
Gradual Security Typing with References

Luminous Fennell, Peter Thiemann
Dept. of Computing Science

University of Freiburg
Freiburg, Germany

Email: {fennell, thiemann}@informatik.uni-freiburg.de

Abstract—Type systems for information-flow control (IFC)
are often inflexible and too conservative. On the other hand,
dynamic run-time monitoring of information flow is flexible and
permissive but it is difficult to guarantee robust behavior of a
program. Gradual typing for IFC enables the programmer to
choose between permissive dynamic checking and a predictable,
conservative static type system, where needed.

We propose ML-GS, a monomorphic ML core language with
references and higher-order functions that implements gradual
typing for IFC. This language contains security casts, which
enable the programmer to transition back and forth between
static and dynamic checking.

In particular, ML-GS enables non-trivial casts on reference
types so that a reference can be safely used everywhere in a
program regardless of whether it was created in a dynamically
or statically checked part of the program. The reference can
be shared between dynamically and statically checked parts.

We prove the soundness of the gradual security type system
along with termination insensitive non-interference.

Keywords-gradual typing; security typing; ML; references

I. INTRODUCTION

Language-based analysis and control of information flow
in software systems has been studied by numerous authors
[13], [23]. Many studies propose type-based, static program
analyses where the non-interference property is guaranteed
for well-typed programs. Other studies concentrate on dy-
namic monitoring of program execution where potentially
interfering behavior of a program is detected and prevented
at run time. Hybrid approaches (e.g., [12], [22]) combine
both kinds of analysis.

Static approaches are advantageous for the specification
of security policies that are known up-front and where
the program can be built to suit the analysis. The analy-
sis guarantees that no security mismatches happen at run
time. However, security policies are often formulated as
an afterthought, when a large part of a system is already
implemented, or they may evolve as the implications of a
system design become understood. Unfortunately, a program
that was not built with the static analysis in mind can be
difficult to modify so that it accepted by the analysis even
though the program respects the desired security policies.

Dynamic approaches, on the other hand, enforce a safe
approximation to the non-interference property. They do not
give static guarantees, but are amenable to changes in the
security policy without requiring a rewrite of the code.

The typing community studies a similar interplay between
static and dynamic checking. Gradual typing [25], [26] is
an approach where explicit cast operations mediate between
coexisting statically and dynamically typed program frag-
ments. The type of a cast operation reflects the outcome of
the run-time test performed by the cast: The return type of
the cast is the compile-time manifestation of the positive test;
a negative outcome of the test causes a run-time exception.

Disney and Flanagan propose an integration of security
types with dynamic monitoring via gradual typing [11]. Such
an integration enables the stepwise introduction of checked
security policies into a software system. The programmer
inserts checks for these policies as run-time casts at strategic
points in the code. The type system statically guarantees
adherence to the policies “on the static side” of a cast,
whereas the run-time system checks the policies “on the
dynamic side”.

This procedure creates statically checked regions in a
dynamically checked environment. These regions can be en-
larged by rewriting code and moving casts to make programs
more efficient and to avoid potential run-time errors.

Alternatively, a programmer may impose a static secu-
rity typing discipline on a program and revert to dynamic
checking by inserting casts demarcating the regions where
the static checker fails. This approach leads to dynamically
checked regions and the programmer should strive to restrict
them to places where the static analysis would be too
conservative or where the code contains language features
not supported by the analysis. The programmer may also
restrict debugging efforts that chase policy violations to the
dynamically checked parts.

A. Contributions

Disney and Flanagan [11] consider a pure lambda cal-
culus. Building on their ideas, we study a monomorphic
ML core language with references. The consideration of ref-
erences introduces significant complications, as references
enable flow-sensitivity attacks [22]. The underlying type
system is inspired by Pottier and Simonet’s work on a
security type system for CoreML [21]. We extend this static
system with casts and suitable run-time representations of
security levels on the dynamic side of a cast. Our casts are
very powerful because they are able to change the security

2013 IEEE 26th Computer Security Foundations Symposium

© 2013, Luminous Fennell. Under license to IEEE.

DOI 10.1109/CSF.2013.22

224

type of the content of a reference. This choice enables
our calculus to safely perform casts between security types
that are not related by the subtype relation induced by the
ordering on security levels: A sound subtype relation must
treat references invariantly. The extended calculus uses a no-
sensitive-upgrade strategy (NSU, [3]) for information flow
control (IFC) on the dynamic side and we prove termination
insensitive non-interference for the combined system.

B. Terminology

Security levels are drawn from a two-element lattice with
elements L for low-security, public information and H for
high-security, secret information. They are ordered by L @ H
and the operator t denotes the least upper bound. Our results
generalize to arbitrary discrete security lattices as outlined
for CoreML [21]. In the remainder of the paper, we will
use a capital “B” as a meta-variable for the security levels
of values and a capital “PC ” for the security context. A
security context is the security level of the program counter
at run-time.

We write intL for the type of low-security integers and
ref L intH for the type of low-security pointers that point
to high-security integers in memory. The type (intH L→
intH)L specifies a low-security function that takes a high-
security argument and yields a high-security result. The
annotation on the arrow restricts the effect of the function,
i.e., the function allocating or modifying a memory cell, to
cells of at least the level indicated by the annotation. The
annotation L means that all cells may be modified, whereas
H would restrict modification to high-security memory cells.

Upgrading a memory cell means to overwrite its low-
security content with a high-security value. Because up-
grades that occur in high-security contexts may leak con-
fidential information through implicit flows, they have to be
treated specially by dynamic IFC techniques [5]. Security
type systems typically forbid upgrades altogether.

We will employ the non-sensitive-upgrade (NSU) strategy
of Austin and Flanagan [3] as a dynamic IFC technique. In
an NSU semantics, assignments fail if they would upgrade
a memory cell under a high-security context.

II. MOTIVATION

The following examples illustrate the creation of dy-
namically checked regions in otherwise statically checked
programs and vice versa. The motivation for the examples
is to work around restrictions imposed by the underlying
security type system, for example the dynamic, manual
administering of access rights where the code checks a run-
time representation of the accessor’s security level.

To start off, consider a report processing application that
is statically verified against a standard security type system
like that of FlowCaml [21]. It contains numerous security-
typed procedures that process reports by reference without

1 (* Some privileged information *)
2 let infoH : ref ReportH = ...
3

4 (* Optionally enhance a report
5 * with privileged information *)
6 addPrivileged isPrivileged worker report =
7 if isPrivileged
8 then report := report + !infoH;
9 worker report

Listing 1. Example function with manual security enforcement.

requiring any run-time checks. Here are two examples of
such procedures with their type signatures:1

sendToManager : ref ReportH H→ unit

sendToFacebook : ref ReportL L→ unit

The sendToManager function takes a confidential report
and guarantees that it is not leaked to the public. The H on
the arrow indicates the lowest security level that is modified.
The sendToFacebook function takes a public report and
publishes it to an open Internet message board, as indicated
by the low-security effect L→.

Listing 1 illustrates a proposed extension of the re-
port processing application. It contains a utility function
addPrivileged that adds privileged information to a report
before passing it to a procedure like sendToManager or
sendToFacebook. The flag isPrivileged indicates if the
worker argument is sufficiently trusted to handle a privi-
leged report. If isPrivileged is true, then the privileged
information is retrieved through a global reference infoH

and added to report. Otherwise, worker is called with an
unmodified report.

Listing 1 type checks in FlowCaml and also the term

addPrivileged true sendToManager

is accepted with type ref ReportH H→unit, as
sendToManager is safe for consuming high-security
information. In contrast, the term

addPrivileged false sendToFacebook

is rejected by the type checker, even though it is semantically
safe. No privileged information is leaked, but the type
checker does not track the correspondence between the
security level of the worker and the isPrivileged flag.

Our proposal for gradual security typing allows us to
embed a (security-) untyped code fragment in a typed
setting. A cast expression asserts the required security type
signature for the untyped code and the dynamic semantics
guarantees adherence to the type by checking for violations
of the type signature using dynamic IFC techniques. In our

1Type signatures are simplified by omitting some L annotations. The
annotation on the unit type does not matter because it cannot convey
information in our setting.

2225

type language, the annotation “?” stands for a single security
level, unknown from the static point of view, for objects
that will be dynamically checked. With this understanding,
the utility function addPrivileged can be given the type
bool? ?→(ref Report? ?→unit)

?→ref Report? ?→unit

where all security levels (except the implicit L on the
references) are checked at run time using dynamic IFC
techniques, as advertised by the “?”. A programmer must
insert casts to use the function addPrivileged with
sendToManager and sendToFacebook as shown in the
following safe code fragment.2

let w = {ref Report? ?→ unit}
sendToFacebook in

{ref ReportL L→ unit}(addPrivileged false w)

The first cast {ref Report? ?→unit} wraps the statically
checked sendToFacebook function such that the resulting
function w expects a report with a run-time tag that indicates
its security level. The run-time system also passes a run-time
value that indicates the lower bound on the effect of w. The
cast operation checks that the run-time tag on the report is L
and strips it off, conceptually speaking. It further tests that
the allowed effect is L, as expected by sendToFacebook.

The cast {ref ReportL L→unit} in this example applies
to a function type and is thus delayed to the point where the
function is applied. Then the argument is cast according to
ref ReportL and the context is also cast to L so that all
effects are allowed. This cast reifies static information by
attaching or modifying run-time tags on values.3

In contrast, the following code fragment shows an exam-
ple, where a mismatch of the isPrivileged flag with the
actual security labels causes a run-time exception.

{ref ReportL L→ unit}(addPrivileged true w)

In many cases, the code can be transformed to make
it amenable to a FlowCaml-style type checker or to use
simpler casts (i.e., no casts on reference types). To make
the addPrivileged example work, two specialized copies
of addPrivileged are needed, one where isPrivileged

is true and another where it is false. It is one of our points
that the use of gradual security typing often avoids such
code duplication, thus improving software quality.

As another example, consider the program fragment in
Listing 2, which declares two statically type checked proce-
dures in lines 5 and 6. Suppose that they must share a single
buffer buf because of resource constraints. A programmer
who has to avoid information leaks between wL and wH

interposes the function wrap to clear the buffer before
passing it to a procedure. While the function wrap is not

2In a cast {t}e, the t is the target type of the cast and e is a term. In
the formal system (Sec. III), a cast also mentions the source type.

3The actual situation is more complicated because of our liberal handling
of reference casts.

1 wrap f buf =
2 buf := 0L; f buf
3

4 let buf : ref BufL = newL 0L in

5 let wL : ref BufL L→ unit = ... in

6 let wH : ref BufH H→ unit = ... in
7 ...

8 let wLd = {ref Buf? ?→ unit} wL in

9 let wHd = {ref Buf? ?→ unit} wH in
10 ...
11 wrap wLd buf
12 wrap wHd buf
13 ...

Listing 2. Example function with manual security enforcement.

acceptable in a type system like that of FlowCaml, our
gradual system accepts it with a suitable dynamic type.

Using the definitions of Listing 2 it is easily possible to
provoke a security exception:

let h : boolH = ... in
...
if h then wrap wLd buf

As the execution of wLd depends on the high-security value
h, all low-security effects executed by wLd are potential
security violations. Our dynamic semantics prevents such
security leaks by aborting execution and issuing a security
exception.

Although the error that we just provoked occurs during
the execution of the typed body of wL, a gradually typed
system has significant advantages over a purely dynamic one
during development. Suppose that the unsafe code above is
the result of a programming error that occurred during the
integration of the shared buffer in the system. As wL and wH

are fully typed, the developers can restrict their debugging
efforts to the dynamic fragment of the system.

The examples up to now demonstrate uses of statically
typed procedures in a dynamic context. The converse is
also possible. Consider a procedure that formats a document
(Listing 3). This procedure should work alike on high and
low security documents without leaking. For that reason it
is defined on a dynamic document type. Using appropriate
casts, the dynamic formatter can be applied without affecting
the static security guarantees for the documents. Both casts
arising in lines 6 and 7 are reference casts that modify the
pointer to dereference to a document with dynamic security
level. If the formatting depends on further parameters of
unclear security status, then these parameters could be made
dynamic in the same way, thus leaving the detection of
problems to testing.

3226

1 let format : ref Doc? ?→ unit = ...
2

3 let docL : ref DocL = ...
4 let docH : ref DocH = ...
5

6 format ({ref Doc?} docL);
7 format ({ref Doc?} docH);

Listing 3. Formatting low and high security documents.

Security Levels B,PC ::= L | H
Type Annot. b, pc ::= B | ?
Raw Types s ::= int | unit | t pc→ t | ref t

Types t ::= sb

Blame Id P ::= (unique identifiers)
Blame Labels p, q ::= P | p, P

Variables x ::= (unique identifiers)
Constants k ::= 0 | 1 | 2 | . . .

Raw Values w ::= λx. e | k | () | l(t,p)

Values v ::= wB

Expressions e ::= v | x | e e

| newt,Be | ! e | e := e

| {t ⇐ t}pe | protBe

| {[]b ⇐ []b}pe

| {ref pc ⇐ pc}pe | {∗ pc⇐pc→ ∗}pe

Figure 1. Syntactic domains of ML-GS.

III. AN ML CORE LANGUAGE WITH GRADUAL
SECURITY

Fig. 1 defines the syntax of ML-GS, an ML core language
with gradual security. Types are part of the expression syntax
because they appear in casts. A type t consists of a raw type
s and a type annotation b, which approximates a run-time
security level. A type annotation is either a security level, B,
or dynamic, ?. The ? is a static security level that represents
objects that will be dynamically checked. It is treated as a
new top element in static checking such that H @ ?.

A raw type is either the integer type int, a function
type t

pc→ t′, the unit type unit, or a reference type
ref t. The program counter security level, pc, on a function
type indicates the minimum permitted security level for the
function’s effects. The significance of pc for typing and
execution of ML-GS programs is explained in Sec. IV and
Sec. V.

A value is a raw value labeled with its run-time security
level B, which starts off as the level of its originating
principal and which can be checked during execution. Raw
values are lambda abstractions λx. e, integer constants k,

unit values (), and pointers l(t,p). Pointers do not appear in
source programs and are explained at the end of this section.
For readability, we write λBx. e instead of (λx. e)B . Let
expressions and sequencing are defined as syntactic sugar:
let x = e1 in e2 desugars to (λLx. e2) e1 and (e1; e2) to
let z = e1 in e2 where z is a fresh variable.

Further expressions are function application e1 e2, alloca-
tion and initialization of a new heap cell newt,Be (where B is
the security level of the pointer and the type t represents the
initial type of the cell’s content), dereference of an pointer
! e, and assignment of a new value to a cell e := e.

The expression {t′ ⇐ t}pe casts the type of e from source
type t to target type t′. Only the target type is needed for
the run-time safety checks, but we include the source type
to distinguish safe casts from unsafe ones (Sec. VI). A cast
carries a blame label, a non-empty set p of blame ids P . As
in work on contracts [1], [29], a blame id corresponds to the
location of a cast in the source code. If the cast leads to a
run-time failure at a boundary between static and dynamic
checking, then its blame id (i.e., source location) is part
of the blame label reported by the failure. Initially, each
cast carries its source location as a singleton blame label P .
During execution casts with joined blame labels arise. We
write pq for the join of two blame labels p and q.

The remaining expressions are all introduced by reduc-
tions and do not occur in source programs. The protect
expression protBe ensures dynamically that the security
level of the result of e is at least B and that no effect occurs
at a level less than B. Protect expressions from the literature
often only do not place a restriction on the effect [14].

The guard casts {[]pc ⇐ []pc′}pe, function guard casts

{∗ pc⇐pc′→ ∗}pe, and pointer casts {ref pc ⇐ pc′}p are
technical devices that ensure type safety during the reduction
of casts. They are explained along with their typing and
reduction rules in Sec. IV.

The raw pointer value l(t,p) consists of an address l, an
access type t, and a blame label p. The access type t is
used for typing the dereference operation. Its annotations
may be different from the current type of the value stored
at address l. A reference cast changes the access type of a
pointer without affecting the current type and a subsequent
assignment through this pointer synchronizes the current
type with the access type. The blame label p tracks the blame
ids of such casts. A dereference operation on a pointer will
only succeed if its access type is at least as secure as the
current type of the referenced memory cell. As a short-hand,
we write l(t,q),B for l(t,p)B

.

IV. GRADUAL SECURITY TYPING

Most work on gradual typing is geared towards dynamic
languages where casts serve to discover the concealed struc-
ture of run-time values and manifest it in the types. In
our work, the erasure of security levels in types results
in a simply typed program. Only the run-time security

4227

Variable Env. Γ ::= - | Γ, x : t

Address Env. M ::= - | M, l : t

pc; Γ; M ` e : t

T-Var
pc; Γ, x : t;M ` x : t

T-Int
pc; Γ; M ` kB : intB

T-Unit
pc; Γ; M ` ()B : unitB

T-Addr
t ∼ t′

pc; Γ; M, l : t ` l(t
′,p),B : refB t′

T-Protect
pc tB; Γ; M ` e : sb

pc; Γ; M ` protBe : sbtB

T-Abs
pc′; Γ, x : t;M ` e : t′

pc; Γ; M ` λBx. e : (t
pc′→ t′)B

T-App

pc; Γ; M ` e1 : (t
pctb→ sb′)b pc; Γ; M ` e2 : t

pc; Γ; M ` e1 e2 : sb′tb

T-New
pc; Γ; M ` e : sb pc v b

pc; Γ; M ` newsb,Be : refB sb

T-Deref

pc; Γ; M ` e : ref b sb′

pc; Γ; M ` ! e : sb′tb

T-Asgn
pc t b v b′

pc; Γ; M ` e1 : ref b sb′

pc; Γ; M ` e2 : sb′

pc; Γ; M ` e1 := e2 : unitb′

T-Sub
t ≺ t′ pc′ v pc pc; Γ; M ` e : t

pc′; Γ; M ` e : t′

T-Cast
pc; Γ; M ` e : t t ∼ t′

pc; Γ; M ` {t′ ⇐ t}pe : t′

Figure 2. Typing rules.

properties of the values may be concealed in the types by
using the dynamic annotation ?. The system also supports
standard security subtyping [14], [21] which allows low-
security information to be implicitly promoted to a high
security level and functions with high-security pc to be

b ≺ b′ t ≺ t′

b v b′

intb ≺ intb′

b v b′

unitb ≺ unitb′

b v b′

ref b t ≺ ref b′ t

b v b′ pc′ v pc t′1 ≺ t1 t2 ≺ t′2

(t1
pc→ t2)b ≺ (t′1

pc′→ t′2)
b′

t ∼ t′

t′1 ∼ t1 t2 ∼ t′2

(t1
pc→ t2)b ∼ (t′1

pc′→ t′2)
b′

intb ∼ intb′

unitb ∼ unitb′
t ∼ t′

ref b t ∼ ref b′ t′

Figure 3. Subtyping and compatibility.

implicitly weakened to functions with low-security pc. The
dynamic annotation becomes the most general security level;
it subsumes statically low- and high-security annotations.

A type environment Γ associates variables with types
whereas an address environment M provides types for heap
addresses (see Fig. 2). Fig. 2 also defines the rules for the
typing judgment pc; Γ; M ` e : t for all source expressions
(Fig. 8 contains rules for some special expressions that occur
only at run time). It relates a pc, a type environment, an
address environment and an expression with a type. The
program counter security level pc restricts the write effects
of a typed expression e: The execution of e may only modify
memory that is at least as secure as pc.

The rules are based on the principles of secure information
flow [14], [21]: the security level of the result of a compu-
tation must be greater than the levels of the arguments and
the security level of information that escapes via side effects
must not be less than the pc.

The typing rule for variables, T-Var, is standard. By rule
T-Int, an integer constant has the underlying type int and
a type annotation matching the value. Similarly, the unit
value has a type annotation matching its security level. The
rule T-Addr types a pointer l(t

′,p),B according to its security
level B and its access type t′. Furthermore, the address
environment associates the address l with a type t that is
compatible to t′. The compatibility requirement t ∼ t′ forces
t and t′ to have the same structure, but with potentially
different annotations (see Fig. 3).

The protect expression protBe ensures a minimum secu-
rity level for its argument e : sb by joining its type’s level b
with B. In particular, if any of the annotations is dynamic,
the result is also dynamic. The T-Protect rule also enforces
a lower bound on the pc of the protected expression e.

The unannotated part of rule T-Abs is standard. The

5228

function type annotation is derived from the security level,
B, of the abstraction. Furthermore, the arrow carries a
program counter security level, pc′, indicating the maximum
pc under which the function can be called. As abstractions
are values, the program counter security level pc, which the
abstraction is typed under, is irrelevant.

The rule for function application T-App checks for a
function type and a matching type for the argument as usual.
The join of the function’s security annotation, b, and that of
its result type, b′, is sufficient to protect the application’s
result. The function’s pc has to respect the join of b and the
current pc.

The rules for side-effecting expressions are mostly stan-
dard. The security level of the pointer in which information
is written is protected by the pc (rules T-New and T-Asgn).
Reading from memory requires the result to subsume the
security level of the pointer (rule T-Deref). The rule T-Asgn
requires that the updated memory content is more secure
than the current pc and the pointer’s annotation.

Rule T-Sub enables standard security subtyping. The sub-
typing relation ≺ (see Fig. 3) lifts the ordering on type
annotations to types, with contravariant function parameter
types and invariant reference content types, as usual. The
program counter security level on functions is contravariant
with respect to the security lattice: If an expression can
execute under a high-security pc, it can also execute in an
unrestricted environment.

The rule T-Cast converts a value of type t to a value
of type t′ if these types are compatible. Compatibility is
an equivalence relation that identifies types solely by their
structure, ignoring security annotations; any two types that
only differ in their security annotations can be cast into each
other. In particular, compatibility subsumes the subtyping
relation. For example, intL ∼ intH and intH ∼ intL and
therefore {intL ⇐ intH}pe, {intH ⇐ intL}pe are both
valid casts (although the former will raise an error at run-
time). The subtyping relation only holds for intL ≺ intH.
In contrast, the cast {intH ⇐ ref L intH}pe is invalid
because references are always incompatible with integers.

The typing rules for guard casts and pointer casts are
discussed in Sec. V in the context of cast reduction, where
these expressions arise.

V. SEMANTICS

Before delving into the details of the formal semantics,
we give an overview of the execution model. The operational
semantics keeps track of security levels exactly as indicated
in the syntax: each value carries its security level at run
time and non-interference is checked according to the NSU
policy all the time, regardless of the guarantees given by the
type system.

For the fragment of the calculus that disallows casts on
reference types, it would be possible to define an erasure
semantics that executes the statically typed parts without

Ev. Ctx E ::= [] e | v [] | {t ⇐ t}p[]

| newt,B [] | [] := e | v := [] | ! []
| {∗ pc⇐pc→ ∗}p[] | {ref pc ⇐ pc}p[]

Heaps µ ::= - | µ, (l 7→ {t}pv)
Results r ::= e / µ | ⇑ p

Figure 4. Semantic domains of ML-GS.

security level annotations at run time. In this fragment, casts
would erase or add these annotations as appropriate.

However, reference casts that modify the type of the stored
value complicate such an erasure transformation because a
number of mutually compatible types may be associated
with a single memory address. Directly after allocation, there
is one pointer to a fresh address, and the current type and
the access type of this address coincide. Next, a cast may
change the access type without updating the value so that a
subsequent dereference operation expects a differently typed
value. At this point, run-time information is needed to check
that the value is acceptable at the new access type. The
operational semantics inserts a cast at this point.

If we consider this scenario in the context of a hypothet-
ical erasure semantics, the problem comes up immediately.
In particular, the initial allocation may happen in a fully
statically checked setting so that the stored value carries no
annotations. Then the reference content is cast to dynamic.
(In our semantics, this cast only affects the type of the
reference, but not the stored value. After all, there might
be a static alias of the pointer.) The subsequent dereference
operation needs to produce a fully annotated value, but they
are not available due to erasure.

The presence of references also makes it hard to give a
clear boundary between statically and dynamically checked
code. In principle, run-time errors due to security mis-
matches may happen at downcasts, e.g. from ? to L, and at
assignments that fail the NSU check. While the assignments
may be flagged according to the dynamic annotation of
their pointer, the downcasts may not be present in the
program from the start. As just discussed, they may arise
from dereference operations where the semantics also inserts
casts. Thus, any dereference operation that may dereference
a cast pointer needs to be checked dynamically.

Thus, as a first approximation, we adopt a fully annotated
execution model, knowing that the outcome of a significant
fraction of the run-time checks is statically determined by
the type system.

A. Configurations

The operational semantics of ML-GS is defined by a
reduction relation e / µ

PC−→ r between configurations e / µ,
which are pairs of an expression and a heap, and results r,
which are either configurations or blame exceptions, indexed

6229

e / µ
PC−→ r

R-Ctxt

e / µ
PC−→ e′ / µ′

E [e] / µ
PC−→ E [e′] / µ′

R-App

(λBx. e) v / µ
PC−→ protB(e[x 7→ v]) / µ

R-Protect

protBwB′
/ µ

PC−→ wB′tB / µ

R-Ctxt-Protect

e / µ
PCtB−→ e′ / µ′

protBe / µ
PC−→ protBe′ / µ′

R-New
l /∈ dom(µ) p fresh µ′ = µ, (l 7→ {t}pwB′tPC)

newt,BwB′
/ µ

PC−→ l(t,p),B / µ′

R-Deref
µ = µ′, (l 7→ {t2}pv)

! l(t
′
2,q),B / µ

PC−→ protB{t′2 ⇐ t2}pqv / µ

R-Asgn
PC tB v B1 µ = µ′′, (l 7→ {sb1

1 }pwB1
1)

µ′ = µ′′, (l 7→ {sb2tPCtB}pqwB2tPCtB)

l(s
b2 ,q),B := wB2 / µ

PC−→ ()PC / µ′

Figure 5. Semantics.

by a PC , which indicates the current security context. It
is the dynamic counterpart to the program counter security
level pc in the typing rules. The heap µ maps an address l to
a combination of a value, a blame label, and a type, written
{t}pv. Here, t is the current type of the value v stored in
the cell. The blame label p comes into play when the cell
is dereferenced with an access type which is not a subtype
of the current type. This subtype relation is checked with a
cast labeled with p.

A blame exception ⇑ p flags the violation of a typing
assumption. The blame label p contains the blame id of the
responsible cast.

B. Lambda calculus fragment

Figure 4 formally defines results, heaps, and evaluation
contexts E that guide the search for redexes in a standard
call-by-value evaluation step.

Figures 5, 6, and 9 contain the reduction rules of ML-
GS. The rules in Fig. 5 cover non-cast expressions. The
context rule R-Ctxt is standard. The application of a lambda

abstraction to a value (rule R-App) is reduced to the pro-
tected function body with the argument value substituted for
the formal parameter, using standard, capture-free substitu-
tion. The resulting protB expression reduces according to
R-Protect as soon as its argument becomes a value. If protB

appears in the context of a reduction, rule R-Ctxt-Protect
raises the pc of the execution.

In the interplay of the rules R-Protect and R-App, the
context protB reflects the security constraint of the T-App
typing rule for the result of the application (sbtb′ , cf. Fig. 2).
In a typed, cast-free program, the protB context could
be omitted because the typing rules ensure the necessary
protection of the result. In ML-GS, protB is needed in a
dynamic subcomputation which is not restricted by typing.

C. References

The rules R-New, R-Deref, and R-Asgn allocate a new
memory cell, dereference a pointer, and assign to a pointer.
Additionally they pursue two further objectives: On the one
hand they implement dynamic information flow control by
checking the value annotations against the current dynamic
pc. On the other hand, they manipulate the current types
of heap values to discover inconsistencies that may be
introduced by reference casts. In the following, we discuss
both aspects in turn.

The constraints on security levels in the reduction rules
reflect the constraints on type annotations enforced by the
respective typing rules. Allocating a value protects it with
the current pc. A value that is read from the heap needs to
be protected with the pointer’s security level.

A heap update (rule R-Asgn) has to pass the NSU check:
the security level of the value on the heap that is updated,
B2, has to subsume that of the security context, PC , and
that of the pointer, B. The updated heap stores the raw value
w with a security level that is sufficiently high to respect
the context PC and B. The cast failure rules, which are
described in Sec. V-D, cover the case when the update value
is more secure than the original one and the NSU check fails.

Next we turn to the tracking and checking of reference
casts. For a newly allocated reference, the access type and
the current type coincide. At this point, the initial blame
label p does not matter because it is not associated with a
type change. A cast may change the access type (leaving its
blame label at the modified pointer) and an assignment may
change the current type. In rule R-Deref, the access type, t′2,
of the pointer, which is used in typing the pointer, may differ
from the current type t2 of the stored value v. Thus, v is
retrieved from the heap and cast from its current type t2 to
the expected type t′2. The blame labels on access and current
type are joined on this cast, because both a preceding as-
signment or a preceding cast may have caused the mismatch
between the access type and the current type. The R-Asgn
rule allows updates that change the type annotations of the
stored value. It implements NSU and refuses to overwrite a

7230

e / µ
PC−→ r cont.

R-Ctxt-Fail

e / µ
PC−→ ⇑ p

E [e] / µ
PC−→ ⇑ p

R-Ctxt-Protect-Fail

e / µ
PCtB−→ ⇑ p

protBe / µ
PC−→ ⇑ p

R-Cast-Sub-Fail
B 6v b1

{sb1
1 ⇐ sb2

2 }pwB / µ
PC−→ ⇑ p

R-Asgn-NSU-Fail

PC tB 6v B′ µ = µ′, (l 7→ {t2}pwB′
)

l(t
′
2,q),B := v′ / µ

PC−→ ⇑ pq

R-Cast-Sub
w2

s1⇐s2−−−−→p w1 B v B1

{sB1
1 ⇐ sb2

2 }pwB
2 / µ

PC−→ wBtB1
1 / µ

R-Cast-To-Dyn

w2
s1⇐s2−−−−→p w1

{s?
1 ⇐ sb2

2 }pwB
2 / µ

PC−→ wB
1 / µ

Figure 6. Semantics: Casts, failure, and propagation.

L value in a high context. If the assignment succeeds, then
the blame labels are joined because either the current update
or a preceding one may be responsible for a later mismatch.

D. Casts

The reduction rules in Fig. 6 define failed reductions and
the reduction of successful casts. The rules R-Ctxt-Fail and
R-Ctxt-Protect-Fail propagate security violations through
evaluation contexts all the way to the top level, thus assuring
that program execution stops.

Failures originate from attempts to expose secure infor-
mation by downgrading the security level of a value directly
or by overwriting a low security value under a high pc. Rule
R-Cast-Sub-Fail covers the former case by detecting the
mismatch of the cast’s target type and the run-time security
level on its value argument. Rule R-Asgn-NSU-Fail avoids
illegal upgrades on the heap. This rule enforces the NSU
semantics [3]. It checks the current pc against the security
level of the memory cell’s current content that is to be
overwritten. The blame labels are joined.

A cast can be successfully reduced if the top-level anno-
tation of its target type admits the run-time security level of
its argument value (rules R-Cast-Sub and R-Cast-To-Dyn).
Additionally there may be sub-casts to consider, which
are propagated to the sub-components of the result value.
Figure 7 defines the cast propagation w

s′⇐s−−−→p w′. It
rewrites a raw value w that has raw type s to a raw value w′

such that it admits raw type s′. The blame label p indicates
the cast that initiated the propagation (cf. rules R-Cast-Sub
and R-Cast-To-Dyn).

Nothing happens to an integer constant or a unit value. To
reflect the cast of a reference’s content type from t1 to t′1, the
propagation updates the access type of a pointer accordingly.

The most interesting case of cast propagation are function
casts where a cast lambda abstraction is rewritten to admit
the desired target function type. The handling of conversions
for parameter and result types is analogous to that employed
by other systems with gradual typing [29]: The body is
wrapped in an abstraction and applied to the argument after
casting the target argument type to the source argument type.
The result of the application is then cast to the target result
type. As a minor adjustment for the current security setting,
the inner lambda abstraction obtains security level L such
that it can be typed under any pc.

It remains to consider the conversion of the program
counter security level of the abstraction’s body e. The target
pc′ may not admit the e as it was typed under an unrelated
pc. The cast propagation rule for functions of Fig. 7 main-
tains type safety in such a situation by replacing the original
body e with the guard cast expression {[]pc′ ⇐ []pc}pe.

Example 1. To illustrate the purpose of guard casts consider
the following well-typed cast:

{(sL H→ unit)L ⇐ (sL L→ unit)L}p(λLx. l(s
L,q),L := x)

By the rules of Fig. 3, the types (sL H→ unit)L and
(sL L→ unit)L are compatible. However, the function’s body
l(s

L,q),L := x is a low-security assignment and cannot be
typed under the high-security target pc. In this example
type safety under the high-security pc can be restored by
modifying the assignment in the body to have a high security
write effect: l(s

H,q),L := x. A guard cast performs such type
preserving adjustments.4

The guard cast related typing rules, given in Fig. 8, are
designed to ensure type preservation until the guard cast
can perform the adjustments. Rule T-GuardCast converts
freely between pcs in a typing derivation. It allows the
cast propagation rule for functions in Fig. 7 to preserve
typing under the target pc. Rule T-FunCast casts the pc
of a function like a regular cast, but without having to
consider parameter and result types. The rule for pointer
casts, T-RefCast, converts the top-level type annotation of
the content of a reference. The additional constraint pc2 v b
is a technical restriction that helps to maintain an invariant
needed in a preservation proof (Sec. VI).

Fig. 9 shows the interesting cases for reductions related
to guard casts. Fig. 8 contains the corresponding typing

4In principle such adjustments to function bodies could be performed
by a meta function in the rule for function propagation. To streamline the
proofs, we choose to integrate the adjustments into the reduction relation.

8231

w
s′⇐s−−−→p w′

k
int⇐int−−−−−→p k () unit⇐unit−−−−−−−→p () l(t1,q) ref t′1⇐ref t1−−−−−−−−−−→p l(t

′
1,q)

λx. e
t′1

pc′→t′2 ⇐t1
pc→t2−−−−−−−−−→p λx. {t′2 ⇐ t2}p(λLx. {[]pc′ ⇐ []pc}pe) {t1 ⇐ t′1}px

Figure 7. Semantics: Cast propagation.

e / µ
PC−→ r cont.

R-GuardCast-New

{[]pc′ ⇐ []pc}pnewsb,Be / µ
PC−→ newsbtpc′ ,B{[]pc′ ⇐ []pc}pe / µ

R-GuardCast-Asgn

{[]pc′ ⇐ []pc}p(e1 := e2) / µ
PC−→ ({ref pc′ ⇐ pc}p{[]pc′ ⇐ []pc}pe1) := ({[]pc′ ⇐ []pc}pe2) / µ

R-GuardCast-App

{[]pc′ ⇐ []pc}p(e1 e2) / µ
PC−→ ({∗ pc′⇐pc→ ∗}p{[]pc′ ⇐ []pc}pe1) ({[]pc′ ⇐ []pc}pe2) / µ

R-GuardCast-GuardCast

{[]pc1 ⇐ []pc2}p{[]pc′1 ⇐ []pc′2}qe / µ
PC−→ {[]pc1 ⇐ []pc′2}pqe / µ

R-FunCast

{∗ pc1⇐pc2→ ∗}pλBx. e / µ
PC−→ λBx. {[]pc1 ⇐ []pc2}pe / µ

R-RefCast

{ref pc1 ⇐ pc2}pl(s
b,q),B / µ

PC−→ l(s
btpc1 ,pq),B / µ

Figure 9. Reduction rules for guard casts (interesting cases).

T-GuardCast
pc; Γ; M ` e : t

pc′; Γ; M ` {[]pc′ ⇐ []pc}pe : t

T-FunCast
pc; Γ; M ` e : (t1

pc2→ t2)b

pc; Γ; M ` {∗ pc1⇐pc2→ ∗}pe : (t1
pc1→ t2)b

T-RefCast

pc′; Γ; M ` e : ref b′ sb pc2 v b

pc′; Γ; M ` {ref pc1 ⇐ pc2}pe : ref b′ sbtpc1

Figure 8. Typing rules for guard casts and pointer casts.

rules. The cases not shown in Fig. 9 either drop the guard
cast at values or propagate it to the subexpressions. Rule
R-GuardCast-New augments the allocation type of a new
expression, allowing it to allocate a reference at a sufficiently
high security level to be permitted by the target pc. Rule
R-GuardCast-Asgn applies an pointer cast to the updated
reference making the result well-typed under the target
pc by typing rules T-RefCast and T-Asgn. Once the refer-

ence is fully evaluated, rule T-RefCast adjusts the pointer’s
access type analogously to Example 1. The situation for
function application is similar: rule R-GuardCast-App needs
to introduce a function guard cast to the function being
applied. Once the function is evaluated, it converts the pc
of the function’s body to a sufficiently high level with rule
R-FunCast. If two guard casts collide they are joined by
rule R-GuardCast-GuardCast. For well-typed expressions,
the target pc of the first cast, pc′1 and the source pc of the
second cast, pc2 are related contravariantly, i.e. pc2 v pc′1,
due to rules T-GuardCast and T-Sub.

VI. TYPE SOUNDNESS

Type soundness for ML-GS is established in the usual
way by proving type preservation and progress. As these
results need to be proven for configurations, typing must be
augmented with a heap typing judgment M ` µ defined in
Fig. 10. It characterizes well-typed heaps using the address
environment M . Its single rule, T-Heap, checks that the
typing information in the cast values is consistent. The
auxiliary judgment M ; l ` v : t requires that the value v
is typed with the current type t and that t is compatible
with the type that M binds to l. Requiring compatibility
ensures, together with the R-Loc typing rule, that reduction

9232

T-Heap-Aux
t ∼ M(l) L; -;M ` v : t

M ; l ` v : t

T-Heap
dom(M) = dom(µ) ∀(l 7→ {t}qv) ∈ µ. M ; l ` v : t

M ` µ

Figure 10. Heap typing.

rule R-Deref constructs a valid cast when dereferencing a
pointer.

Theorem 1 (Preservation). Let PC be a run-time program
counter security level and pc a typing program counter
security level such that PC v pc. If pc; -;M ` e : t and
M ` µ and e / µ

PC−→ e′ / µ′ then there exists M ′ such that
pc; -;M,M ′ ` e′ : t and M,M ′ ` µ′.

Proof: By induction on the derivation of e / µ
PC−→

e′ / µ′. The proof relies on the usual substitution and weak-
ening results for typing contexts. As in Pottier and Simonet’s
work [21], the pc of a typing derivation can be decreased
arbitrarily. Further details are given in Appendix A.

Progress characterizes the possible outcomes of the one-
step evaluation of a typed program.

Theorem 2 (Progress). If pc; -;M ` e : t and M ` µ then,
for all PC v pc either (i) e is a value, (ii) there exists p

such that e / µ
PC−→ ⇑ p, or (iii) there exist µ′ and e′ such

that e / µ
PC−→ e′ / µ′.

Proof: By induction on the derivation of pc; -;M ` e :
t. Details are given in Appendix B.

The statement of progress shows that even a well-typed
program may fail with an unsafe cast. The following def-
inition of an unsafe program classifies a proper subset of
configurations for which evaluation can result in a failure.
The complement of this subset are safe configurations that
cannot fail.

Definition 1. Let p be a blame label and M an address
environment. Configuration e / µ is unsafe for p under M
iff

• there is a casts {t ⇐ t′}qe that occurs in e or µ where
q ⊆ p and t′ 6≺ t,

• there is a function guard casts {∗ pc⇐pc′→ ∗}qe′, pointer
casts {ref pc ⇐ pc′}qe′ or guard casts {[]pc ⇐
[]pc′}qe′ that occurs in e or µ where q ⊆ p and
pc 6v pc′,

• there is a pointer l(t,q),b that occurs in e or µ where
q ⊆ p and t 6= M(l), or

• there is a heap binding (l 7→ {t′}qv) that occurs in µ
where q ⊆ p and t′ 6= M(l).

Thus, for a cast to be unsafe it has to violate the subtyping
relation which means it performs a conversion that is not
allowed by the static fragment of the type system. For
pointers and heap bindings to be unsafe, their current types
and access types must differ from the type that is assumed
by the static address environment M .

Well-typed programs reduce to unsafe configurations only
if they were originally unsafe.

Theorem 3. Let p be a blame label, M and M ′ address en-
vironments, e / µ and e′ / µ′ configurations. Let furthermore
e / µ be well-typed under address environment M and e′ / µ′

well typed under address environment M,M ′. It holds that
if e′ / µ′ is unsafe for p under M,M ′ and e / µ

PC−→ e′ / µ′,
then e / µ is unsafe for p under M .

Proof: By induction on the derivation of e / µ
PC−→

e′ / µ′. In the R-Cast-∗ cases, check that cast propagation
decomposes casts in accordance to the subtyping rules; a
configuration that is not unsafe cannot produce an unsafe
one. The other interesting cases are R-New, R-Deref, R-Asgn,
and R-Ref-Cast. In case R-New, where the heap is extended,
check that the resulting fresh reference is never unsafe for
any blame label. In case R-Deref, if the cast {t′2 ⇐ t2}pqv is
the cause for unsafety, it holds that t′2 6≺ t2 and in particular
t′2 6= t2. It follows that the access type of the pointer and the
current type of heap binding can never agree on a common
type M(l) and therefore the heap binding or the pointer
makes the original configuration unsafe. In case R-Asgn,
when the updated heap binding is the cause of unsafety,
we have B1 = B1 t PC t B because of the NSU check.
There are two possible cases: In case b1 6= b2 t PC t B
and thus, b1 t PC t B 6= b2 t PC t B we have b1 6= b2

and either the original heap binding or the pointer does not
agree with M . In case b1 = b2 t PC tB the original heap
binding is already unsafe. In the case of rule R-RefCast the
technical constraint pc2 v b in the corresponding typing rule
T-RefCast ensures, together with the assumed safety of the
cast expression, that pc1 v pc2 v b. Therefore b t pc1 = b
and it follows that an unsafe pointer in the result expressions
is also present in the original configuration.

The cause for a failing reduction is always an unsafe
configuration:

Theorem 4. Let p be a blame label and M an ad-
dress environment and e / µ a configuration. Further, let
pc; -;M ` e : t. If e / µ

PC−→ ⇑ p then e / µ is unsafe
for p.

Proof: By induction on the derivation of e / µ
PC−→ ⇑ p.

From the Theorems 3 and 4 it follows that evaluating a
safe configuration will not fail.

Corollary 1. Let e / µ be a closed, well-typed configuration
under M and p a blame label. If e / µ is safe for all q ⊆ p

10233

Raw Values wL ::= . . . | H
El. Contexts V ::= [] v | newt,B []

| ! [] | [] := v

R-High-Elim

V [HL] / µ
L−→ HL / µ

R-High-Deref
l 6∈ dom(µ)

! l(t
′
2,q),B / µ

L−→ HL / µ

R-High-Asgn
l 6∈ dom(µ) µ′ = µ, (l 7→ {t′2}qwL)

l(t
′
2,q),L := wL / µ

L−→ ()L / µ′

Figure 11. Extensions for projection syntax and semantics.

under M then e / µ 6 PC−→ ⇑ p.

It is easy to realize that with this result and with Theorems
1 and 2 the safe subset of ML-GS enjoys the usual type
soundness property.

VII. NON-INTERFERENCE

We prove non-interference for ML-GS by adapting a
proof technique due to Li and Zdancewic [19]. A projection
function first removes all security features of a program and
replaces high-security values with an opaque placeholder
value, H. The semantics is extended with elimination rules
for H values that simply result in H, thus hiding high-
security computations. Then we show the projection the-
orem: all ML-GS executions have corresponding projected
executions. Non-Interference is a corollary of the projection
theorem together with type soundness.

A. Projections

The extensions for the projected language, here called
ML-GSL, are given in Fig. 11. We write eL, vL, and wL to
distinguish expressions, values and raw values of ML-GSL

from the respective ML-GS forms. Raw values are extended
with the value H. The additional reduction rules ensure
that the flow of high-security information is approximated
correctly. Rule R-High-Elim reduces to H on any attempt to
eliminate a H value. Rules R-High-Deref and R-High-Asgn
cover the cases where the projection removed high-security
values from the heap whose addresses were in scope of the
projected expression.

The projection function L(·) transforms an ML-GS ex-
pression into an ML-GSL expression thereby abstracting
all high-security information to H and removing all se-
curity features. Fig. 12 defines the interesting cases of
L(·); the remaining cases propagate L(·) homomorphically.
The affected expressions are high-security values, protection
by a high security level, high-security memory allocation,
and casts to a high-security type. The accompanying type

dteL

dintbeL = intL dunitbeL = unitL

dref b teL = ref L dteL

d(t1
pc→ t2)beL = (dt1eL

L→ dt2eL)L

L(e) L(µ)

L(wH) = HL L(()L) = ()L

L(protHe) = HL L(kL) = kL

L(newt,He) = HL L(λLx. e) = λLx.L(e)

L({sH ⇐ t2}pe) = HL L(l(t
′,p),L) = l(dt

′eL,p),L

L(x) = x

L({sb ⇐ t2}pe) = {dsbeL ⇐ dt2eL}pL(e) if b 6= H
L({[]pc′ ⇐ []pc}pe) = L(e)

L({∗ pc′⇐pc→ ∗}pe) = L(e)
L({ref pc′ ⇐ pc}pe) = L(e)

L(newt,Le) = newdteL,LL(e)

L(-) = -

L(µ, (l 7→ {t2}pwH)) = L(µ)

L(µ, (l 7→ {t2}pwL)) = L(µ), (l 7→ {dt2eL}pwL)

Figure 12. Projections (interesting cases).

projection d·eL replaces all type annotations by L and thus
transforms all other casts into identities.

On heaps, L(·) removes all high-security cells which
reflects our assumption that a difference in the size of the
high-security part of the heap is not a security leak. Our
non-interference proof relies on the removal, as ML-GS
cannot guarantee that all possible high-security dependent
executions allocate the same amount of memory.

In summary, as the R-High-Elim rule ensures the correct
flow of hidden high-security information, an expression L(e)
can be executed without security concerns.

B. Non-Interference Proof

The projection theorem is the main stepping stone towards
proving non-interference. We need some lemmas. First,
check that heap updates under high-security pcs are invisible
under projection.

Lemma 1. If e / µ
H−→ e′ / µ′ then L(µ) = L(µ′).

Proof: By induction on the derivation of e / µ
H−→

e′ / µ′. In the case R-New, a high-security binding is created
on the heap due to the high-security rely on the fact that
projections throws away all high-security bindings.

Using this lemma the projection theorem follows:

11234

Lemma 2. If e / µ
L−→ e′ / µ′ then L(e) /L(µ)

L
−→∗

L(e′) /L(µ′).

Proof: By induction on the derivation of e / µ
L−→

e′ / µ′. Use lemma 1 in case R-Ctxt-Protect.

Theorem 5 (Projection). If e / µ
L

−→∗ e′ / µ′ then

L(e) /L(µ)
L

−→∗ L(e′) /L(µ′).

With the projection theorem and type soundness, non-
interference follows. We restrict ourselves here to integer
results; pointers work similarly and non-interference for
units is trivial. Non-Interference of function values can be
shown, similarly as in Austin and Flanagan’s work [5], using
an equivalence relation based on projection.

Theorem 6 (Non-Interference). Let vi, i ∈ {1, 2} be
two arbitrary, high-security values with respective typings
L; -;M ` vi : sH. If L;x : sH;M ` e : intL and

e[x 7→ vi] / µ
L

−→∗ v′i / µi then v′1 = v′2.

Proof: By the projection theorem it holds that L(e[x 7→

vi]) /L(µ)
L

−→∗ L(µi) /L(v′i). By type soundness, v′i = kL
i

are low-security integers. With L(e[x 7→ v1]) = L(e[x 7→
v2]) and deterministic evaluation for ML-GSL it follows
that L(kL

1) = L(kL
2). Projection is injective for low-security

values and therefore the result follows.

VIII. DISCUSSION

The blame labels of ML-GS are sets of blame ids. In a
concrete implementation, a programmer (or rather the IDE
or compiler) would label all casts with distinct singleton sets
of blame ids. The blame label attached to a blame exception
gives the programmer a hint where to look for the bug that
caused the security leak. This hint should be as precise as
possible. However, currently the blame labels of ML-GS
exceptions are very imprecise: Corollary 1 only guarantees
that a non-empty subset of the blame label signaled by the
exception is responsible for the failure.

The cause of this imprecision are the unconditional joins
of blame labels in rules like R-Deref. With the type informa-
tion that is currently available at run time it is not possible to
determine which of the blame labels, that on the access type
of the pointer or that on the current type of the heap binding,
is the real culprit for a potential blame exception later on.
As an example, consider the following configuration:

! l(s
L,p),L / (l 7→ {sH}qv) (1)

The dereferencing would result in a blame exception ⇑ pq
due to the low-security access of the high-security content
of the address l. The following two programs both reduce
to configuration (1).

1 p1 =
2 let l = newL v’ in

3 ({sH <= sL}[q] l) := v;
4 !{sL <= sL}[p]l
5

6 p1 =
7 let l = newH v’ in
8 ({sH <= sH}[q] l) := v;
9 !{sL <= sH}[p]l

In program p1 the cast q is at fault whereas the cast p
is the culprit in program p2. This distinction cannot be
reconstructed in (1) with the current run-time annotations.

However, annotating heap bindings and pointers with the
original, allocation-time type of the pointer allows us to
recover the distinction.

Values v ::= . . . | l(t⇐t,p),B

Heaps µ ::= · | (l 7→ {t ⇐ t}pv)

The left of the type annotations in the new pointer and
heap syntax are the access and current type respectively, as
before. The right annotation is the static type which always
coincides with the type in the address environment. The
static type is fixed at allocation-time and, for a particular
address, the static type is the same for the heap binding
and all pointers. With a straightforward extension of the
semantics, p1 now reduces to

! l(s
L⇐sL,p),L / (l 7→ {sH ⇐ sL}qv)

where the static type is sL due to the low-security initial-
ization. It is now easy to decide that cast q is to blame, as
static type and current type differ, and it would suffice to
track label q from here on.

IX. RELATED WORK

There are many proposals for static program analysis
of information flow. Most are inspired by the lattice-based
model of the Dennings [8], [9], which categorizes informa-
tion according to security levels. On that basis, Volpano,
Smith, and Irvine [28] were the first to construct a type
system that analyzes confidentiality for a simple imperative
language, followed by a flurry of subsequent work. Later
work, relevant to our paper, extends their principles to
integrity checking and to higher-order languages [14], [21].
Sabelfeld and Myers give a comprehensive overview [23].
The approaches based on type systems augment types with
security annotations that over-approximate the confidential-
ity level of the information contained in a value. These
systems rule out programs where a high-confidential input
may leak to a low-confidential output.

As an alternative for static analysis, a number of authors
have examined dynamic information flow analysis. The
basic approach extends the run-time system with a monitor
or augments values with security levels so that potential
security violations can be detected during the execution of
a program [24]. The monitoring modifies the observable
output of the program to guarantee non-interference.

12235

The main difficulty of dynamic analysis is the taming of
implicit flows, which was deemed infeasible for some time
and gave rise to hybrid approaches [12]. Recent advances
have developed a range of techniques with increasingly
good results. Sabelfeld and Russo [24] demonstrate a run-
time monitor that guarantees termination-insensitive non-
interference (TINI) and is more permissive than a flow-
insensitive analysis. Austin and Flanagan proposed the no-
sensitive-upgrade policy [3], improved that to the permis-
sive upgrade policy [4], and subsumed both by faceted
execution [5] (all guaranteeing TINI), which approximates
secure multi-execution (SME), where a program is executed
multiple times, once for each security level [10]. When SME
executes a level, the information that is confidential for that
level is overridden with a default value.

Russo and Sabelfeld [22] compare flow-sensitive static
security analysis with an axiomatically described family of
dynamic analyses and prove that their results are incompa-
rable. More accurately, they prove that a dynamic analysis
which is strictly stronger than the flow-sensitive analysis of
Hunt and Sands [17] is not possible. Russo and Sabelfeld
further suggest a hybrid analysis that processes a high-
security conditional by executing one branch and statically
analyzing the other [12]. This analysis is more permissive
than the flow-sensitive static analysis. Their results support
the need for combining static and dynamic analysis like our
proposal. As our base analysis is flow-insensitive, Sabelfeld
and Russo’s earlier result [24] shows that our dynamic
analysis is strictly more permissive than our static analysis,
so our combination is useful. Furthermore, we believe our
approach is complementary because even a flow-sensitive
static analysis cannot cope with our example from Sec. II.

TINI, as established for our system, does not provide
perfect security. Askarov and coworkers [2] generally crit-
icize the notion of termination insensitive non-interference
and suggest alternative definitions. Non-interference is also
insufficient in the presence of timing attacks as discussed by
Kashyap and coworkers [18].

Gradual typing [25], [26] originates from the desire to
execute dynamically typed programs efficiently and builds
on earlier work on dynamic typing [15] and soft typing
[7]. Cast expressions manifest typing information locally
so that more efficient, untagged data representations can
be employed. This approach has also proven useful in the
integration of dynamically typed scripting languages with
typed languages [6], [20], [30], where the primary goal is
improved maintainability and interoperability. Wadler and
Findler [29] characterize the interaction precisely with their
blame theorem, which identifies safe parts of a program that
never give rise to type errors.

Gradual typing for mutable data has only been considered
by two papers [16], [27]. Both papers employ reference
coercions with two components, one for reading and one
for writing, and they perform coercion simplification that

can fail early, before the coercion is applied. In contrast,
our reference coercions have one component and behave
differently: we can always write to the reference according
to its current type, even if that type is the result of a cast.
Read operations may lead to failure. In the other approaches,
read and write operations may fail. We do not check casts
for early failure because even a cast from refH to ref L is
acceptable, if the next operation on the reference is a write,
which is enforced by our semantics. A variant of gradual
security typing that behaves like the two papers is feasible,
but we believe that our semantics fits better with patterns
used in secure software construction.

Siek and coworkers [27] emphasize precise blame track-
ing whereas we deliberately keep that part of the system
simple. Furthermore, their system does not keep track of
effects, which is indispensable for handling implicit flows
in our system.

The combination of gradual typing and security analysis
has been considered [11], but only in the context of the pure
lambda calculus, whereas we consider an ML core language
with references. Our approach to modeling the calculus
and to proving non-interference are quite different and are
extensible to a realistic language with arbitrary effects.

X. CONCLUSION

We apply the ideas of gradual typing to an annotated type
system for information flow control. The construction of the
gradual system is straightforward in a pure lambda calculus
setting, but poses significant challenges when performed for
an ML core language with references as we do. While the
statically typed part can be adapted from previous work
[21], the design of the cast operators and the integration
of dynamic information flow techniques in the operational
semantics are novel to our work. The particular challenge
in our system is the design of casts on references. They are
not restricted by the subtyping relation, they never fail, and
they always result in a reference that is ready for writing at
the target type of the cast. We further demonstrate that the
gradual type system is independent from the enforcement
strategy used in the untyped part of a program. The formal-
ization in the paper uses the NSU strategy, but we have also
worked out the details for the FE strategy, which is only
sketched here.

We envisage ML-GS to be useful in contexts where secu-
rity requirements change or where language features prohibit
the use of static analysis throughout. For example, ML-
GS can integrate manually security-checked code in a typed
setting, thus creating safe, but dynamically checked, regions
inside of statically checked code. Likewise, the integration
of statically checked regions in dynamically checked code
is also possible. These regions can be enlarged or shrunk
according to security and robustness requirements.

An extension of the blame theorem [29] can be stated and
proved for ML-GS, but it is omitted to conserve space.

13236

Future work considers an inference for placing cast ex-
pressions and the addition of ML-polymorphism along the
lines of Pottier and Simonet. It should also be possible to
combine gradual security typing with plain gradual typing,
but the focus of the present work is on the security aspect.

ACKNOWLEDGMENT

Thanks to Joshua Guttman for his extensive, thoughtful
comments on draft versions of this paper, which helped to
improve the presentation considerably.

REFERENCES

[1] A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame
for all. In Proceedings for the 1st workshop on Script to
Program Evolution, pages 1–13, Genova, Italy, 2009. ACM.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands.
Termination-insensitive noninterference leaks more than just
a bit. In Proceedings of the 13th European Symposium on Re-
search in Computer Security: Computer Security, ESORICS
’08, pages 333–348, Berlin, Heidelberg, 2008. Springer-
Verlag.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic
information flow analysis. In S. Chong and D. A. Naumann,
editors, PLAS, pages 113–124, Dublin, Ireland, June 2009.
ACM.

[4] T. H. Austin and C. Flanagan. Permissive dynamic informa-
tion flow analysis. In Proceedings of the 5th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Secu-
rity, PLAS ’10, pages 3:1–3:12, New York, NY, USA, 2010.
ACM.

[5] T. H. Austin and C. Flanagan. Multiple facets for dynamic
information flow. In Proc. 39th ACM Symp. POPL, pages
165–178, Philadelphia, USA, Jan. 2012. ACM Press.

[6] G. M. Bierman, E. Meijer, and M. Torgersen. Adding
dynamic types to C#. In T. D’Hondt, editor, ECOOP,
volume 6183 of LNCS, pages 76–100, Maribor, Slovenia,
2010. Springer.

[7] R. Cartwright and M. Fagan. Soft typing. In Proc. PLDI ’91,
pages 278–292, Toronto, Canada, June 1991. ACM.

[8] D. Denning. A lattice model of secure information flow.
Comm. ACM, 19(5):236–242, 1976.

[9] D. Denning and P. Denning. Certification of programs for
secure information flow. Comm. ACM, 20(7):504–513, 1977.

[10] D. Devriese and F. Piessens. Noninterference through se-
cure multi-execution. In IEEE Symposium on Security and
Privacy, pages 109–124, Berkeley/Oakland, California, USA,
May 2010. IEEE Computer Society.

[11] T. Disney and C. Flanagan. Gradual information flow typing.
In STOP 2011, 2011.

[12] G. L. Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt.
Automata-based confidentiality monitoring. In M. Okada and
I. Satoh, editors, ASIAN, volume 4435 of LNCS, pages 75–89.
Springer, 2006.

[13] D. Hedin and A. Sabelfeld. A perspective on information-
flow control. In 2011 Marktoberdorf Summer School. IOS
Press, 2011.

[14] N. Heintze and J. G. Riecke. The SLam calculus: Pro-
gramming with security and integrity. In L. Cardelli, editor,
Proc. 25th ACM Symp. POPL, pages 365–377, San Diego,
CA, USA, Jan. 1998. ACM Press.

[15] F. Henglein. Dynamic typing: Syntax and proof theory.
Science of Computer Programming, 22:197–230, 1994.

[16] D. Herman, A. Tomb, and C. Flanagan. Space-efficient
gradual typing. In Trends in Functional Programming (TFP),
2007.

[17] S. Hunt and D. Sands. On flow-sensitive security types. In
S. Peyton Jones, editor, Proc. 33rd ACM Symp. POPL, pages
79–90, Charleston, South Carolina, USA, Jan. 2006. ACM
Press.

[18] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing-
and termination-sensitive secure information flow: Exploring
a new approach. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP ’11, pages 413–428, Washington,
DC, USA, 2011. IEEE Computer Society.

[19] P. Li and S. Zdancewic. Arrows for secure information flow.
Theoretical Computer Science, 411(19):1974–1994, 2010.

[20] J. Matthews and R. B. Findler. Operational semantics for
multi-language programs. ACM TOPLAS, 31:12:1–12:44,
Apr. 2009.

[21] F. Pottier and V. Simonet. Information flow inference for ML.
ACM TOPLAS, 25(1):117–158, Jan. 2003.

[22] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In CSF, pages 186–199. IEEE Computer
Society, 2010.

[23] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[24] A. Sabelfeld and A. Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research.
In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors, Ershov
Memorial Conference, volume 5947 of Lecture Notes in
Computer Science, pages 352–365. Springer, 2009.

[25] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst,
editor, 21st ECOOP, volume 4609 of LNCS, pages 2–27,
Berlin, Germany, July 2007. Springer.

[26] J. G. Siek and W. Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Workshop,
Sept. 2006.

[27] J. G. Siek, M. M. Vitousek, and S. Bharadwaj. Gradual typing
for mutable objects. http://ecee.colorado.edu/∼siek/gtmo.pdf,
Dec. 2012.

[28] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):1–
21, 1996.

14237

[29] P. Wadler and R. B. Findler. Well-typed programs can’t be
blamed. In G. Castagna, editor, Proc. 18th ESOP, volume
5502 of LNCS, pages 1–16, York, UK, Mar. 2009. Springer-
Verlag.

[30] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and
J. Vitek. Integrating typed and untyped code in a scripting
language. In J. Palsberg, editor, Proc. 37th ACM Symp. POPL,
pages 377–388, Madrid, Spain, Jan. 2010. ACM Press.

APPENDIX A.
PROOF OF TYPE PRESERVATION

A. Auxiliary Lemmas

It is straightforward to check that the subtyping relation
is well-behaved, in that each well-typed value can be typed
by applying the subsumption rule first, followed by the
canonical rule for that value (i.e. T-Abs is the canonical rule
for function abstractions). We will use this fact implicitly in
the following.

Lemma 3 (Substitution). If pc;x : t;M ` e : t′ and
pc; -;M ` v : t then pc; -;M ` e[x 7→ v] : t′.

Proof: By induction on the derivation of pc;x : t;M `
e : t′.

Lemma 4. If pc; -;M ` e : t then for all pc′ v pc it holds
that pc′; -;M ` e : t.

Proof: By induction on the derivation of pc;x : t;M `
e : t′.

Lemma 5. If pc; -;M ` e : t then for all M ′

where dom(M) and dom(M ′) are disjoint, it holds that
pc; -;M,M ′ ` e : t.

Lemma 6. If pc; -;M ` v : t then for all pc′ it holds that
pc′; -;M ` v : t.

Proof: By induction on the derivation of pc; -;M ` v :
t.

Lemma 7. If pc; -;M ` E[e] : t and pc; -;M ` e : t′ and
pc; -;M ` e′ : t′ then pc; -;M ` E[e′] : t.

Proof: By induction on the derivation of pc; -;M `
E[e] : t.

Lemma 8. If pc; -;M ` wB : sb and w
s1⇐s−−−→p w1 and

sb ∼ sb
1 then pc; -;M ` wB

1 : sb
1

Proof: By examining the cases of w
s1⇐s−−−→p w1 and

straightforward type reconstruction, using lemma 4.

B. Proof

Let PC be a run-time security guard and pc a typing
security guard such that PC v pc. If pc; -;M ` e : t and
M ` µ and e / µ

PC−→ e′ / µ′ then there exists M ′ such
that pc; -;M,M ′ ` e′ : t and M,M ′ ` µ′. The proof is an
induction of the derivation of e / µ

PC−→ e′ / µ′.

1) Case R-App: Assumptions:

pc; -;M ` (λBx. e) v : sbtb′ (2)

The heap typing result is immediate.
By (2) and subtyping:

pc′;x : t′2;M ` e : sb1
1 where pc t b v pc′

and sb1
1 ≺ sbtb′ (3)

pc; -;M ` v : t′′2 where t′′2 ≺ t′2 (4)

By (3), (4), and substitution:

pc′; -;M ` e[x 7→ v] : sb1
1 (5)

By (5), (3), subtyping and typing rule T-Protect:

pc; -;M ` protBe[x 7→ v] : sbtb′ (6)

which is the desired result.
2) Case R-Protect: Assumptions

pc; -;M ` protBwB1 : sBtb1 (7)

The heap typing result is immediate.
By subtyping and (7):

pc t b; -;M ` wB1 : sB1
2 and sB1

2 ≺ sb1 (8)

By (8) and lemma 6:

pc; -;M ` wB1 : sB1
2 (9)

By (9), (8) and subtyping:

pc; -;M ` wB1tB : sBtb1 (10)

which is the desired result.
3) Case R-New: Assumptions:

pc; -;M ` newsb1 ,BwB1 : ref b sb1 (11)
M ` µ (12)

By (11):

pc; -;M ` wB1 : sb1 where PC v b1 (13)

By (13):

pc; -;M ` wB1tPC : sb1 (14)

By (14), (12):

M, l : sb1 ` µ, (l 7→ {t}pwB1tPC) (15)

which is the desired heap typing result.
By (13) and rule T-Addr:

pc; -;M, sb1 ` l(s
b1 ,p),B : ref b sb1 (16)

which is the desired expression typing result.

15238

4) Case R-Deref: Assumptions:

pc; -;M, l : t1 ` ! l(s
b,p),B : sbtb′ (17)

M, l : t1 ` µ, (l 7→ {t′1}qv) (18)

The heap typing result is immediate.
By (17):

pc; -;M, l : t1 ` l(s
b,p),B : ref b sb′ where B v b

and sb ∼ t1 (19)

By (18) and lemma 6:

pc tB; -;M, l : t1 ` v : t′1 where t1 ∼ t′1 (20)

By (19), (20), typing rules T-Cast and T-Protect, and sub-
typing:

pc; -;M, l : t1 ` protB{sb ⇐ t′1}pqv : sb where t1 ∼ t′1
(21)

Which is the desired result.
5) Case R-Asgn: Assumptions:

pc; -;M, l : t1 ` l(s
b2 ,p),B := wB2 : unitb2 (22)

M, l : t1 ` µ, (l 7→ {t′1}qv) (23)

By (22) and lemma 6:

pc; -;M, l : t1 ` l(s
b2 ,p),B : ref b sb2

where sb2 ∼ t1 and B v b

and b v b2 and pc v b2 (24)

pc; -;M, l : t1 ` wB2tPCtB : sB2tPCtB
1

where sB2tPCtB
1 ≺ sb2tPCtB (25)

By (23), (24), and (25):

M, l : t1 ` µ, (l 7→ {sb2tPCtB}pqwB2tPCtB) (26)

which is the desired heap typing result. The expression
typing follows immediately by subtyping and pc v b2 (24).

6) Cases R-Ctxt, R-Protect-Ctxt: The result follows by
lemma 7, lemma 5 and the induction assumption.

7) Cases R-Cast-∗: The result follows straightforwardly
with lemma 8.

8) Cases R-GuardCast-∗: Using lemma 4 in
case R-GuardCast-Protect and lemma 6 in case
R-GuardCast-Value, the result follows straightforwardly.

APPENDIX B.
PROOF OF PROGRESS

If pc; -;M ` e : t and M ` µ then, for all PC v pc either
(i) e is a value, (ii) there exists p such that e / µ

PC−→ ⇑ p,
or (iii) there exist µ′ and e′ such that e / µ

PC−→ e′ / µ′.
Proof by induction on the derivation of pc; -;M ` e : t.

The cases T-Var, T-Int, T-Unit, and T-Addr are trivial.

T-Protect
Case: e is not a value
By the induction assumption, either rule R-Ctxt-Protect or
rule R-Ctxt-Protect-Fail applies.
Case: e is a value
Rule R-Protect applies.

T-App
Case: e1 or e2 is not a value
By the induction assumption, either rule R-Ctxt or rule
R-Ctxt-Fail applies.
Case: e1 and e2 are values
Rule R-App applies.

The cases for T-New,T-GuardCast-∗, T-FunCast-∗,
and T-RefCast work similarly as case T-App.

T-Sub
The result follows by the induction assumption.

T-Deref
Case: e is not a value
By the induction assumption, either rule R-Ctxt or
rule R-Ctxt-Fail applies. Case: e is a value The typing
assumption yields

µ = µ′, (l 7→ {t′}pv) (27)

With this result, rule R-Deref applies.

T-Asgn
Case: e1 or e2 is not a value
By the induction assumption, either rule R-Ctxt or rule
R-Ctxt-Fail applies.
Case: e1 and e2 are values The typing assumption yields

µ = µ′, (l 7→ {t′}pwB) (28)

pc; -;M ` l(t,q),B1 := v : unitb (29)

• Case PC tB1 v B: R-Asgn applies.
• Case PC tB1 6v B: R-Asgn-NSU-Fail applies.

T-Cast
Case: e is not a value
By the induction assumption, either rule R-Ctxt or rule
R-Ctxt-Fail applies. Case: e is a value wB with type sb

The compatibility requirement of the typing assumptions
yields

w
s1⇐s−−−→p w1 (30)

where sb1
1 is the destination type of the cast.

• Case B 6v b1: Rule R-Cast-Sub-Fail applies.
• Case b1 = ?: Rule R-Cast-To-Dyn applies.
• Case B v b1, b1 = B1: Rule R-Cast-Sub applies.

16239

