k ← G(1η)
sd ← ε; se ← ε

upon (encrypt,m)

if b = 0 then
(c, s)← E(0|m|, se, k)

if q(se) 6= ⊥ then
(d, u)← q(se)
c← d

else if b = 1 then
(c, s)← E(m, se, k)

q(se)← (c,m)
se ← s; respond c

upon (decrypt, c)

(d, u)← q(sd)
T ← M(c, d)
if b = 0 then

if q(sd) = ⊥ then
(m, s)
← D(c, sd, k)

q(sd)← (c,m)
else

if q(sd) 6= ⊥ then
m← T (u)

else if b = 1 then
(m, s)← D(c, sd, k)

sd ← s; respond (m,T)

Figure 8. The IND-PM Challenger PM-ChEb

We characterize the property of predicting the changes
to the plaintext merely given the modifications on the
ciphertext. Along the lines of the IND-CCA definition
for stateful encryption schemes, we define the notion of
predictably malleable (IND-PM) encryption schemes.8 The
attacker has access to an encryption and a decryption oracle,
and either all encryption and decryption queries are honestly
answered (the honest game) or all are faked (the faking
game), i.e., 0|m| is encrypted instead of a message m. In the
faking game, the real messages are stored in some shared
datastructure q , and upon a decryption query only look-ups
in q are performed. The IND-PM challenger maintains a
separate state, e.g., a counter, for encryption and decryption.
These respective states are updated with each encryption
decryption query.

In contrast to the IND-CCA challenger, the IND-PM
challenger (see Figure 8) additionally stores the produced
ciphertext together with the corresponding plaintext for each
encryption query. Moreover, for each decryption call the
challenger looks up the stored ciphertexts and messages. The
honest decryption ignores the stored values and performs an
honest decryption, but the faking decryption compares the
stored ciphertext with the ciphertext from the query and tries
to predict the modifications to the plaintext. Therefore, we
require the existence of an efficiently computable algorithm
M that outputs the description of an efficient transformation
procedure T for the plaintext given the original ciphertext
as well as the modified ciphertext.

Definition 1 (Predictable malleability): An encryption
scheme E := (G,E,D) is IND-PM if there is a negligible
function µ such that there is a deterministic polynomial-time
algorithm M such that for all PPT attackers A

Pr[b′
$← {0, 1} , b← A(1κ)PM-ChEb : b = b′] ≤ 1/2 + µ(κ)

8The name predictable malleability is justified as it can be shown that
every IND-CCA secure scheme is also IND-PM, and every IND-PM scheme
in turn is IND-CPA secure. In Section VI-A, we present detCTR and state
that it is IND-PM secure.

Moreover, we require that for all m, c, s, k, k′ ∈ {0, 1}∗

Pr[(c′, s′)← E(m, k, s),

(m′, s′′)← D(c, k′, s) : s′ = s′′] = 1

PM-ChE0 and PM-ChE1 are defined in Figure 8.
We stress that the definition implies a super-polynomial

length for state-cycles; otherwise there is in the faking game
at least one repeated state s for which the two encrypt
queries output the same ciphertext for any two plaintexts.

In Section VI-A, we show that deterministic counter-mode
is IND-PM.

B. Secure Onion Algorithms

We identify the onion wrapping (WrOn) and unwrapping
(UnwrOn) algorithms as central building blocks in onion
routing. We identify four core properties of onion algo-
rithms. The first property is correctness, i.e., if all parties
behave honestly, the result is correct. The second property is
the security of statefulness, coined synchronicity. It roughly
states that whenever a wrapping and an unwrapping algo-
rithms are applied to a message with unsynchronous states,
the output is completely random. The third property is end-
to-end integrity. The fourth property states that for all mod-
ifications to an onion the resulting changes in the ciphertext
are predictable. We this property predictable malleability.

Onion Correctness. The first property of secure onion al-
gorithms is onion correctness. It states that honest wrapping
and unwrapping results in the same message. Moreover, the
correctness states that whenever the unwrapping algorithm
has a fake flag, it does not care about integrity, because
for m ∈ M(κ) the integrity measure is always added, as
required by the end-to-end integrity. But for m 6∈M(κ) but
of the right length, the wrapping is performed without an
integrity measure. The fake flag then causes the unwrapping
to ignore the missing integrity measure. Then, we also
require that the state transition is independent from the
message or the key.

Definition 2 (Onion correctness): Recall that M(κ) is
the message space for the security parameter κ. Let 〈ki〉`i=1

be a sequence of randomly chosen bitstrings of length κ.
Forward: Ωf (m)

O1 ←WrOn(m, 〈ki〉`i=1)
for i = 1 to ` do
Oi+1 ← UnwrOn(Oi, ki)

x← O`+1

Backward: Ωb(m)

O` ←WrOn(m, k`)
for i = `− 1 to 1 do
Oi ←WrOn(Oi+1, ki)

x← UnwrOn(O1, 〈ki〉`i=1)

Let Ω′f be the defined as Ωf except that UnwrOn addition-
ally uses the fake flag. Analogously, Ω′b is defined. We say
that a pair of onion algorithms (WrOn,UnwrOn) is correct
if the following three conditions hold:

(i) Pr[x ← Ωd(m) : x = m] = 1 for d ∈ {f, b} and
m ∈M(κ).

(ii) Pr[x ← Ω′d(m) : x = m] = 1 for d ∈ {f, b} and all
m ∈M ′(κ) := {m′|∃m′′ ∈M(κ).|m′| = |m′′|}.

10

(iii) For all m ∈M ′(κ), k, k′ ∈ {0, 1}κ and c, s ∈ {0, 1}∗
such that c is a valid onion and s is a valid state

Pr[(c′, s′)←WrOn(m, k, s),

(m′, s′′)← UnwrOn(c, k′, s) : s′ = s′′] = 1

(iv) WrOn and UnwrOn are polynomial-time computable
and randomized algorithms.

Synchronicity. The second property is synchronicity. In or-
der to achieve replay resistance, we have to require that once
the wrapping and unwrapping do not have synchronized
states anymore, the output of the wrapping and unwrapping
algorithms is indistinguishable from randomness.

Definition 3 (Synchronicity): For a machine
A, let Ωl,A and Ωr,A be defined as follows:
Left: Ωl,A(κ)

(m1,m2, st)← A(1κ)

k, s, s′
$← {0, 1}κ

O ←WrOn(m1, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

Right: Ωr,A(κ)

(m1,m2, st)← A(1κ)

k, s, s′
$← {0, 1}κ

O ←WrOn(m2, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

For all PPT machines A the following is negligible in κ:

|Pr[b← Ωl,A(κ) : b = 1]− Pr[b← Ωr,A(κ) : b = 1]|

End-to-end integrity. The third property that we require is
end-to-end integrity; i.e., the attacker is not able to produce
an onion that successfully unwraps unless it compromises
the exit node. For the following definition, we modify
OS-Ch0 such that, along with the output of the attacker, also
the state of the challenger is output. In turn, the resulting
challenger OS-Ch0′ can optionally get a state s as input. In
particular, (a, s) ← AB denotes in the following definition
the pair of the outputs of A and B.

For the following definition we use the modified chal-
lenger OS-Ch0′, which results from modifying OS-Ch0 such
that along with the output of the attacker also the state of
the challenger is output. The resulting challenger OS-Ch0′

can, moreover, optionally get a state s as input.
Definition 4 (End-to-end integrity): Let S(O, cid) be the

machine that sends a (destruct, O) query to the challenger
and outputs the response. Let Q′(s) be the set of answers
to construct queries from the challenger to the attacker. Let
the last onion O`′ of an onion O1 be defined as follows:

Last(O1):
for i = 1 to `′ − 1 do
Oi+1 ← UnwrOn(Oi)

Let Q(s) := {Last(O1) | O1 ∈ Q′(s)} be the set of last
onions answers to the challenger. We say a set of onion
algorithms has end-to-end integrity if for all PPT attackers
A the following is negligible in κ

Pr[(O, s)← A(1κ)OS-Ch0′
, (m, s′)← S(O, cid)OS-Ch0′(s)

: m ∈M(κ) ∧ P`′ is honest ∧O 6∈ Q(s′)].

(setup, `′)

if initiated = false then
for i = 1 to `′ do
ki

$← {0, 1}κ; cid i
$← {0, 1}κ

initiated ← true; store `′

send cid

(compromise, i)

initiated ← false; erase the circuit
compromised(i)← true; run setup;
send (cid j , kj) for all j with compromised(j) = true

(send,m)

O ←WrOn(m, 〈ki〉`
′
i=1)

send O

(unwrap, O, cid)

look up the key k for cid
O′ ← UnwrOn(O, k)
send O′

(respond,m)

O ←WrOn(m, k`′)
send O

(wrap, O, cid)

look up the key k for cid
O′ ←WrOn(O, k)
send O′

(destruct, O)

m← UnwrOn(O, 〈ki〉`
′
i=1)

send m

Figure 9. The Honest Onion Secrecy Challenger OS-Ch0: OS-Ch0 only
answers for honest parties

Predictably Malleable Onion Secrecy. The fourth property
that we require is predictably malleable onion secrecy, i.e.,
for every modification to a ciphertext the challenger is able
to compute the resulting changes for the plaintext. This even
has to hold for faked plaintexts.

In detail, we define a challenger OS-Ch0 that provides, a
wrapping, a unwrapping and a send and a destruct oracle.
In other words, the challenger provides the same oracles as
in the onion routing protocol except that the challenger only
provides one single session. We additionally define a faking
challenger OS-Ch1 that provides the same oracles but fakes
all onions for which the attacker does not control the final
node.

For OS-Ch1, we define the maximal paths that the attacker
knows from the circuit. A visible subpath of a circuit
(Pi, ki, cid i)

`
i=1 from an honest onion proxy is a minimal

subsequence of corrupted parties (Pi)
s
i=u of (Pi)

`
i=1 such

that Pi−1 is honest and either s = ` or Ps+1 is honest
as well. The parties Pi−1 and, if existent, Ps+1 are called
the guards of the visible subpath (Pi)

s
i=u. We store visible

subpaths by the first cid = cidu.
Figure 9 and 10 presents OS-Ch0, and OS-Ch1, respec-

11

(setup, `′)

do the same as OS-Ch0

additionally draw a distinguished key kS ← {0, 1}κ

(compromise, i)

do the same as OS-Ch0

(send,m)

q(st1f)← m; look up the first visible subpath (cid1, 〈ki〉ji=1)

if j = `′ then m′ ← q(st1f)

else kj+1 ← kS ; j ← j + 1; m′ ← 0|q(st1f)|

((Oi)
j
i=0, s

′)←WrOnj(m, 〈ki〉ji=1, st
1
f)

update st1f ← s′

store onions(cidj)← O1; send Oj

(unwrap, O, cid i)

look up the forward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i)
T ← M(O,O′); q(stif)← T (q(stif))
if j = `′ then m← q(stif)

else kj+1 ← kS ; j ← j + 1; m← 0|q(stif)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
f)

update stif ← s′

store onions(cidj)← Ou; send Oj

(respond,m)

q(st`
′
b)← m; look up the last visible subpath 〈ki〉`

′
i=u

if u = 1 then m← q(st`
′
b)

else ku−1 ← kS ; u← u− 1; m← 0|q(st`
′

b)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
`′
b)

update st`
′
b ← s′

store onions(cidu)← Ou; send Oj

(wrap, O, cid i)

look up the backward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i); T ← M(O,O′); q(stib)← T (q(stib))
get 〈ki〉ji=u for cid
if u = 1 then m← q(stib)

else ku−1 ← kS ; u← u− 1; m← 0|q(stib)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
b)

update stib ← s′

store onions(cidu)← Ou; send Oj

(destruct, O, cid)

m← UnwrOn(, k1, st
1
b); O′ ← onions(cid1)

T ← M(O,O′); q(st1b)← T (q(st1b))
if m 6= ⊥ then

send q(st1b)

Figure 10. The Faking Onion Secrecy Challenger OS-Ch1:
((Oi)

j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st) is defined as
Ou−1 ← m; for i = u to j do (Oi, s

′)←WrOn(Oi−1, kj+u−i, st).
OS-Ch1 only answers for honest parties

tively.9

Definition 5 (Predictably malleable onion secrecy): Let
onionAlg be a pair of algorithms WrOn and UnwrOn .
We say that the algorithms onionAlg satisfy predictably
malleable onion secrecy if there is a negligible function µ

9We stress that in Figure 10 the onion Ou denotes the onion from party
Pj to party Pj+1.

such that there is a efficiently computable function M such
that for all PPT machines A and sufficiently large κ

Pr[b
$← {0, 1} , b′ ← A(1κ)OS-Chb : b = b′] ≤ 1/2 + µ(κ)

Definition 6 (Secure onion algorithms): A pair of onion
algorithms (WrOn,UnwrOn) is secure if it satisfies onion
correctness, synchronicity, predictably malleable onion se-
crecy, and end-to-end integrity.

In Section VI-B, we show that the Tor algorithms are
secure onion algorithms.

V. ΠOR UC-REALIZES FOR

In this section, we show that ΠOR can be securely ab-
stracted as the ideal functionality FOR.

Recall that π securely realizes F in the F ′-hybrid model
if each party in the protocol π has a direct connection to
F ′. FNREG is the key registration, FSCS is the secure channel
functionality, and FNETq is the network functionality, where
q is the upper bound on the corruptable parties. We prove
our result in the FNREG, FSCS-hybrid model; i.e., our result
holds for any key registration and secure channel protocol
securely realizing FNREG, and FSCS, respectively. The network
functionality FNETq abstract partially global attacker and is
a global functionality.10

Theorem 1: If ΠOR uses secure OR modulesM, then with
the global functionality FNETq the resulting protocol ΠOR

in the FNREG,FSCS-hybrid model securely realizes the ideal
functionality FOR for any q.

As a next step, we give a proof outline in order to
highlight at which places we apply the required security
properties or the secure OR modules. The full proof can
be found in [1].

Proof outline: First, we show that the original scenario
is indistinguishable from that in which a simulator computes
ΠOR, FNREG, FSCS, and A. Then, we first modify the 1W-
AKE primitive such that we use randomly chosen keys
for honest pairs of parties instead of the computed ones.
By the security of 1W-AKE the environment cannot tell
the difference. Thereafter, we modify all honestly generated
onions with honest exit-nodes such that all plaintexts are
replaced by the constant-zero bitstring. By the onion secrecy
and the synchronicity, we know that the environment can still
not tell the difference. Finally, the simulator still internally
runs FNREG, FSCS, and A but only uses the information that
FOR offers. By an extensive case distinction of the definition
of FOR and by applying the anonymity of the 1W-AKE
primitive, we conclude that the environment also cannot tell
this difference.

As our primitives are proven secure in the random oracle
model (ROM), the main theorem uses the ROM.

10We stress that ΠOR (with any modules) is FNETq -subroutine respecting;
hence the GUC composition theorem holds.

12

Gc(1
η)

output k $← G(1η)

Ec((x1, . . . , xt), (k, ctr)) = Dc((x1, . . . , xt), (k, ctr))

if ctr = ε then ctr = 0
output (PRP(s, k) ⊕ x1, . . . ,PRP(s + t − 1, k) ⊕
xt, (k, ctr + t))

Figure 11. The stateful deterministic counter-mode (detCTR) Ec =
(Gc,Ec,Dc)

Theorem 2: If pseudorandom permutations exist, there
are secure OR modules (ntor, onionAlgs) such that the
protocol ΠOR in the FNREG, FSCS, FNETq -hybrid model using
(ntor, onionAlgs) securely realizes in the ROM the ideal
functionality FOR in the FNETq -hybrid model for any q.

Proof: If pseudorandom permutations exist Lemma 2
implies that secure onion algorithms exist. Lemma 3 shows
that in the ROM 1W-AKE exist. Then, Theorem 1 implies
the statement.

Note that we could not prove 1W-AKE security for the
TAP protocol currently used in Tor as it uses a CCA-insecure
version of the RSA encryption scheme.

VI. INSTANTIATING SECURE OR MODULES

We present a concrete instantiation of OR modules and
show that this instantiation constitutes a set of secure OR
modules. As onion algorithms we use the algorithms that are
used in Tor with a strengthened integrity mechanism, and as
1W-AKE we use the recently proposed ntor protocol [14].

We prove that the onion algorithms of Tor constitute
secure onion algorithms, as defined in Definition 6. The
crucial part in that proof is to show that these onion algo-
rithms are predictably malleable, i.e., for every modification
of the ciphertext the changes in the resulting plaintext are
predictable by merely comparing the modified ciphertext
with the original ciphertext. We first show that the under-
lying encryption scheme, the deterministic counter-mode, is
predictably malleable (Section VI-A). Thereafter, we show
the security of Tor’s onion algorithms (Section VI-B).

In Section VI-C, we briefly present the ntor protocol and
cite the result from Goldberg, Stebila, and Ustaoglu that
ntor constitutes a 1W-AKE. The proofs of the lemmas in
this section are postponed to the full version [1].

A. Deterministic Counter Mode and Predictable Malleabil-
ity

We show that the deterministic counter-mode (detCTR)
scheme is predictably malleable, as defined in Definition 1.

Lemma 1: If pseudorandom permutations exist, the deter-
ministic counter mode (detCTR) with Ec = (Gc,Ec,Dc) as
defined in Figure 11 predictably malleable.

WrOnI(O, k), for O 6∈M(κ)

O′ ← Encctr (O, k); return O′

WrOnI(m, k), for m ∈M(κ)

(r, r′)← PRG(k); km ← Genm(r)
ke ← Gene(r′)
Mac(m, km)
O′ ← Encctr (O, ke); return O′

WrOnI(m, 〈ki〉`i=1), for m ∈M(κ)

O2 ←WrOnI(m, k1)
for i = 2 to ` do
Oi+1 ←WrOnI(Oi, ki)

return O`

UnwrOnI(O, k)

(r, r′)← PRG(k); km ← Genm(r)
ke ← Gene(r′)
O′ ← Decctr (O, ke)
if O′ = m||t and m ∈M(κ) and V (m, t, km) = 1 then

return O′′

else
O′ ← Decctr (O, k); return O′

UnwrOnI(O, k, fake)

O′ ← Decctr (O, k); return O′

UnwrOnI(O, 〈ki〉`i=1)

for i = 1 to ` do
Oi+1 ←WrOnI(Oi, ki)

return O`

Figure 12. The Onion Algorithms onionAlg

B. Security of Tor’s Onion Algorithms

Let E := (Gene ,Enc,Dec) be a stateful deterministic
encryption scheme, and let M := (Genm ,Mac,V) be a
deterministic MAC. Let PRG be a pseudo random generator
such that for all x ∈ {0, 1}∗ |PRG(x)| = 2 · |x|. We write
PRG(x)1 for the first half of PRG(x) and PRG(x)2 the
second half. Moreover, for a randomized algorithm A, we
write A(x; r) for a call of A(x) with the randomness r.

As a PRP candidate we use AES, as in Tor, and as a
MAC use H-MAC with SHA-256. We use that in detCTR
encrypting two blocks separately results in the same cipher-
text as encrypting the pair of the blocks at once. Moreover,
we assume that the output of H-MAC is exactly one block.

The correctness follows by construction. The synchronic-
ity follows, because a PRP is used for the state. The end-
to-end integrity directly follows from the SUF of the Mac.
And the predictable malleability follows from the predictable
malleability of the deterministic counter-mode.

Lemma 2: Let onionAlg = {UnwrOnI ,WrOnI}. If
pseudorandom permutations exist, onionAlg are secure onion
algorithms.

C. ntor: A 1W-AKE

Øverlier and Syverson [24] proposed a 1W-AKE for use
in the next generation of the Tor protocol with improved
efficiency. Goldberg, Stebila, and Ustaoglu found an authen-

13

Initiate(pkQ, Q):
1) Generate an ephemeral key pair (x,X ← gx).
2) Set session id ΨP ← Hst(X).
3) Update st(ΨP)← (ntor, Q, x,X).
4) Set mP ← (ntor, Q,X).
5) Output mP .

Respond(pkQ, skQ, X):
1) Verify that X ∈ G∗.
2) Generate an ephemeral key pair (y, Y ← gy).
3) Set session id ΨQ ← Hst(Y).
4) Compute (k′, k)← H(Xy, XskQ , Q,X, Y, ntor).
5) Compute tQ ← Hmac(k

′, Q, Y,X, ntor, server).
6) Set mQ ← (ntor, Y, tQ).
7) Set out ← (k, ?,X, Y, pkQ), where ? is the anonymous

party symbol.
8) Delete y and output mQ.

ComputeKey(pkQ,ΨP , tQ, Y):
1) Retrieve Q, x, X from st(ΨP) if it exists.
2) Verify that Y ∈ G∗.
3) Compute (k′, k)← H(Y x, pkxQ, Q,X, Y, ntor).
4) Verify tQ = Hmac(k

′, Q, Y,X, ntor, server).
5) Delete st(ΨP) and output k.

If any verification fails, the party erases all session-specific
information and aborts the session.

Figure 13. The ntor protocol

tication flaw in this proposed protocol, fixed it, and proved
the security of the fixed protocol [14]. We use this fixed
protocol, called ntor, as a 1W-AKE.

The protocol ntor [14] is a 1W-AKE protocol between
two parties P (client) and Q (server), where client P
authenticates server Q. Let (pkQ, skQ) be the static key pair
for Q. We assume that P holds Q’s certificate (Q, pkQ).
P initiates an ntor session by calling the Initiate function
and sending the output message mP to Q. Upon receiving
a message m′P , server Q calls the Respond function and
sends the output message mQ to P . Party P then calls the
ComputeKey function with parameters from the received
message m′Q, and completes the ntor protocol. We assume
a unique mapping between the session ids ΨP of the cid in
ΠOR.

Lemma 3 (ntor is anonymous and secure [14]): The
ntor protocol is a one-way anonymous and secure 1W-AKE
protocol in the random oracle model (ROM).

VII. FORWARD SECRECY AND ANONYMITY ANALYSES

In this section, we show that our abstraction FOR allows
for applying previous work on the anonymity analysis of
onion routing to ΠOR. Moreover, we illustrate that FOR

enables a rigorous analysis of forward secrecy of ΠOR.
In Section VII-A, we show that the analysis of Feigen-

baum, Johnson, and Syverson [12] of Tor’s anonymity
properties in a black-box model can be applied to our
protocol ΠOR. Feigenbaum, Johnson, and Syverson show
their anonymity analysis an ideal functionality BOR (see
Figure 4). By proving that the analysis of BOR applies to

upon the first input m
send NOR to FNREG in Π; send setup to Π
wait for (ready, 〈Pi〉ni=1); further process m

upon an input (send, S, [m])

draw P1, . . . , P` at random from NOR

store (S,mdummy) [or (S,m)] in the queue for
〈P, P1, . . . , P`〉
send (cc, 〈P, P1, . . . , P`〉) to Π

upon (created, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉) from Π

look up (S,m) from the queue for 〈P, P1, . . . , P`〉
send (send, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉, (S,m)) to Π

upon (received, C,m) from Π

do nothing /*BOR does not allow responses to messages*/

upon a message m from FNET0 to the environment
do nothing /*BOR does not deliver messages*/

Figure 14. User-interface U(Π) for party P

FOR, the UC composition theorem and Theorem 1 imply
that the analysis applies to ΠOR as well.

In Section VII-B, we present the result that immediate
forward secrecy for ΠOR holds, by merely by analyzing
FOR. The proofs in this section are omitted due to space
constraints but can be found in the full version [1].

A. OR Anonymity Analysis

Feigenbaum, Johnson and Syverson [12] analyzed the
anonymity properties of OR networks. In their analysis, the
authors abstracted an OR network against attackers that are
local, static as a black-box functionality BOR. We reviewed
their abstraction BOR in Section II-E. In this section, we show
that the analysis of BOR is applicable to ΠOR against local,
static attackers.

There is a slight mismatch in the user-interface of BOR and
ΠOR. The main difference is that ΠOR expects separate com-
mands for creating a circuit and sending a message whereas
BOR only expects a command for sending a message. We
construct for every party P a wrapper U for ΠOR that adjusts
ΠOR’s user-interface. Recall that we consider two versions of
BOR and U simultaneously: one version in which no message
is sent and one version in which a message is sent (denoted
as [m]).

Instead of ΠOR, U only expects one command:
(send, S, [m]). We fix the length ` of the circuit.11 Upon
(send, S, [m]), U(Π) draws the path P1, . . . , P`

$← NOR at
random, sends a (cc, 〈P, P1, . . . , P`〉) to Π, waits for the cid
from Π, and sends a (send, cid ,m) command, where m is

11We fix the length for the sake of brevity. This choice is rather arbitrary.
The analysis can be adjusted to the case in which the length is chosen from
some efficiently computable distribution or specified by the environment for
every message.

14

a dummy message if no message is specified. Moreover, in
contrast to BOR the protocol ΠOR allows a response for a
message m and therefore additionally sends a session id sid
to a server.12

In addition to the differences in the user-interface, BOR

assumes the weaker threat model of a local, static attacker
whereas ΠOR assumes a partially global attacker. We for-
malize a local attacker by considering ΠOR in the FNET0 -
hybrid model, and connect the input/output interface of
FNET0 to the wrapper U as well. For considering a static
attacker, we make the standard UC-assumption that every
party only accepts compromise requests at the beginning of
the protocol. Moreover, we also need to assume that BOR is
defined for a fixed set of onion routers N in the same way
as FNOR .

Finally, our work culminates in the connection of previous
work on black-box anonymity analyses of onion routing with
our cryptographic model of onion routing.

Lemma 4 (U(ΠOR) UC realizes BOR): Let U(ΠOR) be de-
fined as in Figure 14. If ΠOR uses secure OR modules, then
U(ΠOR) in the FNET0 -hybrid model UC realizes BOR against
static attackers.

B. Forward Secrecy

Forward secrecy [7] in cryptographic constructions en-
sures that a session key derived from a set of long-term
public and private keys will not be compromised once the
session is over, even when one of the (long-term) private
keys is compromised in the future. Forward secrecy in
onion routing typically refers to the privacy of a user’s
circuit against an attacker that marches down the circuit
compromising the nodes until he reaches the end and breaks
the user’s anonymity.

It is commonly believed that for achieving forward se-
crecy in OR protocols it is sufficient to securely erase the
local circuit information once a circuit is closed, and to use
a key exchange that provides forward secrecy. ΠOR uses
such a mechanism for ensuring forward secrecy. Forward
secrecy for OR, however, has never been proven, and not
even rigorously defined.

In this section, we present a game-based definition for OR
forward secrecy (Definition 10) and show that ΠOR satisfies
our forward secrecy definition (Lemma 7). We require that
a local attacker does not even learn anything about a closed
circuit if he compromises all system nodes. The absence of
knowledge about a circuit is formalized in the notion of OR
circuit secrecy (Definition 10), a notion that might be of
independent interest.

Recall that we formalize a local attacker by considering
ΠOR in the FNET0 -hybrid model, i.e., the attacker cannot

12It is also possible to modify ΠOR such that ΠOR does not accept
responses and does not draw a session id sid . However, for the sake of
brevity we slightly modify BOR .

upon the first input m
set NA := ∅; send NOR to FNREG in FOR

send setup to FOR; wait for (ready, 〈Pi〉ni=1)
further process m

upon (compromise, P) from A
if all previous messages only were compromise messages
then

set NA := NA ∪ {P}
forward (compromise, P) to party P in U(FOR)

upon the first message m that is not compromise from A
send (compromise, NA) to BOR

further process m

upon any other message m from A to FNET0

forward m to FNET0

upon any other message m from A to U ′(FOR)

forward m to U ′(FOR)

upon a message m from U ′(FOR) to the environment
do nothing /* BOR already outputs the message */

upon (sent, U, S, [m]) from BOR

choose P1
$← NA and P`

$← NA
choose P2, . . . , P`−1

$← NOR

send (send, 〈Pi〉`i=1, [m]) to U ′(FOR)

upon (sent,−, S, [m]) from BOR

choose P1
$← NOR \ NA and P`

$← NA

choose P2, . . . , P`−1
$← NOR

send (send, 〈Pi〉`i=1, [m]) to U ′(FOR)

upon (sent, U,−) from BOR

choose P1
$← NA and P`

$← NOR \ NA

choose P2, . . . , P`−1
$← NOR

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(FOR)

upon (sent,−,−) from BOR

choose P1
$← NOR \ NA and P`

$← NOR \ NA

choose P2, . . . , P`−1
$← NOR

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(FOR)

Figure 15. The simulator SA: U ′ gets the path as input instead of drawing
it at random

observe the link between any pair of nodes without com-
promising any of the two nodes.

Definition 7 (Local attackers): We say that we consider
a protocol Π against local attackers if we consider Π in the
FNET0 -hybrid model.

The definition of circuit secrecy compares a pair of
circuits and requires that the attacker cannot tell which one
has been used. Of course, we can only compare two circuits
that are not trivially distinguishable. The following notion of
visibly coinciding circuits excludes trivially distinguishable
pairs of circuits. Recall that a visible subpath of a circuit is

15

CS-ChΠ
b : (setup) from A

if initial = ⊥ then
send (setup) to Π
challenge ← false
initial ← true

CS-ChΠ
b : (compromise, P)

from A
if challenge = false then

store that P is compro-
mised
forward (compromise, P)
to Π

CS-ChΠ
b : (close initial) from

A
challenge ← true

CS-ChΠ
b : (cc,P0,P1, P)

from A
if challenge = true then

if P0 and P1 visibly co-
incide then

forward (cc,Pb, P) to
Π

CS-ChΠ
b : for every other

message m from A
forward m to Π

CS-ChΠ
b : for every message

m from Π

if challenge = true and
m = (created, 〈P cid⇐⇒

P1 ⇐⇒ · · ·P`′〉, P)
then

store P for cid
forward m to A

Figure 16. OR Circuit Secrecy Game

FS-ChΠ
b behaves exactly like CS-ChΠ

b except for the following
message:

FS-ChΠ
b : upon (close challenge) from A

if challenge = true then
challenge ← false
for every circuit cid created in the challenge phase do

look up onion proxy P for cid ; send (cid , destroy, P) to
Π

Figure 17. OR Forward Secrecy Challenger: FS-ChΠ
b

a maximal contiguous subsequence of compromised nodes.
Definition 8 (Visibly coinciding circuits): A subsequence

〈Pj〉sj=u of a circuit 〈Pi〉`i=1 is an extended visible subpath
if 〈Pj〉s−1

j=u+1 is a visible subpath or s = ` and 〈Pj〉sj=u+1

is a visible subpath.
We say that two circuits P0 = 〈P 0

i 〉`
0

i=0, P1 = 〈P 1
i 〉`

1

i=0

are trivially distinguishable if the following three conditions
hold:

(i) the onion proxies P 0
0 , P

1
0 are not compromised,

(ii) the sequences of extended visible subpaths of P0 and
P1 are the same, and

(iii) the exit nodes of P0 and P1 are the same, i.e., P 0
`0 =

P 1
`1 .

For the definition of circuit secrecy of a protocol Π, we
define a challenger that communicates with the protocol Π
and the attacker. The challenger Cb is parametric in b ∈
{0, 1}. Cb forwards all requests from the attacker to the
protocol except for the cc commands. Upon a cc command
Cb expects a pair P0, P1 of node sequences, checks whether
P0 and P1 are visibly coinciding circuits, chooses Pb, and
forwards (cc,Pb) to the protocol Π. We require that the
attacker does not learn anything about visibly coinciding
circuits.

A protocol can be represented without loss of generality as
an interactive Turing machine that internally runs every sin-

gle protocol party as a submachine, forwards each messages
for a party P to that submachine, and sends every message
from that submachine to the respective communication part-
ner. We assume that upon a message (setup), a protocol
responds with a list of self-generated party identifiers. The
protocol expects for every message from the communication
partner a party identifier and reroutes the message to the
corresponding submachine. In the following definition, we
use this notion of a protocol.

Definition 9: Let Π be a protocol and CS-Ch be defined
as in Figure 16. An OR protocol has circuit secrecy if there
is a negligible function µ such that the following holds for
all PPT attackers A and sufficiently large κ

Pr[b
$← {0, 1} , b′ ← A(κ)CS-ChΠ

b (κ) : b = b′] ≤ 1/2 + µ(κ)

Forward secrecy requires that even if all nodes are com-
promised after closing all challenge circuits the attacker
cannot learn anything about the challenge circuits.

Definition 10: Let Π be a protocol and FS-Ch be defined
as in Figure 17. An OR protocol has circuit secrecy if there
is a negligible function µ such that the following holds for
all PPT attackers A and sufficiently large κ

Pr[b
$← {0, 1} , b′ ← A(κ)FS-ChΠ

b (κ) : b = b′] ≤ 1/2 + µ(κ)

Lemma 5: FOR against local attackers satisfies OR circuit
secrecy (see Definition 9).

The protocol as introduce in Section II-D presents ΠOR

as one (sub-)machine for every protocol party. Equivalently,
ΠOR can be represented as one interactive Turing machine
that runs all parties as submachines, upon a message (setup)
from the communication partner, sends (setup) to every
party, and sends an answer with a list of party identifiers
to the communication partner. In the following definition,
ΠOR is represented as one interactive Turing machine that
internally runs all protocol parties.

Lemma 6: ΠOR instantiated with secure OR modules
against local attackers satisfies OR circuit secrecy (see
Definition 9).

It is easy to see that in FOR, once a circuit is closed,
all information related to the circuit at the uncompromised
nodes is deleted. Therefore, forward secrecy for FOR is
obvious from the circuit secrecy in Lemma 6. Hence, the
following lemma immediately follows.

Lemma 7: ΠOR instantiated with secure OR modules
against local attackers satisfies OR forward secrecy (see
Definition 10).

VIII. FUTURE WORK

For future work an interesting direction could be to
incorporate hidden services into the UC security analysis.
We already designed the abstraction in a way that allows
for a modular extension of the UC proof to a hidden service
functionality. Moreover, our work offers a framework for

16

the analysis of other desirable OR properties, such as circuit
position secrecy.

It is well known that the UC framework lacks a notion
of time; consequently any UC security analysis neglects
timing attacks, in particular traffic analysis. A composable
security analysis that also covers, e.g., traffic analysis, is an
interesting task for future work.

Acknowledgements: This work is partially supported by
CISPA, NSERC, and Mprime. We thank Gregory Zaverucha
for helpful preliminary discussions, and Aaron Johnson, Paul
Syverson, Dominique Unruh and the anonymous reviewers
for their valuable comments on earlier drafts of the paper. We
also thank Sebastian Meiser for many insightful discussions
about and ideas for predictable malleability.

REFERENCES

[1] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi,
“Provably secure and practical onion routing,” IACR
Cryptology ePrint Archive, Report 2011/308, 2012.

[2] V. Boyko, P. D. MacKenzie, and S. Patel, “Provably Secure
Password-Authenticated Key Exchange Using
Diffie-Hellman,” in EUROCRYPT, 2000, pp. 156–171.

[3] J. Camenisch and A. Lysyanskaya, “A formal treatment of
onion routing,” in Advances in Cryptology—CRYPTO 2005,
2005, pp. 169–187.

[4] R. Canetti, “Universally Composable Security: A New
Paradigm for Cryptographic Protocols,” in Proc. 42nd IEEE
Symposium on Foundations of Computer Science (FOCS),
2001, pp. 136–145.

[5] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally
composable security with global setup,” in Proc. 4th Theory
of Cryptography Conference (TCC), 2007, pp. 61–85.

[6] D. Catalano, D. Fiore, and R. Gennaro, “Certificateless
onion routing,” in Proc. 16th ACM Conference on Computer
and Communication Security (CCS), 2009, pp. 151–160.

[7] W. Diffie, P. C. van Oorschot, and M. J. Wiener,
“Authentication and Authenticated Key Exchanges,” Des.
Codes Cryptography, vol. 2, no. 2, pp. 107–125, 1992.

[8] R. Dingledine and N. Mathewson, “Tor Protocol
Specification,” https://gitweb.torproject.org/torspec.git?a=
blob plain;hb=HEAD;f=tor-spec.txt, 2008, accessed Nov
2011.

[9] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
Second-Generation Onion Router,” in Proc. 13th USENIX
Security Symposium (USENIX), 2004, pp. 303–320.

[10] J. Feigenbaum, A. Johnson, and P. F. Syverson, “A model of
onion routing with provable anonymity,” in Proc. 11th
Conference on Financial Cryptography and Data Security
(FC), 2007, pp. 57–71.

[11] J. Feigenbaum, A. Johnson, and P. F. Syverson,
“Probabilistic analysis of onion routing in a black-box
model,” in Proc. 6th ACM Workshop on Privacy in the
Electronic Society (WPES), 2007, pp. 1–10.

[12] J. Feigenbaum, A. Johnson, and P. F. Syverson,
“Probabilistic Analysis of Onion Routing in a Black-box
Model, Tech. Rep. arXiv:1111.2520, 2011,
http://arxiv.org/abs/1111.2520v1.

[13] I. Goldberg, “On the Security of the Tor Authentication
Protocol,” in Proc. 6th Workshop on Privacy Enhancing
Technologies, 2006, pp. 316–331.

[14] I. Goldberg, D. Stebila, and B. Ustaoglu, “Anonymity and
one-way authentication in key exchange protocols,” Designs,
Codes and Cryptography, pp. 1–25, 2012, proposal for Tor:
https://gitweb.torproject.org/torspec.git/blob/HEAD:
/proposals/ideas/xxx-ntor-handshake.txt.

[15] O. Goldreich and Y. Lindell, “Session-Key Generation Using
Human Passwords Only,” in CRYPTO, 2001, pp. 408–432.

[16] D. M. Goldschlag, M. Reed, and P. Syverson, “Hiding
Routing Information,” in Proc. 1st Workshop on Information
Hiding, 1996, pp. 137–150.

[17] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Onion
Routing,” Commun. ACM, vol. 42, no. 2, pp. 39–41, 1999.

[18] D. Hofheinz, “Possibility and Impossibility Results for
Selective Decommitments,” J. Cryptology, vol. 24, no. 3,
pp. 470–516, 2011.

[19] A. Kate and I. Goldberg, “Distributed Private-Key
Generators for Identity-Based Cryptography,” in Proc. 7th
Conference on Security and Cryptography for Networks
(SCN), 2010, pp. 436–453.

[20] A. Kate and I. Goldberg, “Using Sphinx to Improve Onion
Routing Circuit Construction,” in Proc. 14th Conference on
Financial Cryptography and Data Security (FC), 2010, pp.
359–366.

[21] A. Kate, G. M. Zaverucha, and I. Goldberg, “Pairing-Based
Onion Routing,” in Proc. 7th Privacy Enhancing
Technologies Symposium (PETS), 2007, pp. 95–112.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg, “Pairing-Based
Onion Routing with Improved Forward Secrecy,” ACM
Trans. Inf. Syst. Secur., vol. 13, no. 4, p. 29, 2010.

[23] S. Mauw, J. Verschuren, and E. P. de Vink, “A
Formalization of Anonymity and Onion Routing,” in Proc.
9th European Symposium on Research in Computer Security
(ESORICS), 2004, pp. 109–124.

[24] L. Øverlier and P. Syverson, “Improving efficiency and
simplicity of tor circuit establishment and hidden services,”
in Proc. 7th Privacy Enhancing Technologies Symposium
(PETS), 2007, pp. 134–152.

[25] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous
Connections and Onion Routing,” IEEE J-SAC, vol. 16,
no. 4, pp. 482–494, 1998.

[26] V. Shmatikov, “Probabilistic analysis of an anonymity
system,” Journal of Computer Security, vol. 12, no. 3-4, pp.
355–377, 2004.

[27] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr,
“Towards an Analysis of Onion Routing Security,” in Proc.
Workshop on Design Issues in Anonymity and
Unobservability (WDIAU), 2000, pp. 96–114.

[28] “The Tor Project,” https://www.torproject.org/, 2003,
accessed Nov 2011.

[29] D. Wikström, “A universally composable mix-net,” in Proc.
of the 1st Theory of Cryptography Conference (TCC), 2004,
pp. 317–335.

[30] Y. Zhang, “Effective attacks in the tor authentication
protocol,” in NSS ’09, 2009, pp. 81–86.

17

