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Abstract—Various cryptographic constructions allow an un-
trusted cloud server to compute over encrypted data, without
decrypting the data. However, this prevents the cloud server
from branching according to encrypted values. We study the
constraints imposed by this important scenario by formulating
and solving an equivalent information-flow problem, based on
assuming an adversary could observe the control path. We
develop a type system that prevents control-path information
leaks, prove soundness, and compare with traditional implicit
information-flow. Because simply preventing programs that
leak information severely restricts the language, we define
alternate (and easily implemented) semantics that execute
multiple paths and combine the results using data operations.
This produces a termination problem which we address with
a more refined type system that characterizes a useful class of
obliviously executable programs. We prove fundamental results
about this language, semantics, and type system and conclude
by comparing with traditional timing-based information-flow.

I. INTRODUCTION

Cloud computing poses new security challenges [IDC,
Chow et al., 2009] because programs may manipulate sensi-
tive data on an untrusted or partially trusted platform. Mod-
ern cryptography such as homomorphic encryption [Gentry,
2009, Gentry, 2010, van Dijk et al., 2010] and secure
multiparty computation [Ben-Or et al., 1988, Gennaro et al.,
1998, Cramer et al., 2000, Naor and Nissim, 2001] may be
used to compute on encrypted data without access to the
decryption key (or associated process) that protects the data.
However, if the program branches on an encrypted value, the
cloud platform cannot determine which branch to execute
because that depends on a hidden plaintext value. This
language restriction can be formulated as an information-
flow requirement: control-flow is public information and
therefore cannot depend on private data.

In this paper, we formulate and study the information-
flow problem associated with public branching on private
data, which is distinct from traditional explicit and implicit
information flow [Sabelfeld and Myers, 2003]. We develop
a type system that prevents control-path information leaks,
prove soundness, and compare with traditional implicit
information-flow. Because simply preventing programs that
leak information severely restricts the language, we define
alternate (and appropriately implemented) semantics that
execute multiple paths and combine the results using data
operations. This produces a termination problem which we
address with a more refined type system that characterizes

a useful class of obliviously executable programs. We prove
fundamental results about this language, semantics, and type
system and conclude by comparing with traditional timing-
based information-flow. This study produces an implemented
language for computing over encrypted data that improves
on previous solutions (cf. [Bain et al., 2011, Mitchell et al.,
2012]).

As an illustrative setting providing both functional and
imperative constructs, we work with the standard semantics
of lambda calculus with references, augmented with path
annotations representing the information available to an
adversary that can tell which execution path is taken. Note
that this problem of control-path information leaks has been
studied before, with similar ideas, but with an imperative
language [Molnar et al., 2006, Agat, 2000]. We consider
standard information-flow typing concepts [Sabelfeld and
Myers, 2003, Pottier and Simonet, 2003, Volpano et al.,
1996] with security labels indicating high or low confi-
dentiality. In a secure program, high-confidentiality values
must not influence the control path or any observable
result. This condition is formalized as a form of non-
interference [Goguen and Meseguer, 1982].

Our initial candidate solution begins with a conventional
information-flow type system (similar to the one of flow-
caml [Pottier and Simonet, 2003]), for which we prove
soundness for IO non-interference. We then extend the
type system to prevent path information-flow leaks and
prove soundness for path non-interference. Just as implicit
information-flow can be reduced to explicit flow by a pro-
gram transformation Sabelfeld and Myers [2003], we also
define a program transformation that makes path leakage
explicit, reducing path information-flow to IO information-
flow.

Since simply preventing path information leakage reduces
programming language expressiveness severely, we present
an alternate semantics that effectively executes multiple
paths and combines the results using data operations. This
semantics is implementable with the correct information-
flow properties (see, e.g., [Mitchell et al., 2012]) using
homomorphic encryption or secure multiparty computation
because such data operations hide the results of each path
from the execution platform. We prove that this semantics
has a weak confluence property we call convergence, im-
plying that the semantics of a program is well-defined and
equivalent in output to the standard semantics (but with
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fewer path-flow leaks).
While the alternate semantics reduces path information

leaks, it introduces another problem, namely termination
of loops. If loop termination depends on a high confiden-
tiality secret, then the loop necessarily fails to terminate
because the semantics requires infinitely many paths to be
executed. We solve this problem with a type system that
allows arbitrary dependence on low confidentiality values,
but only primitive recursion on high confidentiality values.
This extends and improves on Mitchell et al. [2012], which
proposes a similar but more restrictive language, explores
its implementation with secure multiparty computation or
homomorphic encryptions, but does not consider the more
general language properties and analysis presented here.
We prove that well-typed programs under this discipline
terminate in the new semantics whenever they would ter-
minate under the standard semantics and prove path-flow
non-interference.

As a final contribution, we investigate the connection
between path-flow information leakage and timing channels.
We formalize timing leakage for our language and prove
that our system preventing path-flow leakage also prevents
timing leakage.

In Section II, we define our syntax and semantics. In
Section III, we define our information-flow settings, and give
some weak information-flow results (this section is standard
and can be skipped by informed readers). In Section IV,
we examine path information-flow problem, and propose
our two solutions. In Section V, we acknowledge and solve
our termination problem. In Section VI, we remark that we
incidentally gave a solution for other implicit flows problems
(e.g. timing channels). In Section VII, we show how our
solution can be used for secure computation.

II. PROGRAMS AND THEIR SEMANTICS

In this section, we define our language and its semantics.
The semantics has annotations that reveal the control-flow of
the program (i.e., which path of the computation has been
taken). We use those annotations in the sections below to
formalize the leak of information.

A λ-calculus with references: The language is a typed
call-by-value λ-calculus with booleans, an error value, con-
ditionals, and references. We use the conditional as a way
to express observable control-flow branching in a program,
and we use the error value as a default value for unini-
tialized memory references. For general background on the
λ-calculus, see Mitchell [1996], Pierce [2002].

v ::= x | a | k |⊥| λx.e | fix f.λx.e
e ::= v | v ∧ v | v ∨ v | ¬v | e e | If v then e else e

ref e |!e | e := e

where k range over 0, 1, and a range over a set Ref
of references values. Values consist of variables, refer-
ences, booleans, an error value, or lambda abstractions.

〈k ∧ k′, µ〉 −→ 〈k′′, µ〉 where k′′ = k ∧ k′
〈k ∨ k′, µ〉 −→ 〈k′′, µ〉 where k′′ = k ∨ k′
〈¬k, µ〉 −→ 〈k′, µ〉 where k′ = ¬k

〈(λx.e)v, µ〉 −→ 〈e[v/x], µ〉
〈(fix f.λx.e)v, µ〉 −→ 〈e[v/x][(fix f.λx.e)/f ], µ〉
〈If v then e1 else e0, µ〉

1−→ 〈e1, µ〉 when v = 1

〈If v then e1 else e0, µ〉
0−→ 〈e0, µ〉 when v = 0

〈ref v, µ〉 −→ 〈a, µ{a 7→ v}〉 for a 6∈ dom(µ)
〈!v, µ〉 −→ 〈µ(v), µ〉 when v ∈ dom(µ)
〈!v, µ〉 −→ 〈⊥, µ〉 when v 6∈ dom(µ)

〈v := v′, µ〉 −→ 〈0, µ{v 7→ v′}〉 when v ∈ dom(µ)
〈v := v′, µ〉 −→ 〈⊥, µ〉 when v 6∈ dom(µ)

Figure 1. Operational semantics

We write V for the set of values. Expressions consist of
values, conjunctions, disjunctions, negations, functions ap-
plications, conditionals, references allocations, dereferences,
or assignments. We adopt standard notions of free and
bound variables, of closed expressions, and of the capture-
avoiding substitution e[e′/x] of an expression e′ for all free
occurrences of a variable x in an expression e. We write
e1; e2 as syntactic sugar for (λx.e2) e1 where x is not free
in e2. We write If e then e1 else e0 as syntactic sugar for
(λx.If x then e1 else e0) e where x is not free in e0 and e1.
Intuitively, the error value ⊥ can have any type, and direct
computations with an error results in an error. However, only
branches taken by the expression can result in errors. For
instance If 1 then e else ⊥ does not result in an error. The
reduction of If v then e else e is annotated with the value
v, as a visible path-flow. In the following, we only consider
values and expressions that are simply typed (we omit the
standard λ-calculus typing rules).

Semantic: A memory is a mapping µ : Ref → V that
sends references to values of our language. A configuration
is a pair 〈e, µ〉 with µ a memory and e an expression.
The small step semantics is a labeled transition relation α−→
(where α is 0, 1, or nothing). Basic rules for the semantics
are defined in Figure 1 (with dom(µ) = {a|µ(a) 6=⊥})
and context rules are defined in Figure 2. (We omit the
rules of computation with ⊥.) Most of these rules are
standard except the rules for the conditional, which annotate
the transition with a value corresponding to the path taken.
Hence, the control-flow of the program execution is visible
on the trace. Those trace annotations are a model for when
the control-flow is visible by the host.

Example 1: Let a be a reference, we consider the ex-
pression If !a then 0 else 0, and we consider the two initial
memories µ0 = [a 7→ 0] and µ1 = [a 7→ 1]. We have

〈If !a then 0 else 0, µ0〉
0−→ 〈0, µ0〉

〈If !a then 0 else 0, µ1〉
1−→ 〈0, µ1〉

The two final results are equal, but the two traces are
different.

6767



〈e1, µ〉
α−→ 〈e′1, µ′〉

〈e1e2, µ〉
α−→ 〈e′1e2, µ

′〉
〈e2, µ〉

α−→ 〈e′2, µ′〉
〈v1e2, µ〉

α−→ 〈v1e
′
2, µ
′〉

〈e, µ〉 α−→ 〈e′, µ′〉
〈ref e, µ〉 α−→ 〈ref e′, µ′〉

〈e, µ〉 α−→ 〈e′, µ′〉
〈!e, µ〉 α−→ 〈!e′, µ′〉

〈e1, µ〉
α−→ 〈e′1, µ′〉

〈e1 := e2, µ〉
α−→ 〈e′1 := e2, µ

′〉

〈e2, µ〉
α−→ 〈e′2, µ′〉

〈v1 := e2, µ〉
α−→ 〈v1 := e′2, µ

′〉

Figure 2. Context rules

We write 〈e, µ〉 γ−→
∗
〈e′, µ′〉 with γ = α0α1 . . . αn for the

corresponding big-step semantics, i.e., when

〈e, µ〉 α0−→ 〈e1, µ1〉
α1−→ . . .

αn−−→ 〈e′, µ′〉

for some α0, α1, . . . , αn and e, e1, . . . , e
′. When there exists

no α, e′, and µ′ such that 〈e, µ〉 α−→ 〈e′, µ′〉; we say that
〈e, µ〉 is irreducible (in this semantics, this appends when e
is a value).

III. IO INFORMATION-FLOW

We now discuss our security policies. We annotate our
types with security labels, and consider the security of our
programs given an environment that specifies the types of
the free references. This specifies the security intent; for
instance, free references with a private type are supposed
not to influence public references (or in the case of path
non-interference, the control-flow). We then define the cor-
responding security statement in terms of different types of
non-interference (IO and path non-interference) and see how
this control-flow leak is detrimental to security. If we exclude
the definition of path non-interference, this section is mostly
standard.

Security types: We first discuss our security types:

` ::= L | H
t ::= bool | τ ref | (τ `−→ τ)
τ ::= t`

We consider public (L) and private (H) security labels, and
a reflexive relation ≤ such that L ≤ H but H 6≤ L (t and
u are the associated least upper bound and greatest lower
bound on security labels). Types (t) consist of booleans,
references, and abstractions. References recursively contain
the security type of the value they refer to. Abstractions
specify the security type of the value they take as input, the
security type of the resulting application, and an additional
label to specify their pc, i.e. a lower bound on the label of
the references they modify. For instance, a function of type

τ
H−→ τ ′ is guaranteed to never write on public references.

Security types (τ ) are labeled types, for instance a value
of type (boolH ref)L is public reference to a confidential
boolean. We extend ≤ on security types by saying that
` ≤ t`′ when ` ≤ `′. We let t` t `′ stands for t`t`

′
.

Environment: We now define security policies, which
give security types to the free references of the expression.
More generally, we define environments Γ as functions
from variables and references to security types (τ ). These
environments serve for initial security policy and are also
used in our type system where they specify types for bound
variables and references.

Memory typing: We want to consider expressions con-
taining free reference names and running on initialized
memories, hence we need a way to specify when a particular
memory corresponds to the environment. When the environ-
ment states that a memory reference contains a boolean,
it suffices to check that it is indeed the case. However,
the environment may also state functional information-flow
types or reference types. When this is the case, we check
it with an information-flow typing judgment Γ ` v : τ .
Our judgment for memory typing is parametric in ` (since
typing judgments have not yet been defined). It is of the
form Γ |= µ, and is defined inductively as follows:

Γ′ |= µ Γ ` v : τ v 6=⊥
Γ′; a : τ |= µ[a 7→ v]

∅ |= ∀a.a 7→⊥

For a given Γ, the first statement says that, if a memory µ is
correctly typed for some partial environment Γ′ (typically,
Γ′ is a subset of Γ), and an additional value v types (with
judgment `) in the initial environment Γ at level τ , then the
memory enriched with this value at a reference a types in
the environment Γ′ enriched with reference a at type τ . The
second statement ensures that memory references that don’t
appear in the environment contain the default error value.
When Γ |= µ for Γ and `, we say that µ is a typed memory
for ` and Γ. When it is clear from the context, we may omit
` or Γ.

Low-equalities: Once a security policy is defined, it
is possible to partially compare two memories relatively to
this policy. For example, if we determine that two memory
are equal for public references, it is not possible distinguish
them by accessing only the public references. Formally, let
Γ be an environment; let µ0 and µ1 be two memories. We
say that µ0 =L µ1 when, for every reference a such that
Γ(a) = tL, we have µ0(a) = µ1(a). We also define a
weaker equality that only examines boolean constants. We
say that µ0 =bool−L µ1 when, for every reference a such
that Γ(a) = boolL, we have µ0(a) = µ1(a). This is useful to
avoid some complications of non-interference in a functional
setting (for instance when two functions are semantically
equivalent, but syntactically not equal), which are not the
focus of this article.
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Non-interference: For IO non-interference (standard
non-interference), an expression is considered secure when
the initial values of the privates references do not influence
the final values of the public references. In other words,
an expression is secure when its execution on two initial
memories with the sames values in public references leads
to two final memories with the same values in public
references. Additionally, we define path non-interference, in
which the control-flow channel is considered public. In this
case, an expression is considered secure when the initial
values in privates references do not influence the final values
in public references or the semantics path annotations.

Definition 1: Let Γ be an environment, ` a label, and e an
expression. We say that e is IO non-interferent for ` when,
for every typed memories µ0 and µ1 such that µ0 =L µ1,
and for every expressions e0 and e1, memories µ′0 and µ′1,
and traces γ0 and γ1 such that

〈e, µ0〉
γ0−→
∗
〈e0, µ

′
0〉

〈e, µ1〉
γ1−→
∗
〈e1, µ

′
1〉

and both 〈e0, µ
′
0〉 and 〈e1, µ

′
1〉 are irreducible, we have

µ′0 =bool−L µ′1. If, additionally, γ0 = γ1, we say that e
is path non-interferent.
We may omit ` when it is obvious from the context.

Type system for non-interference: As a starting point,
we equip our language with a type system that enforces
IO non-interference. Typing judgments for values are of the
form Γ ` v : τ . Typing judgments for expressions are of the
form `,Γ ` e : τ . The typing rules for commands appear in
Figure 3. This type system is similar to those typically used
for non-interference [see e.g. Sabelfeld and Myers, 2003].

The judgment `,Γ ` e : τ guarantees that e is of type
τ , that it only writes references with a level higher than
` (sometimes called its ‘program counter’ level), and that
it is IO non-interferent. In the application rule, we match
the input type of the abstraction with the type of the input,
we also need to make sure that the level of the abstraction
flows to the the pc of its arrow type. In the conditional rule,
we ensure that the guard is not more confidential than the
pc of the branches. In the assignment rule, we ensure that
the types matches, and that the assigned reference is taken
account of in the pc of the expression.

The judgment Γ ` v : τ guarantees that v is of type τ .
Boolean constants can be seen as of type boolL. Reference
names and variables get their types from the environment.
For abstractions, if we can type the abstracted expression
in an environment with the abstraction variable at some
type, we get an arrow type linking both types; the arrow
is annotated with the pc used to type the expression, thus
specifying a lower bound on the level of variables accessed
when applying the abstraction.

Relations between types

` ≤ `′ t ≤ t′

t` ≤ t′`
′

τ ′0 ≤ τ0 τ1 ≤ τ ′1 `′ ≤ `

τ0
`−→ τ1 ≤ τ ′0

`′−→ τ ′1

Type judgments for values

Γ ` k : boolL Γ `⊥: τ
Γ ` v : τ τ ≤ τ ′

Γ ` v : τ ′

Γ(a) = τ

Γ ` a : τ refL
Γ ` x : Γ(x)

`,Γ;x : τ ` e : τ ′

Γ ` λx.e : (τ
`−→ τ ′)L

`,Γ;x : τ ; f : (τ
`−→ τ ′)`

′
` e : τ ′

Γ ` fix f.λx.e : (τ
`−→ τ ′)`

′

Type judgments for expressions

`,Γ ` e : τ τ ≤ τ ′ `′ ≤ `
`′,Γ ` e : τ ′

Γ ` v : τ

H,Γ ` v : τ

Γ ` v : bool` Γ ` v′ : bool`

H,Γ ` v ∧ v′ : bool`

Γ ` v : bool` Γ ` v′ : bool`

H,Γ ` v ∨ v′ : bool`
Γ ` v : bool`

H,Γ ` ¬v : bool`

`,Γ ` e : (τ ′
`′−→ τ)`

′′
`,Γ ` e′ : τ ′ `′′ ≤ `′

` u `′,Γ ` e e′ : τ t `′′

Γ ` v : bool` `,Γ ` e1 : τ `,Γ ` e0 : τ

`,Γ ` If v then e1 else e0 : τ t `

`,Γ ` e : t`

`,Γ ` ref e : t` refL
`,Γ ` e : t`

′
ref`

′′

`,Γ `!e : t`
′t`′′

`,Γ ` e : t`
′

ref`
′

`,Γ ` e′ : t`
′

` u `′,Γ ` e := e′ : boolL

Figure 3. Type system for IO non-interference
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[[If v then e1 else e0]]b = If v then [[e1]]b; b := 1
else [[e0]]b; b := 0

[[e e′]]b = [[e]]b [[e′]]b
[[λx.e]]b = λx.[[e]]b
[[fix f.λx.e]]b = fix f.λx.[[e]]b
[[ref v]]b = ref v
[[!v]]b = !v
[[v := v′]]b = v := v′

[[x]]b = x

Figure 4. Transformation for explicit leak

Theorem 1: Let Γ be an environment, let e be an ex-
pression, let τ be a security type, and ` a label such that
`,Γ ` e : τ . Then e is IO non-interferent.

IV. PATH INFORMATION-FLOW

The above type system does guarantee IO non-
interference but not path non-interference. In the exam-
ple below, we show a typed expression (hence IO non-
interferent) that branches on a private reference, and thus
is not path non-interferent.

Example 2: Let h be a reference. We consider the expres-
sion If !h then 0 else 0 and the environment Γ = h : boolH .
We have H,Γ ` If !h then 0 else 0 : H . However, if we
consider the two low-equal memories µ0 = [h 7→ 0] and
µ1 = [h 7→ 1], we have

〈If !h then 0 else 0, µ0〉
0−→ 〈0, µ0〉

〈If !h then 0 else 0, µ1〉
1−→ 〈0, µ1〉

The two final memories are low-equal, but the two traces
are different; the expression is not path non-interferent.

Conditional leak the value of their guard in the trace.
Hence, we can secure the type system by replacing the
conditional rule with a rule that disallows private guards
(as previously observed by Smith and Volpano [1998]):

Γ ` v : boolL L,Γ ` e1 : τ L,Γ ` e0 : τ

L,Γ ` If v then e1 else e0 : τ

The resulting type system guarantees path non-interference,
but fewer expressions can be typed.

Theorem 2: Let Γ be an environment, let e be an ex-
pression, let τ be a security type, and ` a label such that
`,Γ ` e : τ in the type system with the more restrictive
conditional rule. Then e is path non-interferent.

Transformation: As an alternative, it is also possible
to detect expressions that leak information through their
control-flow by making the leak explicit. In Figure 4, we
describe such a transformation, in which we add a new
public reference that explicitly records the control-flow leak.
In the transformed expression, the control-flow now affects
our public reference; hence, if the transformed expression is

non-interferent, then no private information influences the
control-flow. Thus, the original expression must be path
non-interferent. In the theorem below, we show that, if a
transformed expression types in the standard information-
flow type system (i.e., is IO non-interferent), then the
original expression is path non-interferent.

Theorem 3: Let e be an expression, let b be a fresh refer-
ence name, let Γ be an environment such that Γ(b) = boolL,
let τ be a security type, and ` a label such that `,Γ ` [[e]]b : τ
in the original type system. Then e is path non-interferent.

Still, this approach has the same effect of disallowing
private guards, and accepts exactly the same reduced set
of expressions than the type system with the restrictive
conditional rule.

Bypassing control-flow leaking: Formally, it is some-
times possible to rewrite programs to avoid the leak itself.
For instance, if the two branches of a conditional are
boolean constants, it is possible to implement it using basic
operations, thus denying the leak. For example, let v, k1

and k0 be booleans, If v then k1 else k0 gives the same
result than (v ∧ k1) ∨ (¬v ∧ k0) but avoids the control-flow
leak. Instead of transforming the original expression, we can
achieve a similar result in the semantics by adding a rule

〈If v then k1 else k0, µ〉 −→ (v ∧ k1) ∨ (¬v ∧ k0)

In practice, we can see the conditional (and its path leak)
in our model as a way for the programmer to specify that
requests on any of the two values is observable by the host
(for instance, if they are stored on a remote machine). Hence,
a request on one of the two values reveal the branch taken.
In this case, the rewritten program requests both values, and
thus avoid any path leak (similarly with the additional se-
mantic rule). We can also draw parallels with homomorphic
operations on encryptions. Homomorphic operations are
computations done on encrypted plaintexts without reading
the plaintexts themselves, and thus without revealing any
information on those plaintexts. In such settings, it is not
possible to do a generic conditional homomorphicaly since
it would leak the control-flow, but it is possible to implement
it on constants as above using basic operations.

This extended semantics works when the branches of a
conditional are booleans, but not when the branches are ex-
pressions, references, or functions. In pure lambda calculus,
the order of evaluation is irrelevant; with such a property,
we could reduce the branches, and, in some cases, transform
the conditional using the semantic rule above. However, this
is not the case in lambda calculus with references since
operations on references are only executed on the valid side
of the conditional. Still, if we allow some expressions in
memory (not only values), it is possible to have correct
nested evaluations. For instance, when some reference a
is updated on one side of a conditional, we replace the
expression for a in the memory by a conditional expression
on the updated value and the previous expression for a.
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Even with nested evaluation, we still cannot safely (avoiding
control-flow leaks) reduce conditionals of non-boolean types
to values. However, we can adapt our semantics to reduce
expressions containing such conditionals. For instance, if a
dereference is applied on a conditional of references, we
can safely distribute the dereference on the conditional. We
can similarly safely distribute assignments and reference
allocations. Similarly, when the branches values are lambda
abstractions, we can safely factorize the abstraction over
the conditional. Conditional trees of references are still
irreducible (if we want to avoid control-flow leaks), hence,
if we want to safely reduce all expressions that are not
reference-typed to values, we need to allow the application
of functions to those conditional trees of references (and not
only values). Here is how we define those trees of references:

a is a tree of references (for all reference a)

e1, e0 are trees of references
If v then e1 else e0 is a tree of references

We now formally extend stores so that they can contain
pure expressions, and not only values. We say that an
expression e is pure when it contains no reference allocation,
dereference, assignment, or application:

v is pure
e1, e0 are pure

If v then e1 else e0 is pure

The main rule for store typing becomes

Γ′ |= µ Γ ` e : τ e is pure
Γ; l : τ |= µ[l 7→ e]

Then, in Figure 5, we describe our extension to the
operational semantics. In Rules (Cond-L) and (Cond-R),
we describe how to safely reduce expressions inside a
conditional. To this end, we check the result of one step
of reduction in one of the expression, then we update the
memory with conditionals referring the two possible states
(depending on the conditional branch). Rule (Mem) is for
reductions in memory. Rule (App) is for application on
trees of references. Rule (Fact-λ) is for factoring lambda
abstractions on conditionals. Rule (Fact-f) is for factoring
fixpoints on conditionals. Rule (Distr-d) is for distributing
dereferences on conditionals. Rule (Distr-al) is for distribut-
ing assignments on the right of conditionals. Rule (Distr-ar)
is for distributing assignments on the left of conditionals.
Rule (Distr-r) is for distributing references declaration on
conditionals. Rule (No-flow) is for reducing conditionals in
arithmetic operations.

Convergence: This new semantics is not deterministic
anymore, but it is convergent on pure memories for expres-
sions that reduce to booleans (expressions that reduce to
functions might get different, although equivalents, results).

Theorem 4: Let µ be a pure memory. Let e be an ex-
pression. If 〈e, µ〉 γ0−→

∗
〈e0, µ0〉, then, µ0 is pure. Also, if

〈e, µ〉 γ1−→
∗
〈e1, µ1〉

γ′1−→
∗
〈k, µ′1〉, then, there exists µ′0, and

γ′0 such that 〈e0, µ0〉
γ′0−→
∗
〈k, µ′0〉.

Our additional rules do not change the result of expres-
sions, but they do induce different semantic annotations
(they change the strategy of evaluation). In this example,
we show how we can use those additional rules to avoid
control-flow leaks.

Example 3: Let h be a reference name. We consider the
following execution

〈If 0 then h := 1; 1 else h := 0; 0, {h 7→ 1}〉
−→ 〈If 0 then 1 else h := 0; 0, {h 7→ If 0 then 1 else 1}〉
−→ 〈If 0 then 1 else 0,

{h 7→ If 0 then If 0 then 1 else 1 else 0}〉
−→∗ 〈(0 ∧ 1) ∨ (¬0 ∧ 0),

{h 7→ (0 ∧ ((0 ∧ 1) ∨ (¬0 ∧ 0))) ∨ (¬0 ∧ 0)}〉
−→∗ 〈0, {h 7→ 0}〉

This execution is longer than an execution in the original
semantics (since it executes both paths), but it gives the same
result and has no annotations.

〈If 0 then h := 1; 1 else h := 0; 0, {h 7→ 1}〉
0−→ 〈h := 0; 0, {h 7→ 1}〉
−→ 〈0, {h 7→ 0}〉

We avoid control-flow leaks of secret values when we use
those extended rules on conditionals with a private guard,
but we don’t need to use them when the guard is public.
In order to guide the usage of the extended rules (so that
they are not used when the conditional is public), we add
annotations on the conditionals. We consider the annotated
conditionals IfL and IfH , named respectively H- and L-
conditionals. From now on, we use exclusively the additional
rules for H-conditionals, and exclusively the original rules
for L-conditionals (except when specified otherwise). Note
that this makes it so that some irreducible expressions (H-
trees of references) are not values.

Theorem 5: Let µ be a pure memory. Let e be an expres-
sion. If 〈e, µ〉 is irreducible, then e is a value, or e is a tree
of references.
To satisfy standard notion of progress, we could consider
H-trees of references as values.

V. TERMINATION

We showed that our additional semantic rules are con-
sistent; hence we can safely execute the program while
avoiding the leaking conditional rule when the guard is
private. However, since we now run additional branches, we
have no guarantee that an expression that terminates with
the initial rules still terminates with the extended rules, as
shown in the example below.

Example 4: We consider the following expression

If 0 then Ω else 1
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(Cond-L)
〈e1, µ〉

α−→ 〈e′1, µ′〉 µ′′(a) = If v then µ′(a) else µ(a) for a ∈ dom(µ′)

〈If v then e1 else e0, µ〉
α−→ 〈If v then e′1 else e0, µ

′′〉

(Cond-R)
〈e0, µ〉

α−→ 〈e′0, µ′〉 µ′′(a) = If v then µ(a) else µ′(a) for a ∈ dom(µ′)

〈If v then e1 else e0, µ〉
α−→ 〈If v then e1 else e′0, µ

′′〉

(Mem)
〈e, µ〉 α−→ 〈e′, µ〉 µ(a) = e

〈e0, µ〉
α−→ 〈e0, µ[a 7→ e′]〉

(App)
e′ is a tree of references

λx.e e′ −→ e[e′/x]

(Fact-λ) 〈If v then λx.e1 else λx.e0, µ〉 −→ 〈λx.If v then e1 else e0, µ〉
(Fact-f) 〈If v then fix f.λx.e1 else fix f.λx.e0, µ〉 −→ 〈fix f.λx.If v then e1 else e0, µ〉
(Distr-d) 〈!If v then e1 else e0, µ〉 −→ 〈If v then !e1 else !e0, µ〉
(Distr-al) 〈(If v then e1 else e0) := e2, µ〉 −→ 〈If v then e1 := e2 else e0 := e2, µ〉
(Distr-ar) 〈v := (If v′ then e1 else e0), µ〉 −→ 〈If v′ then v := e1 else v := e0, µ〉
(Distr-r) 〈ref (If v′ then e1 else e0), µ〉 −→ 〈If v′ then ref e1 else ref e0, µ〉
(No-flow) 〈If k0 then k1 else k2, µ〉 −→ 〈(k0 ∧ k1) ∨ (¬k0 ∧ k2), µ〉

Figure 5. Extension to the operational semantics

where Ω is a non-terminating expression. This expression
terminates, but only with the original semantic rules.

This problem is inherent to the idea of not leaking control
flow. Intuitively, if the secret values cannot influence which
branches are executed, the execution must be at least as long
as the longest possible execution; if the execution is not
bounded by public values, the program cannot terminate.
In order to avoid this problem, we require termination of
the branches of H-conditionals, and, more generally, of
all expressions typed with a secret pc. In typed lambda
calculus with references, non-termination can appear with
two mechanisms: fixpoints (which are easy to disallow) and
an encoding of fixpoint using references, as in the following
expression

a := (λx.(!a 1)); !a 1

It is possible to disallow this kind of encoding by including
the type of the references read in the type of functions. Then,
in the example above, the type of a needs to verify the
following equation

Γ(a) = bool
Γ(a)−−−→ t

for some t. This is not possible, hence this expression cannot
be typed.

We describe a type system that ensures the termination of
expressions typed with a secret pc by disallowing fixpoints
and their encoding through references. This type system
also enforces the annotations (L/H) on conditional branches
depending on the level of the guard so that we know if we
need to use the alternate semantic rules or if we can safely
use the original ones.

Here are our updated security types:

Υ ::= τ̃ | L
t ::= bool | τ ref | τ Υ−→ τ
τ ::= t`

We introduce a new type of pc (Υ) that is either L or a set
of security types. We let Υ ≤ Υ′ if Υ = L or Υ′ 6= L and
Υ′ ⊆ Υ (and we define the associated least upper bound and
greatest lower bound accordingly). In the updated security
type for abstractions, the label is either L if the pc of the
function is low (we don’t need to restrict functions with a
low pc since they cannot appear in H-conditionals) or the set
of the types of the references it accesses. In the following,
we consider environments and memory typing with these
new types.

We now equip our language with a type system that
enforces (together with the extended semantics rules) path
non-interference and termination for expressions with a
secret pc. Typing judgments for values are similar to those of
the original type system. Typing judgments for expressions
are of the form Υ,Γ ` e : τ , with our new pc (Υ). The typing
rules appear in Figure 6. Most typing rules for values and
expressions are similar to those of the type system for IO
non-interference. In the typing rule for recursive functions,
we now require all recursive calls to be run at a low pc
(since those can cause non-termination). In the typing rule
for dereference, we add the reference accessed to the pc,
thus the pc of an expression is either L or the set of the
references it access.

We first show that this type system does enforce termina-
tion for expressions that type with a pc that is not low.

Theorem 6: Let Γ be an environment, let µ be a typed
memory, let e be an expression, let τ be a security type,
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Relations between types

` ≤ `′ t ≤ t′

t` ≤ t′`
′

τ ′0 ≤ τ0 τ1 ≤ τ ′1 Υ′ ≤ Υ

(τ0
Υ−→ τ1) ≤ (τ ′0

Υ′−→ τ ′1)

Type judgments for values

Γ ` k : boolL Γ `⊥: τ
Γ ` v : τ τ ≤ τ ′

Γ ` v : τ ′

Γ(a) = τ

Γ ` a : τ refL
Γ ` x : Γ(x)

Υ,Γ;x : τ ` e : τ ′

Γ ` λx.e : (τ
Υ−→ τ ′)L

Υ,Γ;x : τ ; f : (τ
L−→ τ ′)L ` e : τ ′

Γ ` fix f.λx.e : (τ
Υ−→ τ ′)L

Type judgments for expressions

Υ,Γ ` e : t` τ ≤ τ ′ Υ′ ≤ Υ t ≤ t′

Υ′,Γ ` e : τ ′

Γ ` v : τ

∅,Γ ` v : τ

Γ ` v : bool` Γ ` v′ : bool`

∅,Γ ` v ∧ v′ : bool`

Γ ` v : bool` Γ ` v′ : bool`

∅,Γ ` v ∨ v′ : bool`
Γ ` v : bool`

∅,Γ ` ¬v : bool`

Υ,Γ ` e : (τ ′
Υ′−→ τ)` Υ,Γ ` e′ : τ ′ Υ′ = L⇒ ` = L

Υ uΥ′,Γ ` e e′ : τ t `

Γ ` v : bool` Υ,Γ ` e1 : τ
Υ = L⇒ ` = L Υ,Γ ` e0 : τ

Υ,Γ ` If` e then e1 else e0 : τ t `

Υ,Γ ` e : T ` Υ = L⇒ ` = L

Υ,Γ ` ref e : T ` refL

Υ,Γ ` e : T ` ref`
′

Υ ∪ {T `
′
},Γ `!e : T `t`

′

Υ,Γ ` v : T ` ref` Υ,Γ ` v′ : T ` Υ = L⇒ ` = L

Υ,Γ ` v := v′ : boolL

Figure 6. Type system for termination and path non-interference

and let Υ be a pc such that Υ 6= L and Υ,Γ ` e : τ .
There exists no infinite sequence of configurations 〈ei, µi〉
and infinite sequence αi such that

〈e, µ〉 α0−→ 〈e1, µ1〉
α1−→ . . .

We now show that if an expression terminates with the
standard rules, and can be typed in this type system, then
it terminates when we use the additional rules for H-
conditionals. This means, in particular that typed expressions
terminate as often with the additional rules.

Theorem 7: Let Γ be an environment, let µ be a typed
memory, let e be an expression, let τ be a security type, and
let Υ be a pc such that Υ,Γ ` e : τ . If there exists a sequence
of configurations 〈ei, µi〉i≤n, and a sequence (αi)i≤n such
that

〈e, µ〉 α0−→ 〈e1, µ1〉
α1−→ . . . 〈en, µn〉

in the original rules, and where en is irreducible, then there
exists no infinite sequence of configurations 〈e′i, µ′i〉i and
infinite sequence (α′i)i such that

〈e, µ〉 α′0−→ 〈e′1, µ′1〉
α′1−→ . . .

Last, and this is our main theorem, we show that typed
expressions are path non-interferent with the additional
rules.

Theorem 8: Let Γ be an environment, let e be an expres-
sion, let τ be a security type, and let Υ be a pc such that
Υ,Γ ` e : τ . Then e is path non-interferent. when executed
with the additional rules.

VI. TIMING CHANNEL

In the section above, we offered a semantics solution
for control-flow leaks. Incidentally, since the control-flow
of programs does not depend on the private data anymore,
the code executed does not depend on the private data either,
hence our solution also closes timing channels.

In order to show that no part of the executed code depends
on the private data, we now annotate every semantic rule
with its own label (we omit similar labels for the extended
rules):

〈k ∧ k′, µ〉 ∧−→ 〈k′′, µ〉 where k′′ = k ∧ k′

〈k ∨ k′, µ〉 ∨−→ 〈k′′, µ〉 where k′′ = k ∨ k′

〈¬k, µ〉 ¬−→ 〈k′, µ〉 where k′ = ¬k
〈(λx.e)v, µ〉 λ−→ 〈e[v/x], µ〉

〈(fix f.λx.e)v, µ〉 fix−→ 〈e[v/x][(fix f.λx.e)/f ], µ〉
〈IfL v then e1 else e0, µ〉

1−→ 〈e1, µ〉 when v = 1

〈IfL v then e1 else e0, µ〉
0−→ 〈e0, µ〉 when v = 0

〈ref v, µ〉 νa−→ 〈a, µ{a 7→ v}〉 for a 6∈ dom(µ)

〈!v, µ〉 !v−→ 〈µ(v), µ〉 when v ∈ dom(µ)

〈v := v′, µ〉 v:=−−→ 〈0, µ{v 7→ v′}〉 when v ∈ dom(µ)
. . .

These annotations on the behaviors of programs are very
precise; still, we can show that typed programs stay non-
interferent.
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Time-sensitive non-interference: Similarly to path non-
interference, an expression is considered secure when the
initial values of the privates variables do not influence
the final values of the public variables or the semantics
annotations. However, in this case, the semantic annotations
carry more information. For instance, the length of the
program execution, or even the commands executed or the
references accessed are observable through the annotations.

Definition 2: Let Γ be an environment, ` a label, and e
an expression. We say that e is time non-interferent when,
for every memories µ0 and µ1 that contain only booleans
and such that µ0 =L µ1, and for every memory µ′0, value
v0, and trace γ0 such that

〈e, µ0〉
γ0−→
∗
〈v0, µ

′
0〉

there exist a memory µ′1, a value v1, and a trace γ1 such
that

〈e, µ1〉
γ1−→
∗
〈v1, µ

′
1〉

µ′0 =L µ
′
1, and γ0 = γ1.

We now restate our theorem:
Theorem 9: Let Γ be an environment, let e be an expres-

sion, let t` be a security type, and let Υ be a pc such that
Υ,Γ ` e : t`. Then e is time non-interferent when executed
with the extended rules.

VII. RELATED WORK

The work described in this paper is part of a larger
project exploring computation on encrypted data. A previous
paper from our group Mitchell et al. [2012] describes an
implementation of oblivious computations on a simpler and
more restricted language with related semantics, using either
homomorphic encryption or secure multiparty computation
for secrecy. The more recent compiler developed by our
group takes source code corresponding to the present paper
as input, typechecks it, then produces Haskell code that
implements the semantics of this paper using optimized li-
braries (from another team collaborating with us) to execute
the cryptographic operations. The implementation ensures
strong correctness and security properties, subject to some
assumptions on the cryptographic operations.

Our extended semantics is used in the implementation
of oblivious computation because most operations can be
executed without reading secret values. The only operations
that need to read those values are boolean operations, since
we never directly reduce a conditional with a confidential
guard. It is possible to implement these operations using,
for instance, homomorphic encryption or secure multiparty
computation. With fully homomorphic encryption, we can
execute our boolean operations on encrypted values without
revealing them, so we can implement our semantics with
encrypted blobs for secret values. In the secure multiparty
computation case, the secrets are shared between a number
of servers. The servers can compute on the original secret by

computing on their share and exchanging some information.
If enough servers do not collude, none of them learn
anything about the secrets. Once again, we can implement
our semantics using those shares for secret values.

A large part of the slowdown (presently potentially on the
order of 109 for homomorphic encryption) currently comes
from the cryptographic operations, but some of it comes
from the principle discussed in this paper that we need
oblivious executions. In related work, our team has worked
on faster oblivious algorithms for specific computational
problems of interest. While homomorphic encryption may be
prohibitively slow for some applications, the same programs
run with practical running time when executed using secret
sharing for confidentiality.

Other systems for secure computations include
SCET [Bogetoft et al., 2005], with focus on economic
applications and secure double auctions; FairplayMP [Ben-
David et al., 2008], a specification language SFDL
that is converted to primitive operations on bits;
Sharemind [Bogdanov et al., 2008], for multiparty
computations on large datasets; VIFF [Damgård et al.,
2009], a basic language embedded in Python and API
to cryptographic primitives. These systems implement
cryptographic protocols, without proving the more
comprehensive correctness and security properties.
Similarly, SMCL [Nielsen and Schwartzbach, 2007]
is an imperative-style DSL implemented with secure
multiparty computation, that has some correctness and
security properties.

VIII. CONCLUSION

We have studied path-based information-flow using a
lambda calculus with references whose semantics represents
information leaked to an adversary that can see the ex-
ecution path. Starting with a type system (similar to the
one of flow-caml [Pottier and Simonet, 2003]), we establish
baseline soundness for IO non-interference and consider the
additional path information-flow problem. One alternative
for preventing path-based leakage is our first extended
information-flow type system (Theorem 2); equivalently
we present a program transformation making path leakage
explicit, reducing path information-flow to IO information-
flow (Theorem 3).

It is relatively easy to see that simply preventing path
information leakage is very restrictive – no program can
branch according to any confidential value. We can provide
greater expressiveness using an alternate semantics that
effectively executes multiple paths and combines the results
using data operations. This semantics is implementable using
homomorphic encryption [Gentry, 2009, Gentry, 2010, van
Dijk et al., 2010] or secure multiparty computation [Ben-
Or et al., 1988, Gennaro et al., 1998, Cramer et al., 2000,
Naor and Nissim, 2001] because such data operations hide
the data values from the execution platform. We prove
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that this semantics has a weak confluence property we
call convergence, implying that the semantics of a program
is well-defined and equivalent in output to its standard
semantics, with fewer path-flow leaks (Theorem 4). Because
executing all paths can force nontermination when loop iter-
ation depends on a secret value, we extend our security type
system to prevent loops that necessarily do not terminate
for this reason. We prove that well-typed programs under
this discipline terminate in the new semantics whenever
they would terminate under the standard semantics (Theorem
6) and prove path-flow non-interference (Theorem 7). Thus
we have developed and proved sound a language and type
system that we believe is suitable for programming in an
environment where path information must be hidden from
an adversary. This language is more cleanly defined, more
flexible for programming (for instance, we allow functions
in references), and has cleaner and more comprehensive
formal analysis than previous efforts (see [Bain et al., 2011,
Mitchell et al., 2012]).

In order to put our main results in perspective, we
investigate the connection between path-flow information
leakage and timing channels. We formalize timing leakage
and prove that our system preventing path-flow leakage also
prevents timing leakage (Theorem 8). Intuitively, this is to
be expected when data operations do not leak data values,
because timing difference arise from the differences between
execution paths.
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APPENDIX: PROOF SKETCHES

This appendix contains proof sketches for the most inter-
resting theorem, that is Theorems 4,6-9.

A. Proof of Theorem 4

Theorem 4 is about convergence of our original and
extended rules together. In the extended rules, the evalu-
ation of conditionals can be delayed. Hence we introduce
an equivalence between expressions that contain additional
conditionals.

Definition 3: We let ≡ be the symmetric relation on
expressions and values defined by:

e ≡ e λx.ek ≡ λx.If k then e1 else e0

fix f.λx.ek ≡ fix f.λx.If k then e1 else e0

e1 ≡ e′1 e0 ≡ e′0
If v then e1 else e0 ≡ If v then e′1 else e′0

e0 ≡ e′0 e1 ≡ e′1
e0 e1 ≡ e′0 e′1

e ≡ e′

ref e ≡ ref e′
e ≡ e′

!e ≡!e′

e0 ≡ e′0 e1 ≡ e′1
e0 := e1 ≡ e′0 := e′1

e ≡ e′

λx.e ≡ λx.e′

e ≡ e′

fix f.λx.e ≡ fix f.λx.e′

(We omit the symmetric rules.)

This lemma is a more generic version of Theorem 4 using
our equivalence.

Lemma 1: Let µ0 and µ1 be two pure memories such
that, for every location l, µ0(l) ≡ µ1(l). Let e0 and e1 be
two expressions such that e0 ≡ e1. If 〈e0, µ0〉

α0−→ 〈e′0, µ′0〉
and 〈e1, µ1〉

α1−→ 〈e′1, µ′1〉 then, there exists e′′0 , e′′1 , µ′′0 , µ′′1 ,

γ′0, and γ′1 such that 〈e′0, µ′0〉
γ′0−→
∗
〈e′′0 , µ′′0〉, 〈e′1, µ′1〉

γ′1−→
∗

〈e′′1 , µ′′1〉, e′′0 ≡ e′′1 , and, for every location l, µ′0(l) ≡ µ′1(l).

Proof of Lemma 1: Let µ0 and µ1 be two pure
memories such that, for every location l, µ0(l) ≡ µ1(l).
Let e0 and e1 be two expressions such that e0 ≡ e1. We
first prove the property on pure expressions, then on all
expressions. Thus, we can apply Lemma 1 on the pure
expressions stored in memory when doing the proof. The
proof is by induction on the size of the expressions. We
omit the proof for pure expressions since its cases are a
subset of the general proof. We now sketch the examination
of all possible couple of reductions.

• If both reductions are memory reductions:

〈e0, µ〉 α−→ 〈e0′, µ〉 µ(l0) = e0

〈e0, µ〉
α−→ 〈e0, µ[l0 7→ e0′]〉

〈e1, µ〉 α−→ 〈e1′, µ〉 µ(l1) = e1

〈e1, µ〉
α−→ 〈e1, µ[l1 7→ e1′]〉

If l0 = l1, we conclude by Lemma 1 on pure
expressions e0 and e1, otherwise, we reduce l1 in
〈e0, µ[l0 7→ e0′]〉 and conclude.

• If one of the reduction is a reduction of

– v ∧ v′,
– v ∨ v′,
– ¬v,
– λx.e v,
– fix f.λx.e v,
– ref v,
– !v,
– or v := v′,

and the other reduction is a memory reduction, then we
can carefully mirror the reductions and conclude (we
may have to add or remove one reduction in !v, v := v′,
λx.e v, and fix f.λx.e v cases). If the other reduction is
similar, the resulting expressions are already equivalent
(except in cases λx.e v and fix f.λx.e v where we may
need to add a step.

• There are seven possible type of reductions (numbered
1 − 7 in the following) from expressions of the form
If k then e1 else e0, (we assume without loss of
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generality that k = 1):

〈If 1 then e1 else e0, µ〉 1−→ 〈e1, µ〉

〈If 1 then k1 else k0, µ〉 −→ 〈(1 ∧ k1) ∨ (¬1 ∧ k0), µ〉

〈e1, µ〉 α−→ 〈e1′, µ′〉
µ′′(x) = If 1 then µ′(x) else µ(x) for x ∈ dom(µ′)

〈If 1 then e1 else e0, µ〉 α−→ 〈If 1 then e1′ else e0, µ′′〉

〈e0, µ〉 α−→ 〈e0′, µ′〉
µ′′(x) = If 1 then µ′(x) else µ(x) for x ∈ dom(µ′)

〈If 1 then e1 else e0, µ〉 α−→ 〈If 1 then e1 else e0′, µ′′〉

〈If 1 then λx.e1′ else λx.e0′, µ〉 −→

〈λx.If 1 then e1′ else e0′, µ〉

〈If 1 then fix f.λx.e1′ else fix f.λx.e0′, µ〉 −→

〈fix f.λx.If 1 then e1′ else e0′, µ〉

〈e′, µ〉 α−→ 〈e′′, µ〉 µ(l) = e′

〈If 1 then e1 else e0, µ〉 α−→
〈If 1 then e1 else e2, µ[l 7→ e′′]〉

We can verify that

– Reduction 1 when followed by a reduction on e1,
gives the same result than reduction 3 followed
by 1 and reductions on memory. If e0 = e1,
we conclude for these reductions, otherwise, we
proceed by induction on the first branches.

– Reduction 1 gives the same result than reduction
4 followed by 1 and reductions on memory.

– Reduction 1 gives the same result than reduction
2 followed by three reductions on ∧ and ∨.

– 1 and 5 (or 6) give equivalent expressions.
– 7 easily commutes with 1.

• If both reductions are λ applications (and similarly for
fixpoints):

– If both e0 and e1 are of the form (λx.e) e′, we
conclude.

– If e0 is of the form (λx.e) e′ and e1 is of the form
λx.If k then e1 else e0 e′ (where e′ is a value or a
tree of references and ek ≡ e), we can mirror one
step of e0 with two steps of e1.

• If the two reductions are contextual, we conclude by
induction.

• If one of the reduction is of the form
〈!If v then e1 else e2, µ〉 −→ 〈If v then !e1 else !e2, µ〉

〈(If v then e1 else e2) := e3, µ〉 −→ 〈If v then e1 :=

e3 else e2 := e3, µ〉

〈v := (If v′ then e0 else e1), µ〉 −→ 〈If v′ then v :=

e0 else v := e1, µ〉 〈ref (If v′ then e0 else e1), µ〉 −→

〈If v′ then ref e0 else ref e1, µ〉

and the other is contextual, we verify that we can
converge by reducing the conditional.

Proof: The proof of Theorem 4 follows from Lemma 1.

B. Proof of Theorem 6

This proof of termination is similar to the proof of termi-
nation for simply typed lambda calculus, but references add
complexity. We first inductively define a notion of reducible
expressions for a particular set of types. This notion implies
termination. Then, we show some properties of this defini-
tion (conservation by reduction, and independence from the
set of types). Finally, we prove that all typed expression with
a high pc are reducible.

Definition 4: Let Υ be a set of types. We define reducible
expressions for this set inductively. Let e be an expression
such that Υ,Γ ` e : τ . Let (li)i≤n be the set of locations in
Γ such that Γ(li) ∈ Υ, l ≤ n, e is reducible for Υ if:
• τ is atomic and for every series of pure expressions

(ei1, . . . , e
i
n)i such that ∅,Γ ` eij : Γ(lj), j ≤ n and eij

is reducible for Υ\Γ(lj), there exists no infinite series
of states (〈ei, µi〉)i such that e0 = e, and 〈ei, lj 7→
eij , j ≤ n〉 −→ 〈ei+1, µi+1〉; and for every such finite
chain, the (µi)i contain expressions that are reducible
for Υ\Γ(l) (and with Υ = ∅).

• τ is of the form (τ ′
Υ′−→ τ ′′)` with Υ′ ⊆ Υ and

for every expression e′ reducible for Υ and such that
Υ,Γ ` e′ : τ , we have e e′ reducible for Υ.

This induction is well founded since we will only make
inductive calls on τ ′,Υ′ such that Υ′ ⊂ Υ or Υ′ ⊆ Υ and
τ ′ ∈ τ .

In this lemma, we prove that the notion of reducibility is
conserved by reduction.

Lemma 2: If e is reducible for Υ, and 〈e, µ〉 −→ 〈e′, µ′〉
for some µ that verifies the conditions of reducibility, then
e′ is reducible for Υ.

Proof of Lemma 2: The proof is by definition of
reducibility.

In this lemma, we prove that a conditional is reducible if
and only if its branches are reducible.
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Lemma 3: IfH v then e0 else e1 is reducible if and only
if e0 and e1 are reducible.

Proof of Lemma 3: If one step is made by e0 or e1,
we conclude by induction (on the number of steps for them
to terminate). The other cases are also by induction.

In this lemma, we prove that if an expression is reducible
for a particular set of types, it is reducible for smaller sets
of types.

Lemma 4: Let e be an expression reducible for Υ, τ a
type and Υ′ ⊆ Υ such that Υ′,Γ ` e : τ and, for every
Υ′′ ∈ τ , Υ′′ ⊆ Υ′. Then e is reducible for Υ′.

Proof of Lemma 4: The proof is by induction on the
definition of reducible
• If τ is atomic, the series of pure expressions

(ei1, . . . , e
i
n)i such that ∅,Γ ` eij : Γ(lj), j ≤ n and eij

is reducible for Υ′\Γ(lj) are the same than for Υ\Γ(lj)
by induction.

• Otherwise, we conclude similarly by induction.

In this lemma, we prove that if an expression is reducible
for a particular set of types, it is reducible for bigger sets of
types.

Lemma 5: If e is reducible for Υ, Υ ⊆ Υ′, then e is
reducible for Υ′.

Proof of Lemma 5: The proof is by induction on the
definition of reducible
• If τ is atomic, the series of pure expressions

(ei1, . . . , e
i
n)i such that ∅,Γ ` eij : Γ(lj), j ≤ n and eij

is reducible for Υ′\Γ(lj) are the same than for Υ\Γ(lj)
by induction.

• Otherwise, lets consider an argument that corresponds
to the definition; after a bunch of reductions, we get
〈v e′, µ′〉 where e′ is a value or a tree of locations. At
this point, e′ types with ∅, and we can conclude with
the Lemma 4 that it is reducible for Υ.

Lemma 6: Every typed expression e is reducible.
Proof of Lemma 6: We show by induction on the struc-

ture of e that if Υ,Γ ` e : τ for some Υ,Γ, τ and e1, . . . , en
are reducible pure expressions with ∅,Γ ` ei : Γ(xi), then
the term e[e1/x1, . . . , en/xn] is reducible.
• If e is a variable, e[e1/x1, . . . , en/xn] is a variable or

one of the ei, we conclude.
• If e = e′ e′′, we conclude by induction.
• If e = λx.e′, we have e[e1/x1, . . . , en/xn] =
λx.e′[e1/x1, . . . , en/xn]. We let e′′ =

e′[e1/x1, . . . , en/xn]. Let τ0
Υ0−−→ τ1

Υ1−−→ . . .
Υm−1−−−−→

τm be the type of λx.e′′, and let e0, e1, . . . , em be
reducible terms of types τ0, τ1, . . . , τn. Let µ be a
memory satisfying the properties of the reducible
definition. Lets consider chain of reductions of the
state 〈λx.e′′ e0 e1 . . . em, µ〉. In this chain, either the
first application is never reduced (and we conclude), or

it is reduced at step k. In this case, the term after step
k is of the form: 〈e′′[e0∗/x] e1 . . . em, µ′〉, where
e0∗ is a reduction of e0 and either a value or a tree
of locations (hence reducible for Υ), we conclude by
induction on e′′.

• If e =!e′, we proceed similarly. Either ! is never
reduced, (and we conclude), or the term after the
reduction step is of the form:

– 〈(IfH v then !e0∗0 else !e0∗1) e1 . . . em, µ′〉 if
If v then e0∗0 else e0∗1 is a reduction of e, in
which case we use Lemma 3 to separate the two
branches and continue reductions; or

– 〈e′′ e1 . . . em, µ′〉, where e′′ = µ′(l) and l is a
reduction of e0. e′′ is reducible for Υ\τ ′′, but it is
also reducible by Υ from Lemma 5.

• If e = If e′ then e′′ else e′′′ we use Lemma 3 and
conclude by induction.

• If e = ref e′, we conclude similarly by induction.
• If e = (e′ := e′′), we conclude similarly by induction.

Proof: The proof of Theorem 6 follows from Lemma 6.

C. Proof of Theorem 7

This theorem is about termination in two different re-
duction system (with the original or extended rules). In
order to relate executions, and since extended rules delay
the executions of conditionals, we introduce a relation from
expressions to expressions that contain additional condition-
als.

Definition 5: We let � be a transitive relation on expres-
sions and values defined by

e � e ek � IfH k then e1 else e0

vk � (k ∧ v1) ∨ (¬k ∧ v0) v0 � 0 ∨ (¬0 ∧ v0)

v0 � (¬0 ∧ v0) v0 � (1 ∧ v0)
e0 � e′0 e1 � e′1

e0 e1 � e′0 e′1
. . .

(We omit the similar rules for k = 1 and most inductive
rules.)

In this lemma, we prove that if a value is in relation with
an expression (by �), then every intermediate state is in
relation with the original expression.

Lemma 7: Let Γ be an environment, let v0 be a typed
value, and e1 be a typed expression such that v0 � e1,
let µ0 be a value memory and µ1 be a pure memory such
that, for every location l, µ0(l) � µ1(l). Let 〈ei, µi〉i≤k be
a sequence of configuration terminating on an irreducible
expression, and (αi)i≤k be a sequence of transition labels
such that

〈e1, µ1〉 = 〈e1, µ1〉 α1

−→ . . . 〈ek, µk〉
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For every i ≤ k, v0 � ei, and µ0(l) � µi(l).
Proof of Lemma 7: The proof is by induction on the

length of the trace (k), with a first pass on pure expressions
so that we can apply the lemma on memory reductions.
• If the next reduction is a memory reduction, we con-

clude by induction.
• If e1 is a value, we conclude.
• If e1 is of the form

(0 ∧ v1) ∨ (¬0 ∧ v0) (0 ∧ v1) ∨ (¬0 ∧ v0)

0 ∨ (¬0 ∧ v0) (¬0 ∧ v0) (1 ∧ v0)

we reduce and conclude.
• If e1 is of the form IfH k then e1

1 else e0
1 and v0 � ek1 ,

there are three possible cases:
– e1

1 or e0
1 reduces in the conditional, in which case

we conclude by induction.
– e1

1 and e0
1 are values, and the conditional reduces

with one of the possible rules for conditionals on
values. We verify that the results follows our defi-
nition (using induction in one case) and conclude.

– e1 is a tree of location, in which case it does not
reduces, and we conclude.

• In all other cases where v0 � e1, e1 is already a value.

In this lemma, we prove that if two expressions are in
relation (by �), and the second expression terminates, then
a reduction of the first expression is eventually mirrored in
the second expression.

Lemma 8: Let Γ be an environment, let e0 and e1 be
two typed expressions such that e0 � e1, let µ0 be a
value memory, and µ1 a pure memories such that, for every
location l, µ0(l) � µ1(l). Let 〈ei, µi〉i≤n be a sequence of
configurations, terminating on an irreducible expression, and
(αi)i≤n be a (possibly infinite) sequence of transition labels
such that

〈e1, µ1〉 = 〈e1, µ1〉 α1

−→ . . . 〈en, µn〉

If 〈e0, µ0〉
α−→ 〈e′0, µ′0〉 (in the original semantics), then, there

exists an index i such that
• e′0 � ei,
• for every j < i, e0 � ej ,
• for every j < i, for every location l, µ0(l) � µj(l),

and
• for every location l, µ0(l) � µn(l).

Proof of Lemma 8: The proof is by induction on the
length of the trace (k), with a first pass on pure expressions
so that we can apply the lemma on memory reductions.
• If the next reduction is a memory reduction, we con-

clude by induction.
• If e1 is a value, then e0 is a value, and we conclude.
• If e1 is of the form v∧v, v∨v, or ¬v, then e0 is also of

this form (or is a value); we check that the reductions
behave correctly and conclude.

• If e1 is of the form e′′1 e
′′′
1 , then e0 is of the form e′′0 e

′′′
0 ,

there are three possibilities:

– e′′0 is not a value. The only possible reduction is a
reduction of e′′0 . We conclude by induction on e′′0
and e′′1 .

– e′′0 is a value and e′′1 is not a value, the only possible
reductions of e1 are reductions of e′′1 . By Lemma 7
on e′′0 and e′′1 we reduce the problem to the next
point.

– e′′0 and e′′1 are values. e′′′0 is not a value; the only
possible reduction of e0 is a reduction of e′′′0 . We
conclude by induction on e′′′0 and e′′′1 .

– e′′0 and e′′1 are values; e′′′0 is a value, but e′′′1 is not
a value or a tree of locations. By Lemma 7 on e′′′0
and e′′′1 , we reduce to the next point.

– e′′0 and e′′1 are values; e′′′0 is a value, e′′′1 is a value
or a tree of location. The only reduction possible
in both cases is the application; we conclude.

• If e1 is of the form IfL k then e1
1 else e0

1, then e0 is
of the form IfL k then e1

0 else e0
0, the only possible

reduction of e0 and e1 is the standard conditional
reduction; we conclude.

• If e1 is of the form IfH k then e1
1 else e0

1 and e0 is
of the form IfH k then e1

0 else e0
0 with e1

0 � e1
1 and

e0
0 � e0

1, e0 reduces (with the original rules) to ek0 , with
ek0 � IfH k then e1

1 else e0
1 and we conclude.

• If e1 is of the form IfH k then e1
1 else e0

1 and e0 � ek1 ,
then by induction on e0 and ek, there are tow possible
cases:

– e1
1 or e0

1 reduces in the conditional, in which case
we conclude by induction.

– e1
1 and e0

1 are values or trees of locations, in which
cases e0 is a value (contradicts the hypothesis that
e0 reduces).

• If e1 is of the form !IfH k then e1
1 else e0

1 and e0 is
of the form !IfH k then e1

0 else e0
0 with e1

0 � e1
1 and

e0
0 � e0

1, e0 reduces (with the original rules) to !ek0 ,
with !ek0 �!IfH k then e1

1 else e0
1 and we conclude.

• If e1 is of the form !IfH k then e1
1 else e0

1 and
e0 is of the form !ek0 with ek0 � ek1 , e1 reduces to
IfH k then !e1

1 else !e0
1 and we conclude by induction.

• In any over case were e1 is of the form !e, we conclude
by induction.

• The cases for ref e and e := e′ are similar.

In this lemma, we generalize the results above for non-
terminating expressions.

Lemma 9: Let Γ be an environment, let e0 and e1 be two
typed expressions such that e0 � e1, let µ0 and µ1 be two
pure memories such that, for every location l, µ0(l) � µ1(l).
Let 〈ei, µi〉i be a sequence of configurations, either infinite
or terminating on an irreducible expression, and (αi)i be a
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(possibly infinite) sequence of transition labels such that

〈e1, µ1〉 = 〈e1, µ1〉 α1

−→ 〈e2, µ2〉 α2

−→ . . .

If e0 is a value, then the sequence is finite, the last ex-
pression ei is such that e0 � ei, and µ0(l) � µi(l). If
〈e0, µ0〉

α−→ 〈e′0, µ′0〉 (in the original semantics), then, there
exists an index i such that e′0 � ei, and for every location
l, µ′0(l) � µi(l).

Proof of Lemma 9: The proof is by induction on the
structure of e1. It is very similar to the proof of Lemma 8
(even if the induction is different), so we only highlight the
case that differs:
• If e1 is of the form IfH k then e1

1 else e0
1 and e0 � ek1 ,

then e1 type with a pc Υ 6= L. Hence, by Theorem 6,
〈ei, µi〉i is finite. We conclude with Lemma 8 and 7.

Proof: The proof of Theorem 7 is by induction on the
number of steps for e to terminate, using Lemma 9.

D. Proof of Theorem 8

From Theorem 4, if an expression terminates with two
different paths, the memories must be the same. This implies
IO non-interference by Theorem 1. We omit the proof for
path non-interference since it is similar to the proof of
Theorem 9 (with a special case for private functions that
use public branches).

E. Proof of Theorem 9

We want to prove equivalence of two executions on
memories that differ only on private values. Hence, we first
define an equivalence between expressions that share the
same public values, but not the privates ones.

Definition 6: Let Γ be an environment, let Υ be a pc,
let τ be a type, let e and e′ be two expressions such that
Υ,Γ ` e : τ and Υ,Γ ` e′ : τ . We define the reflexive
relation ∼τ,Γ,Υ as:

k ∼boolH ,Γ,Υ k′

plus the natural inductive rules.
We now prove a more generic lemma using this equiva-

lence.
Lemma 10: Let Γ be an environment, let τ be a security

type, and let Υ be a pc, let e0 and e1 be two expressions
such that e0 ∼τ,Γ,Υ e1, let µ0 and µ1 be two pure memories
such that, for every l ∈ Γ, µ0(l) ∼Γ(l),Γ,∅ µ1(l). For every
memory µ′0, expression e′0, and α0 such that

〈e0, µ0〉
α0−→ 〈e0, µ

′
0〉

there exist a memory µ′1, an expression e1, an environment
Γ′ with Γ ⊆ Γ′ and α1 such that

〈e1, µ1〉
α1−→ 〈e1, µ

′
1〉

e0 ∼τ,Γ′,Υ e1, and for every l ∈ Γ′, µ′0(l) ∼Γ′(l),Γ′,∅ µ
′
1(l).

Proof of Lemma 10: The proof is by structural induc-
tion on e0, with a first pass on pure expressions so that we
can apply the lemma on memory reductions.
• If there is a memory reduction in µ0, we mirror the

reduction in µ1.
• If e0 is a value, there is no reduction, we conclude.
• If e0 is of the form v0

0 ∧ v1
0 , then e1 is of the form

v0
0 ∧v1

0 . Both have only one possible reduction, and we
conclude (similarly for ∨ and ¬.

• If e0 is of the form e0
0 e

1
0, then e1 is of the form e0

1 e
1
1,

with e0
0 ∼τ ′,Γ,Υ e0

1 and e1
0 ∼τ ′′,Γ,Υ e1

1. If e0
0 is not

a value, we conclude by induction. If the reduction is
inside e1

0 we conclude by induction. Otherwise, e1
0 is

a tree of locations, hence e1
1 is a tree of locations, the

transition can happen on both sides.
• If e0 is of the form IfL v0 then e0

0 else e1
0, then e1 is

of the form IfL v1 then e0
1 else e1

1, with v0 ∼τ ′,Γ,Υ v1,
e0

0 ∼τ ′′,Γ,Υ e0
1, and e1

0 ∼τ ′′′,Γ,Υ e1
1. There is only one

possible reduction, and it works as expected.
• If e0 is of the form IfH v0 then e0

0 else e1
0, then e1 is

of the form IfH v1 then e0
1 else e1

1, with v0 ∼τ ′,Γ,Υ v1,
e0

0 ∼τ ′′,Γ,Υ e0
1, and e1

0 ∼τ ′′′,Γ,Υ e1
1. If at least one

of e0
0 and e1

0 is not an expression, there is one or
two possible reductions, and they work as expected by
induction. If e0

0 and e1
0 are both lambda abstraction or

booleans, then e0
1 and e1

1 also are lambda abstraction;
there is one possible reduction, which works correctly.
Otherwise, they are both locations and there is no
possible reductions.

• If e0 is of the form e0
0 := e1

0, then e1 is of the form
e0

1 := e1
1, with e0

0 ∼τ ′,Γ,Υ e0
1 and e1

0 ∼τ ′′,Γ,Υ e1
1. If

e0
0 or e1

0 is not a value or an high if, we conclude by
induction. If e0

0 is an high if, then e0
1 is too, we verify

the reduction. If e1
0 is an high if, then e1

1 is too, we
verify the reduction. Otherwise, there is one reduction,
that works as expected. We conclude.

• We conclude similarly for ! and ref .

Proof: The proof of Theorem 9 is direct from
Lemma 10.
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