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Abstract—Through real-life experiments, it has been proved,
not only in theory but also in practice, that civil signals of
Global Navigation Satellite Systems (GNSS) can be spoofed.
Consequently, a number of spoofing detection techniques have
been proposed to verify the integrity of GNSS signals.

In this paper, we develop a novel trust framework based on
subjective logic to evaluate the integrity of received GNSS civil
signals. We formally define signal integrity for the first time
in the framework and use it to precisely characterise different
spoofing detection methods. Our framework captures the un-
certainty during the inference of signal integrity which has been
largely ignored or not explicitly specified in the literature. Our
framework also gives rise to several natural ways to combine
the outputs of various spoofing detection methods on signal
integrity. We validate our framework through experiments
using both real and simulated signals and the results show
that our framework is effective.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) have become
an essential element in people’s daily lives since the Amer-
ican Global Positioning System (GPS) started to offer free
civil signals. Nowadays, almost all smart-phones and other
mobile devices on the market are equipped with GNSS
receivers. People’s access to their real-time locations has
popularised numerous location-based applications. These ap-
plications are not restricted to offer services for leisure, such
as geo-social networks and points of interest search, but also
deployed in safety-critical products, like driverless vehicles
and aviation navigation. However, as civil signals are neither
signed nor encrypted, there is no way to authenticate their
originators. In addition, they are broadcast in the open
air with a relatively weak signal strength. Therefore, civil
signals can be easily interfered with or even taken over
by false signals, which are called jamming and spoofing,
respectively [1], [2].

In the last decade, a number of scientific experiments and
examples have successfully demonstrated that civil signals
are vulnerable to spoofing. For instance, in 2012 Humphreys
et al. [3] managed to take control of an American unmanned
plane by sending faked GPS signals. The experimental
results lead to the conclusion that once critical applications
are targeted, people’s safety and even homeland security can
be practically threatened by spoofing attacks. In such attacks,

even if GNSS receivers are tamper-resistant, people still
cannot guarantee the correctness of the calculated locations.

It is noted by the Volpe report [4] that there were no
practical mitigation methods for spoofing attacks and we
believe that it is still the case now, especially for GNSS civil
signals. Navigation message authentication is considered as
an effective method to prevent spoofing [5]. However, due
to the long deployment cycle and high costs this is not a
feasible approach in the near future [6]. Instead, researchers
have proposed many methods with the aim to detect but not
to prevent spoofing. The general idea is to make use of some
observable features that should be present when signals are
not spoofed. A spoofing attack is detected if one or more of
such features are not observed. For instance, under normal
circumstances, the strength of GPS signals is rarely above
-153.5 dBW. If a received GPS signal has a higher strength,
then a detection method claims that the integrity of the signal
is not preserved.

Spoofing detection techniques. Some low-cost methods are
proposed to detect unsophisticated spoofing [7], [8], [9],
[10], [11]. For instance, Papadimitratos et al. [10] summarise
three spoofing detection tests: location inertial test, clock
offset test and Doppler shift test. Inertial sensors, such as
speedometers and altimeters, can be used to predict future
locations based on past ones, which are usually close to
the real locations. The clock offset test measures the time
offset of a receiver’s local clock to the system time. As
clocks usually drift with a fixed ratio, future clock offsets
can be computed and the real offsets should be around them.
Doppler shifts are also predictable if the relative velocities
of a receiver to the satellites are available.

There are also some methods that make use of more
advanced attributes of GNSS signals. For example, Nielsen
et al. [12] monitor the correlation between the strengths of
two signals from different satellites because the strengths
always change independently. Psiaki et al. [13] utilise the
correlation between the encrypted military signals received
by different receivers as the military signals transmitted by
the same satellite should be physically the same even if they
cannot be decrypted by civil receivers.

The above detection methods are designed under the
same principle. Namely, given a signal, a method takes

2013 IEEE 26th Computer Security Foundations Symposium

© 2013, Xihui Chen. Under license to IEEE.

DOI 10.1109/CSF.2013.19

179



the measurement of a certain attribute of the signal as
input, calculates the predicted values and claims the absence
of spoofing when the measurement is sufficiently close to
the prediction. To the best of our knowledge, the existing
detection methods in the literature all belong to this category.

Research questions. Although researchers have shown the
effectiveness of their (own) detection methods through var-
ious ways, we find that the existing spoofing detection
methods still suffer from the following problems:

1) The notion of signal integrity has not been formally
defined, which leads to ambiguous interpretations.
Tippenhauer et al. [6] define spoofing from the view-
point of localisation results, i.e., whether a receiver
calculates the real location and time. However, this is
not completely correct from the perspective of GNSS
signals. In some sophisticated spoofing, the attackers
may gradually fool receivers to calculate the planned
position and then allow receivers to calculate the right
location and time when the attack starts [6].

2) Spoofing detection methods have not been systemati-
cally characterised. This leads to incorrect inference of
signal integrity from the consistency of measurements
with the predicted values. For example, in the inertial
test [10] locations cannot be correctly predicted once
the past ones are calculated based on spoofed signals.
In such cases, the consistency of current calculated
locations does not indicate the integrity of signals.

3) The output of a detection method is always qualitative,
i.e., whether a signal’s integrity is preserved or not,
while we believe that it should be quantitative by its
nature. On one hand, the noise from the environment
always influences the receipt of GNSS signals and
causes changes on certain attributes. The inconsistency
of these attributes does not always come with spoofed
signals. On the other hand, a powerful attacker can
generate signals with certain attributes consistent with
the prediction. Thus, the consistency of such attributes
should not always lead to the conclusion of the signal
being integrous. As we are not certain about the im-
pacts of noise and the ability of the attackers on tuning
signals’ attributes, uncertainty in spoofing detection is
inherently inevitable and should be quantified.

4) The outputs from different spoofing detection methods
might conflict with each other and so far there exist no
algorithms to combine the outputs of different methods
into a coherent conclusion. Combining the results of
multiple detection methods is necessary due to the
fact that more evidences usually lead to more reliable
conclusions.

Our contributions. We propose a novel trust framework
based on subjective logic to evaluate the integrity of GNSS
signals and address the above identified research questions.
The main reasons for us to use subjective logic are that

it quantifies uncertainty in logic reasoning and provides a
series of operators which correspond to logic operators and
take uncertainty into account. Remark that our purpose of
this paper is not to propose new methods to detect spoofing
attacks. Instead, we aim to provide a generic understanding
of spoofing detection and develop methods to derive correct
conclusions on spoofing detection.

In our framework, we first formalise GNSS systems and
receivers, based on which signal integrity is formally defined
(Sect. III-C). Then we present a generic formal description
of spoofing detection methods and classify them based on
the relationships between consistency of attributes and signal
integrity (Sect. III-E).

To address the uncertainty in reality, we first take into ac-
count the impact of environmental noise and propose a way
to obtain an opinion on the consistency of an attribute with
its prediction (Sect. IV). Next, we present a method based
on conditional reasoning with subjective logic opinions to
evaluate signal integrity for an individual detection method
(Sect. V). In the reasoning, we deal with the uncertainty of
the attackers’ capability of tuning signals’ attributes.

In the end, we propose three algorithms to combine the
outputs from different spoofing detection methods (Sect. VI).
They are designed to capture different assumptions about
the attackers’ ability to manipulate attributes. In order to
validate the effectiveness of our framework, we collect a
large dataset of real GPS signals. In spite of the lack of real
spoofing scenarios, we simulate the data of spoofed signals
in a realistic way. The experimental results show that the
framework is rather effective (Sect. VII).

II. PRELIMINARIES

A. GNSS Signals

A GNSS system is a constellation of satellites which
broadcast navigation signals to the earth. In this paper, we
take GPS as a representative due to its popularity. Other
systems, such as GLONASS and Galileo, are similar.

GPS satellites are equipped with atomic clocks which are
synchronised with the universal time. GPS signals are trans-
mitted in two frequencies fL1 and fL2 on which navigation
data and spreading codes are modulated [14]. Navigation
data carries information about the obits of satellites and
spreading codes are used to identify satellites. Each satellite
has two unique spreading codes: the coarse acquisition (C/A)
and the encrypted precision code (P(Y)). The C/A code is
publicly known and encoded in civil signals while the P(Y)
code is encrypted and can only be accessed by certified
military devices. As we focus on civil applications of GNSS
systems, throughout the paper we only consider scenarios
where civil signals are targeted by the attackers. Thus, we
simply refer to civil signals in the paper as signals.1 A

1The P(Y) codes are still part of our signals and can be used to detect
specific spoofing attacks.
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satellite generates its signals by modulating its C/A code
and navigation data with the carrier wave of frequency fL1

and sends them into the air with a transmitter.
A GPS receiver antenna captures signals from the satel-

lites in range. From those signals the receiver calculates
a three-dimensional coordinate as follows. A receiver runs
replicas of the C/A codes synchronised with those of all
the deployed satellites, based on which it separates the
signals originated from different satellites and measures their
time offsets with the replicas. These offsets are in fact the
transition time of the signals. By multiplying with the speed
of light, we can obtain the distances to the satellites, which
can also be calculated as the Euclidean distance based on
the locations of the satellites and the receiver. As navigation
data includes the satellites’ locations, we have only three
variables to solve. Thus with three satellites, we can compute
the three-dimensional location in theory. In practice due to
the unknown offset between the clocks of the receiver and
satellites, a fourth satellite is required.

B. GNSS Signal Spoofing

Signal spoofing can be implemented in the following two
ways. (a) Because C/A codes are public and no authenti-
cation mechanisms protect them, an attacker can construct
a signal modulated with a C/A code having arbitrary time
offset to the synchronised one. This forgery will lead a
receiver to calculate an incorrect distance to the satellite. (b)
Since the format of navigation data is also publicly known,
an attacker can generate navigation data with arbitrary
information but conforming with the format. In this way,
the receiver will learn an incorrect location of the satellite.
By either or both of these two ways, receivers can be fooled
to calculate any locations, no matter where they are actually.

The above two ways of spoofing have been validated in
the literature. Using the first approach, Humphreys et al. [2]
implement a simulator which uses a GPS receiver to decode
GPS signals and then broadcasts them with arbitrary delays.
Tippenhauer et al. [6] theoretically prove that an attacker
can spoof multiple receivers at the same time by carefully
deploying broadcasting antennas in certain positions. These
positions simulate the geometry of satellites. With respect
to the second approach, Nighswander et al. [15] implement
a simulator which re-broadcasts signals with arbitrary navi-
gation messages. This method can attack multiple receivers
more efficiently in larger areas compared with the simulator
of Tippenhauer et al. [6] as satellites’ geometry is ignored.

C. Subjective Logic

We give a brief introduction to subjective logic opinions
and the operators on them used in the following discussion.
For details we refer readers to its tutorial [16].

Subjective logic opinions. In subjective logic, an opinion
expresses the belief about one or multiple propositions from
a space called the frame of discernment. An opinion over

a frame X is a composite function consisting of three
components – a belief function, an uncertainty mass and
a base rate function. The belief function assigns belief mass
to each proposition in X , which can be interpreted as the
positive belief on the truth of the element. It is sub-additive,
meaning that the sum of all propositions’ belief mass is
not larger than 1. Uncertainty mass is the amount of belief
that is not assigned as belief mass. It can be interpreted as
the perceived imprecision of the probability estimates. The
base rate function expresses the a priori probability of each
proposition in X being true.

Definition 1 (Subjective logic opinion). Let X be a frame
{x1, . . . , xn}. An opinion on X can be represented by wX =
(~bX , uX ,~aX) where ~bX : X → [0, 1] is the belief function,
uX ∈ [0, 1] is the uncertainty mass and ~a : X → [0, 1] is
the base rate function. Furthermore,∑
x∈X

~bX(x) ≤ 1; uX = 1−
∑
x∈X

~bX(x);
∑
x∈X

~aX(x) = 1.

The expectation probability of x ∈ X being true is:

~EX(x) = ~bX(x) + ~aX(x) · uX .

When the frame is binomial, e.g., X = {x, x̄}, the opinion
about the truth of x can be denoted as wx = (b, d, u, a)
where b = ~bX(x), d = ~bX(x̄), u = uX and a = ~aX(x)
indicating the belief, disbelief, uncertainty and the a priori
rate about x being true. The expectation probability of x
being true is E(wx) = b+ a · u.

Conditional belief reasoning. Conditional reasoning has
been discussed in both binary logic and probability calculus.
It offers a way to calculate the truth of a proposition y based
on the evidence about another proposition x which has a
conditional relation with y.

According to the causal relation, we have deductive rea-
soning and abductive reasoning. If x (resp., y) is the an-
tecedent, then the reasoning is deductive (resp., abductive).
Compared to the probabilistic method, subjective logic takes
opinions as input in the reasoning and thus captures the
underlying uncertainty.

Deduction and abduction on binomial frames, i.e., X =
{x, x̄} and Y = {y, ȳ} have the following notations:

wy|x : conditional opinion on y given x being TRUE;
wy|x̄ : conditional opinion on y given x being FALSE;
wx : opinion on the proposition x;

wy‖x : opinion on y deduced/abduced from the observation
on x.

Assume we have a causal conditional between x and y,
i.e., “if x then y” (denoted by x → y) and wy|x and
wy|x are learned. If we have an observation on x which
gives the opinion wx, then the deduced opinion on y
should be calculated by considering both of the situations
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when x is TRUE and FALSE. In subjective logic, ‘}’ is
used as the operator calculating the opinion on y given
wx and the two conditional opinions wy|x and wy|x̄, i.e.,
wy‖x = wx } (wy|x, wy|x̄). If we have evidence on y i.e.,
the opinion wy , then the opinion on x can be calculated by
abductive reasoning. The idea is to calculate wx|y and wx|ȳ
based on wy|x and wy|x̄ using the Bayesian theorem, where
the a priori probability of x, i.e., ax, is required. In this way,
deductive reasoning can thus be used. In subjective logic,
} is the abductive operator calculating wx based on wy|x,
wy|x̄ and ax, i.e., wx‖y = wy}(wy|x, wy|x̄, ax). We refer the
readers to [17], [18] for the details of the implementation of
the operators.

Conditional reasoning is applicable on multinomial opin-
ions as well. Suppose two multinomial frames X and Y .
Assume conditional opinions wY |X and wY |X are available.
Note that wY |X = {wY |x | x ∈ X} and wY |X =
{wY |x̄ | x ∈ X} where wY |x (resp., wY |x̄) represents
the conditional opinion on Y given that x is TRUE (resp.,
FALSE). The opinion on Y based on observations on X
(i.e., wX ) can be calculated by deductive reasoning, i.e.,
wY ‖X = wX}wY |X . Likewise, the opinion on X based on
observations on Y can be calculated by abductive reasoning,
i.e., wX‖Y = wY}(wY |X ,~aX) where ~aX is the a priori
distribution on X .

III. A TRUST FRAMEWORK

In this section, we propose a trust framework to evaluate
signal integrity.

A. GNSS Systems

A GNSS system consists of a number of satellites which
move in certain orbits. We denote by S the set of running
satellites of the GNSS system. Let L be the set of all
geographic coordinates and T be the set of time points. The
formats of locations and time points are out of our discussion
since different formats can be converted from one to another.
For instance, the coordinate N25°07.450’ is represented in
degrees and minutes while it can also be of the form of only
degrees, i.e., 25.124167. We use ξ(S, t) ∈ L to denote the
real location of satellite S ∈ S at a given time t ∈ T .

Satellites broadcast radio signals to the earth. GNSS
signals are generated by a fixed procedure such that they
have a common pattern. We take GPS signals as an example.
A GPS signal includes at least two components: (1) the
C/A codes of a deployed satellite (2) a navigation message
with ephemeris information. Let Θ be the set of all possible
GNSS signals that conform with the pattern. We use the
function sig : S×T →Θ to return the signal transmitted by
a satellite at a given time.

Natural factors, such as ionospheric scintillation and tro-
pospheric effects, can attenuate signals. Attenuation can
cause effects on many attributes of a signal, e.g., carrier
phase advance and power decrease. Its impact is determined

by the routes that signals take to arrive on the ground. As
these routes are subsequently determined by where they
reach and when they are generated, we use η(S, `, t) to
denote the attenuation on the signal of S ∈ S which
is generated at time t and arrives at `. We denote by
η(S, `, t)♦sig(S, t) the signal when sig(S, t) reaches the
earth. The signal is still an element of Θ as long as the
spreading codes and the navigation data are available.

B. GNSS Receivers

A GNSS receiver is a device to capture GNSS signals
and calculate a location with a localisation algorithm. In
fact, a receiver captures the combination of the signals of all
satellites in range. Let G be the set of combined signals and
let ] be the combination operation on any two signals with
the same radio frequency. Then for any s ∈ G, there exists
a set of GNSS signals Θ′ ⊆ Θ such that s = ]sig′∈Θ′sig ′.
The set G is closed under the signal combination operation.
We use s(`, t) ∈ G to denote the combined signal received
by the receiver located at ` ∈ L at time t ∈ T .

Given a received signal, the receiver separates the GNSS
signals modulated in it based on their unique features, e.g.,
C/A codes. This separation process can be modelled by
function sigCom : G → 2Θ mapping a received signal to
the set of combined GNSS signals.

As the receiver has access to the C/A codes of all
satellites, given a GNSS signal in Θ it can identify the
satellite whose C/A code is modulated. We call the satellite
the originator of the signal. We use function ori : Θ → S
to return the originator of any signals. Note that by the
originator of a signal we only mean that the originator’s
spreading code is modulated in the signal, implying that,
whenever it is received, the receiver would think it is
from the satellite. The originator is not always the entity
that actually generates the signal as the attackers can also
generate signals with the same code.

A GNSS receiver implements a localisation algorithm that
takes a received signal as input and outputs a coordinate
and a time point if possible. We denote the algorithm by
loc : G → L × T . In practice, the output of a localisation
algorithm is of the form of a triple consisting of a coordinate,
an accuracy in meters and time. The coordinate and the
accuracy define a round area centred at the coordinate with a
radius of the accuracy. Since our focus is signal integrity, we
assume that localisation algorithms always calculate accurate
locations with accuracy zero. For the same reason, we also
omit the implementation difference between receivers. The
notations mentioned are summarised in Tab. I.

C. Signal Integrity

When a received signal is free of spoofing, we usually
say that the integrity of the signal is preserved, meaning
that the signal has not been modified maliciously by the
attacker. In other words, an integrous signal is generated by
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Table I
THE NOTATIONS AND FUNCTIONS.

S set of running satellites of the GNSS system;
T set of time points;

ξ(S, t) position of satellite S at time t;
Θ set of GNSS signals;

sig(S, t) GNSS signal transmitted by satellite S at time t;
η(S, `, t) attenuation of the signal leaving S at t to reach `;

G set of combined GNSS signals that can be captured ;
sigCom(s) set of GNSS signals combined in s ∈ G;

ori(sig) satellite whose C/A code is modulated in sig ;
loc(s) location and time calculated using received signal s.

a satellite and without artificial interference, e.g., replaying,
before reaching the receiver. Given a received signal, the key
point of verifying its integrity is to calculate its reference
signal which is supposed not to be spoofed. First, the time
between the generation of the reference signal and its arrival
at the receiver should be equal to the amount of time required
to travel the distance between its originator and the receiver
by the speed of light. Second, it should suffer the correct
amount of attenuation, e.g., η(S, `, t), during the transition.
We use |`, `′| to denote the Euclidean distance between two
positions ` and `′. Based on the above discussion, signal
integrity can be formally defined as:

Definition 2 (Signal integrity). Given a received signal
s(`, t), we say that s(`, t) is integrous if and only if for
each sig ′ ∈ sigCom(s(`, t)), there exists t′ ∈ T such that

(sig ′ = η(ori(sig ′), `, t′)♦sig(ori(sig ′), t′))

∧ (c · (t− t′) = |ξ(ori(sig ′), t′), `|)

where c is the speed of light.

In the following discussion, we use Is(`,t) to denote
the proposition that “s(`, t) is integrous” while ¬Is(`,t)
represents the negation that “s(`, t) is not integrous”. In
practice we cannot use Def. 2 to verify signal integrity by
computing the integrous signals and comparing them with
the received ones. On one hand, the location of a receiver is
under calculation and not available until the integrous signals
having been received. Without the location, it is impossible
to derive the transmission time of the received GNSS signals
and thus the generation time cannot be obtained. On the
other hand, the attenuation cannot be measured due to the
nature of unpredictability of the environment. Therefore, we
cannot learn the set of GNSS signals that should be received.

D. Attacker Model

In general, the aim of an attacker is to fool a receiver
to calculate a fake location. According to the literature, the
attackers have two ways to achieve this purpose – software
attacks on receivers [15] and GNSS signal spoofing [6].

Software attacks on receivers target at the localisation
algorithms implemented on receivers. Infected by malware,
the receiver can be forced to calculate incorrect coordinates.
GNSS signal spoofing is to feed a receiver with simulated

signals such that even the correct localisation algorithm
cannot compute the right location.

In this paper, we focus on the risks coming from signals,
as people can protect their receivers against malware but
have no control of signals. We assume that the localisation
algorithm of a receiver is always well protected and free of
misbehaviour. Formally, given a received signal s(`, t) if it
is integrous then we have loc(s(`, t)) = (`, t).

The attackers that we consider have similar capabilities
in terms of signal transmission to the attackers assumed by
Tippenhauer et al. [6]. They have full control of wireless
channels by blocking, intercepting, delaying and replaying
GNSS signals. Furthermore, we assume that the attackers
can manage to make all their signals received by the targeted
receivers at any preferred time.

With regard to signal generation, we assume that the
attackers can generate any GNSS signal in Θ that can
be interpreted by receivers. However, the attackers cannot
generate the military signals due to the encrypted P(Y), but
it can intercept and replay them.

E. Spoofing Detection Methods

A spoofing detection method aims to evaluate the integrity
of a given signal. It takes the measurement of a certain at-
tribute of the signal as input and calculates a set of predicted
values of the measurement. At last it decides whether the
signal is integrous, by comparing the measurement to its
predicted values. In the following discussion, we formally
characterise spoofing detection methods and classify them.

Given a received signal s(`, t) we denote by Attr(s(`, t))
the set of attributes of s(`, t) that can be measured and
explored by a spoofing detection method. In this paper, we
assume that a spoofing detection method explores only one
attribute as it is designed in the literature. The value of
an attribute can be measured by a receiver or calculated
by other agents. For instance, the values of attributes, e.g.,
signal strength and Doppler shift, are calculated by receivers
while others, e.g., power correlation of signals from two
satellites, are not provided directly by receivers. We denote
by mα(s(`, t)) the value of attribute α ∈ Attr(s(`, t))
of s(`, t). The domains of the measurements are different
between attributes. To be generic, we use dom(α) to denote
the domain of α. Note that for the sake of simplicity, we
assume that a measurement has just a single value in its
corresponding domain, while in practice the measurement of
an attribute might be of different forms, e.g., a subset of the
domain. Our approach given below can be easily extended
to capture these cases.

We observe that a spoofing detection method actually
realises three sequential steps: generating reference measure-
ment, validating current measurements and assessing signal
integrity. We address them one by one in the following.

Step 1: Generate reference measurements. Given an
attribute, a spoofing detection first calculates a set of values
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that should contain its measurement when the received
signal is integrous (called reference set). Different detection
methods have various ways to calculate their reference sets.

We recognise two basic ways. One is to make use of a
sufficiently large collection of integrous signals and calculate
the set of all values that occur frequently. The other approach
is to use the observation that the measurements of some
attributes change over time in a fixed pattern. Based on
a number of past signals the value of the current signal
can thus be computed. Based on the distinction between
these two approaches, we can divide spoofing detection
methods into two categories – stateless and stateful. Let
Rα(s(`, t)) ⊆ dom(α) be the calculated reference set of
attribute α of signal s(`, t). Stateless and stateful detection
can be formally defined as follows:

Definition 3 (Stateless spoofing detection). Given a received
signal s(`, t), we say that a spoofing detection method on
attribute α ∈ Attr(s(`, t)) is stateless if mα(s(`, t)) ∈
Rα(s(`, t)) if s(`, t) is integrous, where Rα(s(`, t)) is cal-
culated by a function fα : G → 2dom(α), i.e., Rα(s(`, t)) =
fα(s(`, t)).

Definition 4 (Stateful spoofing detection). Given a received
signal s(`, t), we say that a spoofing detection method on at-
tribute α ∈ Attr(s(`, t)) is stateful if for a given a set of past
signals N = {s(`1, t1), . . . , s(`n, tn)} (∀s(`i,ti)∈N ti < t),
mα(s(`, t)) ∈ Rα(s(`, t)) if s(`, t) is integrous and s(`i, ti))
is integrous for any s(`i, ti) ∈ N , where Rα(s(`, t)) is
calculated by a n-ary function fα : Gn → 2dom(α), i.e.,
Rα(s(`, t)) = fα(s(`1, t1), . . . , s(`n, tn)).

In a stateless spoofing detection method a reference set
is computed based on the received signal whose integrity
is under evaluation. The reference set in a stateful detection
method relies on some past signals. The integrity of the past
signals determines the correctness of the reference set to be
computed in a stateful detection method. In the definitions,
we rely on the casual relation that a measurement falls in its
reference set is caused by the fact that the signal is integrous.
However, the related works in the literature usually take the
opposite but incorrect direction, i.e., the integrity of a signal
is concluded from the measurements of its attributes.

Step 2: Validate measurements. After calculating the
reference set, the spoofing detection method checks whether
the input measurement is in the reference set. If it is the
case, we say that the measurement is valid. We use Vαs(`,t)
to represent the proposition that “mα(s(`, t)) is valid”.2

In practice, a reference set predicts a measurement con-
sidering an average intensity of natural environment interfer-
ence on signal during transmission. This can lead to incorrect
validity of measurement in the cases where the interference

2The notion of valid measurement is (implicitly) used by almost all
existing spoofing detection methods. We formally define it in this paper.

(abnormally) deviates from the average. This means that
the measurement should be valid once the interference is
normal. If we can learn how much the deviation of the
current interference is from the average, then there will be
a way to obtain the corresponding value to the average
case. However, the impact of the interference cannot be
measured. Therefore, it is undesirable to have a definite
conclusion that a measurement is invalid once it is out of
the reference set. Instead, since subjective logic opinions
can allow us to capture the uncertainty caused by the
environmental interference, we express the conclusion of
a detection method on the validity of mα(s(`, t)) by an
opinion. It is denoted by wVα

s(`,t)
and called the validity

opinion of s(`, t) on attribute α.

Step 3: Assess signal integrity. At last, a spoofing detection
method assesses the integrity of received signals based on
the validity of the measurements.

The output of a spoofing detection method is usually
qualitative in the literature, which is not correct in real-
ity. This is mainly because: 1) unpredicted environmental
interference on signals leads to uncertainty of measurement
validity; 2) there does not exist a definite causal relationship
from measurement validity to signal integrity. For instance,
some attackers can generate signals with valid measure-
ments if they have access to powerful simulators. In such
situations measurements are valid but signals are spoofed.
False negative/positive ratios are thus defined to estimate the
frequency of such situations and assess the performance of
the detection in the literature.

In our approach, we use a subjective logic opinion to
capture the uncertainty about the integrity of a signal. Given
s(`, t), we denote the opinion on its integrity by wαIs(`,t) and
call it an integrity opinion.

Summary. Based on the above discussion, upon the receipt
of the measurement of an attribute α, we can summarise
the three steps that a spoofing detection method sequentially
performs as follows:

1) Calculate the reference set Rα(s(`, t));
2) Evaluate the validity of mα(s(`, t)) according to
Rα(s(`, t), i.e., wVα

s(`,t)
;

3) Infer the opinion on the integrity of s(`, t) based on
wVα

s(`,t)
, i.e., wαIs(`,t) .

In the literature, the calculation of reference sets in the first
step has been extensively discussed. In this paper, we take
it as given. We proceed with how to obtain the validity
of measurements in the second step (Sect. IV) and how to
derive the integrity of signals in the third step (Sect. V).

IV. DERIVING VALIDITY OPINIONS

In this section, we give a method to calculate the validity
opinion of an attribute given a received signal by taking
into account the environmental interference. Essentially, we

184



develop a function mapping mα(s(`, t)) and Rα(s(`, t)) to
the opinion wVα

s(`,t)
for any signal s(`, t).

Our main idea is to find an appropriate function degrading
the belief on the validity of a measurement in terms of its
distance to the reference set. The intuition behind this is
that environmental interference with larger variation from
the average is less common. The larger the variance is, the
farther away that a measurement is from the reference set
and thus the less probable that the measurement is valid.
There are two necessary elements in the above observation,
namely, the distance of a measurement to the reference set
and the degradation function.

Distance of measurements to reference sets. Suppose that
the distance between any two elements in dom(α), e.g., x
and x′, is given as‖x−x′ ‖. The calculation and domains of
the distances may vary between attributes. In this paper, we
assume that the distances are normalised into real numbers,
i.e., ‖ x − x′ ‖∈ R. The distance of a measurement from a
reference set is assigned zero if it is in the set. Otherwise,
it is set as the minimum distance of the measurement to the
values in the reference set. Let dα(s(`, t)) be the distance
between mα(s(`, t)) and Rα(s(`, t)). Then it can be defined
as follows:

dα(s(`, t)) =

{
0 m ∈ R
min
v∈R
‖m− v‖ m 6∈ R

where m = mα(s(`, t)) and R = Rα(s(`, t)).

Degradation function. The degradation function should be
smooth and be compatible with the probability distribution
of the environmental interference suffered by the given
signal. Note that the choice of the distribution influences
the accuracy of the validity opinion and should be carefully
assessed with extensive analysis, e.g., using sufficiently large
number of samples. We observe that the measured values
of most attributes mentioned in the literature fit normal
distributions best, e.g., signal strengths and clock offsets.
Although some attributes may fit different distributions,
in the following we take the normal distribution as an
example to define the degradation function. The main idea
can be adapted to other distributions. Assume wVα

s(`,t)
=

(b, d, u, 0.5). The base rate is set to 0.5 so as to express that
we have no preference. The other three parameters can be
computed as follows:

b = e
−

dα(s(`, t))
2

2 · var2 ; d = 1− b; u = 0

where var represents the variance required by the original
normal distribution and it determines how fast b drops along
with dα(s(`, t)). The uncertainty u can be interpreted as
the confidence in the existence of the normal distribution.
As we have already assumed its existence, we assign 0 to
uncertainty u.

We can determine the value of var if a distance and the
corresponding belief are given. In our method, we take the
maximum distance allowed for a measurement and assign
the minimum belief to it. Let dmax be the maximum allowed
distance to the reference set and bmin be the corresponding
minimum belief. We can calculate var as follows:

var =
dmax√
−2 · ln bmin

.

V. INFERRING SIGNAL INTEGRITY

In this section, we show how to derive the integrity
opinion of a signal based on the measurement validity
of one of its attributes. We study the causal relationships
between measurement validity and signal integrity, based
on which conditional reasoning can be used. Since stateless
and stateful methods have different causal relationships, they
require different methods to derive integrity opinions.

A. Stateless Spoofing Detection

In a stateless spoofing detection method, e.g., on attribute
α, a reference set is calculated in such a way that as long
as a signal is integrous, its measurements must be valid
(see Def. 3). Therefore, given a signal s(`, t), the following
conditional relationship holds:

Is(`,t) → Vαs(`,t).

The validity opinion wVα
s(`,t)

has already been calculated
based on the methodology given in Sect. IV. Thus the
integrity opinion of s(`, t) can be considered as the abduced
opinion on the validity of the measurement.

In the abduction, we need two a priori conditional
opinions on the measurement validity when the signal is
integrous or spoofed and the a priori probability that the
signal is integrous before its reception. Let wVα

s(`,t)
|Is(`,t)

and wVα
s(`,t)

|¬Is(`,t) be the opinions on the validity of the
measurement when the signal is integrous or spoofed, re-
spectively. We set the base rate a(Is(`,t)) to 0.5 to indicate
no a priori knowledge about the integrity of the signal.
It is a conservative choice as we want to eliminate the
interference of artificial preference as much as possible.
Using the abduction operator in subjective logic (i.e., }), we
can calculate the opinion on the truth of Is(`,t) as follows:

wαIs(`,t) = wVα
s(`,t)
}(wVα

s(`,t)
|Is(`,t) ,

wVα
s(`,t)

|¬Is(`,t) , a(Is(`,t))).

B. Stateful Spoofing Detection

In a stateful spoofing detection method, e.g., on attribute
α, a reference set is calculated based on a set of past signals.
For the sake of simplicity, we assume that a stateful detection
method only makes use of one past signal. However, our
method given below can be generalised to other cases.

For a signal s(`, t), let s(`′, t′) (t′ < t) be the past
signal based on which Rα(s(`, t)) is calculated. According
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to Def. 4, we can see that a reference set is computed in a
specific way such that once past signals and the signal to be
verified are both integrous, the corresponding measurement
is valid. This gives rise to the following conditional relation
for signal s(`, t):

Is(`′,t′) ∧ Is(`,t) → Vαs(`,t).

We cannot derive the integrity opinion wαIs(`,t) using the
method given for stateless spoofing detection methods due
to the involvement of the integrity of the past signals. In
probability theory, if we can learn the joint probabilities
p(Is(`′,t′), Is(`,t)) and p(¬Is(`′,t′), Is(`,t)), then the proba-
bility p(Is(`,t)) can be calculated by summing them up. This
calculation is called marginalisation. In subjective logic if
we learn the beliefs on Is(`′,t′)∧Is(`,t) and ¬Is(`′,t′)∧Is(`,t),
then the opinion on Is(`,t) can be computed in a similar way.
Let I be the following multinomial frame made of Is(`′,t′)
and Is(`,t):

I = {Is(`′,t′) ∧ Is(`,t),¬Is(`′,t′) ∧ Is(`,t),
Is(`′,t′) ∧ ¬Is(`,t),¬Is(`′,t′) ∧ ¬Is(`,t)}.

Let wI be the multinomial opinion on I . Using the above
causal relationship, we can calculate wI based on the mea-
surement validity through the abduction reasoning. As wI
contains the beliefs on Is(`′,t′)∧Is(`,t) and ¬Is(`′,t′)∧Is(`,t),
we can compute the integrity opinion on Is(`,t). Specifically,
the calculation can be described in the following two steps:

1) Compute wI based on wVα
s(`,t)

. The computation is an
abductive reasoning from Vαs(`,t). Let wVα

s(`,t)
|I be the

set of a priori conditional opinions on Vαs(`,t) when
each proposition in I is true, i.e., {wVα

s(`,t)
|x |x ∈ I}.

This calculation is as follows:

wI = wVα
s(`,t)
}(wVα

s(`,t)
|I ,~aI).

2) Compute wαIs(`,t) based on wI . Suppose wI = (~b, u,~a)

and wαIs(`,t) = (b, d, u, a), then

b = ~b(Is(`′,t′) ∧ Is(`,t)) +~b(¬Is(`′,t′) ∧ Is(`,t));
u = u; d = 1− b− u;

a = ~a(Is(`′,t′) ∧ Is(`,t)) + ~a(¬Is(`′,t′) ∧ Is(`,t)).

The base rate vector ~aHI expresses the a priori probability
distribution on the four propositions in I . Note that Is(`′,t′)
and Is(`,t) are independent as the signals s(`, t) and s(`′, t′)
do not depend on each other and can be generated by
two different sources. As s(`′, t′) is a past signal, we
assume that its integrity opinion has already been calculated,
i.e., wIs(`′,t′) . The expectation probability of Is(`′,t′), i.e.,
E(wIs(`′,t′)), is thus the a priori probability of Is(`′,t′)
being true. Recall that we set a(Is(`,t)) to 0.5 to express
the absence of any knowledge about Is(`,t) being true. We

can calculate ~a as follows:

~a(Is(`′,t′) ∧ Is(`,t)) = E(wIs(`′,t′)) · 0.5;

~a(Is(`′,t′) ∧ ¬Is(`,t)) = E(wIs(`′,t′)) · 0.5;

~a(¬Is(`′,t′) ∧ Is(`,t)) = (1− E(wIs(`′,t′)) · 0.5;

~a(¬Is(`′,t′) ∧ ¬Is(`,t)) = (1− E(wIs(`′,t′)) · 0.5.

Some a priori conditional opinions are applied during
the inference of signal integrity. They should be assessed
properly in order to guarantee the correctness of integrity
opinions. We propose an approach to determine their values
in the following section.

C. Determining the Conditional Opinions

We can divide the conditional opinions used in Sect. V-B
into two classes according to whether spoofed signals
are involved, which are integrous signal based (isb) and
spoofed signal based (ssb). Specifically, the opinions of
the form of wVα

s(`,t)
|Is(`,t) and wVα

s(`,t)
|Is(`′,t′)∧Is(`,t) be-

long to the former class while the later class includes
those of the form of wVα

s(`,t)
|¬Is(`,t) , wVαs(`,t)|Is(`′,t′)∧¬Is(`,t) ,

wVα
s(`,t)

|¬Is(`′,t′)∧Is(`,t) and wVα
s(`,t)

|¬Is(`′,t′)∧¬Is(`,t) .

Determining isb conditional opinions. In practice, ref-
erence sets should be carefully chosen to ensure that the
number of spoofed signals that have valid measurements
should be small while most integrous signals have valid
measurements. Reference sets do not contain all possible
values that an integrous signal should have and there are situ-
ations where an integrous signal has an invalid measurement.
The isb opinions express how likely these will not happen.
Given the calculation of reference sets, we can estimate isb
opinions by counting the frequency of valid measurements
in a sufficiently large dataset of integrous signals.

We take wVα
s(`,t)

|Is(`,t) as an example to illustrate the
calculation which can be extended straightforwardly to the
opinions used in stateful spoofing detection. Let SC be
the collection of integrous signals and P ⊆ SC be the
set of samples whose measurements of α are valid. Let
wVα

s(`,t)
|Is(`,t) be (b, d, u, a). The base rate a expresses the

a priori probability about the truth of Vαs(`,t) when the
received signal is integrous. We set it to 0.5 when we have
no knowledge about Vαs(`,t). Then the belief, disbelief and
uncertainty can be computed by

b =
|P |

|SC |+2
, d =

|SC/P |
|SC |+2

, u =
2

|SC |+2
.

Determining ssb conditional opinions. The ssb opinions
are related to spoofing scenarios. They express the opinions
on the validity of measurements when some related signals
are spoofed. They also describe the power of attackers with
regard to tuning attributes when false signals are generated.
The more powerful an attacker is, the more likely that the
measurements of their spoofed signals remain valid.
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The method of deriving isb opinions is applicable if we
have samples of spoofed signals. However, as far as we know
there is no publicly available dataset of spoofed signals.
Instead, we propose an alternative method estimating ssb
opinions based on the efforts required for the attackers
to generate signals with valid measurements. Intuitively,
the more efforts that are required, the less likely that the
measurements of spoofed signals are valid.

There are many restrictions for the attackers to overcome
in order to preserve the validity of a measurement, e.g., sig-
nal simulators, deployment environment and the availability
of equipment. A spoofing attack demanding a simulator of
10,000 euros is harder than the ones which need simulators
of 1,000 euros. The difficulty to meet a requirement can be
divided into levels. For instance, the prices of equipment
can be assigned to levels from low to high. Meanwhile, the
importance of requirements also varies.

Let Req = {rq1, . . . , rqk} be the set of requirements and
W = {w1, . . . , wk} be the set of corresponding importance
where

∑
1≤j≤k wj = 1. For rqi ∈ Req , we assign one of

the five scores {0.2, 0.4, 0.6, 0.8, 1}, i.e., score(rqi). Some-
times, we do not have expertise for every requirement. When
we have no idea about the requirement, we set score(rqi) to
0. The sum of weighted assigned scores can be interpreted
as the votes against a successful spoofing attack while the
unassigned scores can be seen as the neutral votes. Take
wVα

s(`,t)
|¬Is(`,t) for example. Let it be (b, d, u, a), then

b =
∑

score(rqi)6=0

score(rqi) · wi; d = 1− b− u;

u =
∑

score(rqi)=0

wi.

We set a as 0.5 to indicate the absence of any preference.

VI. COMBINING INTEGRITY OPINIONS

A received signal has a set of attributes that can be
measured and explored by spoofing detection methods.
According to Sect. V, given a signal a detection method
will calculate its integrity opinion. However, the integrity
opinions can be different from each other. This is because:
• The conditional opinions used in spoofing detection

methods are different. This leads to different integrity
opinions even if the validity opinions are the same.

• Unpredictable environmental interference can cause an
integrous signal to have incorrect validity opinions for
certain attributes. This subsequently causes incorrect
integrity opinions.

• Some attackers are able to tune some attributes of their
generated signals so that the corresponding measure-
ments remain valid. This fools the spoofing detection
methods to output incorrect integrity opinions.

Thus, a combined integrity opinion is needed to deal with
the difference. Furthermore, with more evidences taken into

account, the combined opinions will be more reliable. The
combination is very useful for location-based applications as
they can customise their services based on signal integrity
and take proper actions whenever spoofing is detected.

In this section, we propose three algorithms to combine
the integrity opinions according to different user security
requirements. A combination algorithm can be seen as a
function taking a set of individual integrity opinions as input
denoted by WIs(`,t) , and outputting a combined integrity
opinion denoted by wIs(`,t) . Before presenting the algo-
rithms, we start with how to construct the set of integrity
opinions, i.e., WIs(`,t) .

Recall that stateful spoofing detection methods make
use of the integrity opinions on past signals. Assume that
integrity opinions can be combined, we have two types of
integrity opinions – combined opinions, e.g., wIs(`,t) and
those given by individual stateless methods, e.g., wαIs(`,t) .
As a consequence, a stateful detection method can output
two kinds of integrity opinions – global and local. A global
integrity opinion is calculated using combined opinions on
past signals, while a local integrity opinion is based on
opinions given by a single stateless method. Given a signal,
we thus have two sets of integrity opinions to combine –
global opinion set and local opinion set, denoted byWglo

Is(`,t)
and W loc

Is(`,t) , respectively. In this section, we use WIs(`,t)
to have a generic description for our algorithms. It can be
substituted by either Wglo

Is(`,t) or W loc
Is(`,t) in implementation.

A. The Veto Algorithm

In safety-critical applications, failing to detect a spoofing
attack can lead to severe consequence. In such situations,
false alarms of spoofing are affordable but false claims of
integrity are not. To meet this requirement, our idea is to give
a spoofing alarm as long as one of the deployed spoofing
detection methods gives an opinion indicating spoofing. We
choose the integrity opinion with the minimum belief in the
integrity of the signal as the combined opinion.

We introduce a relation to compare the belief in the in-
tegrity of a given signal expressed by two integrity opinions,
i.e., �⊆ Ω×Ω where Ω is the set of all binomial opinions.
An integrity opinion has less belief in the integrity of a signal
than another if its expectation probability is smaller or it has
a larger uncertainty when their expectation probabilities are
equivalent. The relation � is formally defined as follows:

Definition 5 (�). Given two binomial subjective opinions
w = (b, d, u, a) and w′ = (b′, d′, u′, a′), we say that w is
not larger than w′ (denoted by w � w′) if

E(w) < E(w′) ∨ (E(w) = E(w′) ∧ u ≥ u′) ∨ w = w′.

Recall that WIs(`,t) is the set of integrity opinions out-
put by spoofing detection methods. The calculation of the
combined integrity opinion wIs(`,t) is straightforward. Let
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Veto : 2 Ω → Ω be the Veto function, then we have

wIs(`,t) = Veto(WIs(`,t)
) s.t.

(wIs(`,t) ∈ WIs(`,t)) ∧ (∀w ∈ WIs(`,t) , wIs(`,t) � w).

Note that past signals are mandatory for stateful spoofing
detection methods to derive integrity opinions. When there
are no sufficient opinions available for a stateful spoofing
detection method, we set its integrity opinion in WIs(`,t) to
(1, 0, 0, 0.5) to eliminate its impact on the combined opinion.

B. The Consensus Algorithm

Recall that in a subjective logic opinion, the uncertainty
mass can be interpreted as a confidence measurement on
the correctness of the probability expectation. Given an
integrity opinion, the smaller the uncertainty is, the more
likely that its expectation probability of signal integrity is
correct. Based on this understanding, the integrity opinions
with less uncertainty should play a more important role in
the combined opinion.

Intuitively, more evidences should lead to more reliable
conclusions. This means that when more integrity opinions
are combined, we should have more confidence in the
correctness of the combined opinion. In other words, the
combined opinion should have less uncertainty mass.

We make use of the opinion fusion operator ⊕ [16],
which is also called the consensus operator, to combine
integrity opinions. The definition of the operator can be
found in Appendix A. Consensus is also called cumulative
fusion and applicable when the evidences giving rise to the
opinions are independent. Since the measurements of an
attribute do not affect another attribute, we can assume that
they are independent. Moreover, the fused opinion simply
meets our expectation for the combined opinion, which can
be derived straightforwardly from its definition. First, in
the fused opinion, a larger proportion of the belief mass
comes from the opinion with less uncertainty. Second, more
opinions will lead to less uncertainty mass in the fused
opinion. Let Consensus : 2 Ω → Ω be the corresponding
function of the Consensus algorithm. Then we have

wIs(`,t) = Consensus(WIs(`,t)
) = ⊕w∈WIs(`,t)

w .

When there are no sufficient past integrity opinions for
certain stateless spoofing detection methods, their integrity
opinions are set to the vacuous opinion with uncertainty
being 1. It is the neutral element of the consensus opinion,
so it will have no impacts on the combined opinion.

C. The Combined Algorithm

From their descriptions, it is clear that (1) the Veto
algorithm is conservative in the sense that it can lead to
more false alarms of spoofing; (2) while the Consensus
algorithm can better reduce uncertainty it can lead to more
false claims of integrity due to its use of the opinion fusion
operator. To achieve a balance of the two situations, we

combine the features of the two algorithms and develop a
new algorithm. Different from the Veto algorithm, we do
not always choose the integrity opinion with the smallest
expectation probability to conclude a spoofed signal. Instead,
we consider the opinions not only with sufficiently small
expectation probabilities and but also with sufficiently small
uncertainty. We call such integrity opinions VETO opinions.

Definition 6 (((σ, θ)-VETO opinions). Let w = (b, d, u, a)
be an integrity opinion and σ ∈ [0, 1) and θ ∈ [0, 1) be the
thresholds of the expectation probability and the uncertainty,
respectively. It is said to be a VETO opinion if

E(w) ≤ σ ∧ u ≤ θ.

For each individual detection method, σ and θ can be
set to different values. Let σα and θα be the predefined
thresholds for the spoofing detection method on attribute α.
When combining the opinions from a number of detection
methods, if there exist multiple VETO opinions then their
consensus is calculated and output as the combined opinion.
Otherwise, if there is no VETO opinion, the Consensus
algorithm is called to calculate the combined opinion. This
new algorithm is called Combined as shown in Alg. 1.

Algorithm 1 The Combined Algorithm
1: Input: WIs(`,t)
2: Output: wIs(`,t)
3: Init: wIs(`,t) ← (0, 0, 1, 0.5);
4: for wαIs(`,t) ∈ WIs(`,t) do
5: if isVETO(wαIs(`,t) , σα, θα) then
6: wIs(`,t) ← wIs(`,t) ⊕ wαIs(`,t) ;
7: end if
8: end for
9: if wIs(`,t) = (0, 0, 1, 0.5) then

10: wIs(`,t) ← Consensus(WIs(`,t));
11: end if

The combined integrity opinion is initially set to the vacuous
opinion. The function isVETO(w, σ, θ) returns true if w is
a (σ, θ)-VETO opinion and false otherwise. We start with
looking for VETO opinions in WIs(`,t) and compute the
consensus of them if there exist any (line 4-8). If there are
no VETO opinions, wIs(`,t) will remain unchanged (line 9)
as the uncertainty of a VETO opinion is always smaller
than 1 (see Def. 6). Then we compute the consensus of all
integrity opinions (line 10).

VII. VALIDATION

A. Implementation

We implement a prototype for our framework, which
consists of three major components – the measurement
calculator, a series of spoofing detection methods and an
integrity opinion combiner. The measurement calculator is
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Figure 1. The integrity opinions.

Table II
THE PARAMETERS USED IN STATELESS DETECTION.

methods reference set dmax ssb opinion
snr [0, 62.5] 2.7 (0.1, 0.8, 0.1, 0.5)
dr [1.2829, 1.2837] 0.004 (0.2, 0.7, 0.1, 0.5)
hd [0, 3.5] 10 (0.4, 0.5, 0.1, 0.5)

connected to a receiver and used to read the basic measure-
ments that can be calculated by the receiver. It also computes
the measurements that cannot be offered by the receiver,
e.g., Doppler ratio. The measurements are distributed to the
spoofing detection methods which calculate the individual
integrity opinions.

In our prototype, we implement four spoofing detection
methods which explore the following attributes, respectively:
• Doppler ratio (dr) between the Doppler shifts of the

civil signal and the military signal in a received signal.
• Signal-to-noise ratio (snr) between the power of the

signal and the noise in the given RF bandwidth, which
is expressed in decibels (dB).

• Height difference (hd) between the height in a calcu-
lated coordinate and the real height corresponding to
the latitude and longitude in the coordinate, which is
expressed in metres.

• Clock offset (cf) – the time difference between the local
clock of a receiver and the universal time, which is
measured in seconds.

The first three spoofing detection methods are stateless while
the last one is stateful as it predicts the clock offset based
on one past offset and the drift speed of the local clock. In
detail, suppose that the clock offset at t′ is cf and the drift
speed of the clock is vdrift . Then the predicted clock offset
at time t is preCF (t) = off + vdrift · (t− t′).

To learn the reference sets and related parameters, we
use a dataset of 160,000 samples of integrous signals which
are collected with a professional receiver JAVAD ALPHA2.
Each record of the dataset stores the measurements of
a signal. We choose a reference set that allows 98% of
the samples to have valid measurements. Recall dmax is
the maximal allowed distance of a measurement from the
reference set. It is assigned to a value so that only 5%

samples have larger distance. The corresponding minimum
belief, i.e., bmin , is uniformly set to 0.05. Tab. II lists the
parameters used in each stateless detection method.

The reference set of the clock offset at time t is composed
of the values between preCF (t)−1×10−8 and preCF (t)+
1× 10−8. The maximum distance is set as 3× 10−8s so as
to ensure 5% signals with larger distance. With respect to
the isb conditional opinions, as about 98% samples have
valid measurements, they are set to (0.98, 0.02, 0, 0.5). For
the ssb conditional opinions, we assign them a preliminary
opinion based on our knowledge. In our implementation,
they are set to an identical opinion (0.1, 0.8, 0.1, 0.5).

B. The Experimental Setup

To validate our framework, we prepare three datasets of
signal measurements. The first one is called integrity dataset
storing the measurements of 25,531 integrous signals. These
samples are collected using the same GPS receiver as but
independently from the dataset used for parameter evalua-
tion. The second is a spoofed dataset and synthesised based
on the integrity dataset to simulate spoofed signals. This is
because no spoofed signals are publicly available. The third
dataset is a mixed dataset with both integrous signals and
spoofed signals.

The spoofed and the mixed datasets contain synthesised
records for spoofed signals. The main idea to synthesise
such records is to make use of the fact that the attributes
of spoofed records have values deviating from those of
integrous signals. Furthermore, the amount of the deviation
is determined by the attackers in terms of their capabilities to
tune spoofed signals. A more powerful attacker will generate
signals with less deviation. We take a simple assumption
that the attackers’ capabilities follow the normal distribution
during the construction of the spoofed dataset. To compute
a record of a spoofed signal, given an item in the integrity
dataset and an attribute, we first decide whether to change its
value based on the corresponding a priori ssb conditional
opinion. If yes, an extra distance is calculated following a
normal distribution with dmax as the mean and the same
variance used in the validity calculation. This extra distance
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Figure 2. Integrity Opinions of individual detection method.

is added to the distance of the original measurement and the
resulted distance is used to calculate the validity opinion.

C. Experimental Results

Bounds of integrity opinions. Fig. 1 shows the change of
integrity opinions with validity opinions. Fig. 1(a) shows
how the belief and uncertainty of an integrity opinion evolve
with the belief of a validity opinion in the stateless methods.
A general observation is that belief and uncertainty both
increase linearly as the beliefs of the validity opinions grow.
However, different methods have different output opinions,
which are determined by their a priori conditional opinions.
In our setting, the method snr calculates an integrity opinion
with the largest belief and the smallest uncertainty than the
other two spoofing detection methods.

Concerning the cf stateful method, since it requires past
signals, its calculated integrity opinions should change along
with two parameters – the expectation probability of the
past signal’s integrity and the beliefs of validity opinions.
Fig. 1(b) and Fig. 1(c) show the beliefs and uncertainty of
the integrity opinions when the two parameters have various
values. The maximum belief value occurs when they are
both 1.0 while the minimum belief is obtained when the
past signal is spoofed and the current signal has a valid
measurement. The maximum uncertainty is computed when
the past signal is spoofed and the current measurement is
valid. We use Tab. III to summarise the bounds of belief
and uncertainty of integrity opinions for each method.

Table III
BELIEF & UNCERTAINTY BOUNDS OF INTEGRITY OPINIONS.

methods min(b) max(b) min(u) max(u)
snr 0.03 0.86 0.01 0.02
dr 0.09 0.78 0.02 0.07
hd 0.02 0.58 0.03 0.24
cf 0.01 0.80 0.03 0.95

Integrity opinions of spoofed and integrous signals. We
study what integrity opinions spoofing detection methods
calculate when signals are spoofed and integrous. To achieve
this, we make use the spoofed and integrity datasets.

We divide integrity opinions into classes according to
their beliefs and uncertainty. Each cell in the diagrams in

Fig. 2 corresponds to a class of opinions whose beliefs and
uncertainty are bounded in certain intervals. The number
labelled in each cell is the proportion of calculated integrity
opinions which fall in the corresponding class. The grey
level of a cell also indicates the proportion. The darker it
is, the larger the proportion is. In Fig. 2 we choose hd and
cf as examples to show the distribution of integrity opinions
when all signals are spoofed or integrous. Note that the cf
method uses the integrity opinions of past signals given by
the hd detection. We have two major observations. First,
the integrity opinions of spoofed signals have much smaller
beliefs and uncertainty compared to those of integrous
signals. In Fig. 2(a), we can see that 98% of the opinions
given by hd on integrous signals have beliefs larger than
0.5 and uncertainty less than 0.3. However, when signals are
spoofed, the beliefs of about 50% integrity opinions drops
below 0.2 and the uncertainty becomes smaller than 0.15
(see Fig. 2(b)). The opinions computed by the cf detection
follow a similar pattern. Second, different methods give
different opinions even for the same signals. The opinions
on both datasets given by the two methods rarely overlap.

Integrity opinion combination. We use the mixed dataset
to validate the performance of the combination algorithms.
Intuitively, a combined algorithm is effective if it can cal-
culate large beliefs for integrous signals and small beliefs
for spoofed signals. In the mixed dataset, we have 4,748
spoofed signals out of total 25,531 samples (about 18.6%).
Fig. 3 shows the results of our three algorithms. They all
successfully distinguish spoofed signals from integrous ones
(with certain errors). The Veto algorithm assigns smaller
beliefs and larger uncertainty to both spoofed and integrous
signals, as it is rather conservative when compared with
the other two methods. The Consensus algorithm assigns
77% of the signals with beliefs larger than 0.9, and assigns
14% of the signals with beliefs less than 0.2 meaning
that about 4.6% of the spoofed signals are not detected.
The Consensus algorithm gives uncertainty less than 0.05
to almost all the signals. It is interesting to see that the
Combined algorithm gives more balanced results. When
signals are integrous, a belief of 0.9 is mostly assigned which
is the same as the Consensus algorithm. Meantime, for
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Figure 3. Combined opinions of integrous signals.

spoofed signals, it assigns a belief of 0.1 to most of them,
which is comparable to the Veto algorithm and much better
than the Consensus algorithm. The observations follow the
design principles of the algorithms. In practice, the choice
of a combination algorithm depends on applications.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a trust framework to evaluate
the integrity of GNSS signals. We identified a few problems
with existing spoofing detection methods in the literature
and addressed them within our framework. First, we clarified
the concept of signal integrity and gave a formal definition,
which is the first attempt to the best of our knowledge.
Second, we precisely characterised spoofing detection meth-
ods and extracted the causal relation between measurement
validity and signal integrity. We then proposed an approach
to derive signal integrity while capturing its uncertainty in
a natural way. Last but not least, we presented three ways
to combine opinions from various detection methods and
validated our work through experiments.

So far, the framework is only validated through simulated
spoofed signals. It is interesting to evaluate it in real spoofing
scenarios. Moreover, our prototype can be improved and we
plan to incorporate more detection methods.
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APPENDIX

THE CONSENSUS OPERATOR (⊕)

Definition 7 (Cumulative fusion operator). Let wA and wB

be opinions respectively held by agents A and B over the
same frame X = {xj | j = 1, . . . , l}. Let wA�B be the
opinion such that
Case I: For uA 6= 0 ∨ uB 6= 0:

bA�B(xj) =
bA(xj)u

B + bB(xj)u
A

uA + uB − uAuB

uA�B =
uAuB

uA + uB − uAuB

Case II: For uA = 0 ∧ uB = 0:

bA�B(xj) = γAbA(xj) + γBbB(xj), uA�B = 0

where

γA = lim
uA→0,uB→0

uB

uA + uB
, γB = lim

uA→0,uA→0

uB

uA + uB
.

Then wA�B is called the cumulatively fused bba of wA and
wB , representing the combination of independent opinions
of A and B. By using the symbol ‘⊕’ to designate this belief
operator, we define wA�B ≡ wA ⊕ wB .
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