
Cryptographically Enforced RBAC

Anna Lisa Ferrara
University of Bristol, UK

anna.lisa.ferrara@bristol.ac.uk

Georg Fuchsbauer
Institute of Science and Technology, Austria

georg.fuchsbauer@ist.ac.at

Bogdan Warinschi
University of Bristol, UK

bogdan@cs.bris.ac.uk

Abstract—Cryptographic access control promises to offer
easily distributed trust and broader applicability, while re-
ducing reliance on low-level online monitors. Traditional im-
plementations of cryptographic access control rely on simple
cryptographic primitives whereas recent endeavors employ
primitives with richer functionality and security guarantees.
Worryingly, few of the existing cryptographic access-control
schemes come with precise guarantees, the gap between the
policy specification and the implementation being analyzed only
informally, if at all.

In this paper we begin addressing this shortcoming. Unlike
prior work that targeted ad-hoc policy specification, we look
at the well-established Role-Based Access Control (RBAC)
model, as used in a typical file system. In short, we provide
a precise syntax for a computational version of RBAC, offer
rigorous definitions for cryptographic policy enforcement of a
large class of RBAC security policies, and demonstrate that an
implementation based on attribute-based encryption meets our
security notions.

We view our main contribution as being at the conceptual
level. Although we work with RBAC for concreteness, our
general methodology could guide future research for uses of
cryptography in other access-control models.

I. INTRODUCTION

Traditional enforcement of access-control policies relies
on low-level mechanisms like operating-system kernels and
on-line monitors [5]. An appealing alternative that had
received quite a bit of attention uses cryptography [17],
[20], [23]. An example that illustrates the general idea
behind this approach is access control through cryptographic
sealing [17]. Here, a principal encrypts a file under some
symmetric key and then restricts access by ensuring that only
appropriate parties can get hold of the key. Among other
benefits, cryptographic implementations extend the applica-
bility of access controls to more settings, leverage already
existing setups (e.g. PKIs) for fast deployment, and offer
more flexible distribution of trust through mechanisms like
threshold cryptography and/or multi-party computation (see
[16] for a discussion of appropriate application scenarios).

Since monitors grant only policy-compliant requests, in
monitor-based implementations correct enforcement of poli-
cies holds by design. Unfortunately, such a direct link
cannot be established for cryptographically enforced access
control. Policies are enforced indirectly through an associ-
ated key-management strategy. Furthermore, cryptographic
guarantees are probabilistic (an adversary can always guess

keys with non-zero probability), while policies are usually
designed with an absolute semantics in mind (some party
does/does not have access to some object). This observation
illustrates the gap between the type of semantics usually
associated to policies and typical cryptographic guarantees,
which is unfortunately present in existent research on cryp-
tographic access control. For simple policies implemented
with simple primitives the lack of formal guarantees is
perhaps justified since a) the translation between policies
and the associated key management is simple and b) the
security of the primitives is well-understood. When policies
are complex or rely on primitives with advanced features,
the absence of rigorously established guarantees should be
worrisome. Cryptographic definitions, even those that rely
on straightforward intuition should be used with great care
as they tend to be subtle, lead to strange interactions, and
are fragile in the presence of real-world attacks like adaptive
corruption [13], [8]. Furthermore, even if the constructions
rely on clear intuition, a rigorous security proof may prove
trickier than expected, may not be possible, or worse, may
reveal overlooked attacks. Finally, note that such proofs
hinge on cryptographic definitions of secure enforcement
of security policies, which are almost never provided (see
below for two notable exceptions).

Overview of Our Results

In this paper we start to address what we perceive to
be a pervasive lack of computational security guarantees in
the area of cryptographically enforced access control. Our
results are set in the context of the popular role-based access
control model (RBAC) [2], [14], [25], as applied to a file
system.

In RBAC, users (from some set of users U ) are allocated
one or more roles (from some set of roles R). In turn, each
role has associated a set of permissions (from some set of
permissions P ). In core RBAC the underlying semantics
is that a user u has permission p if there exists a role r
such that u was assigned to r and r has permission p. The
RBAC model allows for dynamic changes to the state of the
system where users, roles and permissions are added and
deleted; role membership may also change dynamically. A
more complex variant of RBAC is obtained by considering a
role hierarchy as a partial-order relation on R (hierarchical
RBAC [2]). In this case, it is demanded that higher-level
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roles subsume permissions owned by lower-level roles. For
the sake of simplicity, in the rest of the paper we will only
consider core RBAC. This is not a limitation, since any
hierarchical RBAC policy can be easily transformed into an
equivalent core RBAC policy.

The first ingredient of our framework is an execution
model which in turn relies on a fixed (but general) system
architecture. We consider a set of users with unrestricted
read access to the file system. Each file is identified with
a set of RBAC permissions: a user should be able to read
the content of the file if he has one of the permissions. A
cryptographic RBAC system is defined by the algorithms
executed by parties when engaging in the different actions
stipulated in the RBAC model (e.g. adding/deleting users
and permissions). In general, each such action could be im-
plemented via a multi-party computation between all parties
and the manager. We model a scaled-down version where
each RBAC management command is a non-interactive
protocol: the manager locally executes an algorithm and
then (privately) sends information to users who then locally
update their state. Our model can be easily generalized and
it is sufficient for the analyses of the concrete implemen-
tations we consider. These details fix a general syntax of a
cryptographic RBAC implementation (henceforth we refer
to such implementations as cRBAC).

We are interested in executions of cRBAC systems that
are driven by some arbitrary adversary. The adversary can
corrupt users (but not the manager) and can demand that
the manager execute arbitrary RBAC commands, in arbi-
trary order, and with arbitrary parameters. For example, an
adversary may ask the manager to add arbitrary users to the
system, create new permissions, assign users to roles, etc.
Intuitively, what is desired from any good implementation
is that the adversary should only gain access, via the
users he corrupted, to those files which he can trivially
access following the sequence of actions that it dictates. For
example, if the adversary demands that a corrupt user u be
assigned to role r, and that this role has permission p then u
should clearly have access to the file to which p corresponds.
Conversely, if none of the users that the adversary controls
has permission p then a file corresponding to p should be
secret for the adversary. We formulate this property via
an indistinguishability-based cryptographic game, and call
a cRBAC implementation that satisfies it secure.

Next, we identify a class of RBAC policies for which we
would like to define secure cryptographic enforcement. The
policies express restrictions on what permissions users may
have, subject to certain constraints. The class is large enough
to express policies like “separation of duties”, and “privilege
escalation”.

We provide an interpretation for such policies being
satisfied as follows. First, we use a standard symbolic
semantics for the execution of RBAC systems to define
a notion of symbolic satisfaction for policies. Then we

consider executions of an adversary with a manager that
enforces the policy in a symbolic sense: the manager keeps
track of the commands executed so far and only executes
a new command if it does not lead to a policy violation
(again, in the symbolic sense). Notice that this is a minimal
requirement for the policy to hold. Computational satisfac-
tion demands that in such executions, the access restrictions
expressed by the policy enforced by the manager hold, in a
computational sense.

We then prove a theorem that establishes a relation
between secure cRBAC implementations and computational
policy enforcement: in such implementations any policy
from the class that we identified is satisfied under the
assumption that the manager follows the policy. A different
interpretation of the theorem is that a secure cRBAC imple-
mentation provides a form of computational soundness [10]:
policies that are satisfied symbolically are also satisfied
computationally.

Finally, we demonstrate the usability of our framework by
applying it to a cRBAC implementation based on attribute-
based encryption [24], [18], a primitive designed with appli-
cations to access control in mind1. Our somewhat technical
security proof confirms the applicability of this type of
encryption to access control and also illustrates well an
important point we made above: even constructions that
rely on obvious intuition hide significant challenges that are
revealed only following a rigorous proof.

We conclude by remarking that we view the central
contribution of this paper as being mainly conceptual. We
identify a problem which seems to have gone almost un-
noticed (exception make [3] and [19], who address this
problem for more ad-hoc policy languages or with more
demanding definitions based on universal composability
(UC) [9], respectively), and present a recipe that could be
useful for follow-up work on computational guarantees of
cryptographically enforced access control.

II. ROLE-BASED ACCESS CONTROL

In this section we recall some details regarding role-
based access control (RBAC) [2], [14], [25]. This model has
emerged as a simple and effective access-control mechanism
for large organizations. It simplifies policy specification and
the management of user rights using a two-tier management:
it groups users into roles and assigns permissions to each
role. A permission represents an approval to perform an
operation on an object, i.e., a permission is an object-action
pair. Specifically, a user u has permission p if there exists a
role r such that u is assigned to r and r has permission p.

The RBAC model allows for dynamic changes where
users, roles, and permissions can be added and deleted, and

1There are different variants of attribute-based encryption (ABE), such
as ciphertext-policy ABE and key-policy ABE, both of which can be used
for our implementation.
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Roles:

Doctor ; PrimaryDoctor ; Nurse; Patient ; Receptionist ; . . .

Permissions:

p1 = (read ,MedicalRecord);
p2 = (read ,ListOfDoctors);
p3 = (read ,ListOfAppointments);
. . .

Users:

Mary ; Jim; Luke; Evelin; . . .

UA:

(Mary ,Receptionist);
(Jim,Doctor), (Jim,PrimaryDoctor);
(Luke,Patient);
(Evelin,Doctor);
. . .

PA:

(p1 ,Doctor);
(p1 ,PrimaryDoctor);
(p2 ,Patient);
(p3 ,Receptionist);
. . .

Figure 1. RBAC Toy Example.

role membership may also change. Since the structure of
any organization is usually stable, in the rest of the paper
we will consider the set of roles fixed. However, we allow
users and permissions to be added and deleted, and any
changes to user-role and permission-role assignments, which
typically change quite frequently (e.g. employees moving
across departments, reassignment of duties, etc.).

Next, we formally describe an RBAC system S over a
set of roles R as a state-transition system. Let U , P be
unbounded sets of users and permissions, respectively. A
state of S is a tuple (U,P,UA,PA), where U and P are
finite subsets of U and P , respectively. The relation UA ⊆
U×R is the user-role assignment relation, and PA ⊆ P×R
is the permission-role assignment relation. A pair (u, r) ∈
UA means that user u belongs to role r, and (p, r) ∈ PA
means that role r has permission p. A user u is authorized for
permission p if there exists a role r ∈ R such that (u, r) ∈
UA and (p, r) ∈ PA.

We assume that the initial state is equal to s0 =
(U0, P0,UA0,PA0).

Figure 1 shows a toy example state of an RBAC system
representing a health-care facility. The example is an instan-
tiation of the RBAC case study available at [1].

Let RULES be the set of administrative commands. Given
two states s = (U,P,UA,PA) and s′ = (U ′, P ′,UA′,PA′),
there is a transition from s to s′ with command q ∈ RULES

(denoted as s
q−→S s′) if one of the following conditions

holds:

[AddUser(u)] The user u belongs to U \U , U ′ = U ∪ {u},
P ′ = P, UA′ = UA, and PA′ = PA;
[DeleteUser(u)] The user u belongs to U , U ′ = U \ {u},
P ′ = P, UA′ = UA\{(u, r) ∈ UA | r ∈ R} and PA′ = PA;
[AddObject(p)] The permission p belongs to P\P , U ′ = U ,
P ′ = P ∪ {p}, UA′ = UA, and PA′ = PA;
[DeleteObject(p)] The permission p belongs to P , U ′ = U ,
P ′ = P \ {p}, UA′ = UA and PA′ = PA \ {(p, r) ∈ PA |
r ∈ R};
[AssignUser(u,r)] The user u and role r belong respectively
to U and R, U ′ = U , P ′ = P, UA′ = UA ∪ {(u, r)}, and
PA′ = PA;
[DeassignUser(u,r)] The user u and role r belong respec-
tively to U and R, U ′ = U , P ′ = P, UA′ = UA \ {(u, r)},
and PA′ = PA;
[GrantPermission(p,r)] The permission p and role r belong
respectively to P and R, U ′ = U , P ′ = P, UA′ = UA, and
PA′ = PA ∪ {(p, r)};
[RevokePermission(p,r)] The permission p and role r belong
respectively to P and R, U ′ = U , P ′ = P, UA′ = UA, and
PA′ = PA \ {(p, r)};
An execution trace of an RBAC system s0

q0−→S s1
q1−→S

. . .
qn−1−−−→S s is defined as usual.

Security Policies of RBAC Systems

The design of an RBAC system includes the specification
of some security properties that must hold during the entire
evolution of the system. Such properties define security
policies which express limits on the access of users to
permissions (e.g. users belonging to role r cannot be granted
some permission associated to role r̃). Examples of security
properties of interest are the following [22]:

Separation of Duty: models conflict of interest. There is
a separation of duty constraint between two roles
r and r̃ when each user is forbidden to simultane-
ously belong to both roles;

Privilege Escalation: models the requirement that lower-
rank users cannot gain access to resources meant
for a higher rank. There is a privilege-escalation
constraint from role r to role r̃ when each user in
r cannot acquire any permission associated to r̃.

Example 2.1: Examples of separation of duties and privi-
lege escalation in the health-care facility from [1] are respec-
tively: 1) a user cannot be assigned both roles Receptionist
and Doctor (e.g. to avoid fraud by preventing the user to
falsely claim to treat a patient and billing the insurance
company); 2) a patient cannot have privileges of his own
primary doctor.

To formally define such policies, we introduce a predicate
HasAccess, which reflects when a user u symbolically has
access to a permission p. A user u has some permission p
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if u has been assigned a role that has the permission:

HasAccess(u, p)⇔
∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA . (1)

The next definition identifies a class of RBAC security
policies for which we will define (symbolic and) crypto-
graphic enforcement.

Definition 2.2 (Security Policy): Given an RBAC system
S over a set of roles R, a Security Policy Φ is a formula of
the following form:

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p) ,

where Cond(u, p) is a predicate over a user u ∈ U and a
permission p ∈ P . We restrict Cond(u, p) to predicates that
can be evaluated over an RBAC state; satisfaction of a policy
in an RBAC state and its extension to traces are defined in
the obvious way.

A security policy Φ is thus completely determined by the
predicate Cond.

The class of security policies identified by Security-Policy
formulas captures both separation of duties and privilege
escalation security constraints. Privilege escalation from role
r to role r̃ requires that any user who is assigned role r
((u, r) ∈ UA) does not have access to any permission p
assigned to role r̃ ((p, r̃) ∈ PA) and can be formulated as:

∀u ∈ U ∀p ∈ P : [(u, r) ∈ UA ∧ (p, r̃) ∈ PA)]

⇒ ¬HasAccess(u, p) .

Separation of duties between roles r and r̃ formalizes that no
user u, assigned to role r should have permissions associated
to r̃, and the same should hold for r and r̃ swapped. This
can be formulated as:

∀u ∈ U ∀p ∈ P :
[
(u, r) ∈ UA ∧ (p, r̃) ∈ PA]

∨ [(u, r̃) ∈ UA ∧ (p, r) ∈ PA
]

⇒ ¬HasAccess(u, p) .

As an example, let (U,P,UA,PA) be the RBAC state of
Figure 1 and consider the security policies of Example 2.1.
It is easy to see that the predicate Cond holds for both
security policies. Indeed, Mary belongs to role Receptionist
but does not belong to role Doctor. On the other hand, Jim
and Evelin are doctors but not receptionists. Also, Luke is
a patient but he does not belong to role PrimaryDoctor.
Moreover, both security-policy formulas hold. Indeed, it
holds that ¬HasAccess(Mary, p1), ¬HasAccess(Jim, p3),
¬HasAccess(Evelin, p3) and ¬HasAccess(Luke, p1).

Multiple Policies: Without loss of generality we can
restrict ourselves to a single policy, as a set of policies
defined by Cond1, . . . ,Condn is simultaneously satisfied if
and only if the policy defined by

Cond1,...,n(u, p) :⇔ Cond1(u, p) ∨ . . . ∨ Condn(u, p)

is satisfied. This is because
n∧
i=1

[
∀u ∈ U ∀p ∈ P : Condi(u, p)⇒ ¬HasAccess(u, p)

]
is logically equivalent to

∀u ∈ U ∀p ∈ P :
[
Cond1(u, p) ∨ . . . ∨ Condn(u, p)

]
⇒ ¬HasAccess(u, p) .

III. CRYPTOGRAPHIC RBAC

In this section we introduce our notion of cryptographic
RBAC used to protect access to a file system.

A. Syntax

We consider a system setup where a manager interacts
with a set of users. The manager is in charge of executing
RBAC commands and monitors write access (but not read
access!) to files. In our system we identify a permission
p ∈ P with read access to a file. By a slight abuse of notation
we identify the file with p.

At any point the global state of a cRBAC system CRBAC
is given by the local states of the manager (stM ) and of
each user u (st[u]). Moreover, there is a file system FS ,
which is publicly accessible (formally, FS is a bitstring, in
implementations FS would be an array of encrypted files,
each file corresponding to a permission p ∈ P ). CRBAC
is defined by the following algorithms: Init, AddUser,
DelUser, AddObject, DelObject, AssignUser, DeassignUser,
GrantPerm, RevokePerm, Update, Write and Read.

The initialization procedure Init takes as input the security
parameter λ and a set of roles R for the RBAC and outputs
the initial states of the manager and an initial state for the file
system FS . The remaining algorithms (with the exception
of Write and Read) implement the commands of an RBAC
system, which were introduced in Section II. Each algorithm
takes as input the local state of the manager stM , the file
system FS and an additional parameter (such as the user u
to be added for AddUser). In executions these algorithms
are run by the system manager and they output the updated
file system, a possibly updated state for the manager, and a
message msgu for every user u. The message msgu (when
non-empty) is sent to user u, who then runs Update on
her state st[u] and msgu to obtain an updated state st[u]. In
effect, we model the implementation of RBAC commands
as non-interactive multi-party computation where after some
local computation the manager sends messages to all of the
parties who update their local states.
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We model the idea that parties do not have write access
to files by only giving the manager the possibility to write
to the file system. Algorithm Write takes as input a filename
p and a content m to be written to p. Upon execution,
Write outputs an updated file system FS . Finally, Read is
an algorithm that users can use to read the file system. It
takes as input a user u’s state st[u], the file system FS and
a filename p and retrieves the content of p (if u has access
to p—see the correctness definition in the next section).

B. Correctness

Intuitively, a cRBAC system CRBAC is correct if every
user who according to the symbolic state of the system has
access to a permission p can obtain the content of p. More
precisely, let (stM ,FS ) be the output of Init. Now consider
an arbitrary sequence of executions of algorithms of CRBAC,
which induces a symbolic RBAC state (U,P,UA,PA) by
applying the RBAC commands corresponding to the al-
gorithm calls (we ignore the read and write commands
as these are not defined in the symbolic world). Consider
the values stM ,FS , {st[u]}u∈U after the executions. Then
whenever some content m was the last one to be written
to an object p via Write and whenever in the symbolic
RBAC we have HasAccess(u, p) for some user u ∈ U then
Read(st[u],FS , p) should output m.

As usual in cryptography, we formalize this by a game
between a challenger and a polynomial-time adversary A.
The latter has access to oracles to change the RBAC state
and write content to objects/files.

The challenger, which simulates the manager and the
users, keeps the state (U,P,UA,PA) of the symbolic RBAC.
For every RBAC command defined in Section II, there is
an oracle that executes the intended RBAC command. The
execution is as follows: when invoked, each oracle first
modifies the symbolic RBAC state accordingly and then
executes the corresponding computational CRBAC algorithm
and simulates the updates of user states. The oracle WRITE
executes Write.

The challenger keeps a table T and each time WRITE is
called on (p,m), it sets T [p]← m. In the end the adversary
outputs a pair (u∗, p∗) and loses if HasAccess(u∗, p∗) = 0.
Otherwise, the challenger runs m∗ ← Read(stu∗ , p∗,FS )
and the adversary wins if m∗ 6= T [p∗].
CRBAC satisfies correctness if for any polynomial-time

adversary the probability of winning the above game is 0.

C. Security

Intuitively, a cryptographic implementation of an RBAC
system is secure if whenever a user u does not have access
to an object p, i.e. HasAccess(u, p) = 0, then the user should
not be able to deduce anything about the content of p from
the file system FS .

Following cryptographic conventions, we formalize this
via an indistinguishability-based definition: an adversary A,

who can impersonate users, chooses two messages m0 and
m1, one of which is randomly selected and written to an
object p of A’s choice; the adversary must then determine
which of the two messages it was.

More precisely, we define a game that involves an adver-
sary A interacting with the manager of a cRBAC implemen-
tation. The game selects a random bit b← {0, 1}, which the
adversary must guess. The adversary can ask the manager to
execute any of the cRBAC commands. We assume private
channels between the manager and the users. To model
impersonation of users, we let the adversary corrupt users:
A obtains the state of the user it corrupts and from then on
receives all the messages sent to that user by the manager.
Moreover, the adversary can ask for a challenge (m0,m1)
for an object p. In response to this query the experiments
runs Write(p,mb).

The experiment prevents the adversary from winning
trivially by making a corrupt user have access to an object
with a challenge content. (Otherwise, the adversary could
simply use Read to read the message and thereby determine
the bit b.)

We define the following experiment, which maintains a
symbolic representation of the RBAC as it evolves through
the adversary’s queries: (U,P,UA,PA) with U ⊆ U , P ⊆
P , UA ⊆ U ×R and PA ⊆ P ×R. In addition to this, the
experiment maintains two lists: Cr ⊆ U is the list of users
which the adversary has corrupted and Ch ⊆ P is the list
of permissions in which the adversary has asked to be put
a challenge. We use these lists to characterize and prevent
trivial wins by the adversary, e.g. by corrupting a user that
can access a file where a challenge has been written.

Definition 3.1: We define the security of a cryptographic
RBAC through the following experiment:

Expind
CRBAC,A(λ)

b←$ {0, 1}; Cr,Ch← ∅
(stM ,FS , {st[u]}u∈U )←$ Init(1λ, R)

b′←$A(1λ,FS : O)
Return (b′ = b)

The oracles O to which the adversary has access are
specified in Figure 2 (and discussed below). We say that
CRBAC is secure if for all probabilistic polynomial-time
adversaries A, we have

Advind
CRBAC,A(λ) :=

∣∣Pr[Expind
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ.

Using the first eight oracles, A can make the manager
execute RBAC commands (each one of which first checks
whether its execution would letA win trivially, in which case
it returns ⊥). The oracles run the corresponding CRBAC
algorithm and update the state of the RBAC system ac-
cordingly; using the messages {msgu}u∈U output by the
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ADDUSER(u)

U ← U ∪ {u}
(stM ,FS , {msgu}u∈U )←$ AddUser(stM ,FS , u)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

DELUSER(u)

U ← U \ {u}; Cr← Cr \ {u}; UA← UA \ ({u} ×R)
(stM ,FS , {msgu}u∈U )←$ DelUser(stM ,FS , u)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

ADDOBJECT(p)

P ← P ∪ {p}
(stM ,FS , {msgu}u∈U )←$ AddObject(stM ,FS , p)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

DELOBJECT(p)

P ← P \ {p}; Ch← Ch \ {p}; PA← PA \ ({p} ×R)
(stM ,FS , {msgu}u∈U )←$ DelObject(stM ,FS , p)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

ASSIGNUSER(u, r)

If u ∈ Cr and if for any p ∈ Ch: (p, r) ∈ PA then return ⊥
UA← UA ∪ {(u, r)}
(stM ,FS , {msgu}u∈U )←$ AssignUser(stM ,FS , u, r)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

DEASSIGNUSER(u, r)

UA← UA \ {(u, r)}
(stM ,FS , {msgu}u∈U )←$ DeassignUser(stM ,FS , u, r)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

GRANTPERM(p, r)

If p ∈ Ch and if for any u ∈ Cr: (u, r) ∈ UA then return ⊥
PA← PA ∪ {(p, r)}
(stM ,FS , {msgu}u∈U )←$ GrantPerm(stM ,FS , p, r)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

REVOKEPERM(p, r)

PA← PA \ {(p, r)}
(stM ,FS , {msgu}u∈U )←$ RevokePerm(stM ,FS , p, r)
For all u ∈ U \ Cr:

st[u]← Update(st[u],msgu)
Return (FS , {msgu}u∈Cr)

CORRUPTU(u)

If u /∈ U then return ⊥
For all p ∈ Ch: if HasAccess(u, p) then return ⊥
Cr← Cr ∪ {u}; Return st[u]

WRITE(p,m)

If p /∈ P then return ⊥
FS ←$ Write(FS , p,m); Return FS

CHALLENGE(p,m0,m1)

If p /∈ P then return ⊥
For all u ∈ Cr: if HasAccess(u, p) then return ⊥
Ch← Ch ∪ {p}
FS ←$ Write(FS , p,mb); Return FS

Figure 2. Oracles for Expind
CRBAC,A

algorithm, the oracle then updates the state of each honest
user and sends messages for the corrupt users to A.

The oracle CORRUPTU lets the adversary take over a user:
it sends to A the local state of that user and adds him to
the list Cr of corrupt users. WRITE simply executes Write
and CHALLENGE writes a challenge into an object, which
is then added to the list Ch.

Note that if p ∈ Ch then even after calling WRITE on p it
still remains on the list Ch, as a corrupt user must still not
have access to it: otherwise, the adversary could store what
was in p before the WRITE call and later apply Read to it.

Moreover, note that we do not provide the adversary with
an oracle for Read for the corrupted users, as the adversary
holds their secret keys and has access to FS , and could thus
run Read on its own.

IV. SECURE POLICY ENFORCEMENT

In this section we define what it means for a cryptographic
RBAC to enforce a policy, as defined in Section II. A
security policy Φ is defined by a condition Cond and requires
that for any user u and any object p, when Cond is satisfied
by u and p then HasAccess(u, p) = 0. That is, symbolically,
the user u should not have access to p, in the sense that for
all r ∈ R : (u, r) /∈ UA ∨ (p, r) /∈ PA.

A cryptographic RBAC implementation enforces the pol-
icy if it guarantees that whenever Cond(u, p) = 1 then
user u should also not have access to p “in reality”. We
define computational access via an indistinguishability game
and define secure policy enforcement by demanding that
whenever Cond is satisfied for a user u and a permission p
then no computational adversary impersonating user u can
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decide which of two messages of his choice is the content
of p.

We formalize this via the following game: An adversary
impersonates user u and can interact with the manager
played by the challenger, who ensures that at any point
the symbolic RBAC satisfies Φ. This models the necessary
assumption that the manager enforces policy Φ symboli-
cally. The adversary can query the challenger to execute
any RBAC command and to write content via the Write
command.

At some point the adversary outputs two challenge mes-
sages m0 and m1, of which one is randomly selected and
written to p. The adversary wins the game if at this point
we have Cond(u, p) = 1 (and thus u should not have access
to p symbolically) and nevertheless the adversary guesses
which message was written to p. If the probability of the
adversary guessing correctly is essentially 1

2 then we say
that the system enforces the security policy.

Definition 4.1: A cRBAC enforces a security policy Φ of
the form

∀u ∈ U ∀p ∈ P : Cond(u, p) ⇒ ¬HasAccess(u, p)

if for all u ∈ U and all p ∈ P , we have that for any
probabilistic polynomial-time adversary A = (A1,A2) the
following is negligible in λ:

Advind-Φ-(u, p)
CRBAC,A (λ) :=

∣∣Pr[Expind-Φ-(u, p)
CRBAC,A (λ)→ true]− 1

2

∣∣
where for any fixed (u∗, p∗) ∈ U × P the experiment
Expind-Φ-(u∗, p∗)

CRBAC,A is defined as follows:

Exp
ind-Φ-(u∗, p∗)
CRBAC,A (λ)

b←$ {0, 1}
(stM ,FS , {st[u]}u∈U )←$ Init(1λ, R)

(m0,m1, stA)←$A1(1λ,FS , stu∗ : O)
If Cond(u∗, p∗) = 0
b′←$ {0, 1}; return (b′ = b)

FS ←Write(FS , p∗,mb)
b′←$A2(stA,FS)
Return (b′ = b)

The adversary has access to oracles executing RBAC com-
mands and a Write oracle. As the game represents an RBAC
system maintained by a manager enforcing the policy Φ,
RBAC commands which would lead to a violation of Φ
are not executed. Each oracle thus first checks whether
the RBAC command preserves validity of Φ. If this is not
the case, it returns ⊥. Otherwise, the oracle updates the
symbolic state (U,P,UA,PA) and executes the correspond-
ing CRBAC algorithm. The user messages output by the
algorithm are then used to update the states of the honest
users, while msgu∗ is returned to the adversary, together with
the updated file system FS . The formal descriptions of A’s

oracles O can be found in Figure 3.2

We next show that it is sufficient for a cRBAC to be secure
in the sense defined in Section III, in order to implement any
security policy, as defined in Definition 4.1. The following
theorem states that if CRBAC is secure and the manager
symbolically enforces policy Φ then policy Φ is satisfied
computationally.

Theorem 4.2: If CRBAC is a secure cryptographic RBAC
then for any security policy Φ, CRBAC securely enforces Φ.

Proof: Let Φ be any security policy, u∗ ∈ U be any
user and p∗ ∈ P be any permission; let A = (A1,A2)

be an adversary for Expind-Φ-(u∗, p∗)
CRBAC . To prove the theorem,

we need to show that Advind-Φ-(u∗, p∗)
CRBAC,A (λ) is negligible in λ.

We construct an adversary B for Expind
CRBAC which wins this

game with the same probability as A.
After receiving (1λ,FS ) from its challenger, B queries

CORRUPTU(u∗) to get stu∗ and runs A1 on (1λ,FS , stu∗).
B maintains the symbolic state (U,P,UA,PA) of the RBAC
throughout the game. WheneverA1 queries WRITE, B relays
the query to its challenger and the response to A1. For
any other oracle call, B first checks whether the call would
violate Φ, in which case it returns ⊥, and otherwise queries
its own oracle. More precisely, B executes the first 3 lines in
the description of the Expind-Φ-(u∗, p∗)

CRBAC -oracle (see Figure 3);
and if it has not returned ⊥, it makes the corresponding
query and forwards the reply to A1.

Note that B’s oracles never return ⊥, as in Expind
CRBAC,B,

the list Ch remains empty throughout this phase. B therefore
perfectly simulates Expind-Φ-(u∗, p∗)

CRBAC for A1.
Once A1 terminates and outputs (stA,m0,m1), B checks

whether Cond(u∗, p∗) = 0 and if so, aborts the simulation
and outputs a random bit b′←$ {0, 1}. Otherwise, B queries
CHALLENGE(p∗,m0,m1) and, upon receiving FS , runs A2

on (stA,FS ). When A2 outputs b′, B outputs the same.
Throughout the game, the state (U,P,UA,PA) which B

maintains (and which always equals the state maintained by
B’s challenger) satisfies Φ, because B does not execute any
RBAC command which would lead to a violation of Φ. If B
did not abort then Cond(u∗, p∗) = 1, and since Φ is satisfied,
we have ¬HasAccess(u∗, p∗).

From this, and since Cr = {u∗}, we deduce that the call
to CHALLENGE(p∗,m0,m1) does not return ⊥. Thus, B
perfectly simulates Expind-Φ-(u∗, p∗)

CRBAC for A and therefore wins
Expind

CRBAC with the same probability with which A wins
Expind-Φ-(u∗, p∗)

CRBAC .
We therefore have Advind-Φ-(u∗, p∗)

CRBAC,A = Advind
CRBAC,B, thus

the former is negligible whenever the latter is, which proves
the theorem.

Two remarks are in order. The first one is on the fact
that the above proof might seem quite straightforward. The

2For ease of exposition, we introduce an auxiliary routine UserUpdates,
which updates all honest user states and returns (FS ,msgu∗ ) to the
adversary.
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UserUpdates

For all u ∈ U \ {u∗}:
st[u]← Update(st[u],msgu)

Return (FS ,msgu∗)

ADDUSER(u)

U ′ ← U ∪ {u}
If (U ′, P,UA,PA) satisfies Φ

then U ← U ′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AddUser(stM ,FS , u)
Return UserUpdates

DELUSER(u)

U ′ ← U \ {u}; UA′ ← UA \ ({u} ×R)
If (U ′, P,UA′,PA) satisfies Φ

then U ← U ′, UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DelUser(stM ,FS , u)
Return UserUpdates

ADDOBJECT(p)

P ′ ← P ∪ {p}
If (U,P ′,UA,PA) satisfies Φ

then P ← P ′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AddObject(stM ,FS , p)
Return UserUpdates

DELOBJECT(p)

P ′ ← P \ {p}; PA′ ← PA \ ({p} ×R)
If (U,P ′,UA,PA′) satisfies Φ

then P ← P ′, PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DelObject(stM ,FS , p)
Return UserUpdates

ASSIGNUSER(u, r)

UA′ ← UA ∪ {(u, r)}
If (U,P,UA′,PA) satisfies Φ

then UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ AssignUser(stM ,FS , u, r)
Return UserUpdates

DEASSIGNUSER(u, r)

UA′ ← UA \ {(u, r)}
If (U,P,UA′,PA) satisfies Φ

then UA← UA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ DeassignUser(stM ,FS , u, r)
Return UserUpdates

GRANTPERM(p, r)

PA′ ← PA ∪ {(p, r)}
If (U,P,UA,PA′) satisfies Φ

then PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ GrantPerm(stM ,FS , p, r)
Return UserUpdates

REVOKEPERM(p, r)

PA′ ← PA \ {(p, r)}
If (U,P,UA,PA′) satisfies Φ

then PA← PA′; else return ⊥
(stM ,FS , {msgu}u∈U )←$ RevokePerm(stM ,FS , p, r)
Return UserUpdates

WRITE(p,m)

If p /∈ P then return ⊥
FS ←$ Write(FS , p,m)
Return FS

Figure 3. Oracles for Exp
ind-Φ-(u∗, p∗)
CRBAC,A

security requirement for cRBAC (Definition 3.1) formal-
izes that whenever in the symbolic RBAC state we have
¬HasAccess(u, p) then this is also the case computation-
ally: an adversary having corrupted u cannot distinguish
challenge messages in p, meaning that its content is hidden
from the adversary.

It then follows almost immediately that in a cRBAC
for a policy that models requirements of users not having
permissions (which are precisely the kind of policies we
consider), as long as the policy is enforced symbolically,
the policy is also enforced computationally.

One then may question if the above result (and the notion
of a policy being computationally satisfied) is even worth
stating: it is in some sense obvious that policies that are
symbolically satisfied are also computationally satisfied (if
the cRBAC is secure). We emphatically believe that this is
not the case. The main aim of this paper is to present a rig-
orous approach to the analysis of cryptographic enforcement
of access control and a formal definition of computational

enforcement of a policy is an important (if not the most
important) part of such an approach. Furthermore, although
in this paper computational satisfaction of policies is closely
related to the notion of a secure cRBAC, in other settings
similar relations may not exist (for example, if one considers
a larger class of policies than the one considered here). In
such settings, proving secure enforcement of policies may
need to go a different route.

V. IMPLEMENTATION OF CRBAC

A. Predicate Encryption

We choose to describe our implementation of crypto-
graphic RBAC in terms of predicate encryption [21], as this
allows us to encompass all of the different kinds of attribute-
based encryption (ABE) schemes [24], [18]. In predicate
encryption (PE) a ciphertext is associated to an element y
from a set Y , whereas keys are associated to elements x from
a set X . In a PE scheme for a predicate pred ⊆ X × Y ,
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keys for x can decrypt ciphertexts for y if and only if
pred(x, y) = 1.

For our purpose, having a universe of attributes A =
{1, . . . , nmax}, we let X and Y be the power set of A. For
x, y ⊆ A, the predicate is defined as pred(x, y) = 1 if and
only if x∩ y 6= ∅. Thus a ciphertext w.r.t. a set of attributes
can be decrypted by a key if it shares an attribute with the
ciphertext. We call this predicate encryption for non-disjoint
sets (PE-NDS).

In (key-policy) ABE [18] messages are encrypted w.r.t.
a set of attributes; keys, which are issued for a policy over
the attributes, can decrypt those ciphertexts whose attributes
satisfy the policy. In the dual notion of ciphertext-policy (CP)
ABE [7] messages are encrypted w.r.t. policies and keys are
issued for sets of attributes.

Predicate encryption for non-disjoint sets is a special case
of both flavors of ABE: In CP-ABE by defining the policy
for a ciphertext w.r.t. a set of attributes y = {a1, . . . , an} as

φy ≡ a1 ∨ . . . ∨ an . (2)

Then any key for a set of attributes x satisfies the policy if
and only if x ∩ y 6= ∅, that is, if pred(x, y) = 1. For key-
policy ABE, it suffices to define the policies for the keys
analogously.

Thus, any instantiation of CP-ABE and KP-ABE whose
policies include disjunctions of predicates (i.e., for all y ⊆
A, φy as in (2) is admitted as a policy) immediately yields
an instantiation of PE-NDS. We now formalize PE-NDS.

A PE scheme for the predicate pred ⊆ A×A,

pred(x, y) = 1 ⇔ x ∩ y 6= ∅

is a tuple of algorithms PENDS = (Setup,KeyGen,
Enc,Dec). The setup algorithm Setup on input the security
parameter λ and the attribute universe A returns a key
pair (pk,msk), the master public and secret keys. The key-
generation algorithm KeyGen on inputs msk and x ⊆ A
returns a secret key skx for the set of attributes x. The
encryption algorithm Enc on inputs pk and y ⊆ A as well as
m returns a ciphertext c. The decryption algorithm Dec on
inputs skx and a ciphertext c returns a string m. A PE-NDS
scheme PENDS is correct if for all λ, x, y,m, r satisfying
x ∩ y 6= ∅, all (pk,msk) output by Setup(1λ) and all skx
output by KeyGen(msk, x) it holds that

Dec(skx(Enc(pk, y,m; r)) = m .

Since when knowing msk one can always derive a key and
then decrypt, we also directly write Dec(msk, c).

Security of PE-NDS: Security of our predicate encryption
is defined by the following game in which the adversary A
must guess a bit b. A is given the public key and has access
to a challenge oracle LR (“left or right”), which on input
(y,m0,m1) returns an encryption of mb w.r.t. the set of
attributes y, and an oracle KEYGEN, which returns a secret

key for the queried set x. The oracles maintain two sets
X,Y ⊆ A. X contains the union of all values x ⊆ A queried
to KEYGEN, and Y ⊆ A contains the union of all values y ⊆
A for which the adversary requested challenge ciphertexts.
As long as these two sets are disjoint, the adversary cannot
win trivially by e.g. asking for a challenge w.r.t. some y and
a key for some x when x∩y 6= ∅: the key could then decrypt
the challenge ciphertext.

Definition 5.1: Define the following game:

Expind
PENDS,A(λ)

b←$ {0, 1}, X,Y ← ∅
(pk,msk)←$ Setup(1λ, A)
b′←$A(pk : LR,KEYGEN)
Return (b′ = b)

LR(y,m0,m1)

If X ∩ y 6= ∅ then return ⊥
Y ← Y ∪ y
Return c←$ Enc(pk, y,mb)

KEYGEN(x)

If Y ∩ x 6= ∅ then return ⊥
X ← X ∪ x
Return skx←$ KeyGen(msk, x)

We say that PENDS has indistinguishability if for all
probabilistic polynomial-time adversaries A, we have that

Advind
PENDS,A(λ) :=

∣∣Pr[Expind
PENDS,A(λ)→ true]− 1

2

∣∣
is negligible in λ.

We remark that in this context CPA-security (that is, when
the adversary does not have access to a decryption oracle)
is sufficient. This is because since in cRBAC the manager
monitors write access, in our instantiation it is the manager
who produces encryptions (when running Write), meaning
the adversary cannot inject maliciously created ciphertexts.

Finally, note that a PE-NDS implemented by any key-
policy (or ciphertext-policy) ABE satisfies Definition 5.1 if
the underlying ABE satisfies the standard indistinguishabil-
ity notion for ABE.

B. Implementation of cRBAC with PE-NDS

We implement cryptographic RBAC with predicate en-
cryption by associating roles to attributes and permissions
to ciphertexts. Users receive keys which correspond to the
set of roles {r1, . . . , rn} they are associated with. A file
is encrypted w.r.t. the set of attributes/roles which have a
permission for it. We also deal with revocation (in that
users can be deassigned and permissions revoked). This is
implemented as follows: We keep a table RT which keeps
associations of roles and attributes. Whenever a user u∗ is
deassigned from a role r∗, the role is associated with a new
attribute. The files associated with r∗ are then re-encrypted
under the new attribute, so that the u∗’s key will not decrypt
them anymore (except of course when u∗ still has access to
them via other roles). We then reissue keys to all users which
are assigned r∗.
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We now give our cRBAC implementation CRBAC[PE ]
based on a PE-NDS scheme PE and start with the initial-
ization algorithm. It sets up the PE-NDS for a sufficiently
large attribute universe A = {1, . . . , nmax} and initializes the
file system FS (for simplicity, we store the PE-NDS public
key pk in FS [0]). It then initializes the role table RT by
associating attributes to all roles sequentially.

Init(1λ, R)

(pk,msk)←$ SetupPE(1
λ, A)

FS ,RT ← ∅; ctr← 1
For all r ∈ R:
RT [r]← ctr; ctr← ctr + 1

(U,P,UA,PA)← (∅, ∅, ∅, ∅)
FS [0]← pk; stM ← (msk,RT , ctr, (U,P,UA,PA))
Return (stM ,FS , {st[u]}u∈U )

We next specify how we implement RBAC commands.
The corresponding algorithms are given stM (which we
assume is always parsed as (msk,RT , ctr, (U,P,UA,PA)))
and FS , and some command-specific input, and output a
new manager state stM , the modified file system FS and
messages msgu for all users u ∈ U .

AddUser(stM ,FS , u∗)

U ← U ∪ {u∗}
Return (stM ,FS , {∅}u∈U )

AddObject(stM ,FS , p∗)

P ← P ∪ {p∗}
Return (stM ,FS , {∅}u∈U )

When receiving a message msg, a user runs Update on
her state (which in our implementation is a secret key for
PE) and the message.

Update(st[u],msgu)

If msgu 6= ∅ then st[u]← msgu
Return st[u]

To assign a role r∗ to a user u∗, first (u∗, r∗) is added to the
user-role assignment relation UA. Then the user is given a
secret key for the set x of attributes which (via RT ) currently
correspond to the user’s new set of roles:

AssignUser(stM ,FS , u∗, r∗)

If u∗ /∈ U or r∗ /∈ R or (u∗, r∗) ∈ UA
Return (stM ,FS , {∅}u∈U )

UA← UA ∪ {(u∗, r∗)}
x← {RT [r] | (u∗, r) ∈ UA}
sku∗ ← KeyGenPE(msk, x); msgu∗ ← sku∗

For all u ∈ U \ {u∗}:
msgu ← ∅

Return (stM ,FS , {msgu}u∈U )

To grant a permission p∗ to a role r∗, the manager adds
(p∗, r∗) to PA, and then re-encrypts the content of FS [p∗]
under the attributes corresponding to the roles r for which
(p∗, r) ∈ PA:

GrantPerm(stM ,FS , p∗, r∗)

If p∗ /∈ P or r∗ /∈ R or (p∗, r∗) ∈ PA

Return (stM ,FS , {∅}u∈U )
PA← PA ∪ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,DecPE(msk,FS [p∗]))
Return (stM ,FS , {∅}u∈U )

For convenience, we define the following auxiliary algo-
rithm, which assigns a new attribute to a role r∗ and updates
the user keys and FS accordingly. It writes the current
counter value to RT [r∗], then re-encrypts all files associated
to r∗ and re-issues all user keys associated to r∗.

RoleUpdate(stM ,FS , r∗)

RT [r∗]← ctr; ctr← ctr + 1
For all p ∈ P :

If (p, r∗) ∈ PA:
y ← {RT [r] | (p, r) ∈ PA}
FS [p]← EncPE(FS [0], y,DecPE(msk,FS [p]))

For all u ∈ U :
If (u, r∗) ∈ UA:

x← {RT [r] | (u, r) ∈ UA}
sku ← KeyGenPE(msk, x); msgu ← sku

Else msgu ← ∅
Return (stM ,FS , {msgu}u∈U )

Now to deassign a user u∗ from a role r∗, it suffices to erase
(u∗, r∗) from UA and then update the role r∗, so the role
is associated to a new attribute for which u∗ will not have
a key anymore. To delete a user u∗, we first deassign all its
roles and then remove u∗ from U .

DeassignUser(stM ,FS , u∗, r∗)

If (u∗, r∗) /∈ UA then return (stM ,FS , {∅}u∈U )
UA← UA \ {(u∗, r∗)}
Return RoleUpdate(stM ,FS , r∗)

DelUser(stM ,FS , u∗)

If u∗ /∈ U then return (stM ,FS , {∅}u∈U )
For all r ∈ R:

If (u∗, r) ∈ UA:
(stM ,FS , {msgu}u∈U )

← DeassignUser(stM ,FS , u∗, r)
U ← U \ {u∗}
Return (stM ,FS , {msgu}u∈U )

To revoke a permission p∗ from role r∗, we delete (p∗, r∗)
from PA and then re-encrypt the content of p∗ under the
reduced set of attributes. To delete an object p∗, we revoke
it from all roles and erase it from P .

RevokePerm(stM ,FS , p∗, r∗)

If (p∗, r∗) /∈ PA then return (stM ,FS , {∅}u∈U )
PA← PA \ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,DecPE(msk,FS [p∗]))
Return RoleUpdate(stM ,FS , r∗)

DelObject(stM ,FS , p∗)

If p∗ /∈ P then return (stM ,FS , {∅}u∈U )
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For all r ∈ R:
If (p∗, r) ∈ PA:

(stM ,FS , {msgu}u∈U )
← RevokePerm(stM ,FS , p∗, r)

P ← P \ {p∗}; FS [p∗]← ∅
Return (stM ,FS , {∅}u∈U )

Finally, we give the two algorithms for writing and reading
content in the file system. (Recall that FS [0] contains the
encryption key.)

Write(FS , p∗,m)

y ← {RT [r] | (p∗, r) ∈ PA}
FS [p]← EncPE(FS [0], y,m)
Return FS

Read(sku,FS , p∗)

m← DecPE(sku,FS [p∗])
Return m

A few remarks are in order. After deassigning a user,
the attribute corresponding to a role has to be renewed,
so that future files cannot be decrypted by the deassigned
user anymore. It may appear less natural to renew a role’s
attribute when we revoke a permission, as it seems sufficient
to re-encrypt the file without the revoked role’s attribute.
However, consider a corrupt user u trying to gain access to
a file p. If p was encrypted as c under a role r, which is later
revoked (resulting in a ciphertext c′), then assigning u to r
is allowed, as HasAccess(u, p) = 0 at all times. However,
u would be able to read the content of p, as after being
assigned r, she could use the resulting secret key to decrypt,
not the current content c′ of p, but c.

This attack is thwarted in our instantiation, as the attribute
for r under which p had been encrypted was changed when
revoking r from p; thus when u is assigned r later, her key
will be associated to the new attribute, meaning that she
cannot decrypt c′.

C. Security of Our Implementation

Theorem 5.2: If PE satisfies indistinguishability then
CRBAC[PE ], as defined above, is a secure implementation,
as defined in Definition 3.1.

Proof: We prove the security of CRBAC[PE ] by reduc-
tion to indistinguishability of PE . Let A be an adversary
against CRBAC[PE ], which we will from now on denote
CRBAC for simplicity. We construct an adversary B against
PE such that Advind

PE,B(·) = Advind
CRBAC,A(·). Thus if PE is

secure then so is CRBAC.
In Expind

PE , B is given pk and has access to two oracles
LR and KEYGEN. B starts the simulation of Expind

CRBAC,A
by initializing Cr,Ch ← ∅. However, B does not choose a
bit b, as it simulates Expind

CRBAC,A with the bit b set to the one
its own challenger chose in Expind

PE,B. Next, B simulates Init,
except that instead of running SetupPE , it uses the received
pk and leaves msk blank in stM .

B then answers A’s oracle calls by running the algorithms
of CRBAC as specified, with three exceptions: B does not
create any user secret keys sku for honest users; only when
the adversary corrupts a user, B calls its KEYGEN oracle to
obtain a key. As B does not hold the master secret key, it
cannot decrypt as required by the subroutine RoleUpdate.
It therefore stores all plaintexts in a table MS (“message
system”, in analogy to FS ), where it can look them up
instead of decrypting.

Finally, when A queries its CHALLENGE oracle for
(p,m0,m1), B forwards the encryption request to its own
LR oracle to obtain an encryption of mb. B simulates thus
Expind

CRBAC for A with the same bit b that was chosen by
B’s own challenger. As B does not know b, it stores both
m0 and m1 in MS and calls LR whenever it requires an
encryption of mb. Finally, B outputs the same bit b′ that A
outputs.

The more technical part of the proof is to show that B’s
queries to LR and KEYGEN never return ⊥, as then B’s
simulation of Expind

CRBAC is perfect and B’s probability of
outputting b′ = b is the same as A’s.

We formally specify B:

B(pk : LR,KEYGEN)

Cr,Ch← ∅
FS ,RT ← ∅; ctr← 1
For all r ∈ R:

RT [r]← ctr; ctr← ctr + 1
(U,P,UA,PA)← (∅, ∅, ∅, ∅); FS [0]← pk
b′←$A(1λ,FS : O)
Return b′

B answers A’s oracle calls by following their description
from Figure 2, using the implementation specified in Sec-
tion V-B—except for the changes discussed above.

ADDUSER(u∗)

U ← U ∪ {u∗}
Return (FS , {∅}u∈Cr)

ADDOBJECT(p∗)

P ← P ∪ {p∗}
Return (FS , {∅}u∈Cr)

CORRUPTU(u∗)

If u∗ /∈ U then return ⊥
For all p ∈ Ch: if HasAccess(u∗, p) then return ⊥
Cr← Cr ∪ {u∗}
x← {RT [r] | (u∗, r) ∈ UA}
sku∗ ← KEYGEN(x)
Return sku∗

ASSIGNUSER(u∗, r∗)

If u∗ ∈ Cr and if for any p ∈ Ch: (p, r∗) ∈ PA
then return ⊥

If u∗ /∈ U or r∗ /∈ R or (u∗, r∗) ∈ UA
Return (FS , {∅}u∈Cr)

UA← UA ∪ {(u∗, r∗)}
If u∗ ∈ Cr:
x← {RT [r] | (u∗, r) ∈ UA}
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sku∗ ← KEYGEN(x); msgu∗ ← sku∗

For all u ∈ Cr \ {u∗}:
msgu ← ∅

Return (stM ,FS , {msgu}u∈Cr)

WRITE(p∗,m)

If p∗ /∈ P then return ⊥
MS ← (m, ·)
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← EncPE(FS [0], y,m)
Return FS

CHALLENGE(p∗,m0,m1)

If p∗ /∈ P then return ⊥
For all u ∈ Cr: If HasAccess(u, p∗) then return ⊥
Ch← Ch ∪ {p∗}
MS ← (m0,m1)
y ← {RT [r] | (p∗, r) ∈ PA}
FS [p∗]← LR(y,m0,m1)
Return FS

GRANTPERM(p∗, r∗)

If p∗ ∈ Ch and if for any u ∈ Cr: (u, r∗) ∈ UA
then return ⊥

If p∗ /∈ P or r∗ /∈ R or (p∗, r∗) ∈ PA
Return (FS , {∅}u∈Cr)

PA← PA ∪ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
If p∗ ∈ Ch:

FS [p∗]← LR(y,MS [p∗][0],MS [p∗][1])
Elseif FS [p∗] 6= ∅:
FS [p∗]← EncPE(FS [0], y,MS [p∗][0])

Return (FS , {∅}u∈Cr)

The next auxiliary algorithm simulates RoleUpdate, except
that it only updates the keys of corrupt users. (Recall that B
does not query keys for honest users.)

RoleUpdateCr(r∗)

RT [r∗]← ctr; ctr← ctr + 1
For all p ∈ P :

If (p, r∗) ∈ PA:
y ← {RT [r] | (p, r) ∈ PA}
If p ∈ Ch:
FS [p]← LR(y,MS [p][0],MS [p][1])

Elseif FS [p] 6= ∅:
FS [p]← EncPE(FS [0], y,MS [p][0])

For all u ∈ Cr:
If (u, r∗) ∈ UA:

x← {RT [r] | (u, r) ∈ UA}
sku ← KEYGEN(x); msgu ← sku

Else msgu ← ∅
Return (FS , {msgu}u∈Cr)

DEASSIGNUSER(u∗, r∗)

If (u∗, r∗) /∈ UA then return (FS , {∅}u∈Cr)
UA← UA \ {(u∗, r∗)}
Return RoleUpdateCr(r∗)

DELUSER(u∗)

If u∗ /∈ U then return (FS , {∅}u∈Cr)
For all r ∈ R:

If (u∗, r) ∈ UA:
(FS , {msgu}u∈Cr)← DEASSIGNUSER(u∗, r)

U ← U \ {u∗}; Cr← Cr \ {u∗}
Return (FS , {msgu}u∈Cr)

REVOKEPERM(p∗, r∗)

If (p∗, r∗) /∈ PA then return (FS , {∅}u∈Cr)
PA← PA \ {(p∗, r∗)}
y ← {RT [r] | (p∗, r) ∈ PA}
If p∗ ∈ Ch:

FS [p∗]← LR(y,MS [p∗][0],MS [p∗][1])
Elseif FS [p∗] 6= ∅:
FS [p∗]← EncPE(FS [0], y,MS [p∗][0])

Return RoleUpdateCr(r∗)

DELOBJECT(p∗)

If p∗ /∈ P then return (FS , {∅}u∈Cr)
For all r ∈ R:

If (p∗, r) ∈ PA:
(FS , {msgu}u∈Cr)← REVOKEPERM(p∗, r)

P ← P \ {p∗}; Ch← Ch \ {p∗}; FS [p∗]← ∅
Return (FS , {∅}u∈Cr)

Below we show the following:
Lemma 5.3: In the above simulation, A’s oracles LR and

KEYGEN never return ⊥.
Based on this lemma, we argue that B’s simulation is perfect:
this follows, as B simply implements the oracles by defini-
tion, except that it keeps a table of clear messages MS in-
stead of decrypting the ciphertexts (which, by correctness of
PE , amounts to the same); it uses its LR oracle to generate
encryptions of mb, and generates user keys only when they
are corrupted. The latter is perfectly indistinguishable from
A’s perspective. It follows thus that B guesses b correctly
whenever A does, and thus Advind

PE,B(·) = Advind
CRBAC,A(·),

which completes the proof.
Proof of Lemma 5.3: In order to prove that B’s oracles

do not return ⊥, it suffices to show that the following
condition is an invariant of the experiment:

X ∩ Y = ∅ , (C1)

where X contains all x queried to KEYGEN and Y contains
all y queried to LR (these are precisely the sets which B’s
challenger keeps in Expind

PE ).
We prove by induction over the number of oracle calls

in Expind
CRBAC that (C1) is always satisfied, which proves

the lemma. To do so, we simultaneously prove that three
more conditions are also satisfied. The first asserts that,
symbolically, a corrupt user never has access to a challenge
permission:

∀u ∈ Cr ∀p ∈ Ch : ¬HasAccess(u, p) , (C2)
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with HasAccess(u, p) ⇔ ∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈
PA. At any point in the game, let Z := {RT [r] | r ∈ R}
denote the set of current attributes associated to roles. For
all a ∈ Z, let ra denote the role s.t. RT [r] = a (since
RoleUpdateCr increases ctr after assigning its value to an
element of RT , ra is unique). We also prove that the
following two conditions hold throughout the simulation:

a ∈ X ∩ Z ⇔ ∃u ∈ Cr : (u, ra) ∈ UA (C3)
a ∈ Y ∩ Z ⇔ ∃p ∈ Ch : (p, ra) ∈ PA (C4)

Intuitively, (C3) means that if a currently-in-use attribute
is in X then it is because there is a corrupt user who is
assigned the corresponding role. Analogously, (C4) means
that if a current attribute is on the list Y then it is because
its role ra is associated to a challenge permission.

It is immediate that at the beginning of the game all four
conditions are satisfied, as X = Y = Cr = Ch = ∅.

Below we will show that oracle calls only add elements
to X and Y which are also in Z. Thus if X ∩Y = ∅ before
the oracle call then to show (C1), it suffices to show that
(X ∩ Z) ∩ (Y ∩ Z) = ∅ afterwards.

If there was an element a in this set then by (C3) and
(C4) we would have

∃u ∈ Cr ∃p ∈ Ch : (u, ra) ∈ UA ∧ (p, ra) ∈ PA ,

which contradicts (C2). In order to show (C1) (and thus
prove the lemma), it therefore suffices to show (C2), (C3),
(C4) and:

All elements added to X and Y are also in Z. (C5)

We now show that whenever conditions (C2), (C3), (C4)
and (C5) are satisfied before an oracle call then they still
are afterwards.
(C5): The above is easily verified by looking at the im-
plementations of the oracles: LR is always called with an
argument y s.t. y ⊆ {RT [r] | r ∈ R} = Z; likewise,
KEYGEN is always called with x ⊆ Z. Note also that
RoleUpdateCr updates the table RT before calling the
oracles.
(C2): We next show if (C2) is satisfied before an oracle call
then so it is afterwards: (C2) states that ∀u ∈ Cr ∀p ∈ Ch
∀r ∈ R : (u, r) /∈ UA ∨ (p, r) /∈ PA. This can
only cease to hold if an oracle adds elements to Cr,
Ch, UA or PA, respectively. However, the only oracles
doing this are CORRUPTU, CHALLENGE, ASSIGNUSER and
GRANTPERM, respectively, which all first detect whether
they would cause a violation of (C2), in which case they
return ⊥.
(C3) and (C4): These two statements are about X,Y,Cr,Ch
and RT (the latter defining Z). Oracles ADDUSER,
ADDOBJECT, WRITE do not modify any of these sets, thus
the conditions hold whenever they held before the call. We
analyze the remaining oracles one by one.

• CORRUPTU: If (C3) holds before the call then it also holds
after: Z is not modified and all a which were in X before
still correspond to users in Cr; for all attributes which were
added to X , the corresponding user is u∗ ∈ Cr. Conversely,
if (u∗, r) ∈ UA then RT [r] is now in X . (C4) is not affected,
as neither Y , RT , Ch, nor PA are modified.
• ASSIGNUSER: Again, (C4) is not affected, as none of the
relevant sets change. Validity of (C3) is also maintained: if
u∗ /∈ Cr then X is not modified and UA is only extended
by a non-corrupt user, which together do not affect (C3). If
u∗ ∈ Cr then (as for CORRUPTU), (C3) is still valid: for all
a which were in X ∩ Z before there still exists a corrupt
user such that (u, ra) ∈ UA and vice versa. Any new a is
added to X if and only if (u∗, ra) ∈ UA.
• CHALLENGE: We show validity of (C4) is maintained:
all a which were in Y ∩ Z still correspond to their p ∈
Ch, and vice versa; and any new a is added to Y if and
only if (p∗, ra) ∈ PA, so these a’s correspond to p∗ ∈ Ch.
Condition (C3) is not affected, since X , RT , Cr and UA
are unaffected.
• GRANTPERM: Again, (C3) is not affected, for the same
reasons as above. If p∗ /∈ Ch then Y is not modified
and PA is only extended by a non-challenge policy p∗,
which together do not affect (C4). If p∗ ∈ Ch then (as for
CHALLENGE), (C4) is still valid: for elements which were
in Y ∩Z and Ch before the oracle call, both implications of
(C4) still hold. Moreover, any a is added to Y if and only
if (p∗, ra) ∈ PA.
• RoleUpdateCr: This subroutine, run on r∗, replaces aold
by anew in RT [r∗]. Thus after the call, aold is not in Z
anymore. If for some p ∈ Ch: (p, r∗) ∈ PA, the routine then
queries LR, which adds anew to Y ; thus (C4) still holds with
aold replaced by anew. Otherwise, ∀p ∈ Ch : (p, r∗) /∈ PA,
so as (C4) held before the call: aold /∈ Y ∩ Z. As in this
case, LR is not called, we have anew /∈ Y , thus (C4) holds
as before.

Completely analogously, (C3) is maintained, since if aold
was in X ∩ Z because of some user u then now anew is in
X ∩ Z and still associated to the same user via r∗ = ranew ;
and if aold was not in X ∩ Z then anew is not added to it
either.
• DEASSIGNUSER: This oracle removes (u∗, r∗) from UA
and then calls RoleUpdateCr on r∗. If for some u ∈ Cr, u 6=
u∗ : (u, r∗) ∈ UA then (C3) still holds, as aold is replaced
by anew in X∩Z, which is then associated to u. On the other
hand, if after the revocation we have ∀u ∈ Cr : (u, r∗) /∈ UA
then anew is not added to X ∩Z and again, (C3) still holds.

(C4) is not affected by DEASSIGNUSER as it only changes
UA and RoleUpdateCr preserves validity of (C4).
• DELUSER: This oracle first runs DEASSIGNUSER for all
roles held by the user. We have already shown that this
preserves validity of (C3) and (C4). After this we have
∀r ∈ R : (u∗, r) /∈ UA. Thus (C3) holds independently
of u∗, which means that after removing u∗ from U (and
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possibly Cr) (C3) still holds. Moreover, (C4) is not affected
by this either.
• REVOKEPERM: If p∗ /∈ Ch then this does not affect (C4),
as Y is not modified and PA is only reduced by a pair not
containing a challenge permission. Executing RoleUpdateCr
does not affect (C4) either, as shown above. If p∗ ∈ Ch then,
by (C4), we have: ∀r : (p∗, r) ∈ PA ⇒ RT [r] ∈ Y ∩Z, so
the LR call leaves Y unchanged, so (C4) still holds. Now
RoleUpdateCr is called, but with (p∗, r∗) being erased from
PA. Thus, while aold gets removed from Y ∩ Z, anew only
gets added if for some p ∈ Ch, p 6= p∗: (p, r∗) ∈ PA; in
this case (C4) holds afterwards, as this p is associated with
anew. If after the revocation ∀p ∈ Ch : (p, r∗) /∈ PA then
anew /∈ Y ∩ Z and (C4) still holds as well.

(C3) is not affected by REVOKEPERM, as it only changes
PA and RoleUpdateCr preserves validity of (C3), as above.
• DELOBJECT: This oracle first runs REVOKEPERM for

all roles associated to p∗, which, as just shown, preserves
validity of (C3) and (C4). After this, we have ∀r : (p∗, r) /∈
PA. Thus (C4) (and (C3)) holds independently of p∗;
therefore, they still hold after removing p∗ from P and Ch.

This concludes the proof of the lemma and thereby the
proof of the theorem.

D. Further Implementations of PE-NDS

We chose to describe our implementation using a
predicate-encryption (PE) scheme for the simple predicate
pred(x, y) ⇔ x ∩ y 6= ∅ (non-disjoint sets (NDS) of at-
tributes), because it closely models the minimal functionality
required for our cryptographic RBAC.

To implement PE-NDS, the most natural choice is
attribute-based encryption, of which it is a special case.
Here we mention other possible implementations of PE-
NDS, which in turn would lead to alternative cryptographic
RBAC implementations.

Parallel Encryption: This implementation is the least
efficient, but uses only a very basic cryptographic primitive:
public-key encryption (PKE). The setup creates a PKE
key pair (pka, ska) for every attribute a in the attribute
universe A. The master public and secret keys are defined
as pk = {pka}a∈A and msk = {ska}a∈A. KeyGen, on input
msk and x ⊆ A returns skx = {ska}a∈x and Enc, on
input (pk, y,m) returns a set {ca}a∈y , where ca is a PKE
encryption of m under pka.

This can be made more efficient using a hybrid-encryption
approach [26], where Enc(pk, y,m) first chooses a key K
for symmetric encryption, then encrypts m under K and
uses PKE to encrypt K under every key in {pka}a∈y .

Broadcast Encryption: Another implementation, situated
somehow between ABE and hybrid encryption, uses broad-
cast encryption [15]. In broadcast encryption (BE) there is
a set of receivers holding secret keys and a message can be

broadcast to any subset of receivers such that only users in
the subset can decrypt.

Associating attributes a ∈ A to receivers in a BE scheme,
we get the following implementation of PE-NDS: Running
the BE setup returns a public key pk, which is used as the
public key for the PE-NDS and a set of secret receiver
keys {ska}a∈A which we define as msk. As for parallel
encryption, key generation is done by selecting the keys
{ska}a∈x which correspond to the set x; encryption w.r.t.
a set y is broadcast encryption to the corresponding set y of
receivers.

Since the goal of BE is to minimize the size of a ciphertext
sent to many receivers, this approach might lead to smaller
ciphertexts and thus consequently minimizes the size of
FS in the resulting implementation of CRBAC. On the
downside, the user secret keys are sets of BE receiver secret
keys, which in general may be bigger than ABE secret keys.

VI. DISCUSSION AND FUTURE WORK

In this paper we use well-established methodologies in
modern cryptography to formulate precise syntax and secu-
rity requirements for cryptographic access control. Besides
the definition for secure cryptographic implementations, our
results include a security proof for a cryptographic RBAC
based on attribute-based encryption and a theorem that
shows that in such systems a policy is satisfied (compu-
tationally) as long as the manager ensures that the policy is
satisfied symbolically.

There are several directions in which our work can be
extended. An obvious target is to provide a similar treatment
to other variants of RBAC (e.g. hierarchical RBAC [2] and
attribute-based RBAC [4], [27]). Much more ambitiously, it
would be interesting to cast our results as instances of a more
general framework with abstract notions of symbolic and
computational access-control enforcement. Flexible mecha-
nisms for policy specification, e.g. through general logics
would also be desirable, but one would have to deal with
the difficulties associated with formalizing general compu-
tational satisfaction of logic formulas [12], [11], [6].

Our analysis identifies predicate encryption for non-
disjoint sets as a sufficient primitive for meeting the func-
tionality and security goals of cRBAC. This allows avoiding
general attribute-based encryption (or even worse, general
predicate-encryption schemes) for the implementation. From
this perspective, a rigorous analysis of cryptographic access-
control implementations can also serve for identifying and
choosing a trade-off between the efficiency, functionality and
the security of the primitives and that of the resulting access-
control system.

Finally, it would be interesting to understand and formally
relate the approach that we take here with the simulation-
based approach, as applied to access control by Halevi,
Karger and Naor [19].
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