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Abstract—Motivated by the problem of stateless
web tracking (fingerprinting), we propose a novel
approach to hybrid information flow monitoring by
tracking the knowledge about secret variables using
logical formulae. This knowledge representation helps
to compare and improve precision of hybrid infor-
mation flow monitors. We define a generic hybrid
monitor parametrised by a static analysis and derive
sufficient conditions on the static analysis for sound-
ness and relative precision of hybrid monitors. We in-
stantiate the generic monitor with a combined static
constant and dependency analysis. Several other hy-
brid monitors including those based on well-known
hybrid techniques for information flow control are
formalised as instances of our generic hybrid mon-
itor. These monitors are organised into a hierarchy
that establishes their relative precision. The whole
framework is accompanied by a formalisation of the
theory in the Coq proof assistant.

I. Introduction

Web tracking refers to a collection of techniques that
allow websites to create profiles of its users. While such
profiles might be useful for personalized advertising, it is
generally considered a problem which brings user privacy
under attack. Whenever a user opens a new webpage, she
has no way to know whether she is being tracked and by
whom. The recent survey by Mayer and Mitchell [22]
classifies the mechanisms that are used to track a user
on the web. Web tracking technologies can be roughly
divided into two groups: stateful and stateless. Stateful
trackers store information (e.g., cookies) on the user’s
computer. Several groups of researchers have reported
on the usage of different stateful trackers on popular
websites [2], [24], [31] and have found that some third-
party analytics services were using these mechanisms
to recreate the cookies in case they are deleted [30].
On the legal side, the European Union amendment
to ePrivacy Directive 2009/136/EC was accepted and
several proposals on web tracking were made [8], [16],
[17], [26]. As a consequence, many web sites now explain
their cookie policy but so far these regulations impose
concrete restrictions only on stateful tracking technolo-
gies.

This research was partially supported by the French ANR-10-
LABX-07-01 Laboratoire d’excellence CominLabs.

Stateless technologies (often called fingerprinting) col-
lect information about the user’s browser and OS prop-
erties, and can distinguish users by these characteristics.
The calculation of the amount of identifying information
is based on information theory. Eckersley demonstrated
by his Panopticlick project [11] that such identification
is quite effective.

A. Fingerprinting Example

For a simple illustration of fingerprinting consider the
code snippet from Figure 1. A test name = "FireFox"
schematically represents a testing of the browser name1.
Another test fonts = fontsSet1 schematically repre-
sents a check whether the installed fonts on the browser
are the same as in some fontsSet1. Clearly, the in-
formation about the browser’s name does not make
its user uniquely identifiable. However, a precise list of
fonts installed in the user’s browser makes a user much
more distinguishable: Eckersley [12] demonstrated in his
experiments that few users share identical list of fonts.

1 x := 1; y := 1;
2 if (name = "FireFox") then y := 0;
3 if (y = 1) then x := 0;
4 if (fonts = fontsSet1) then
5 if (y = 1) then x := 2;
6 output x;

Figure 1: A possible fingerprinting code

Consider an execution of this program when
name="FireFox" and fonts=fontsSet1. On line 2, y is
assigned 0, hence the tests (y = 1) fail on lines 3 and
5, and therefore this execution induces an output x = 1.
When a tracker observes this output, she concludes that
name="FireFox", however she does not learn anything
about the fonts since the code on line 5 is dead code
for all executions where name="FireFox". One possible
protection from fingerprinting is to put a threshold
on the amount of information a tracker learns about
the browser features. For example, we could allow the
execution described above because a tracker only learns

1This test corresponds to the call of navigator.appName browser
API
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that name="FireFox", but reject the executions where
a tracker learns about the installed fonts.

An efficient way to control program executions is by
dynamic monitoring. Such monitors over-approximate
the information leakage associated with the program
output. Consider an execution described above: a dy-
namic monitor would only observe that lines 1, 2, 4 and
6 were executed and possibly know that the tests (y =
1) on lines 3 and 5 have failed. To provide a sound over-
approximation of the leakage, a dynamic monitor could
only conclude that an output depends on all the events
in the execution trace. Hence, for this execution it would
state that the tracker learns that name ="FireFox" and
fonts=fontsSet1. This protection mechanism would
then erroneously reject the program execution when x =
1, because it would conclude that the tracker also learns
that fonts=fontsSet1 whereas it is not necessarily the
case: the execution where the fonts are different also
result in the same output.

In this paper, we present several hybrid monitor-
ing mechanisms that statically analyse non-executed
branches of the program in order to provide a more
precise approximation of the leakage. For example, the
most precise of our hybrid monitors concludes that
when a tracker observes that x = 1, she only learns
that name="FireFox". The protection mechanism would
then allow such program execution. We present the
results of our monitors for this program and show the
amount of information contained in the program output
in Section VII (see Program 1 of Table I).

B. Threat Model

Our web tracker extends the gadget attacker [4] model.
Like a gadget attacker, a web tracker owns one or more
web servers, where the fingerprinting scripts are located.
He promotes the inclusion of these scripts into the web
pages, offering a tracking or an advertisement service
to websites. A web tracker does not have any special
network abilities: he can only send and receive network
messages from the server under his control.

Except for the gadget attacker capabilities, a web
tracker has one distinctive property: he owns a database
of the browser fingerprints. Therefore, a web tracker is
able to compute the probability distributions for the
browser properties that have been fingerprinted. These
distributions could also be obtained from other sources,
such as Panopticlick [11].

Another important assumption of our framework is
that we shall disregard information leaks related to
execution speed and termination.

Fingerprinting scripts are essentially programs, so
within the program analysis realm we assume that the
web tracker knows the probability distributions of the

secret variables, knows the program source code and
observes the output of the program.

C. Fingerprinting Protection
A straightforward counter-measure against finger-

printing is to set a threshold on the quantity of infor-
mation the user agrees to leak and thus decide upon
her level of anonymity. In a basic scenario, to protect
from fingerprinting, we would suppress an output with
a leakage above the threshold and halt the program. We
discuss alternatives for protection and possible security
guarantees in Section VIII-B.

Depending on the browser configuration, the same
program might leak very different amounts of informa-
tion. Our goal is to run a program for a browser user
whose browser configuration does not incur a leakage
exceeding the threshold. To achieve this goal, we need
a definition of information leakage which is sensitive to
the browser configuration.

D. Quantification of Information Leakage
In order to quantify identifiability of a user’s browser

configuration, Eckersley [12] uses the notion of self-
information or surprisal from information theory. If the
probability of a browser feature f to have a value v is
P (f = v), then the self-information is

I(f = v) = − log2 P (f = v)

Eckersley argues that “surprisal can be thought of as an
amount of information about the identity of the object
that is being fingerprinted”. Consider the fingerprinting
program from Figure 1. Assume for simplicity that the
fonts cannot be checked. Then the only two possible
outputs are x = 0 and x = 1. How much information
is contained in x in each case? To demonstrate self-
information and discuss standard definitions for quan-
titative information flow (QIF), we assume that the
probability of a browser name being “FireFox” is 0.21.

Self-information gives a precise answer to this ques-
tion: the fact that x = 1 (respectively, x = 0) means
that a browser name is “FireFox” (respectively, browser
name is not “FireFox”):

I(x=1) = I(name="FireFox") = − log2 0.21 = 2.25 bits
I(x=0) = I(name�="FireFox") = − log2 0.79 = 0.34 bits

This example demonstrates that the actual amount of
information that the tracker learns from observing the
output of a program execution can differ a lot from one
execution to another.

The standard definitions of QIF (such as Shannon
entropy, min-entropy, guessing entropy etc.) compute an
average amount of information leakage for all possible
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program outputs. For example, Shannon entropy based
definition computes:

H(name)−H(name|x) = 0.74 bits

Entropy-based definitions characterise the information
flow of the program, hence providing the same (average)
quantification of a program leakage for all browser users.
As a consequence, even when entropy-based definitions
predicts a relatively small leakage, a browser configura-
tion of a particular user can be leaked completely to the
tracker. In other words, the entropy-based approach may
fail to ensure the desired privacy guarantees of a single
user. We hence use self-information to quantify a leakage
caused by a program execution for a concrete user.

E. Motivation for Hybrid Monitoring
Static analyses have been broadly used for QIF anal-

ysis [3], [6], [15], [21]. These static analyses approximate
the leakage based on entropy-based measurements. The
main challenge for applying a purely static analysis
approach to fingerprinting will be to perform a precise,
whole-program analysis of JavaScript programs. On the
other hand, dynamic analyses have been successfully
implemented in the web browsers [1], [9], [13] in or-
der to enforce non-interference of JavaScript programs.
However, purely dynamic techniques that analyse one
program execution were shown to be either not precise
or unsound [28] for information flow analysis.

We hence propose to investigate a hybrid approach
to monitoring of QIF in which a dynamic analysis
takes advantage of static analysis techniques. The static
analyses will be able to retain precision because they
exploit information from the execution and are applied
locally. Furthermore the monitoring has strong formal
guarantees thanks to the static analysis component that
only analyses non-executed branches.

F. Contributions
• We propose a novel approach to hybrid information

flow monitoring based on tagging variables with the
knowledge about secrets rather than with security
levels.

• We define a generic hybrid monitor, parametrized
by a static analysis and give generic formal results
on relation between soundness and precision.

– We identify a soundness requirement on the
static analysis which is sufficient to prove
soundness of a generic hybrid monitor;

– The genericity of the framework greatly facili-
tates the formal comparison of the precision of
hybrid monitors.

• We instantiate a generic hybrid monitor with a com-
bination of static dependency analysis and constant
propagation, and derive three other monitors by

weakening the static analyses (including monitors
similar in spirit to those of Le Guernic et al. [19],
[20]). We then prove that our hybrid monitor is more
precise than three other monitors and establish a
hierarchy of hybrid monitors, ordered by precision.

The paper is organised as follows. Section II defines the
syntax and semantics of a simple programming language,
designed for studying fingerprinting of browser features.
Section III reviews basic definitions from quantitative
information flow and derives a symbolic representation
of knowledge. Section IV presents the generic hybrid
monitor and Section V proves its correctness, relative to
the correctness of the involved static analyses. Section VI
defines a precise hybrid monitor based on constant
propagation and dependency analysis and Section VII
explains how other, simpler monitors can be obtained as
instances of the generic monitor. Section VIII compares
with related work and Section IX concludes. The correct-
ness of the framework has been proved using the proof
assistant Coq. The Coq model and the machine-checked
proof of correctness can be found on an accompanying
web page [27].

II. Language

We develop the monitor for a small, imperative pro-
gramming language modified slightly to focus on finger-
printing of browser features. We assume an identified
subset Feat of program variables that represents the
browser features. Feature variables can be read but not
assigned. We restrict the conditionals in if statements to
be comparisons of features with variables and values, as
these are the only tests that are relevant for the finger-
printing analysis. We will use the following notations
• Var is a set of all program variables;
• Feat ⊆ Var is a set of variables that represent the

browser features, ranged over by f
• Val is a set of values, including Boolean, integers

and string values,
• x ∈ Var\Feat ranges over program variables that

are not features;
• n is a constant: n ∈ Val and;
• ⊕ is an arbitrary binary operator.

A program P is a command S followed by the output
of a variable. Note that outputting a list of variables
can be emulated by concatenating them using a special
operator. The language’s syntax is defined in Figure 3.

The semantics is defined in Figure 2 as a big-step
evaluation relation (S, ρ) ↓C ρ′. This relation evalu-
ates a command S to be executed in an environment
ρ : Var\Feat �→ Val. The semantics is parametrized by a
configuration C : Feat �→ Val which remains unmodified
during the evaluation. By Config we denote a set of all
possible configurations.
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[skip]

(skip, ρ) ↓C ρ
[assign]

(x := E, ρ) ↓C ρ[x �→ �E�ρC ]
[seq]

(S1, ρ) ↓C ρ′ (S2, ρ
′) ↓C ρ′′

(S1;S2, ρ) ↓C ρ′′

[if]

�B�ρC = α (Sα, ρ) ↓C ρ′
(if B then Stt else Sff , ρ) ↓C ρ′

[while]

(if B then S; while B do S else skip, ρ) ↓C ρ′
(while B do S, ρ) ↓C ρ′

where
�f ⋊⋉ n�ρC = C(f) ⋊⋉ n
�x ⋊⋉ n�ρC = ρ(x) ⋊⋉ n
�f ⋊⋉ x�ρC = C(f) ⋊⋉ ρ(x)

�f�ρC = C(f)
�x�ρC = ρ(x)

�n�ρC = n
�E1 ⊕ E2�

ρ
C = �E1�

ρ
C ⊕ �E2�

ρ
C

Figure 2: Language semantics

P ::= S; output x
S ::= skip | x:= E |S1;S2 | if B then S1 else S2

| while B do S
B ::= f⋊⋉n | x⋊⋉n | f⋊⋉x
⋊⋉ ::= �= | =
E ::= n | f | x |E1 ⊕ E2

Figure 3: Language syntax

III. Knowledge representation and

quantitative leakage

A. Concrete domain of configurations
We will take as starting point the definitions of quan-

titative information flow from Köpf and Basin [14] and
Smith [29]. Since our programs are deterministic, every
program S; output o determines a partial function from
a configuration C to an output v. In our notation, it
means that the program has run under the configuration
C : (S, ρ0) ↓C ρ and produced an output v: ρ(o) = v.
Following [14], [29], a program S; output o partitions
Config according to the final value of o.

Definition 1 (Equivalence Class). Given a program S, a
configuration C, an initial environment ρ0 and an output
variable o, an equivalence class is defined as

Eq(S,C , ρ0, o) =
{

C ′
∣∣∣∣ (S, ρ0) ↓C ρ ∧ (S, ρ0) ↓C ′ ρ′)
⇒ ρ(o) = ρ′(o)

}
.

Once the program S executes on the configuration C ,
a tracker can observe that the actual configuration of the
user’s browser is one of Eq(S,C , ρ0, o). How much does
this equivalence class tell a tracker? If Eq(S,C , ρ0, o) =
Config, then the tracker has not learned anything about
the actual configuration, hence no information flow has
occurred. At the other extreme, if Eq(S,C , ρ0, o) = {C},
by observing the output o, a tracker uniquely identifies
C , which means total leakage of configuration C . All the
other cases represent partial leakage.

Consider again the program from Figure 1. For the
sake of simplicity, we assume that name and fonts are

the only two browser properties we are interested in.
Let the user’s browser be “Opera”. In this case x = 0,
and the tracker is not able to conclude exactly the name
of the user’s browser. This partial leakage is precisely
captured by the equivalence class of configurations with
the name being different from “FireFox”.

Following the definition of self-information (see Sec-
tion I-D), we define a leakage function Leak :
P(Config) → ℝ

+ for a set of configurations assuming
that the probability of every configuration P (C ) is
known (for example, from Panopticlick [11]).

Definition 2. The leakage of a set of configurations A ⊆
Config is defined as follows:

Leak(A) = − log2
∑
C∈A
P (C ).

The Leak function has the following properties:
• Leak(Config) = 0, which corresponds to the case of

non-interference.
• For any couple of sets of configurations A1 and A2:

If A1 ⊆ A2 then Leak(A1) ≥ Leak(A2)

B. Symbolic representation of sets of configurations
We define an abstract domain of configurations, in-

tended to represent a set of configurations, as follows:

Config� � cg ::= tt | ff | f ⋊⋉ n | f⋊̄⋉n | cg ∧ cg | cg ∨ cg

where f⋊̄⋉n stands for f �= n if “⋊⋉” is “=” and f = n
otherwise.

We writeM(cg) for the models of the Boolean formula
cg i.e., the set of configurations that satisfy the Boolean
formula cg.

During our analysis we will compute a Boolean for-
mula cg for every output of the program. For example,
for the output x = 2 of the program from Figure 1, the
resulting formula will be

(name �= ”FireFox”) ∧ (fonts = fontsSet1 )
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Similar to the leakage function for a set of configura-
tions, we define a leakage function Leak� : Config� → ℝ

+

for Boolean formulas representing sets of configurations.

Definition 3. The leakage of a Boolean formula cg ∈
Config� is defined as follows:

Leak�(cg) = − log2
∑

C∈M(cg)

P (C ).

The Leak� function has the following properties:
• Leak�(tt) = 0, which corresponds to the case of non-

interference
• For all a1, a2 ∈ Config�:

If a1 ⇒ a2 then Leak�(a1) ≥ Leak�(a2).

The last property of a Leak� function is particularly
important for our quantitative information flow moni-
tors. As a result, our hybrid monitor will strive to weaken
formulas: a weaker formula means that the computed
leakage is smaller.

IV. Generic model of hybrid monitors

In qualitative (“high-low”) information flow control,
Le Guernic et al. [20] have shown that a dynamic infor-
mation flow analysis can be improved by a static analysis
of conditional branches that are not being taken. In
this section, we generalise those results for quantitative
information flow and define a generic hybrid monitor
combining static and dynamic analysis. Moreover, we
present a static analysis able to dynamically prove the
non-interference of programs that were previously out of
reach of existing hybrid monitors.

A. Formal Definitions
The monitor will be defined as an operational seman-

tics, parametrized by the configuration C

(S, (ρ,K)) ⇓C (ρ′,K ′)

with a monitoring mechanism for tracking the informa-
tion flow from the browser features to the output of
the program. The new semantic state (ρ,K) has the
following components:
• ρ : Var → Val is the environment for program

variables.
• K : Var → Config� is an environment of knowledge

about features stored in the non-feature variables.
The knowledge is represented by a formula from the
abstract domain Config� (see Section III).

In traditional information flow analysis, variables are
tagged with security levels, while our analysis is based
on the knowledge environment K, that represents the
knowledge in every program variable. This knowledge
can either flow directly into the variable through an
assignment or indirectly by updating the variable inside

a conditional that depends on some feature value. Such
a knowledge environment is thus a generalisation of a
simple dependency function between variables, in that
it contains additional information about the values of
browser features. For example, a knowledge environment
K may contain the following knowledge about the con-
figuration: K(x) = (name = ”FireFox”) ∧ (fonts =
fontsSet1 ). The initial knowledge environment K0 is
defined by ∀x.K0(x) = tt, which means that no variable
contains any knowledge about the browser configuration.

The monitor relies on the auxiliary function κ (defined
in Figure 4) that approximates the information obtained
from the evaluation of an expression. Evaluating a fea-
ture variable f will give access to its value and will
therefore transmit the information f = C(f) where C is
the configuration of the browser. Accessing a non-feature
variable provides the knowledge present in that variable
as defined by the knowledge environment K(x). An
approximation of knowledge in an arithmetic expression
e1 ⊕ e2 is defined as a combination of knowledge in e1
and in e2.

The evaluation relation ⇓C defining the big-step se-
mantics for the generic hybrid monitor parametrized by
a configuration C is presented in Figure 4. The rules
[skip], [seq], [IfElse] and [whileLoop] correspond to
the rules from the standard semantics and are straight-
forward. The rule [assign] updates the value environ-
ment with the new value of x. Notice that in traditional
dynamic and hybrid information flow analysis [28], vari-
able x would be assigned a “high” security level in case
it is assigned within the “high” security context. In our
setting, this would mean that the knowledge in variable x
should be updated with the knowledge from the security
context. We do not keep track of the security context,
and, as we show in Section V, our monitors are sound
and even more precise than the monitors that keep track
of the security context.

The rule [ifThen] deals with the implicit flow of infor-
mation due to conditionals. Assuming that the Boolean
expression B evaluates to true, the semantics evaluates
S1 and statically analyse the non-executed branch S2.
The new monitor state {|B,K, s′, s�|}ρ approximates the
knowledge obtained from both branches. We explain this
combination of states in Figure 5 immediately after the
presentation of the static analysis.

B. The Role of the Static Analysis
The hybrid monitor is generic because it is

parametrized on a static analysis providing information
about the branches that are not being executed. The
precision of the hybrid monitor can be improved if we
know that the value of a variable, say x, after the non-
executed branch is identical to the value of x after
the executed branch. The static analysis computes an
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[skip]

(skip, s) ⇓C s
[assign]

K ′ = K[x �→ κ(E)KC ]
(x := E, (ρ,K)) ⇓C (ρ[x �→ �E�ρC ],K ′)

[seq]

(S1, s) ⇓C s′ (S2, s
′) ⇓C s′′

(S1;S2, s) ⇓C s′′
[ifThen]

�B�ρC (S1, (ρ,K)) ⇓C s′ (S2, ρ) ⇓� s�
(if B then S1 else S2, (ρ,K)) ⇓C {|B,K, s′, s�|}ρ

[IfElse]

�¬B�ρC (if ¬B then S2 else S1, s) ⇓C s′
(if B then S1 else S2, s) ⇓C s′

[whileLoop]

(if B then S; while B do S else skip, s) ⇓C s′
(while B do S, s) ⇓C s′

where
κ(f)KC = f = C(f) κ(x)KC = K(x) κ(n)KC = tt κ(e1 ⊕ e2)KC = κ(e1)KC ∧ κ(e2)KC

Figure 4: Semantics of a generic hybrid monitor.

abstract environment and the dependencies of a variable
x, which is a set of variables needed to compute x.
The analysis starts from a concrete environment ρ of
values from the execution and computes an abstract
state s� = (ρ�,D), where ρ� : Var → Val ∪ {�} is an
abstract environment and D : Var → P(Var) is the
dependency information for each variable. The role of
an abstract environment ρ� is to detect variables whose
values are identical on both branches.

The results of the static analysis are used in the
[ifThen] rule using the state combination defined in
Figure 5. The auxiliary function δ is used for approx-
imating the information coming from conditionals. The
equations defining δ state that the comparison f ⋊⋉ n
of a feature variable and a value will provide exactly
that information. Comparing a non-feature variable x
with a constant will at most provide the information
about feature variables that were present in x. Finally,
the comparison of a feature and a non-feature variable
f ⋊⋉ x will at most transmit the information present in x
and the information that f is equal to the current value
of x, defined in the environment ρ.

The new environment ρ′ is taken from the result of the
executed branch and the new knowledge environment
K ′′ is updated as follows.

If the values of a variable x are not the same after
the execution of both branches, then x definitely obtains
a complete knowledge about the conditional B. We
represent this as a conjunction of the knowledge in x
(K ′(x)) with the knowledge in B (δ(B)Kρ ).

If the values of a variable x are the same after the
execution of both branches, then the variable x does
not contain a complete knowledge about the conditional
test B. Instead, from the attacker point of view, the new
knowledge in x can be obtained either from the executed
branch or the non-executed branch. The formula we ob-
tain can be understood as an abstraction of the standard

weakest precondition of a conditional statement:

wp(if B then S1 else S2) =
∧( ¬B ⇒ wp(S2)

B ⇒ wp(S1)

)
Here, the knowledge in x flowing from the non-executed
branch is obtained from the knowledge of the variables
used to compute x (

∧
y∈D(x)K(y)) and the knowledge in

x flowing from the executed branch is obtained by the
monitoring mechanism. Notice that δ̄(B) is not exactly
the negation of δ(B) but an abstraction. It is because
δ(B) is by construction an over-approximation of the
knowledge of B.

Consider the following program:
1 x := 1; y := 0;
2 if (f = 0) then y := 1
3 else skip;
4 if (g = 0) then skip
5 else x := y;
6 output x

Here, f and g are feature variables that are equal to
zero in the current configuration. Before the execution
of the test g = 0, the variable y already contains some
knowledge: K(y) = (f = 0). Let’s assume that a static
analysis tracks the values and is able to detect that x
depends on y. The resulting state of this static analysis
after evaluating x := y is ρ�(x) = 1,D(x) = {y}. The
resulting state after the execution of the skip branch
would remain unchanged. Now, since the value of x
would be the same and equal to 1 after the execution of
either of the branches, the tracker would conclude that
either g = 0 or f = 0. Our combination of states com-
putes exactly this knowledge: (δ(g = 0)Kρ ∨K(y))∧K ′(x)
= (g = 0) ∨ (f = 0).

Notice that there is no static analysis involved in
purely dynamic monitoring, and still we can model it as a
special case of our hybrid monitor. The abstract environ-
ment can be seen as ∀x.ρ�(x) = �, and hence we obtain a
simple dynamic monitor that does not reason about non-
executed branches, but instead pessimistically decides
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{|B,K, (ρ′,K ′), (ρ�,D)|}ρ = (ρ′,K ′′), where

K ′′(x) =

⎧⎪⎨
⎪⎩
(
¬δ(B)Kρ ⇒

∧
y∈D(x)

K(y)
)
∧ (¬δ̄(B)Kρ ⇒ K ′(x)

)
if ρ�(x) = ρ′(x)

δ(B)Kρ ∧K ′(x) otherwise

δ(f ⋊⋉ n)Kρ = f ⋊⋉ n δ(x ⋊⋉ n)Kρ = K(x) δ(f ⋊⋉ x)Kρ = K(x) ∧ (f ⋊⋉ ρ(x))
δ̄(f ⋊⋉ n)Kρ = f ⋊̄⋉n δ̄(x ⋊⋉ n)Kρ = ff δ̄(f ⋊⋉ x)Kρ = ff

Figure 5: State combination for the [ifThen] from Figure 4.

that all the variables will contain knowledge from the
tests of the if-statements. This new knowledge in x will
then contain the knowledge from the executed branch
and from the test B: δ(B)Kρ ∧K ′(x).
V. Generic Soundness and Precision Theorems

In this section, we establish the soundness and preci-
sion theorems that hold for the generic model of hybrid
monitors presented in Section IV. Comprehensive proofs
can be found in the companion Coq development [27].

A. Monitor Soundness and Precision
A concrete hybrid monitor is obtained by instantiating

the generic model by a given static analysis, say A.
In the following, we write ⇓A for an hybrid monitor
that uses the static analysis A. A monitor ⇓A is sound
if after monitoring a statement S it over-approximates
the knowledge about features contained in the output
variable x. The formal statement of this property is given
in Definition 4.

Definition 4 (Monitor soundness). A hybrid monitor
⇓A is sound if starting from an initial configuration
C and the initial environment (ρ, λx.tt), it monitors a
statement S and reaches a final configuration (ρ′,K)

(S, (ρ, λx.tt)) ⇓AC (ρ′,K)

such that for all variable x, K(x) under-approximates the
set of undistinguishable configurations

M(K(x)) ⊆ Eq(S,C, ρ, x).
Notice that while K(x) under-approximates a set of

configurations, it over-approximates the knowledge of
the attacker. Assume an attacker has the knowledge
K(x), that models a subset of actually undistinguishable
configurations Eq(S,C, ρ, x). Then she can more easily
distinguish between the possible configurations, thus her
knowledge is over-approximated.

The most precise monitor would compute
Eq(S,C, ρ, x) that is exactly the set of configurations
indistinguishable from C by observing the value of x. In
general, the closer the setM(K(x)) is to Eq(S,C, ρ, x),
the more precise is the monitor.

Definition 5 (Monitor precision). A hybrid monitor ⇓A
is more precise than a hybrid monitor ⇓B if for every
statement S and initial configuration C, the monitor
⇓A always computes a bigger set of configurations cor-
responding to the knowledge stored in output variable x.
Formally,

(S, (ρ,K0)) ⇓AC (ρA,KA)
(S, (ρ,K0)) ⇓BC (ρB ,KB)

}
⇒
M(KB(x)) ⊆M(KA(x)).

This is coherent with the definition of leakage in Sec-
tion III because the leakage function is anti-monotonic in
the set of configurations. Thus, a more precise monitor
would estimate a smaller leakage, i.e., a larger set of
configurations:

Leak�(KA(x)) ≤ Leak�(KB(x)).

In Section VI we will define a static analysis that will
induce a sound monitor that is more precise than any
other monitor we propose. This has the consequence that
we can prove soundness of other monitors by proving
that they are less precise than our hybrid monitor. This
result is particularly useful when monitors are obtained
by weakening the static analysis they employ, as is done
when defining the hierarchy of monitors in Section VII.

B. Soundness Requirements for a Static Analysis

The generic hybrid monitor has a generic soundness
proof relying only on a requirement for the static anal-
ysis. As explained in Section IV, the role of the static
analysis is to extract executions within the non-executed
branch that are indistinguishable from the executed
branch and estimate the knowledge that is carried by the
variables. Definition 6 provides the formal specification
for static analyses that are compliant with our generic
hybrid monitor.

Definition 6 (Sound Static Analysis). A static analysis
⇓� is sound (for our hybrid dynamic monitor) if the
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following implication holds:
(S, ρ ↓C ρ′)
(S, ρ0) ⇓� (ρ′�,D)
ρ′�(x) = v
∀y.y ∈ D(x)⇒ ρ(y) = ρ0(y)

⎫⎪⎪⎬
⎪⎪⎭⇒ ρ

′(x) = v.

Theorem 1 (Soundness). Suppose a sound static analy-
sis ⇓� according to Definition 6. Then the hybrid monitor
⇓⇓� is sound according to Definition 4 and therefore safely
approximates information leakage.

The proof of this theorem is part of the Coq develop-
ment [27].

C. Precision Requirements for a Static Analysis
The relative precision of different monitoring mecha-

nisms is often difficult to establish, at least formally. In
our generic hybrid monitor the precision of the monitor
is directly linked to the strength of the static analysis: a
better static analysis yields a more precise monitor.

Definition 7 (More Precise Analysis). An analysis A
is more precise than an analysis B if for any result of
the static analysis B, there exists a more precise result
output by analysis A i.e., the abstract environment is
more defined and the set of variables computed is smaller.

(S, ρ) ⇓�B (ρB ,DB) ∧ (S, ρ) ⇓�A (ρA,DA)⇒∧{ ∀x, v.ρB(x) = v ⇒ ρA(x) = v
∀x.DA(x) ⊆ DB(x)

Using the previous definition of precision, we are able
to state the following generic theorem.

Theorem 2 (Relative Precision). If a static analysis A
is more precise than a static analysis B (according to
Definition 7) then the hybrid monitor ⇓A is more precise
then the hybrid monitor ⇓B (according to Definition 5).

The proof is by induction over the definition of the
monitor semantics ⇓ and follows from the fact that all
the rules are monotonic with respect to ordering of the
knowledge K. This is especially the case for the ifThen

because, as shown by Figure 5, a stronger analysis com-
putes less spurious dependencies and therefore a weaker
formula. Remember that weaker is better and that non-
interference corresponds to computing the formula tt.
The full proof is part of the Coq development [27].

This theorem is the key for comparing the different ex-
isting and novel hybrid monitors presented in Section VI
and Section VII.

D. Where are the Security Contexts?
Security contexts are a traditional ingredient of static

and dynamic information flow mechanisms. Perhaps sur-
prisingly, our generic hybrid monitor is sound even in
the absence of security context and ignoring the security

context leads to a more precise monitor. Our generic
hybrid monitor could incorporate a security context σ
by rewriting the [assign] rule and the [ifThen] as

D′ = D[x �→ κ(E)DC ∧ σ]
(x := E, (ρ,D, σ) ⇓C (ρ[x �→ �E�ρC ],D′, σ)

�B�ρC σ′ = σ ∧ δ(B)Dρ
(S1, (ρ,D), σ′) ⇓C s′ (S2, ρ) ⇓� s�

(if B then S1 else S2, (ρ,D, σ)) ⇓C ( {|B,D, s′, s�|}ρ, σ)
One explanation for this apparent paradox is that our
[ifThen] incorporates the knowledge of the current
condition and therefore includes the security context on
a “lazy” basis.

Theorem 3 (Security Context). For a given (sound)
static analysis, a monitor not using security contexts is
always sound and more precise than a monitor using
security contexts.

This result is a direct consequence of Theorem 1 and
the fact that the assignment rule with security context
computes a stronger formula. The proof is also part of
the Coq development [27].

For a big-step semantics, this reasoning is very natural
but we believe the same precision can be achieved for
a small-step operational semantics at the cost of some
bureaucracy e.g., an explicit stack of security contexts.
What is crucial for precision is to never incorporate the
knowledge of conditions during the [assign] rule. If pro-
grams were allowed to output values at any time, even
our big-step semantics would require a security context.
A simple approach would then consist in incorporating
the knowledge of the security context only when a value
is output.

It is also worth noting that ignoring the security
context does not improve the purely dynamic monitor:
the security context will eventually be included. How-
ever, the improvement is visible for hybrid monitors
and allows to prove the absence of information flow in
programs like if C then x:=1 else x:=1; output x.

VI. A hybrid monitor with constant

propagation and dependency analysis

In this section we define a hybrid monitor that em-
ploys a static analysis which can take full advantage of
the concrete values available to the dynamic part of the
hybrid monitor. Our static analysis is a combination
of constant propagation and dependency analysis. As
explained in Section IV-B, the hybrid monitor can take
advantage of the fact that a variable has the same
value on both branches of a conditional to make a more
accurate estimation of the knowledge about features
contained in that variable.
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[ASkip]

(skip, s) ⇓� s [AAssignVal]

D′ = D[x �→ κ�(E)D]
(x := E, (ρ,D)) ⇓� (ρ[x �→ �E��ρ],D′)

[ASeq]

(S1, s1) ⇓� s2 (S2, s2) ⇓� s3
(S1;S2, s1) ⇓� s3

[AIfTop]

�B��ρ = � (S1, s) ⇓� s1 (S2, s) ⇓� s2
(if B then S1 else S2, s) ⇓� s1 � s2

[AIfComb]

�B��ρ = tt (S1, (ρ,D)) ⇓� s1 (S2, (ρ,D)) ⇓� s2
(if B then S1 else S2, (ρ,D)) ⇓� {|B,D, s1, s2|}�ρ

[AIfElse]

�B��ρ = ff (if ¬B then S2 else S1, s) ⇓� s′
(if B then S1 else S2, s) ⇓� s′

[AWhile]

(S, s′) ⇓� s1 s1 � s′ s � s′
(while B do S, s) ⇓� s′

κ�(n)D = ∅
κ�(f)D = ∅
κ�(x)D = D(x)
κ�(e⊕ e′)D = κ�(e)D ∪ κ�(e′)D

�n��ρ = n
�f��ρ = �
�x��ρ = ρ(x)
�e⊕ e′��ρ = �e��ρ ⊕� �e′��ρ

�f ⋊⋉ n��ρ = �
�f ⋊⋉ x��ρ = �
�x ⋊⋉ n��ρ = �x��ρ ⋊⋉

� �n��ρ

with v �� v′ =
{ � if v = � ∨ v′ = �
v � v′ otherwise where � ∈ {⊕,⋊⋉}.

Figure 6: Constant propagation and dependency analysis.

An abstract state (ρ�,D) ∈ State� is a pair of:

• an abstract environment ρ� : Var → Val ∪ {�} and
� represents an arbitrary value,

• a dependency function D : Var → P(Var) such
that the computation of x depends upon a set of
variables D(x).

Abstract states are equipped with a partial order �
obtained as the Cartesian product of the ordering of
abstract values: ∀x, y.x � y iff x = y ∨ y = � and the
point-wise lifting of the standard set inclusion P(Var).
The join operator � is the least upper bound induced by
the ordering �.

The static analysis is specified in Figure 6 as a syntax-
directed set of inference rules that generate constraints
over abstract states. The static analysis of a program S
is defined as a function between abstract states, written
(S, s) ⇓� s′, such that s′ is the least abstract state
solution to the constraints. The intented meaning is that
s′ is a valid abstraction of the result obtained when
running program S in an initial state that is modelled
by an abstract state s.

The [AIfComb] rule combines the states after the
analysis of two branches in case the test of the if-
statement can be evaluated in the given abstract envi-
ronment. The state combination {|B,D, s1, s2|}�ρ from
Figure 7 is the abstraction of the combination of the
states from executed and non-executed branches that
we defined in Figure 5. In disjunctive normal form, the

logical formula for obtaining K ′′ is of the form

(δ(B)Kρ ∧K ′(x)) ∨ (
∧

y∈D(x)

K(y) ∧K ′(x)) ∨ . . . (1)

In the rest of this section, we explain why the set D′′
(see Figure 7) represents an under-approximation of this
formula. Note that the static analysis can safely ignore
the other terms of the formula, here represented by . . . . If
the values of x are possibly different after both branches,
we combine the knowledge possibly obtained by reading
x in the executed branch and in the test B. If the values
of x are the same after both branches, then x gets the
knowledge either from the executed branch and the test
B or just from both branches.

The state combination for static analysis in Figure 7,
uses auxiliary sets of variables: Dtrue(x) and Dboth(x).
The set Dtrue(x) is the set of variables in the test B and
the set of variables, on which x depends after the po-
tential execution of the true branch. This set represents
the same idea that was used in the state combination of
hybrid monitor: it corresponds to the knowledge in the
formula (δ(B)Kρ ∧K ′(x)). The set Dboth(x) computes a
set of variables on which computation of x depends in
both branches. This set corresponds to the knowledge in
the formula

∧
y∈D(x)K(y) ∧K ′(x).

Now, when we construct a new dependency set D′′(x),
in case the values of x are different the Dtrue(x) set is
taken. This case is a straightforward translation of the
same condition in Figure 5. In case the values of x are
different, we would like to approximate the knowledge we
computed in formula (1) by the set of variables. Since
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{|B,D, (ρt,Dt), (ρf ,Df )|}�ρ = (ρt,D′′), where

D′′(x) =
{
Dtrue(x)∨̄Dboth(x) if ρt(x) = ρf (x)
Dtrue(x) otherwise X∨̄X ′ =

{
X X ⊆ X ′
X ′ otherwise

Dtrue(x) = VD(B) ∪Dt(x)
Dboth(x) = Df (x) ∪Dt(x)

VD(f ⋊⋉ n) = ∅
VD(x ⋊⋉ n) = D(x)
VD(f ⋊⋉ x) = D(x)

Figure 7: State combination for the [AIfComb] rule of the static analysis from Figure 6.

the resulting set of variables D(x) will later be used by a
hybrid monitor to compute a conjunction

∧
y∈D(x)K(y),

we cannot approximate the disjunction with the set of
variables. Hence, we propose to choose one set, either
Dtrue or Dboth, which is more precise than the other.

Notice, that if X ⊆ X ′, then the formula for set X
that is computed by hybrid monitor, is weaker than
the formula for set X ′, because it is a conjunction of
a smaller set of variables. Hence, the leakage computed
from X is smaller than the leakage computed form X ′.

We prove the soundness requirement for the static
analysis presented in Figure 6.

Theorem 4 (Static Analysis Soundness). The static
analysis ⇓� is sound according to Definition 6.

The proof of this theorem is part of the Coq develop-
ment [27].

Consider an example of a non-interferent program
4 from Table I: when A is true, x = 1 and otherwise
x = 1 because y = 1. The knowledge about the value
of C is contained in z, however it does not influence
the value of x because there is no execution where x
would be assigned to z. To explain the static analysis,
let’s consider the case when A is true. The static anal-
ysis starts from the branch if (y = 1) then x := y;
else x := z and since the test y = 1 can be evaluated,
the rule [AIfComb] is applied. The resulting states from
the branches x := y and x := z are combined accord-
ing to the static analysis state combination, where the
auxiliary sets are:Dtrue(x) = {y} andDboth(x) = {y, z}.
Here, the value of z does not influence the decision of
the new dependency set because Dtrue(x) ⊂ Dboth(x).
Hence, D′′(x) = Dtrue(x) = {y}.

Then, the hybrid monitor combines the results of
the static analysis and of the executed branch in the
[IfThen] rule from Figure 4. In this rule, D(x) = {y}.
Since our monitor does not track the security context,
the knowledge in x after the execution of the branch skip
is K ′(x) = tt and y does not contain any knowledge:
K(y) = tt. Therefore, K ′′(x) = (δ(B)Kρ ∨ K(y)) ∧
(δ̄(B)Kρ ∨ K ′(x)) = tt. Formula tt corresponds to no
knowledge, and the leakage of this program is 0 bits.

This example clearly shows that our hybrid moni-
tor will recognise the non-interference of this program,

HM(Val+Comb)

���������

���������

HM(Val+Simp)

���������
HM(Top+Comb)

���������

HM(Top+Simp)

where

Val = [AAssignVal] Comb = [AIfComb]

Top = [AAssignTop] Simp = [AIfSimple]

Figure 8: The hierarchy of hybrid monitors

however other dynamic and hybrid information flow
techniques would mark x with “high” security label,
since it has been assigned under the security context of
a secret condition A.

VII. A hierarchy of hybrid monitors

Next, we examine three variants of the monitor from
the previous section, obtained by modifying the constant
propagation and dependency analyses. These modifica-
tions are defined by replacing the rules for assignment
and conditionals in the definition of the static analyses
(Figure 6). We shall name each monitor by HM(X+Y)

where X is the name of the rule for assignment and Y

is the rule for conditionals used. The systematic way
in which these monitors are derived makes it easy to
organise them into a hierarchy of relative precision,
depicted in Figure 8. All the precision theorems in this
section are a direct consequence of Theorem 2 stating
that more precise static analysis induces more precise
hybrid monitoring. The proofs of the theorems have been
left out for lack of space—see [27].

Table I presents examples of 2 programs that leaks
some information about the secrets and 2 non-interfering
programs. To simplify the examples, the secrets A, B
and C denote the tests on the browser features that
were represented by f ⋊⋉ n in the original syntax.
Notice that program 1 represents the original example
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Table I: Quantification of leakage by different hybrid monitors when A, B and C are true.
Program 1 Program 2 Program 3 Program 4

x := 1; y := 1;
if A then y := 0;
if (y = 1) then

x := 0;
if B then

if (y = 1) then
x := 2

output x;

x :=1; y := 0; z := 1;
if A then skip
else y := 1;
if B then skip
else

if (y = 1) then
z := 0

if C then skip
else x := z;
output x;

x := 1; y := 1; z := 0;
if A then z := 1;
if B then skip
else

if (y = 1) then skip
else x := z;

output x;

x := 1; y := 1; z := 0;
if C then z := 1;
if A then x := 1
else

if (y = 1) then
x := y

else x := z;
output x;

Actual leakage A - 2.25 bits A ∨B ∨ C – 1.61 bits tt – 0 bits tt – 0 bits

HM(Val+Comb)
A – 2.25 bits A ∨B ∨ C – 1.61 bits tt – 0 bits tt – 0 bits

HM(Val+Simp) A ∧B – 8.89 bits B ∨ C – 2.75 bits A ∨B – 2.20 bits A ∨ C – 1.64 bits

HM(Top+Comb)
A – 2.25 bits C – 2.84 bits tt – 0 bits A – 2.25 bits

HM(Top+Simp) A ∧B – 8.89 bits C – 2.84 bits B – 6.64 bits A – 2.25 bits

of fingerprinting code from Figure 1. We only substitute
a test (name = "FireFox") with A and a test (fonts =
fontsSet1) with B.

These programs illustrate the difference in precision
of hybrid monitors. For every monitor and program we
specify a formula that represents the knowledge in x in
the end of the execution (when A, B, and C are true) and a
corresponding amount of leakage in bits computed from
the obtained formula.

To provide the estimation of leakage we assume the
corresponding probabilities for A, B, and C to be true:
P (A) = 0.21 (test on the “FireFox” browser name),
P (B) = 0.01 (test on a concrete list of fonts), P (C) =
0.14 (test on a time zone). We also assume that the
browser features represented by A, B, and C are inde-
pendent. We then compute probabilities for events in its
usual sense, for example

P (A ∧B) = P (A) · P (B) = 0.0021
P (A ∨B ∨ C) = 1− P (¬A)P (¬B)P (¬C) = 0.327

Then the leakage computed as a self-information (a
logarithm of an event), for example the leakage of
information in formula A ∧ B is − log2 P (A ∧ B) =
− log2 0.0021 = 8.89 bits, while in formula A ∨ B ∨ C
it is − log2 P (A ∨B ∨ C) = 1.61 bits.

Notice that Table I also presents examples of pro-
grams 3 and 4 that are non-interferent. These programs
illustrate the difference in precision of hybrid monitors.
When a monitor computes that the output variable x
contains 0 bits of information, the monitor recognises
the program as non-interferent. Hence this monitor is

more precise than other monitors that compute some
leakage different than 0 bits.

A. The HM(Val+Simp) monitor
The precise treatment of conditionals in the static

analysis from Figure 6 attempts to determine the ac-
tual value of the Boolean conditional by the constant
propagation analysis. A simpler analysis would abandon
this idea and just assume that both branches might
be executed. Instead of [AIfTop], [AIfComb] and
[AIfElse] rules, this analysis uses one simple rule for
if-statements:

[AIfSimple]

(S1, s) ⇓� s1 (S2, s) ⇓� s2
(if B then S1 else S2, s) ⇓� s1 � s2

Theorem 5. The monitor HM(Val+Comb) is more
precise than the monitor HM(Val+Simp).

To illustrate the difference in precision, consider a
program 4 from Table I. This program is non-interferent
and our HM(Val+Comb) monitor correctly computes
0 bits of leakage (see section Section VI for more details).

We consider the case when A and C are true. Then, z
is updated to 1 and it contains knowledge K(z) = C.
The static analysis of HM(Val+Simp) monitor ignores
the Boolean conditional (y = 1), and hence it computes
a set of variables D(x) = {y, z}. [IfThen] rule of the
hybrid monitor computes

K ′′(x) = (δ(A)Kρ ∨ (K(y) ∧K(z))) ∧ (δ̄(A)Kρ ∨K ′(x))
= (A ∨ (tt ∧ C)) ∧ (¬A ∨ tt) = A ∨ C
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The amount of leakage in this case is 0.83 bits, that
clearly shows that HM(Val+Simp) monitor is less pre-
cise than HM(Val+Comb) monitor that computes 0
bits of leakage for this program execution.
B. The HM(Top+Simp) monitor

Le Guernic et al. [20] proposed a hybrid information
flow monitor that uses static analysis for non-executed
branches. The idea of the analysis is to compute a set
of variables modified that might be assigned to some
value in the non-executed branch. Then, all the variables
in modified are tagged with a “high” label in case the
test of the if-statement contained some “high” (secret)
variables. In a later work, Russo and Sabelfeld [28]
define a generic framework of hybrid monitors where
such syntactic checks are proposed as well.

To compare our monitors with the monitor of Le
Guernic et al. [20], we propose a static analysis that
sets the abstract value of a variable to � as soon as
it gets assigned. By doing so, ρ�(x) = � means that
x ∈ modified. Concretely, we take the static analysis
from the HM(Val+Simp) monitor and substitute the
[AAsignVal] rule with the following rule:

[AAssignTop]

ρ′ = ρ[x �→ �]
(x := E, (ρ,D)) ⇓� (ρ′, tt)

With this static analysis in mind, the idea of syntactic
checks is already considered in our generic hybrid mon-
itor. Whenever x is in modified, its value will be �, and
hence according to the state combination procedure in
Figure 5, the knowledge of the test will be added to the
knowledge of x.

Theorem 6. The HM(Val+Simp) monitor is more
precise than the HM(Top+Simp) monitor .

All the programs from Table I illustrate that the
HM(Val+Simp) monitor evaluates the leakage more
precisely than the HM(Top+Simp) monitor.
C. The HM(Top+Comb) monitor

In a later work, Le Guernic [19] proposed a more
generic framework of hybrid monitors that use static
analysis. One of the novelties of this work is that the
static analysis should ignore the branch that will not be
executed (according to the current environment) if the
test before the branch does not contain any secret vari-
ables. The formalization of this principle in our approach
is a static analysis that uses the [AAssignTop] rule for
assignment and [AIfComb] rule for if-statements.

Theorem 7. The HM(Top+Comb) monitor is more
precise than the HM(Top+Simp) monitor.

In his PhD thesis [18], Le Guernic has proven that if
a monitor on which we base HM(Top+Simp) monitor

concludes that a variable x does not contain secret infor-
mation, then the monitor similar to HM(Top+Comb)

also concludes that variable x does not contain any
secret information. Our framework generalises this proof
since our notion of precision is based on the amount of
knowledge in a variable. Programs 1 and 3 in Table I
illustrate this difference in precision.

Theorem 8. The HM(Val+Comb) monitor is more
precise than the HM(Top+Comb) monitor.

To illustrate this precision result, consider the pro-
gram 4 from Table I. The static analysis used by the
HM(Top+Comb) monitor marks all the assigned vari-
ables as � because of the syntactic nature of [AAsign-

Top] rule. Hence, ρ�(x) = �, and so x will contain some
knowledge about A.

Notice that programs 1 and 2 from Table I illus-
trate that the HM(Top+Comb) and HM(Val+Simp)

monitors are incomparable in a sense of their relative
precision.

VIII. Discussion and Related work

A. Hybrid Information Flow Monitoring
Hybrid monitors for information flow control that

combine static and dynamic techniques have recently
become popular [19], [20], [25], [28]. One of the first
techniques was proposed by Le Guernic et al. [20]
where the static analysis only performs syntactic checks
on non-executed branches. This approach fits into our
framework as HM(Top+Simp) monitor and it is proven
to be less precise than the other monitors we propose.
Russo and Sabelfeld [28] introduced a generic framework
of hybrid monitors, where non-executed branches are
also analysed only syntactically. In the follow-up work Le
Guernic [19] presented a more permissive static analysis,
that ignores possible branches that depend only on pub-
lic variables. Inspired by this approach, we introduced
HM(Top+Comb) monitor that is proven to be less
precise than HM(Val+Comb) monitor.

Devriese and Piessens [10] proposed a secure multi-
execution (SME) technique which falls outside of the
static, dynamic, or hybrid classification. The basic prin-
ciple is to multi-execute the program for every security
level while filtering inputs and outputs and thus en-
forcing non-interference. The approach was shown to be
efficient in a web browser environment [1], [9], when the
security lattice consists of two levels: secret and public.

In our setting, each secret variable (browser feature)
has a different security level (different knowledge), and
combination of variables yields a creation of a new
security level. In this case the security lattice grows
exponentially (with the growth of a boolean formula)
and SME approach would not be an efficient solution.
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B. Protection against Excessive Leakage
Our hybrid monitor computes an over-approximation

of the knowledge extracted from the observation of the
program output. To protect herself against excessive
leakage, a user can set a threshold on the maximum
number of bits she agrees to leak. The hybrid monitor
would estimate the leakage and either halt the program
execution, or perform other actions so that the leakage
would not exceed the threshold.

One of such actions can be a suppression of program
output, another possibility could be editing the output.
Such enforcement actions can be modelled by edit au-
tomata [5] that are designed to enforce desired security
policies without halting the program.

In our current model, a program only outputs a single
final value and we assume that non-termination is not
observable. In this setting, the hybrid monitor can turn
a potential excessive leakage into an absence of leakage
by halting the program just before the output statement.
A consequence is that our hybrid monitor can enforce
termination-insensitive non-interference by suppressing
any output which leakage is different from zero.

If termination is observable, halting the program
might leak information. To cope with this issue, Mardziel
et al. [21] perform a worst-case static analysis which
computes an over-approximation of the leakage of all
executions. If the over-approximation is above the leak-
age threshold, the program is not executed. In our
fingerprinting context, this approach would likely be
very pessimistic as the program would not be executed
as soon as there exists one single user for which the
program can learn too much information. Future work
will investigate how our hybrid monitor can estimate the
information leakage due to halting the execution, and
how to decrease it below the threshold (e.g., by lying
about the browser configuration).

Another important property to consider is correction
soundness introduced by Le Guernic [19]. A monitor
is correction sound if on two executions that agree on
public inputs, the low outputs get the same security level
in the end of the execution. If the monitor enforcing non-
interference is not correction-sound, it introduces new
information leaks due to different enforcement reaction
on different secret inputs. Our hybrid monitor would not
obey this property, because when the program is non-
interferent, there might be some secret inputs, for which
the output would contains some information according
to our monitor. The question of correction soundness is
worth a deeper investigation for monitors that track the
knowledge flow of the program.

C. Quantitative Information Flow Analysis
There are several approaches to quantify the infor-

mation learned by a public observer about the secret

program inputs. Existing work based on static analysis
e.g., [3], [6], [15], [21] aim at quantifying the information
flow of a program and therefore rely on metrics that
summarise the information flow of all the executions.
Our hybrid monitoring technique aims at estimating
the leakage of a single execution. As the leakage can
be very different from one execution to the other, an
advantage of our hybrid monitor technique is that it can
potentially take more informed counter-measures based
on the estimated amount of leaked information.

Clarkson, Myers, and Schneider [7] define the belief of
the observer about secret inputs as a probability distri-
bution, and show how to refine this belief by observing
concrete executions of the program. A strength of this
model is that it accommodates for inaccurate beliefs.
Our threat model is simpler and assumes that the initial
belief of the attacker i.e., the probability distribution
of browser properties, is accurate. Clarkson, Myers and
Schneider also show that self-information [7, Section
4.1] is the adequate notion to quantify the amount of
information leaked by the observation of the output of a
single execution. Based on this belief tracking approach,
Mardziel et al. [21] propose an enforcement mechanism
for knowledge-based policies. The knowledge of the ob-
server is a probability distribution of secret variables,
and the static analysis of the program makes a decision
to run or reject the program. In case there exists a value
of some secret variable that may increase the knowledge
of the observer above some predefined threshold, the pro-
gram is rejected. The approach is static and could reject
a program whereas a specific concrete execution could
actually leak very little information. Also, Mardziel et
al. keep history of the knowledge gained by the observer.
This knowledge is updated whenever an observer sees
more program outputs. Modelling a sequence of outputs
is currently out of reach of our model. We shall consider
such extension and incorporation of history in the future
work.

Backes et al. [3] compute the number of equivalence
classes and their sizes by statically analysing the pro-
gram, and evaluate the leakage using entropy-based
measurements. Like us they use a symbolic represen-
tation of equivalence classes and leakage computation
also requires model enumeration. Our hybrid monitor
restricts the expressiveness of the logic used to represent
symbolically equivalence classes. This is done at the cost
of precision. For instance, using arithmetic reasoning, it
is straightforward to deduce that the expression x − x
does not leak any knowledge. Our hybrid monitors con-
siders that κ(x− x) = κ(x)∧ κ(x) = κ(x). However, the
advantages are twofold: the hybrid monitor is fast which
is mandatory for online monitoring; the hybrid monitor
is language agnostic which allows to deal with arbitrary
language operators.
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Köpf and Rybalchenko [15] bound the leakage of a pro-
gram by combining the over- and under-approximation
of the leakage of randomised concrete executions. Lower
bounds of leakage are obtained by instantiating a rela-
tional static analysis with concrete values. Upper bounds
are obtained by a symbolic backward analysis of the
concrete execution path. Our hybrid monitor is using
a tighter combination of static and dynamic analysis. In
terms of precision, the techniques are not comparable. A
symbolic backward analysis of a concrete execution path
would have the precision of a purely dynamic monitor
that would not abstract the knowledge of expressions.
Our hybrid monitor might be less precise because it
abstracts the knowledge of expressions. However, it gains
precision over a symbolic execution because its static
analysis explores (infinitely) many paths and refines the
leakage in case it can prove they produce the same
output.

To the best of our knowledge, the only dynamic
analysis for quantitative information flow was proposed
by McCamant and Ernst [23]. It uses a channel capacity
metrics for information leakage. The channel capacity
defines the smallest probability distribution, and hence
puts an upper bound on the amount of leaked informa-
tion. This approach is not precise enough in our setting
since the probability distributions are known a-priori.

IX. Conclusions

Fingerprinting of browsers is a technique for tracking
users on the web without storing data in their browser.
By running fingerprinting scripts, web trackers can learn
about specific features of the user’s browser configu-
ration and thereby effectively identify the user (more
precisely, her browser). However, the effectiveness of a
script highly depends on the web browser configuration.

We propose to evaluate the amount of information
a web tracker learns by observing the output of a fin-
gerprinting script for a particular browser configuration.
To quantify the leakage precisely for a specific user, i.e.
for a specific browser configuration, we propose a hybrid
analysis technique computing a symbolic representation
of the knowledge that a script obtains about the browser
configuration.

We have developed a generic framework for modeling
hybrid monitors that are parametrized by static anal-
yses. The framework most notably proposes a generic
soundness requirement on the static analysis which is
sufficient to prove soundness of a hybrid monitor. This
generic framework can be used to prove relative precision
of hybrid information flow monitors.

We have instantiated the generic monitor with a
combined static constant propagation and dependency
analysis. This analysis provides more precise results for

non-executed branches than in previous works. More-
over, our symbolic representation of knowledge allows
us to benefit from the constant propagation analysis
and to model the tracker’s knowledge about a browser
configuration more precisely. Concretely, our approach
gains precision in those cases where a tracker will observe
the same value for a given variable after the execution of
either of the branches. We have proved that our monitor
is more precise than the other hybrid information flow
monitors found in the literature.

The entire theory has been modelled and verified [27]
using the Coq proof assistant. Using Coq has been
very productive to explore this rather new area on the
frontier between security monitors and static analysis in
a semantically correct way.

For further work, Section VIII already discussed
extensions towards correction soundness, threshold-
based enforcement and the security guarantee that
it can provide. In addition, our hybrid analyses are
defined for a simple programming language with focus
on the principles behind the mechanism. We would
have to scale to such languages as JavaScript for real
deployment. Hedin and Sabelfeld [13] have shown it
possible to analyse JavaScript using a purely dynamic
information flow technique. Their system seems an ideal
candidate to instrument with our monitor in order to
track and quantify the information a tracker can deduce
about possible configurations by observing the program
outputs.
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