
Malleable Signatures: New Definitions and
Delegatable Anonymous Credentials

Melissa Chase
Microsoft Research

Email: melissac@microsoft.com

Markulf Kohlweiss
Microsoft Research

Email: markulf@microsoft.com

Anna Lysyanskaya
Brown University

Email: anna@cs.brown.edu

Sarah Meiklejohn
UC San Diego

Email: smeiklej@cs.ucsd.edu

Abstract—A signature scheme is malleable if, on input a
message and a signature, it is possible to efficiently compute
a signature on a related message, for a transformation that is
allowed with respect to this signature scheme. In this paper,
we first provide new definitions for malleable signatures that
allow us to capture a broader range of transformations than
was previously possible. We then give a generic construction
based on malleable zero-knowledge proofs that allows us to
construct malleable signatures for a wide range of transformation
classes, with security properties that are stronger than those that
have been achieved previously. Finally, we construct delegatable
anonymous credentials from signatures that are malleable with
respect to an appropriate class of transformations (that we show
our malleable signature supports). The resulting instantiation
satisfies a stronger security notion than previous schemes while
also scaling linearly with the number of delegations.

Index Terms—signatures; malleability; anonymous credentials;
delegation; definitions;

I. INTRODUCTION

A signature scheme is malleable — alternatively, homomor-

phic — if, given a signature σ on a message m, one can

efficiently derive a signature σ′ on a message m′ = T (m)
for an allowed transformation T . As an example, m′ might

be any excerpt from m, and indeed for appropriate classes

of allowed transformations, malleable signatures provide a

generalization of a variety of existing primitives, such as

quotable and redactable signatures [1], [2]. Formal definitions

for malleable signatures were first given by Ahn et al. [3] and

later refined by Attrapadung et al. [4], and consider security

with respect to two properties: unforgeability, in which an

adversary can derive signatures on new messages using only

allowed transformations of previously signed messages, and

context hiding, in which signatures on derived messages should

appear identical to fresh signatures issued by the signer; this

latter property implicitly requires that the size of the signature

depend only on the message, so they cannot grow as they are

transformed, unless the transformed messages change as well.

More formally, the definition of Ahn et al. requires that an

adversary cannot generate a signature on a message m′ unless

there exists some previously signed message m and an allowed

transformation T such that T (m) = m′. While this definition

captures a wide variety of allowed transformation classes, such

as the ones for quotable and redactable signatures, there are

other classes of transformations that it does not and cannot

capture. Consider an example where Alice and Bob want to

jointly generate an ElGamal encryption key (e.g., for threshold

decryption). We could attempt to do this as follows: Alice

chooses a random exponent a and sends A = ga to Bob,

who chooses a random exponent b and publishes the joint key

pk = Ab. As a result, a and b are shares of the corresponding

secret key. If Bob is malicious, however, he can ignore A
and publish pk = gb; i.e., a public key for which he knows

the entire secret key. One natural way to prevent this is to

have Alice also sign A using a scheme that is malleable only

with respect to exponentiation, and then require that pk is

accompanied by a valid signature. Then, if Bob can produce

such a valid signature, he must have computed it honestly.

Unfortunately, previous definitions of malleable signatures

do not capture this intuition, and indeed this construction will

not work with such definitions. In fact, there is no way to
meaningfully capture a signature malleable with respect to
exponentiation under the previous definitions. For our appli-

cation, there always exists — for any g and pk — an exponent

b such that gb = pk , but what matters is whether or not the

adversary knows this transformation. One of the main goals

of our work is therefore to generalize previous definitions in a

way that naturally allows for this type of transformation class.

As a more sophisticated application of malleable signatures,

we consider an anonymous credential system [5], [6], [7]. In

such a system, a user Alice is known in different contexts

by different unlinkable pseudonyms, yet she can demonstrate

possession of a credential issued to one pseudonym nym to a

verifier who knows her by another pseudonym nym′. Let T
be the set of transformations that, on input some pseudonym

nym, output another pseudonym nym′ of the same user, i.e. for

every such pair nym, nym′, there exists some T ∈ T such that

nym′ = T (nym). Then a signature scheme that is malleable

with respect to T gives us an anonymous credential system:

a credential is an authority’s signature σ on nym; malleability

makes it possible for Alice to transform it into a signature σ′

on nym′; context hiding ensures that σ′ cannot be linked to the

original pseudonym nym; and finally, unforgeability ensures

that Alice cannot compute σ′ unless she received a signature

from the authority on one of her pseudonyms.

Somewhat surprisingly, not only can malleable signatures

yield anonymous credentials, but, as we show in this pa-

per, they can also yield delegatable anonymous credentials

(DACs). A DAC system [8], [9] allows users to delegate their

anonymous credentials; when presenting their credentials (and

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Melissa Chase. Under license to IEEE.

DOI 10.1109/CSF.2014.22

199

also when obtaining and delegating them), the various partic-

ipants need not reveal any persistent identifiers — or in fact

anything — about themselves. DACs are much more privacy-

friendly than the traditional anonymous credential model,

which assumes that the verifying party knows the public key

of the credential issuer(s), as who issued Alice’s credentials

reveals a lot of information about Alice. For example, the

identity of the local DMV that issued her driver’s license might

reveal her zip code, and if her date of birth and gender are also

leaked, this is often enough to uniquely identify her [10], [11],

meaning verifiers that require multiple credentials might easily

learn Alice’s identity. Since DACs protect the identity of every

link on Alice’s certification chain, they make it impossible to

infer any information about Alice based on who issued her

credentials.

In order to construct a DAC from malleable signatures,

we essentially follow the same outline as for the (non-

delegatable) anonymous credential, but consider a different

class of transformations. In the non-delegatable scenario, the

transformation took as input Alice’s nym and outputs Alice’s

nym′. In the DAC scenario, when Alice is delegating her

credential to Bob, she uses a transformation T that takes as

input her pseudonym nymA and the length � of her certification

chain, and outputs Bob’s pseudonym nymB and the length

� + 1 of his new certification chain; to be allowed, T ’s

description must include Alice’s secret key, so that only Alice

can perform this transformation. Intuitively, this construction

yields a DAC scheme, yet its security crucially relies on a

transformation being allowed not by virtue of its input-output

behavior, but by virtue of what its description contains. As

a result, previous definitions of security for malleable and

homomorphic signatures are not strong enough to be useful

for this application: DACs require not only that an allowed

transformation exist, but that the party applying it “know” its

description. Additionally, to ensure Alice’s privacy even in the

face of adversarial root authorities, context hiding must hold

even for adversarially-generated public keys for the signature

scheme. This flavor of context hiding was not captured by

previous definitions.

a) Our contributions: In this paper, we overcome the

definitional obstacles explained above by first proposing, in

Section III, new definitions for malleable signatures. Our

definition of context hiding, extending that of Attrapadung et

al., allows for adversarially-generated keys and signatures. Our

unforgeability definition requires that the transformation T and

the original message m that was signed by the signing oracle

be extractable from (m′, σ′). To ensure that these definitions

are not overly strong, we relate them to the relevant definitions

of Ahn et al. and Attrapadung et al. and observe that, for many

classes of transformations, the definitions of unforgeability are

equivalent (whereas working with adversarially-generated keys

makes our definition of context hiding strictly stronger than

their computational definitions).

With these new definitions in hand, we provide in Sec-

tion IV a general construction of context-hiding malleable

signatures for a large range of unary transformation classes.

Our construction relies generically on non-interactive zero-

knowledge (NIZK) proofs that provide controlled malleability;

such proofs were recently defined and realized by Chase et

al. [12]. Aside from its usefulness in our construction of

DACs, our signature construction enjoys other nice properties.

Although it is not the first construction of signatures from

zero-knowledge proofs — the Fiat-Shamir heuristic [13] is an

example of this approach, as are the signatures of knowledge

due to Chase and Lysyanskaya [8] and the construction using

PRFs due to Bellare and Goldwasser [14] — ours is the first

such construction to achieve malleability. As for malleability,

previous work gives ad-hoc constructions of malleable signa-

tures for various classes of allowed transformations (such as

redactable [15], [16], [1], [17], [2], sanitizable [18], [19], [20],

quotable [21], and transitive signatures [22], [23]), but ours is

the first general efficient construction of malleable signatures.

The only previous work that gave a general approach to

homomorphic signatures was by Ahn et al. [3], who gave

(among other contributions, such as an efficient construction

of a quotable signature) an inefficient general construction for

which a malleable signature on m is essentially a set of non-

malleable signatures on each message in the set {m′ | m′ =
T (m) ∧ T ∈ T }.

Finally, we follow the intuition developed above and con-

struct, in Section V, a delegatable anonymous credentials

scheme generically from a malleable signature and a com-

mitment scheme. Our new definitions for malleable signa-

tures also conveniently allow us to provide a new definition,

presented in Section II-C, for credential unforgeability; our

definition is both more powerful and considerably simpler than

existing definitions. In addition to satisfying this new defi-

nition, our construction provides several desirable functional

features (non-interactive delegation and the ability to delegate

polynomially many times). Our construction is generic and can

be instantiated either using succinct non-interactive arguments

of knowledge (SNARGs) and homomorphic encryption [24],

or using Groth-Sahai proofs [12]. The latter relies only on

standard assumption (e.g., Decision Linear [25]).1

b) Related work on malleable signatures: Here we dis-

tinguish between work on unary and n-ary transformations. As

mentioned above, some specific types of unary homomorphic

signatures have been studied over the last decade or so, such as

redactable and quotable signatures in which, given a signature

on a document m, one can derive signatures on a redacted

version of m in which some parts are blacked out, or signa-

tures on quotations from m. These can be viewed as special

motivating cases of context-hiding malleable signatures. A

somewhat related type of signature is an incremental signature

scheme [27], in which a signature on a document can be effi-

ciently updated when the document is updated. Recent work

on computing on authenticated data [3], [4] gives a general

definitional framework for the problem (which we draw on in

our definitions) and some general (but inefficient, as discussed

1The details of such a construction, see [26], are outside the scope of this
work, and a precise performance analysis is still subject to future work.

200

above) constructions for unary transformations, as well as

some efficient and elegant provably secure constructions for

specific unary transformation classes, such as quoting and

subsets.

Subsequent to our work, three other related papers have

appeared. Boyle, Goldwasser, and Ivan [28] define functional
signatures, where the signer can sign a function rather than

a message; this has the effect of signing all messages in

the range of the function, so the resulting signature can be

transformed into a signature on any such message. Backes,

Meiser, and Schröder [29] introduce delegatable functional
signatures (DFS), in which they explicitly model the multi-

user setting: each signature includes the public key of the

party allowed to transform that signature, and a function

describing how it can be transformed (and whether further

transformations can be applied by other parties). The paper

also offers a separation from one-way functions (which our

notion inherits) and a construction based on trapdoor permuta-

tions. Neither of these papers use extraction-based definitions,

and as such they are more related to the work of Ahn et

al. Nevertheless, either functionality could be captured by

our definitions using an appropriate choice of transformation

classes (and in the case of DFS, commitments/hard relations as

in our construction of DACs). In the third result, Bellare and

Fuchsbauer [30] propose policy-based signatures (PBS) as a

generalization of (among others) attribute-based signatures and

group signatures, in which an authority first issues a signing

key encoding a policy, and then this key can be used to sign

any message satisfying this policy. Interestingly, they use a

similar simulation and extraction approach in their privacy and

unforgeability definitions, and two-tiered malleable signatures

(i.e., signatures that allow at most one transformation to

be applied) imply policy-based signatures. They also give a

simple notion of delegation, in which many users can add

restrictions to this policy; again, this could be constructed from

a malleable signature for an appropriate transformation class.

See Section VI-C for discussion of the relation to DFS and

PBS.

Finally, research on n-ary transformations was initiated

by work on transitive signatures [22], [23], and by Rivest

in a series of talks; the first paper to address this subject

more generally and consider several binary transformations

was Johnson et al. [15]. A more recent line of work ex-

plored homomorphic signatures under linear and polynomial

functions [31], [32], [33], [34], [35], [36], [37], [38]; these

papers focus on transforming n message-signature pairs into

a message-signature pair in which the message is a linear or

polynomial function of the input messages, under somewhat

weaker notions of security and privacy. This is somewhat

incomparable to our work, as we are interested in more general

transformations.

c) Related work on delegatable anonymous credentials:
The first construction of delegatable anonymous credentials,

by Chase and Lysyanskaya [8], allowed a constant number of

delegations. Belenkiy et al. [9] gave the first DAC system that

allowed for a polynomial number of delegations using Groth-

Sahai proofs [39]; their construction, however, was somewhat

ad-hoc and relied on ad-hoc assumptions. Finally, Fuchs-

bauer [40] gave a construction that built on the construction

of Belenkiy et al. and allows for non-interactive issuing and

delegation of credentials, also based on ad-hoc assumptions.

Our construction obtains many of the nicest features of each

of these previous constructions. We support non-interactive

issuing and delegation of credentials, our credentials scale

linearly with the number of times they are delegated. Fi-

nally, we realize a simulation-extractable notion of delegatable

anonymous credentials that is simpler and stronger than any

of the previous definitions.

II. PRELIMINARIES AND NOTATION

As our construction of a malleable signature uses malleable

proofs, we first discuss the definitions for such proofs here.

We next recall existing definitions for delegatable anonymous

credentials, and propose our new definition for credential

unforgeability.

A. Standard definitions for zero-knowledge proofs of knowl-
edge

Definition II.1. [12] A set of algorithms (CRSSetup,P,V)
constitute a non-interactive (NI) proof system for an efficient
relation R with associated language LR if completeness and
soundness below are satisfied. A NI proof system is extractable
if, in addition, the extractability property below is satis-
fied. A NI proof system is witness-indistinguishable (NIWI)
if the witness-indistinguishability property below is satisfied.
An NI proof system is zero-knowledge (NIZK) if the zero-
knowledge property is satisfied. A NIZK proof system that is
also extractable constitutes a non-interactive zero-knowledge
proof of knowledge (NIZKPoK) system. A NIWI proof system
that is also extractable constitutes a non-interactive witness-
indistinguishable proof of knowledge (NIWIPoK) system.

1) Completeness [47]. For all crs
$←− CRSSetup(1k) and

(x,w) ∈ R, V(crs, x, π) = 1 for all proofs π
$←−

P(crs, x, w).
2) Soundness [47]. For all PPT A, and for crs

$←−
CRSSetup(1k), the probability that A(crs) outputs
(x, π) such that x /∈ L but V(crs, x, π) = 1 is negligible.
Perfect soundness is achieved when this probability is 0.

3) Extractability [48]. There exists a PPT extractor E =
(E1, E2) such that E1(1

k) outputs (crse, τe), and
E2(crse, τe, x, π) outputs a value w such that (1) any
PPT A given σ cannot distinguish between the honest
CRS and one output by E1; i.e.,

Pr[crs $←− CRSSetup(1k) : A(crs) = 1]

≈ Pr[(crse, τe)
$←− E1(1

k) : A(crse) = 1],

and (2) for all PPT A, the probability that A outputs
(x, π) such that V(crse, x, π) = 1 but R(x,E2(crse,
τe, x, π)) = 0 is negligible; i.e., there exists a negligible

201

function ν(·) such that

Pr[(crse, τe)
$←− E1(1

k);

(x, π)
$←− A(crse) :

V(crse, x, π) = 1 ∧ (x,E2(crse, τe, x, π)) /∈ R] < ν(k).

Perfect extractability is achieved if this probability is 0,
and crse is distributed identically to crs.

4) Witness indistinguishability [49]. For all (x,w1, w2)
such that (x,w1), (x,w2) ∈ R, any PPT A cannot
distinguish between proofs for w1 and proofs for w2;
i.e.,

Pr[crs $←− CRSSetup(1k);

(x,w1, w2)
$←− A(crs);

π
$←− P(crs, x, w0) :

A(π) = 1 ∧ (x,w0), (x,w1) ∈ R]

≈ Pr[crs $←− CRSSetup(1k);

(x,w1, w2)
$←− A(crs);

π
$←− P(crs, x, w1)

: A(π) = 1 ∧ (x,w0), (x,w1) ∈ R].

Perfect witness indistinguishability is achieved when
these two distributions are identical.

5) Zero knowledge [49]. There exists a polynomial-time
simulator algorithm S = (S1, S2) such that S1(1

k)
outputs (crss, τs), and S2(crss, τs, x) outputs a value πs

such that for all (x,w) ∈ R, a PPT adversary A cannot
distinguish between proofs produced by the prover and
simulator; i.e., for all PPT adversaries A,

Pr[crs $←− CRSSetup(1k) : AP (crs,·,·)(crs) = 1]

≈ Pr[(crss, τs)
$←− S1(1

k) : AS(crss,τs,·,·)(crss) = 1],

where, on input (x,w), P outputs ⊥ if (x,w) /∈ R and
π

$←− P(crs, x, w) otherwise, and S also outputs ⊥ if
(x,w) /∈ R, and returns π

$←− S2(crss, τs, x) otherwise.
Perfect zero knowledge is achieved if for all (x,w) ∈ R,
these distributions are identical.

B. Definitions for malleable proofs

Let R(·, ·) be a relation such that the corresponding lan-

guage LR := {x | ∃w such that (x,w) ∈ R} is in NP.

As defined for malleable proofs [12], the relation is closed
with respect to a transformation T = (Tinst, Twit) if for every

(x,w) ∈ R, (Tinst(x), Twit(w)) ∈ R. The formal definition of

a malleable proof extends the definition of a non-interactive

proof (CRSSetup,P,V) by adding an additional algorithm

ZKEval, designed to transform proofs. More formally, ZKEval,
on input the CRS crs, a transformation T , an instance x and

a proof π such that V(crs, x, π) = 1, outputs a proof π′ for

x′ := Tinst(x) such that V(crs, x′, π′) = 1. The proof system

is then malleable with respect to a set of transformations T if

for every T ∈ T , ZKEval can be computed efficiently.

In addition to defining this basic notion of malleability,

Chase et al. also defined how to meaningfully control the

malleability of a proof system by extending the strong notion

of simulation-sound extractability [45], [44] to deal with mal-

leability; this means requiring that, for a set of transformations

T , if an adversary can produce a proof π for an instance x
then the extractor should be able to extract from π either a

witness w or a transformation T ∈ T and previous instance

x′ such that x = Tinst(x
′) (the definition of simulation-sound

extractability required only this first condition). More formally,

this is defined as follows:

Definition II.2. [12] Let (CRSSetup,P,V,ZKEval) be a
NIZKPoK system for an efficient relation R, with a simulator
(S1, S2) and an extractor (E1, E2). Let T be a set of unary
transformations for the relation R such that membership in T
is efficiently testable. Let SE 1 be an algorithm that, on input
1k, outputs (crs, τs, τe) such that (crs, τs) is distributed identi-
cally to the output of S1. Let A be given, let Q := Qinst×Qproof

be a table used to store the instances queried to S2 and the
proofs given in response, and consider the following game:

• Step 1. (crs, τs, τe)
$←− SE 1(1

k).

• Step 2. (x, π) $←− AS2(crs,τs,·)(crs, τe).
• Step 3. (w, x′, T)← E2(crs, τe, x, π).
• Step 4. b← (w �= ⊥ ∧ (x,w) /∈ R) ∨

((x′, T) �= (⊥,⊥)∧
(x′ /∈ Qinst ∨ x �= Tinst(x

′) ∨ T /∈ T)) ∨
(w, x′, T) = (⊥,⊥,⊥)).

The NIZKPoK satisfies controlled-malleable simulation-sound

extractability (CM-SSE, for short) with respect to T if for all
PPT algorithms A there exists a negligible function ν(·) such
that the probability (over the choices of SE1, A, and S2) that
V(crs, x, π) = 1 and (x, π) /∈ Q but b = 1 is at most ν(k).

Definition II.3. [12] For a non-interactive zero-knowledge
proof system (CRSSetup,P,V,ZKEval) with an associated
simulation (S1, S2), an efficient relation R malleable with
respect to T , an adversary A, and a bit b, let pAb (k) be the
probability of the event that b′ = 0 in the following game:

• Step 1. (crss, τs)
$←− S1(1

k).

• Step 2. (state, x1, π1, . . . , xq, πq, T)
$←− A(crss, τs).

• Step 3. If V(crss, xi, πi) = 0 for some i, 1 ≤ i ≤ q, or
T /∈ T , abort and output ⊥. Otherwise, form

π
$←−
{

S2(crss, Tinst(x1, . . . , xq)) if b = 0
ZKEval(crss, T, {xi, πi}qi=1) if b = 1.

• Step 4. b′ $←− A(state, π).
Then the proof system is strongly derivation private if for all
PPT algorithms A there exists a negligible function ν(·) such
that |pA0 (k)− pA1 (k)| < ν(k).

202

C. Delegatable anonymous credentials

At a high level, delegatable anonymous credentials (DAC)

allow credentials to be both delegated and issued within the

context of a system in which users are pseudonymous; i.e., they

can use a different pseudonym for each of the different people

with whom they interact. As such, algorithms are required for

generating each of these pseudonyms, as well as issuing and

delegating credentials, and proving (in an anonymous way) the

possession of a credential.

In order to conceptually identify users with pseudonyms, we

require that a nym output by NymGen is a commitment to the

underlying sk with opening open, with verification algorithm

NymVerify.

A delegatable anonymous credentials scheme consists of

8 algorithms (Setup, KeyGen, NymGen, NymVerify, Issue,

CredProve, CredVerify, Delegate) that behave as follows:

• Setup(1k): Generate public parameters pp for the system.

• KeyGen(pp): Generate public and secret keypair (pk , sk);
the secret key sk represents a user’s “true identity.”

• NymGen(pp, sk): Compute a pseudonym nym for the

user corresponding to sk together with a value open that

can be used for verification.

• NymVerify(pp, nym, sk , open): Check that a given

pseudonym nym belongs to the user corresponding to sk .

(In practice, this algorithm will never be run; instead,

a user might form a proof of knowledge of sk , open
corresponding to nym such that this holds.)

• Issue(pp, sk0, pk0, nymr): Issue a credential, rooted at

the authority owning pk0, to owner of nymr.

• CredProve(pp, sk , nym, open, nym′, open′, C): Generate

a proof π of possession of credential C that has been

delegated to some nym, where the owner of nym also

owns a pseudonym nym′.
• CredVerify(pp, pk0, nym, �, π): Verify that the

pseudonym nym is in possession of a level-� credential,

rooted at pk0.

• Delegate(pp, skold , nymold , openold , nymnew , C): Dele-

gate the credential C, currently delegated to the

pseudonym nymold , to the pseudonym nymnew .

The main security requirements are anonymity and un-

forgeability. Briefly, anonymity requires that pseudonyms hide

their owners’ secret keys, and that a proof of possession of

a credential does not reveal the pseudonym to which the

credential was initially issued by the root authority, or the

pseudonyms to which the credential was delegated (or any

other information besides the final pseudonym, the original

issuer, and the number of times the credential has been

delegated). Unforgeability requires that one cannot prove

possession or delegate a credential without knowing a secret

key corresponding to some pseudonym to which a credential

has been issued.

Our definition of anonymity is fairly similar to the def-

inition given by Belenkiy et al.; the main modifications

are a non-interactive Issue protocol and simulated param-

eters that are distributed identically to those output by

Setup. Essentially, we require that there exist a simulator

(SimSetup, SimCred, SimProve) such that (1) SimSetup pro-

duces parameters and the simulation trapdoor, (2) SimCred
produces credentials indistinguishable from those produced by

Issue and Delegate (but without knowledge of the root secret

key or a previous credential), and (3) SimProve produces

proofs indistinguishable from those produced by CredProve
(but without knowledge of a credential). For a formal defi-

nition of our anonymity property, as well as a definition of

correctness, see our report [26].

Our definition of unforgeability, on the other hand, is a

departure from that of Belenkiy et al. It is conceptually similar

to the definition of simulation-sound extractability for non-

interactive zero knowledge, in that we require that unforgeabil-

ity hold in the presence of a simulator that grants and proves

possession of credentials at any level for any pseudonym of

the adversary’s choice without access to the root authority’s

secret key. (In contrast, Belenkiy et al. use different parameters

for unforgeability and anonymity; in their construction under

the simulation parameters extraction is impossible.)

Formally, we define an augmented setup algorithm
SimExtSetup that produces (pp, τs, τe) such that (pp, τs) is

distributed identically to the output of SimSetup. We then have

the following definition.

Definition II.4 (Unforgeability). A delegatable anonymous
credentials scheme (Setup, KeyGen, NymGen, NymVerify,
Issue, CredProve, CredVerify, Delegate) with simulator
(SimSetup, SimCred, SimProve) is unforgeable if there exists
a pair (SimExtSetup,Extract) (where SimExtSetup augments
SimSetup) such that (1) nym is a hiding, binding commitment
when pp are chosen by SimExtSetup, even when τs and τe
are given; and (2) it is hard to form a proof of a credential for
a pseudonym nym at level � without knowing the secret key
corresponding to nym as well as the secret key corresponding
to some nym1 to which a credential at level �′ ≤ � has
been issued; formally, for any adversary A, consider the
following game, wherein C(·, ·) = SimCred(pp, τs, vk0, ·, ·),
P (·, ·) = SimProve(pp, τs, vk0, ·, ·), and Extract share state:

• Step 1. (pp, τs, τe)
$←− SimExtSetup(1k);

(vk0, sk0)
$←− KeyGen(pp).

• Step 2. ((nym, �), π)
$←− AC(·,·),P (·,·)(pp, vk0, τe).

• Step 3. ({(nymi, sk i, openi)}ki=1, �
′) ← Extract(pp, τe,

(vk0, nym, �), π), where nymk = nym and �′+k−2 = �.2

Then for all PPT algorithms A there exists a negli-
gible function ν(·) such that the probability (over the
choices of SimExtSetup, SimCred, SimProve, and A) that
CredVerify(pp, vk0, nym, �, π) = 1 and (nym, �) was not
queried to SimProve but either

1) A created a new credential; i.e., (nym1, �
′) was not

queried to SimCred or � < �′,

2The decrement −2 results from the original recipient of the credential and
the final owner of π being counted twice in �′+k. The latter is counted twice
as he can change his pseudonym from nymk−1 to nym.

203

2) A delegated through pseudonyms it did not own; i.e.,
NymVerify(pp, nymj , sk j , openj) = 0 for some j, 1 ≤
j ≤ k, or k �= 2 + �− �′,

3) A proved possession for a credential it did not own; i.e.,
skk−1 �= skk,

is at most ν(k).

III. DEFINING MALLEABLE SIGNATURES

Formally, a malleable signature scheme consists of four

algorithms: KeyGen, Sign, Verify, and SigEval. The first

three comprise a standard signature; the additional algorithm,

SigEval, on input the verification key vk , messages �m =
(m1, . . . ,mn), signatures �σ = (σ1, . . . , σn), and a transfor-

mation T on messages, outputs a signature σ′ on the message

T (�m). (Here and in all of our definitions, we consider the most

general case wherein the transformation may combine many

messages. Our construction in Section IV, however, supports

only unary transformations; i.e., those operating on a single

message.)

Definition III.1 (Malleability). A signature scheme
(KeyGen, Sign,Verify) is malleable with respect to a set
of transformations T closed under composition if there exists
an efficient algorithm SigEval that on input (vk , T, �m,�σ),
where (vk , sk)

$←− KeyGen(1k), Verify(vk , σi,mi) = 1
for all i, and T ∈ T , outputs a valid signature σ′ for
the message m := T (�m); i.e., a signature σ′ such that
Verify(vk , σ′,m) = 1.

Our definition has one key notational difference with the

previous definitions of Ahn et al. [3] and Attrapadung et al. [4]:

whereas their definitions were given with respect to a predicate

on input and output messages, we found it more natural to

instead consider the set of allowed transformations. By using

transformations, we inherently capture the dual requirements

that the result of an operation be efficiently computable, and

that an adversary know the transformation that was applied;

these requirements could also potentially be captured using

predicates (e.g., by using an optional witness input to the

predicate, as is briefly mentioned in [3]), but in a more

roundabout way.

A. Simulation-based definitions for malleable signatures

We begin with the idea of a simulatable signature scheme,

introduced by Abe et al. [41], [42], [43], in which there are

two indistinguishable ways of producing a signature: using

the signing key and the standard signing algorithm, or using

a global trapdoor and a simulated signing algorithm. Using

simulatable signatures allows us to easily consider the notion

of context hiding with respect to adversarially-chosen keys, as

well as a simpler notion for signature unforgeability. (Ahn et

al. use statistical context hiding to achieve a simpler version of

their unforgeability definition; since extraction and statistical

hiding are contradictory, we cannot.) Simulatability also lines

up nicely with the anonymity requirements for credentials,

in which there should exist a simulator that can simulate

credentials.

Before we present our definition of simulatability — which

is somewhat modified from the original; in particular they

required only that simulated signatures verify, whereas we re-

quire them to be indistinguishable from standard signatures —

we must expand the standard notion of a signature scheme

to consider signature schemes in which the key generation

process is split up into two parts: a trusted algorithm Gen
for generating “universal” parameters crs (we can think of

these as the setting; e.g., the description of a group), and an

algorithm KeyGen that, given these parameters, generates a

keypair (vk , sk) specific to a given signer.

Definition III.2 (Simulatability). A signature scheme
(Gen,KeyGen, Sign,Verify) is simulatable if there exists an
additional PPT algorithm KeyCheck that, on input crs, vk ,
and sk , outputs whether or not (vk , sk) is in the range of
KeyGen(crs), and a PPT simulator (SimGen, SimSign) such
that the CRS in (crs, τs)

$←− SimGen(1k) is indistinguishable
from crs

$←− Gen(1k) and signatures produced by SimSign are
indistinguishable from honest signatures; i.e., for all PPT A,

Pr[crs $←− Gen(1k) : AS(crs,·,·,·)(crs) = 1]

≈ Pr[(crs, τs)
$←− SimGen(1k) : AS′(crs,τs,·,·,·)(crs) = 1],

where, on input (vk , sk ,m), S outputs ⊥ if
KeyCheck(crs, vk , sk) = 0 and Sign(crs, sk ,m) otherwise,
and S′ outputs ⊥ if KeyCheck(crs, vk , sk) = 0 and
SimSign(crs, τs, vk ,m) otherwise.

Although simulatability might seem to be a fairly strong

property, we show in Section VI that any non-simulatable sig-

nature scheme in the standard model can be easily transformed

into a simulatable signature scheme in the CRS model (i.e.,

using split Gen and KeyGen algorithms) by adding a proof

of knowledge to the public key. Our signature construction

in Section IV achieves simulatability directly by using cm-

NIZKs.

B. Simulation context hiding

We next present a definition of context hiding that requires

transformed signatures to be indistinguishable from freshly

simulated signatures on the transformed messages; if regular

signatures were used instead of simulated signatures, this

would be quite similar to the standard notion of context hiding.

As mentioned above, however, incorporating simulatability al-

lows us to easily build in the notion of adversarially-generated

keys, which is essential for our credentials application where

the issuer need not be trusted for anonymity.

Definition III.3 (Simulation context hiding). For a sim-
ulatable signature (Gen,KeyGen, Sign,Verify, SigEval) with
an associated simulator (SimGen, SimSign), malleable with
respect to a class of transformations T , and an adversary A
and a bit b, let pAb (k) be the probability of the event that
b′ = 0 in the following game:

• Step 1. (crs, τs)
$←− SimGen(1k).

• Step 2. (state, vk , �m, �σ, T)
$←− A(crs, τs).

204

• Step 3. If Verify(crs, vk , σi,mi) = 0 for some i or
T /∈ T , abort and output ⊥. Otherwise, either form
σ

$←− SimSign(crs, τs, vk , T (�m)) if b = 0, or form
σ

$←− SigEval(crs, vk , T, �m,�σ) if b = 1.

• Step 4. b′ $←− A(state, σ).
Then the signature scheme satisfies simulation context hiding

if for all PPT algorithms A there exists a negligible function
ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Unsurprisingly, allowing for adversarially-generated keys

yields a strictly stronger definition than any of the existing

ones for computational context hiding (see Section VI). Fi-

nally, while Ahn et al. and Attrapadung et al. both provide

statistical variants on context hiding, we cannot hope to

simultaneously achieve statistical hiding and an unforgeability

definition based on a meaningful notion of extraction.

C. Simulation unforgeability

The main point at which our unforgeability definition di-

verges significantly from previous definitions is in considering

how to check whether a message and signature are in fact a

forgery, or whether they were instead obtained using a valid

transformation from the signatures issued by the signer. As

discussed in the introduction, previous definitions consider

the adversary successful only if he produces a signature on

a message m for which there does not exist a previously

signed message m′ and an allowed transformation T such

that m = T (m′). On the other hand, we want to be able

to capture the requirement that the adversary “know” a valid

transformation from a previously signed message; thus the

adversary should be successful if he can produce a signature on

m without knowing an appropriate m′ and T . This allows us to

meaningfully capture transformations like exponentiation, and

is also crucial in our credential application, since credentials

inherently require that signatures can’t be transformed without

knowledge of some appropriate secret information.

We formalize this notion by requiring an extractor that —

given the produced message m and signature, as well as

the set of signed messages — produces a previously signed

message m′ and the transformation (if one exists) that was

used to obtain m; then the adversary wins if the extractor

fails to produce a valid pair m′, T . We note that this is also

convenient in that it makes the winning conditions of the

unforgeability game efficiently checkable. For simple classes

of transformations it may be easy to determine whether there

exists a valid transformation given the set of signed messages,

but for classes of transformations that are exponentially (or

even infinitely) large, it is not clear that this can be done

in an efficient manner. With our new definition, on the other

hand, determining whether the adversary won is as simple

as checking if the extracted transformation T is valid, if the

extracted m′ we previously signed, and if T (m′) = m.

By using simulatability, as defined above, we are able to

replace all honestly generated and transformed signatures with

signatures generated by a simulator; this means that we can

simply give the adversary access to an oracle that generates

simulated signatures, which has the advantage that we end up

with a much cleaner definition than the main one of Ahn et

al. (they also provide a similar simplification using the notion

of statistical context hiding). The result is a definition similar

to that of simulation-sound extractability [44], [45], in which

we simulate and extract at the same time.

To formalize this game, we require an amplified setup,

SimExtGen, that outputs a tuple (crs, τs, τe); we then require

the (crs, τs) part of this to be distributed identically to the

output of SimGen, and we give τe as input to SigExt. To cover

the case of simple — but potentially n-ary — transformations,

where not all the information about a transformation can be

encoded in the signature, the extractor is also given access to

the query history Q.

Definition III.4 (Simulation unforgeability). For a sim-
ulatable signature (Gen,KeyGen, Sign,Verify, SigEval) with
an associated PPT simulator/extractor (SimExtGen, SimSign,
SigExt) that is malleable with respect to a class of transfor-
mations T , an adversary A, and a table Q = Qm ×Qσ that
contains messages queried to SimSign and their responses,
consider the following game:

• Step 1. (crs, τs, τe)
$←− SimExtGen(1k);

(vk , sk)
$←− KeyGen(crs).

• Step 2. (m∗, σ∗) $←− ASimSign(crs,τs,vk ,·)(crs, vk , τe).
• Step 3. (�m′, T)← SigExt(crs, vk , τe,m

∗, σ∗, Q).

Then the signature scheme satisfies simulation unforgeability

if for all such PPT algorithms A there exists a negligible
function ν(·) such that the probability (over the choices of
KeyGen, SimSign, and A) that Verify(vk , σ∗,m∗) = 1 and
(m∗, σ∗) /∈ Q but either (1) �m′ �⊆ Qm, (2) m∗ �= T (�m′), or
(3) T /∈ T is at most ν(k).

Having argued that our definition is significantly stronger

than previous definitions, one might be concerned that our

definition might be overly restrictive, in the sense that it might

rule out previous constructions or many interesting classes of

transformations. As we show in Section VI, however, when

considering many transformation classes, including essentially

all those for which constructions are known, our definition

of unforgeability is equivalent to that of Ahn et al. (with

respect to simulatable signatures which, as mentioned above,

can be easily and generically obtained from non-simulatable

signatures). Thus, although our definition does rule out certain

classes of transformations (i.e., those where the transformation

can neither be extracted nor efficiently derived given the query

list and some limited amount of extra information), to date this

does not seem to be a significant limitation on the schemes

we can construct. On the other hand, as we will see, it

allows us to meaningfully capture a wide variety of additional

transformations, resulting in new applications.

IV. MALLEABLE SIGNATURES FROM CM-NIZKS

In this section, we provide a generic construction of mal-

leable signatures from cm-NIZKs. As discussed earlier, this

205

allows us to capture a broad class of allowable unary trans-

formations. After presenting our construction of delegatable

anonymous credentials in the next section, we also see in

Section V-C how to instantiate the signature concretely for

a particular class of transformations.

Intuitively, our construction is extremely simple: to sign a

message, just prove knowledge of the signing key! While this

might seem to produce signatures that are independent of the

message being signed, we show that by including the message

in the instance, we can bind the message and signature together

(as was also done, e.g., by Chase and Lysyanskaya [8]);

furthermore, defining transformations on signatures is quite

straightforward as well, since signatures in our construction

are just malleable proofs. Formally, we use a hard relationRpk

with generator G and a cm-NIZK (CRSSetup,P,V,ZKEval),
malleable with respect to some class of transformations Tnizk,

for the relation R such that ((pk ,m), sk) ∈ R if and only if

(pk , sk) ∈ Rpk . We then construct a simulatable signature,

malleable with respect to a class of transformations Tsig, as

follows:

• Gen(1k): Output crs
$←− CRSSetup(1k).

• KeyGen(crs): Compute (pk ′, sk ′) $←− G(1k);
output vk := pk ′ and sk := (pk ′, sk ′).

• Sign(crs, sk ,m): Parse sk = (pk ′, sk ′);
output σ = π

$←− P(crs, (pk ′,m), sk ′).
• Verify(crs, vk , σ,m): Output V(crs, (vk ,m), σ).

• SigEval(crs, vk , T,m, σ): Set Tinst to be such that

∀m, vk , Tinst(vk ,m) = (vk , T (m)), and Twit = id;

i.e., such that ∀sk ′, Twit(sk
′) = sk ′. Return σ′ $←−

ZKEval(crs, (Tinst, Twit), (vk ,m), σ).

Looking at the definition of SigEval, we can see that if

we wished to construct a signature malleable with respect to

a specific class of transformations Tsig, we would require a

proof malleable with respect to the class Tnizk consisting of

all transformations of the form (Tinst = (id, T), Twit = id) for

T ∈ Tsig.

Theorem IV.1. If (CRSSetup,P,V,ZKEval) is zero knowl-
edge, then (Gen,KeyGen, Sign,Verify, SigEval) is simulatable,
as defined in Definition III.2.

Theorem IV.2. If (CRSSetup,P,V,ZKEval) is strongly
derivation private with respect to Tnizk, as defined in Defi-
nition II.3, then (Gen,KeyGen, Sign,Verify, SigEval) satisfies
simulation context hiding with respected to Tsig, as defined in
Definition III.3.

Proof: To show this, we take an adversary A that can

break simulation context hiding with some non-negligible

advantage ε and use it to construct an adversary B that breaks

strong derivation privacy with the same advantage.

To start, B will get as input a pair (crs, τs), which

it then immediately forwards to A. When A out-

puts its challenge (pk ′, sk ′,m, σ, T), B first checks that

Verify((crs, pk ′), σ,m) = 1, KeyCheck(crs, pk ′, sk ′) = 1 and

T ∈ T ; it aborts and outputs ⊥ if any of these checks fails.

Otherwise, it sets Tinst := T and Twit := id and outputs

(x := (pk ′,m), σ, (Tinst, Twit)) as its own challenge to get

back a proof π′, which it again forwards directly (as σ′) to A.

Finally, when A outputs its guess bit b′, B outputs the same

bit.

To see that interactions with B are distributed iden-

tically to those that A expects, we observe that the

pair (crs, τs) given to A is honestly computed. In ad-

dition, if Verify((crs, pk ′), σ,m) = 1 then, by defini-

tion, V(crs, (pk ′,m), σ) = 1; furthermore, if T ∈ T
then, again by definition, (Tinst, Twit) ∈ Tnizk, mean-

ing that if B interprets A’s challenge tuple as valid,

its own challenge tuple will be interpreted as valid as

well. As for the response, if b = 0 then B gets back

S2(crs, τs, (pk
′,m)) = SimSign(vk = (crs, pk ′), τs,m),

which is exactly what A expects. Furthermore, if b = 1,

then B gets back ZKEval(crs, (Tinst, Twit), (pk
′,m), σ) =

SigEval((crs, pk ′), T,m, σ), which is again exactly what A
was expecting. As A therefore has the same advantage in-

teracting with B as it does normally, and furthermore B
succeeds in guessing b whenever A does, B succeeds with

non-negligible advantage ε.

Theorem IV.3. If (CRSSetup,P,V,ZKEval) is CM-SSE with
respect to the class of transformations Tnizk and Rpk is
a hard relation, then (Gen,KeyGen, Sign,Verify, SigEval) is
simulation unforgeable with respect to transformation class
Tsig, as defined in Definition III.4.

Proof: To prove this, we first define the algorithms

SimExtGen and SigExt, using the algorithms SE 1 and E2 that,

by CM-SSE, we know exist for the proof. SimExtGen simply

outputs (crs, τs, τe)
$←− SE 1(1

k); because the (crs, τs) output

by SE 1 are, by definition, distributed identically to those

output by S1, and furthermore SimGen runs S1, SimExtGen
satisfies the constraint that its own (crs, τs) must be dis-

tributed identically to that of SimGen. Now, SigExt, given

(vk , τe,m, σ), runs E2(crs, τe, (vk ,m), σ) to get back a tuple

(w, x′, (Tinst, Twit)); if w = ⊥, it then parses x′ = (pk ′,m′)
and Tinst = T and outputs (m′, T), otherwise it outputs (⊥,⊥).
We also use the same simulator SimSign as in the proof of

Theorem IV.1.

We now observe that, if there exists an adversary A that can

break unforgeability with some non-negligible probability ε, it

must be the case that one of two events occurs with some non-

negligible probability: in the first, Event1, for (w, x′, T) ←
E2(crs, (pk

′,m∗), σ∗), w �= ⊥ and (x,w) ∈ R. In the second,

Event2, we consider all winning cases in the CM-SSE game;

i.e., (x,w) /∈ R, x′ was not queried to the S2 oracle, x �=
Tinst(x

′), or T /∈ T . We define e1 to be the probability that

Event1 occurs, and e2 to be the probability that Event2 occurs.

To see that, in the event that A wins the game, either e1 or

e2 must be non-negligible (i.e., either Event1 or Event2 must

have taken place), we observe that for A to have won, it must

be the case that, for (m′, T) := SigExt(vk , sk ,m, σ), either

m′ wasn’t queried to SimSign, T ∈ T and m∗ �= T (m′),

206

or T /∈ T , or (m′, T) = (⊥,⊥). Based on the definition of

SigExt, this first case happens in the event that x′ = (pk ′,m′)
wasn’t queried to S2, which is part of Event2. The second case

happens in the event that (x′, T) �= (⊥,⊥) and x �= T (x′),
which is also part of Event2. The third case, on the other

hand, might happen in the event that (x′, T) �= (⊥,⊥) and

T /∈ T , or in the event that (w, x′, T) = (⊥,⊥,⊥); these are

once again part of Event2. Finally, we get (m′, T) = (⊥,⊥)
in the event that w �= ⊥; in this case, if (x,w) ∈ R then we

are in Event1, and if (x,w) /∈ R then we are in Event2. As

each winning case for A therefore implies that either Event1
or Event2 has taken place, it must be the case that either e1
or e2 is non-negligible.

To first use Event1 to break the hardness of the rela-

tion, B receives as input a public key pk ′ for Rpk . It

then generates (crs, τs, τe)
$←− SE 1(1

k) and gives crs, τe
and pk ′ to A. When A queries its SimSign oracle, B uses

its knowledge of τs to execute the code honestly; Finally,

when A outputs its pair (m∗, σ∗), B computes (w, x′, T) :=
E2(crs, τe, (pk

′,m∗), σ∗). If Event1 has occurred, then by

definition w �= ⊥ and ((pk ′,m∗), w) ∈ R; by definition of

the relation R, this means that (pk ′, w) ∈ Rpk , and thus B
can output w to win its game. As B behaves honestly and

interactions with B are thus distributed identically to those

that A expects, and further B succeeds whenever A does and

Event1 occurs, B succeeds with overall probability e1ε.

To use Event2 to break CM-SSE, C receives as input

the pair (crs, τe); it then generates (pk ′, sk ′) $←− G(1k) and

gives crs, τe and pk ′ to A. When A queries its SimSign
oracle on input m, C queries its own S2 oracle on input

(pk ′,m) and returns the resulting proof back to A. Now,

when A outputs its pair (m∗, σ∗), C computes (w, x′, T) :=
E2(crs, τe, (pk

′,m∗), σ∗). If Event2 has occurred, then by

definition one of the winning cases for the CM-SSE game

holds, and thus C can output (x := (pk ′,m∗), σ∗) to win its

game. As C generates vk honestly and returns values of the

form S2(crs, τs, (pk
′,m)) = SimSign(vk = (crs, pk ′), τs,m),

interactions with it are distributed identically to those that A
expects; furthermore, C succeeds whenever A does and Event2
occurs, so C succeeds with overall probability e2ε. As ε is

assumed to be non-negligible, and by our discussion above so

is either e1 or e2, the success probability of either B or C is

therefore non-negligible as well.

V. DELEGATABLE ANONYMOUS CREDENTIALS FROM

MALLEABLE SIGNATURES

Recall the desired functionality of a credential system: there

are various users, each in possession of some secret key, who

can use different pseudonyms to represent themselves to other

participants; to form a pseudonym, a user Alice computes a

commitment to her secret key skA. A credential authority
(CA) publishes a public key pk , and can issue a level-1
credential to some user Bob, known to it by the pseudonym

B1. Bob might now wish to do one of two things with this

credential: he can either prove possession of this credential

to another user, who might know him under a different

pseudonym B2, or he can delegate this credential to another

user, Carol, whom he knows under the pseudonym C1. To

delegate, Bob can give to Carol a level-2 credential belonging

to her pseudonym C1, that is “rooted” at the authority pk ;

Bob should only be able to perform this operation if he is the

rightful owner of the pseudonym B1 to which the credential

was issued. In order to fit this framework, credentials must

therefore reveal three pieces of information: the root authority,

denoted pk0, the recipient of the credential, denoted nymr, and

the level of the credential, denoted �.

A. Allowable transformations

First, let us describe all of the components in the above

landscape in terms of commitments, messages, signatures,

and transformations. We already saw that pseudonyms are

represented as commitments; this leaves delegation and issuing

of credentials, which are represented using transformations,

and credentials and proofs of possession, which are both

represented using messages and signatures.

The messages that are signed are of the form m =
(nym, �, flag), where nym is the owner of the credential, �
is its level, and flag represents whether it is a credential or a

proof of possession. Intuitively, to create an initial credential,

the root authority signs the message m = (nym, 1, cred),
using a signing key pair (vk , sk), to obtain a signature σ. The

credential is the tuple (vk , nym, 1, σ), and anyone can verify

that this is a valid credential by running the signature verifi-

cation algorithm Verify(vk , σ, (nym, 1, cred)). To delegate, the

user corresponding to nym can maul the signature σ — using

SigEval— to specify a new recipient nymnew and increase

the level to 2. To prove possession of the credential under

a different pseudonym nym′, the user can maul the signature

to change nym to nym′ and cred to proof.

In order to delegate a credential belonging to nym to another

pseudonym nymnew , one must know (sk , open) that corre-

sponds to nym. Thus, the description of a valid transformation

that takes as input the message m = (nym, �, cred) and

outputs T (m) = (nym′, � + 1, cred) must include (sk , open).
In order to prove possession of a credential under a different

pseudonym nym′, one needs to know (sk , open, open′) such

that (sk , open) correspond to nym and (sk , open′) correspond

to nym′. Thus, the description of a valid transformation that

takes as input the message m = (nym, �, cred) and outputs

T (m) = (nym′, �, proof) must include (sk , open, open′) such

that nym corresponds to (sk , open) and nym′ corresponds to

(sk , open′).
To delegate a level-� credential the user with

pseudonym nym thus applies a transformation

〈T 〉 = ((nym, sk , open), nymnew , cred) such that T (nym, �,
cred) outputs (nymnew , � + 1, cred) and on any other

input T outputs ⊥. To generate a proof the user applies a

transformation 〈T 〉 = ((nym, sk , open), nymnew , proof) such

that T (nym, �, cred) outputs (nym′, �, proof) and on any other

input T outputs ⊥, where cred means the transformation

207

corresponds to delegation and proof means the transformation

corresponds to proving possession.
As mentioned in Definition III.1, we require that the trans-

formation class be closed under composition, so we also

consider transformations that take a level-� credential and

output a level-(�+k) credential; this means that a description is

of the form 〈T 〉 = ({(nymj , sk j , openj)}kj=1, nymnew , flag
′),

and T (nym, �, flag)

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(nymnew , �+ k, cred)
if nym1 = nym and flag = flag′ = cred

(nymnew , �+ (k − 2), proof)
if nym1 = nym, flag = cred, and flag′ = proof

⊥
otherwise.

Thus, the set of allowable transformations Tdac con-

sists of transformations whose description is 〈T 〉 =
({(nymj , sk j , openj)}kj=1, nymnew , flag

′), whose input/output

behavior is as above, and such that

1) A user needs a pseudonym to which a credential was

issued before the user can delegate or prove possession

of it: k > 0.

2) A user can only delegate a credential he owns; i.e., he

must know the opening of the pseudonym to which it

was issued: for commitment parameters pp′, nymj =
Com(pp′, sk j ; openj) for all 1 ≤ j ≤ k.

3) If this is a proof of possession, meaning flag′ = proof,
then k ≥ 2 and 〈T 〉 must include the opening of

nymnew , so we require nymk = nymnew . Additionally,

the owner of nymnew must be the same as the owner of

the pseudonym to which the credential was delegated,

so we require skk = skk−1.

In terms of credential size, we can see that messages scale

logarithmically with the number of levels (as they need to

represent the integer �), while the size of the description

of a transformation scales linearly, as does the size of our

credentials. Since credentials should (as part of their func-

tionality) explicitly reveal how many times they have been

delegated, some dependence seems inevitable. As evident

for transferable e-cash [46], we conjecture that the strong

extraction requirements of our definitions require delegatable

credentials to grow linearly in the number of delegations.

B. Our construction
Our construction follows the intuition developed above: to

form a pseudonym, a user forms a commitment to a signing

secret key; to issue a credential, the root authority signs the

recipient’s pseudonym and the intended level of the credential;

and to delegate and prove possession of a credential, a user

mauls the credential (i.e., signature) using one of the allowable

transformations defined above. Formally, we use a simulatable

signature (Gen,KeyGen, Sign,Verify, SigEval), malleable with

respect to Tdac, and a commitment scheme (ComSetup,Com)
as follows:

• Setup(1k): Compute crs
$←− Gen(1k) and

pp′ $←− ComSetup(1k). Output pp := (crs, pp′).

• KeyGen(pp): Output (vk , sk)
$←− KeyGen(1k).

• NymGen(pp, sk): Pick a random opening open, compute

nym := Com(pp′, sk ; open), and output (nym, open).

• NymVerify(pp, nym, sk , open):
Check that nym = Com(pp′, sk ; open);
output 1 if this holds and 0 otherwise.

• Issue(pp, sk0, vk0, nymr): Compute σ
$←− Sign(crs, sk0,

(nymr, 1, cred)) and output C := (vk0, 1, nymr, σ).

• CredProve(pp, sk , nym, open, nym′, open′, C):
Parse C = (vk0, �, nym, σ) and abort if Verify(crs, vk0,
σ, (nym, �, cred)) = 0.

Otherwise, set 〈T 〉 := (((nym, sk , open), (nym′,
sk , open′)), nym′, proof).
Compute σ′ $←− SigEval(crs, vk0, T, (nym, �, cred), σ),
and output π := (nym′, σ′).

• CredVerify(pp, vk0, nym, �, π): Parse π = (nym′, σ′);
output 0 if nym′ �= nym.

Otherwise, output Verify(crs, vk0, σ
′, (nym, �, proof)).

• Delegate(pp, skold , nymold , openold , nymnew , C): Parse

C = (vk0, �, nymold , σ) and abort if Verify(crs,
vk0, σ, (nymold , �, cred)) = 0.

Otherwise, set 〈T 〉 := ((nymold , skold , openold),
nymnew , cred).

Compute σ′ $←− SigEval(crs, vk0, T, (nymold , �, cred), σ),
and output C′ := (vk0, �+ 1, nymnew , σ

′).

Theorem V.1. If the commitment scheme is computationally
hiding and perfectly binding, and the signature is simulatable,
malleable, simulation unforgeable, and simulation context
hiding with respect to Tdac, then the above construction
describes a secure delegatable anonymous credentials scheme,
as defined in Section II-C.

In the next section, we see how to instantiate the malleable

signature, using cm-NIZKs, to achieve the required malleabil-

ity and security properties.

C. Instantiating our construction

Two constructions of cm-NIZKs exist within the literature,

both due to Chase et al.: their original construction [12]

based on Groth-Sahai proofs [39], and a more recent con-

struction [24] based on succinct non-interactive arguments of

knowledge (SNARGs) and homomorphic encryption. While

the latter construction is less efficient, showing that it supports

the class of transformations Tdac is relatively straightforward:

all we need to show is that the language and class of

transformations are what is called t-tiered, meaning that (1)

every instance x in the language can be labeled with an integer

i = tier(x), and (2) every transformation T ∈ Tdac is such that

tier(T (x)) > tier(x) for all x ∈ L such that tier(x) < t, and

T (x) = ⊥ if tier(x) = t.
To see that our language is t-tiered, we recall that the

relation R in Section IV was defined as (x = (pk ,m), w =
sk) ∈ R ⇔ (pk , sk) ∈ Rpk for a hard relation Rpk . For the

credentials, m = (nymr, �, flag), so we define tier(x) := �
if flag = cred and tier(x) := � + 1 if flag = proof.

208

To see that Tdac is also t-tiered, we observe that 〈T 〉 =
({nymi, sk i, openi}ki=1, nymnew , flag

′), where it is required

that k > 0. Looking at the two cases for how transforma-

tions behave, for the first we see that T (nymr, �, cred) =
(nymnew , � + k, cred); then tier(x) = �, tier(T (x)) = � + k
for k > 0, and thus tier(T (x)) > tier(x) as desired. In the

second case, T (nymr, �, cred) = (nymnew , � + k − 2, proof);
here it is additionally required that k ≥ 2, so tier(T (x)) =
�+k−2+1 > � = tier(x) and the condition is still satisfied. To

finally satisfy the requirement that T (x) = ⊥ if tier(x) = t,
we could require that credentials can be delegated at most

t− 1 times (the last tier t would then be reserved for proving

possession).

While the result of Chase et al. [24] therefore assures us

that we can construct a cm-NIZK supporting Tdac. One might

also wish to instantiate our cm-NIZK using their first, more

efficient, construction. In order to do this, one would have

to show that our relation and class of transformations are

what is called CM-friendly; this essentially means that all of

the objects (instances, witnesses, and transformations) can be

represented as elements of a bilinear group and hence the

system is compatible with Groth-Sahai proofs. In unpublished

work [26] we show that this is indeed the case.

VI. RELATIONS BETWEEN MALLEABLE SIGNATURE

DEFINITIONS

In this section we relate our simulation-based notions of

unforgeability and context hiding (Definitions III.4 and III.3,

respectively) to definitions for homomorphic signatures as

defined by Ahn et al. [3] and Attrapadung et al. [4], as

well as to the recently introduced notions of policy-based

signatures [30] and delegatable functional signatures [29].

A. Previous definitions

To begin our comparison, we must first recall the specific

definitions of Ahn et al. and Attrapadung et al. to which we are

comparing our own. We first recall the two main unforgeability

definitions of Ahn et al.; we refer to the first as existential

unforgeability, and the second as NHU unforgeability.

Definition VI.1 (Existential unforgeability). [3] For a signa-
ture (KeyGen, Sign,Verify, SigDerive) malleable with respect
to a predicate P , a table Q = Qm × Qσ , and an adversary
A, consider the following game:

• Step 1. (vk , sk) $←− KeyGen(1k); S,Q← ∅.
• Step 2. (m∗, σ∗) $←− ASign,SigDerive,Reveal(vk), where these

oracles behave as described in Fig.1
Then the signature scheme satisfies existential unforgeabil-

ity if for all such PPT algorithms A there exists a neg-
ligible function ν(·) such that the probability (over the
choices of KeyGen, Sign, SigDerive, A, and the handles) that
Verify(vk , σ∗,m∗) = 1, and m∗ /∈ P ∗(Qm) is at most ν(k).3

3Here P ∗(M) denotes the set of messages derivable from M by repeated
derivation, where a message m′ is derivable from the set M if P (M,m′) =
1.

The definition of NHU unforgeability is similar to that of

existential unforgeability, with the exception that the Sign
oracle is the only one provided.

Definition VI.2 (NHU unforgeability). [3] For a signature
(KeyGen, Sign,Verify, SigDerive) malleable with respect to a
predicate P , a table Q = Qm × Qσ , and an adversary A,
consider the following game:

• Step 1. (vk , sk) $←− KeyGen(1k); Q← ∅.
• Step 2. (m∗, σ∗) $←− ASign(·)(vk), where Sign behaves as

follows:
Signsk (m)

σ ← Sign(sk ,m)
add (m,σ) to Q
return σ

Then the signature scheme satisfies NHU unforgeability if for
all such PPT algorithms A there exists a negligible function
ν(·) such that the probability (over the choices of KeyGen,
Sign, and A) that Verify(vk , σ∗,m∗) = 1 and m∗ /∈ P ∗(Qm)
is at most ν(k).

For context hiding, we compare simulation context hiding

(as defined in Definition III.3) to the notion of adaptive context

hiding given by Attrapadung et al., which is in turn inspired

by the computational notion of context hiding given by Ahn

et al.

Definition VI.3 (Adaptive context hiding). [4] For a signature
scheme (KeyGen, Sign,Verify, SigDerive) malleable with re-
spect to a predicate P , an adversary A, and a bit b, let pAb (k)
be the probability of the event that b′ = 0 in the following
game:

• Step 1. (vk , sk) $←− KeyGen(1k).

• Step 2. (state, �m, �σ,m′) $←− A(vk , sk).
• Step 3. If Verify(vk , σi,mi) = 0 for some i or

P (�m,m′) = 0, abort and output ⊥. Otherwise, form σ
$←−

Sign(sk ,m′) if b = 0, and σ
$←− SigDerive(vk , �m, �σ,m′)

if b = 1.

• Step 4. b′ $←− A(state, σ).
Then the signature scheme satisfies adaptive context hiding if
for all PPT algorithms A there exists a negligible function
ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Before we move on to consider our new definitions, we

relate the two notions of unforgeability using the notion of

adaptive context hiding. As we show, when adaptive context

hiding holds, NHU unforgeability implies existential unforge-

ability; as existential unforgeability trivially implies NHU

unforgeability, this means the two notions are equivalent. For

the rest of this section, we therefore focus mainly on the notion

of NHU unforgeability.

Theorem VI.4. If a P -homomorphic signature scheme
(KeyGen, Sign,Verify, SigDerive) is NHU unforgeable and
adaptive context hiding, and if m ∈ P ∗(M) is efficiently
decidable, then it is also existentially unforgeable.

209

Signsk (m) SigDerivepk ({hi}i,m′)) Reveal(h)

h
$←− H (hi,mi, σi)← S ∀i (h,m, σ)← S

add (h,m, Sign(sk ,m)) to S if P (�m,m′) = 1, pick h′ $←− H add (m,σ) to Q
return h add (h′,m′, SigDerive(vk , �m, �σ,m′)) to S return σ

return h′

Fig. 1: Oracles for existential unforgeability

The proof of this theorem can be found in our report [26].

B. Relating our definitions to prior work

In Section III, we briefly outlined our reasons for choosing

to work in the language of transformations rather than that of

predicates. To meaningful relate our security definitions to the

predicate-based definitions just presented, however, we first

need a way to formally relate transformations and predicates.

We do this as follows:

Definition VI.5. We say that a transformation class T im-

plements a predicate P if for all M ⊂ M and m∗ ∈ M,
P (M,m∗) = 1 if and only if there exist m1, . . . ,mn ∈ M
and T ∈ T such that T (m1, . . . ,mn) = m∗.

Note that we can always construct a transformation class

T that implements a given predicate as follows: for each

pair (�m,m∗) such that P (�m,m∗) = 1, we consider TP
that contains an extreme partial function; i.e., TP = {�m �→
m∗ | P (�m,m∗) = 1}. Sometimes, however, there is a

more natural transformation class T for implementing a given

predicate.4

The other major syntactic difference is that our simulation-

based definitions consider signatures schemes in the CRS

model, whereas previous definitions considered signatures

in the standard model (i.e., without the trusted setup com-

ponent Gen defined in Section III-A). This difference is

also easily addressed: for any CRS model signature Σ =
(Gen,KeyGen, Sign,Verify), a corresponding signature Σ′ in

the standard model can be defined as (KeyGen′, Sign,Verify),
where KeyGen′ runs crs

$←− Gen(1k) and (vk , sk)
$←−

KeyGen(crs), and outputs (vk ′ := (crs, vk), sk).
With these notational differences out of the way, we now

proceed as follows: first, we show that for simulatable signa-

tures, our notions of simulation unforgeability and simulation

context hiding imply the notions of NHU unforgeability and

adaptive context hiding respectively. Next, we show that

existing constructions can be easily made simulatable, with-

out changing their security guarantees, by adding a proof

of knowledge and shifting to the CRS model. Finally, we

show that for certain classes of transformations (that, to the

best of our knowledge, includes all classes of transforma-

tions for which constructions exist), our notion of simulation

unforgeability is implied by, and thus equivalent to, NHU

4Ahn et al. suggest that in some cases one could pass an additional input w
into the predicate. This could also be done here if w is efficiently computable
from T .

unforgeability (again, with respect to simulatable signatures,

as otherwise our definitions are not well defined).
1) Simulatability-based definitions imply previous defini-

tions: The proof of the following two theorem can be found

in in our report [26].

Theorem VI.6. Let T be a transformation class that im-
plements the predicate P . Let Σ be a signature in the CRS
model that is malleable with respect to T , and let Σ′ be
the corresponding standard model signature. If (1) Σ is
simulatable, and (2) m ∈ P ∗(M) is efficiently decidable, then
Σ′ is NHU-unforgeable with respect to P if Σ is simulation
unforgeable with respect to T .

Theorem VI.7. Let T be a transformation class that im-
plements a predicate P . Let Σ be a signature in the CRS
model that is malleable with respect to T , and let Σ′ be the
corresponding standard model signature. If Σ is simulatable
and simulation context hiding with respect to T , then Σ′ is
adaptive context hiding with respect to P .

By combining these two theorems with Theorem VI.4,

which relates NHU unforgeability back to existential unforge-

ability, we obtain the following corollary:

Corollary VI.8. Let T be a transformation class that im-
plements the predicate P . Let Σ be a signature in the CRS
model that is malleable with respect to T , and let Σ′ be
the corresponding standard model signature. Then if (1) Σ
is simulatable, (2) Σ′ is adaptive context hiding (alternatively,
Σ is simulation context hiding), (3) P is efficiently decidable,
and (4) Σ is simulation unforgeable, then Σ′ is existentially
unforgeable.

2) Adding simulatability to existing constructions: After

demonstrating that our definitions imply previous defini-

tions for simulatable signatures, we now demonstrate that

building simulatability into existing constructions is not too

difficult. In fact, for any standard model signature scheme

Σ = (KeyGen, Sign,Verify) we consider a CRS model sig-

nature scheme Σ∗ = (Gen∗,KeyGen∗, Sign,Verify), in which

Gen∗ outputs the crs for a non-interactive zero-knowledge

proof of knowledge (NIZKPoK) for the relation R :=
{(vk , (sk , r)) | KeyGen(1k; r) = (vk , sk)}, and KeyGen∗(crs)
runs (vk , sk)

$←− KeyGen(1k; r) and π
$←− P(crs, vk , (sk , r)),

and outputs (vk∗ := (vk , π), sk). We denote this CRS model

signature as the extended CRS model signature.

Theorem VI.9. Let Σ be a signature scheme in the standard
model, let Σ∗ be the extended CRS model signature using

210

(CRSSetup,P,V), and let Σ′ be the standard model scheme
corresponding to Σ∗. Then, if (CRSSetup,P,V) is a zero-
knowledge proof of knowledge,

1) Σ∗ is simulatable;
2) if Σ is NHU unforgeable, then Σ′ is NHU unforgeable;
3) if Σ is adaptive context hiding, then Σ′ is adaptive

context hiding.

The proof of this theorem can be found in in our report [26].

We remark that Section 6.1 of [42] describes another

mechanism for making signature schemes simulatable using

OR proofs. We did, however, not investigate this mechanism

with respect to malleability.

3) When existing constructions meet our definitions: For

context hiding, our notion of simulation context hiding seems

clearly stronger than existing definitions, as it guarantees

privacy even in case of adversarially-generated verification

keys. What is unclear, however, is whether existing mal-

leable signature schemes (when adapted to be simulatable)

can meet our stronger notion of simulation unforgeability.

Perhaps unsurprisingly, this depends largely on the class of

transformations they require.

As it turns out, for most existing schemes the relevant class

of transformations is such that it is easy to determine, given

a set of “base” messages and a transformed message, the

transformation that was applied. More formally, we have the

following definition:

Definition VI.10 (Trivial extractability). We say a transfor-
mation class T is trivially extractable if there exists a PPT
algorithm TrivExt such that for all polynomial-sized M ⊂M
and m∗ ∈ {m | ∃T ∈ T , �m ∈ M : m = T (�m)}, the
algorithm TrivExt(M,m∗) produces �m = (m1, . . . ,mn) ∈M
and transformation T such that m∗ = T (�m).

As an example, we consider the linear homomorphic signa-

ture construction given by Attrapadung et al. Phrased in the

language of transformations, their construction allows for lin-

ear combinations of (similarly tagged) messages; i.e., for any

vector �β = (β1, . . . , βn) ∈ Z
n, T�β((τ1, �y1), . . . , (τn, �yn)) =

(τ1,
∑

i βi�yi) if τ1 = . . . = τn and ⊥ otherwise. To see how

this transformation class is trivially extractable, we construct

the TrivExt algorithm as follows: on input M and m∗ = (τ, �y),
it first lets Mτ define the set of messages in M with tag

τ . Second, it identifies a subset of Mτ that forms a basis

for the subspace spanned by the vectors in Mτ . Third, it

finds coefficients to represent �y as a linear combination of

those basis vectors. Fourth and last, it outputs the basis

vectors as (m1, . . . ,mn), and the linear combination defined

by the coefficients as the transformation T . This algorithm is

furthermore efficient, as each step involves basis linear algebra.

In a similar manner, one can show that subset signatures,

quotable signatures, and transitive signatures are all trivially

extractable as well; briefly, for each of these constructions

TrivExt respectively corresponds to finding a superset, search-

ing for a substring, and finding a path in a graph, all of which

have simple efficient algorithms.

We argue that for such transformation classes, NHU un-

forgeability and simulation unforgeability are equivalent.

Theorem VI.11. Let T be a transformation class that im-
plements the predicate P . Let Σ be a signature in the CRS
model that is malleable with respect to T , and let Σ′ be the
corresponding standard model signature. If Σ is simulatable
and T is trivially extractable, then Σ′ is NHU unforgeable
with respect to P if and only if Σ is simulation unforgeable
with respect to T .

The proof of this theorem can be found in in our report [26].

Once again, we can combine Theorems VI.9 and VI.11

to get a corollary that shows that, for any of the standard

types of transformation considered in previous work (i.e.,

any trivially extractable transformations), we can construct

simulation-unforgeable signature schemes based on ones that

are NHU unforgeable.

Corollary VI.12. If Σ is NHU unforgeable for a predicate
P implemented by a trivially extractable transformation class
T , then the extended CRS model signature Σ∗ is simulation
unforgeable.

C. Other schemes implied by our definitions

In this section, we briefly sketch how malleable signatures

can be used to imply both policy-based signatures (as in-

troduced by Bellare and Fuchsbauer [30]) and delegatable

functional signatures (as introduced by Backes et al. [29]).

1) Policy-based signatures: In a policy-based signature

(PBS) scheme a signer is restricted to sign messages m
conforming to some authority-specified policy p. The main

requirements are that signatures are unforgeability and hide

the policy used for their generation. PBS offers value both on

the practical side, as they allow a corporation to control what

messages its employees can sign under the corporate key, as

well as on the theoretical side as they capture others forms of

signatures as special cases.

Let T be a transformation class that implements the policy

checker predicate PC of a PBS scheme. A transformation

T(p,m,w) ∈ T , with Tp,m,w(p) = m is represented by values

〈T 〉 = (p,m,w) for which PC((p,m), w) = 1. The value w
is an additional witness used in the definition of the predicate.

The key insights for realizing policy-based signatures using

malleable signatures are that the signing key for a policy

corresponds to a signature on the policy under msk, and

that generating a signature under that policy corresponds to

deriving a signature on m from a signature on p.

The construction is quite straightforward, with the only

interesting aspect being that the policy p is added into the

policy key skp to make the full transformation description

available in PBS.Sign.

• PBS.Setup(1k). Run crs
$←− Gen(1k) and

(vk , sk)
$←− KeyGen(crs). Return (pp = (crs, vk),msk =

sk).
• PBS.KeyGen(pp,msk, p)).

Return skp = (Sign(crs, sk , p), p).

211

• PBS.Sign(pp, skp,m,w).

Return σ
$←− SigEval(crs, vk , T(p,m,w),m, skp).

• PBS.Verify(pp,m, σ). Return Verify(crs, vk ,m, σ).

• PBS.SimSetup(1k). Run crs, τs, τe
$←− SimExtGen(1k)

and vk , sk
$←− KeyGen(crs).

Return (pp = (crs, vk),msk = sk , tr = (crs, vk , τs, τe)).
• PBS.SimKeyGen(tr, p).

Return skp = (SimSign(crs, τs, vk , p), p).
• PBS.SimSign(tr,m).

Return σ
$←− SimSign(crs, τs, vk ,m).

• PBS.Extr(tr,m, σ).
Return (p, w)← SigExt(crs, vk , τe,m, σ, ∅).

To prove that malleable signatures for T imply policy-based

signatures, we need to show that our construction is both

simulatable and extractable.

Proof: (Sketch.) To prove simulatability we start from

the ExpSIM
PBS experiment and go through a series of game

transformations. We first change the generation of pp1 to use

PBS.SimSetup to obtain an additional trapdoor tr1. We also

change the generation of psk1 to use PBS.SimKeyGen(tr1, p).
The difference in the success probability is bounded by the

success probability of a reduction breaking simulatability of

the underlying malleable signature scheme. Next, we change

the generation of σ1 to use PBS.SimSign instead of PBS.Sign.

The difference in the success probability is bounded by the

success probability of a reduction breaking simulation context
hiding. Now the distributions for b = 0 and b = 1 are the

same.

The extractability of the policy-based signature scheme

follows by a trivial reduction to simulation unforgeability.

We simulate INITIALIZE, SKEYGEN, and SIMSIGN using the

simulation unforgeability challenge and oracle queries. We

forward the input to FINALIZE as the message and signature

for which we want to break simulation unforgeability. When-

ever FINALIZE returns true, our reduction wins the simulation

unforgeability game as p /∈ QK corresponds to {p} �⊆ Qm

and PC((p,m), w) = 0 corresponds to m �= T(p,m,w)(p) or

T(p,m,w) /∈ T .

2) Delegatable functional signatures: A Delegatable func-

tional signature (DFS) scheme supports the delegation of

signing capabilities to a party called the evaluator with respect

to a functionality F . In a DFS, the signer chooses an evaluator,

specifies how the evaluator can modify the signature, allows

additional input and decides how the evaluator can further

delegate its capabilities.

To construct delegatable functional signatures given a hard

relation and a malleable signature scheme for an appro-

priate transformation class, we first use the hard relation

to define public and secret keys. To issue a delegatable

signature with evaluator pkev , function f , and message m,

a signer computes a malleable signature on the message

mmalleable = (pkev , f,m). This signature scheme should be

simulatable, malleable simulation context hiding, and sim-

ulation unforgeable with respect to the following transfor-

mation class T : for every valid key pair (pkev , skev) and

for every pk ′ and α, T includes a transformation with

description 〈T 〉 = (skev, pk
′, α) such that for every f

and m, T (pkev, f,m) = (pk ′, f ′,m′) where (f ′,m′) ←
F(λ, f, α, pk ′,m), and T (x, f,m) = ⊥ for all x �= pkev .

EvalF then simply finds the appropriate transformation and

applies it to the signature using SigEval.
Unforgeability follows from the fact that we can extract

a valid transformation, which includes the secret key skev ;

hardness of the relation then guarantees that an adversary

cannot modify a signature unless he has the appropriate

secret key. Privacy follows in a straightforward way from

simulatability and simulation context hiding.

VII. CONCLUSIONS AND FUTURE WORK

We give new definitions for malleable signatures that are

suitable for a larger class of applications. We demonstrate

this by instantiating delegatable anonymous credentials and

by investigating the relations between malleable signatures and

other primitives like policy-based signatures and delegatable

functional signatures.

We instantiate malleable signatures generically based on

malleable zero-knowledge proofs which can be instantiated

either very succinctly using SNARGS [24] or using Groth-

Sahai proofs [12]. An interesting open question is the rela-

tionship between this new instantiation of the above primitives

and existing constructions. When instantiated using Groth-

Sahai proofs, they are superficially similar in that they often

use structure-preserving signatures and OR proofs to achieve

simulation-soundness, but there are some subtle differences

in what is signed and proved. A detailed comparative perfor-

mance and security analysis of the two approaches would thus

be very valuable.

ACKNOWLEDGMENTS

Anna Lysyanskaya was supported by NSF grants 1012060,

0964379, 0831293, and by a Sloan Foundation fellowship, and

Sarah Meiklejohn was supported in part by a MURI grant

administered by the Air Force Office of Scientific Research

and in part by a graduate fellowship from the Charles Lee

Powell Foundation.

REFERENCES

[1] S. Haber, Y. Hatano, Y. Honda, W. G. Horne, K. Miyazaki, T. Sander,
S. Tezoku, and D. Yao, “Efficient signature schemes supporting redac-
tion, pseudonymization, and data deidentification,” in ASIACCS, 2008,
pp. 353–362.

[2] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzen-
beisser, M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder,
“Redactable signatures for tree-structured data: Definitions and construc-
tions,” in ACNS, 2010, pp. 87–104.

[3] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, abhi shelat, and
B. Waters, “Computing on authenticated data,” in Proceedings of TCC
2012, ser. LNCS, vol. 7194. Springer-Verlag, 2012, pp. 1–20.

[4] N. Attrapadung, B. Libert, and T. Peters, “Computing on Authenticated
Data: New Privacy Definitions and Constructions,” in Asiacrypt 2012,
ser. Lecture Notes on Computer Science, vol. 7658. Springer, 12 2012.

[5] D. Chaum, “Security without identification: transaction systems to make
big brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp.
1030–1044, 1985.

212

[6] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in Proceedings of Eurocrypt 2001, ser. LNCS, vol. 2045. Springer-
Verlag, 2001, pp. 93–118.

[7] ——, “Signature schemes and anonymous credentials from bilinear
maps,” in Proceedings of Crypto 2004, ser. LNCS, vol. 3152. Springer-
Verlag, 2004, pp. 56–72.

[8] M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in
CRYPTO, ser. Lecture Notes in Computer Science, C. Dwork, Ed., vol.
4117. Springer, 2006, pp. 78–96.

[9] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya,
and H. Shacham, “Delegatable anonymous credentials,” in Proceedings
of Crypto 2009, ser. LNCS, vol. 5677. Springer-Verlag, 2009, pp.
108–125.

[10] L. Sweeney, “k-anonymity: a model for protecting privacy,” Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[11] P. Golle, “Revisiting the uniqueness of simple demographics in
the us population,” in Proceedings of the 5th ACM workshop
on Privacy in electronic society, ser. WPES ’06. New York,
NY, USA: ACM, 2006, pp. 77–80. [Online]. Available: http:
//doi.acm.org/10.1145/1179601.1179615

[12] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Mal-
leable proof systems and applications,” in Proceedings of Eurocrypt
2012, 2012, pp. 281–300.

[13] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to
identification and signature problems,” in Proceedings of Crypto 1986,
ser. LNCS, vol. 263. Springer-Verlag, 1986, pp. 186–194.

[14] M. Bellare and S. Goldwasser, “New paradigms for digital signatures
and message authentication based on non-interactive zero knowledge
proofs,” in Proceedings of Crypto 1989, 1989, pp. 194–211.

[15] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Proceedings of CT-RSA 2002, 2002, pp. 244–
262.

[16] K. Miyazaki, G. Hanaoka, and H. Imai, “Digitally signed document
sanitizing scheme based on bilinear maps,” in Proceedings of ASIACCS
2006, 2006, pp. 343–354.

[17] E.-C. Chang, C. L. Lim, and J. Xu, “Short redactable signatures using
random trees,” in Proceedings of CT-RSA 2009, 2009, pp. 133–147.

[18] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik, “Sanitizable
signatures,” in ESORICS, 2005, pp. 159–177.

[19] C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page,
J. Schelbert, D. Schröder, and F. Volk, “Security of sanitizable signatures
revisited,” in Public Key Cryptography, 2009, pp. 317–336.

[20] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder, “Unlinkability
of sanitizable signatures,” in Public Key Cryptography, 2010, pp. 444–
461.

[21] R. Steinfeld, L. Bull, and Y. Zheng, “Context extraction signatures,” in
Proceedings of ICISC 2001, 2001, pp. 285–304.

[22] S. Micali and R. Rivest, “Transitive signature schemes,” in Proceedings
of CT-RSA 2002, 2002, pp. 236–243.

[23] M. Bellare and G. Neven, “Transitive signatures: new schemes and
proofs,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp.
2133–2151, 2005.

[24] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Succinct
malleable NIZKs and an application to compact shuffles,” in Proceedings
of TCC 2013, 2013, pp. 100–119.

[25] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Proceedings of Crypto 2004, ser. LNCS, vol. 3152. Springer-Verlag,
2004, pp. 41–55.

[26] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Mal-
leable signatures: Complex unary transformations and delegatable
anonymous credentials,” Cryptology ePrint Archive, Report 2013/179,
2013, http://eprint.iacr.org/.

[27] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: the case of hashing and signing,” in Proceedings of Crypto 1994,
1994, pp. 216–233.

[28] E. Boyle, S. Goldwasser, and I. Ivan, “Functional signatures and
pseudorandom functions,” Cryptology ePrint Archive, Report 2013/401,
2013, http://eprint.iacr.org/.

[29] M. Backes, S. Meiser, and D. Schröder, “Delegatable functional signa-
tures,” Cryptology ePrint Archive, Report 2013/408, 2013, http://eprint.
iacr.org/.

[30] M. Bellare and G. Fuschbauer, “Policy-based signatures,” Cryptology
ePrint Archive, Report 2013/413, 2013, http://eprint.iacr.org/2013/413.

[31] D. X. Charles, K. Jain, and K. Lauter, “Signatures for network coding,”
IJICoT, vol. 1, no. 1, pp. 3–14, 2009.

[32] D. Boneh, D. M. Freeman, J. Katz, and B. Waters, “Signing a lin-
ear subspace: Signature schemes for network coding,” in Public Key
Cryptography, ser. Lecture Notes in Computer Science, S. Jarecki and
G. Tsudik, Eds., vol. 5443. Springer, 2009, pp. 68–87.

[33] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network
coding over the integers,” in Public Key Cryptography, 2010, pp. 142–
160.

[34] N. Attrapadung and B. Libert, “Homomorphic network coding signatures
in the standard model,” in Public Key Cryptography, 2011, pp. 17–34.

[35] D. Boneh and D. M. Freeman, “Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures,” in Public Key
Cryptography, 2011, pp. 1–16.

[36] ——, “Homomorphic signatures for polynomial functions,” in Proceed-
ings of Eurocrypt 2011, ser. LNCS, vol. 6632. Springer-Verlag, 2011,
pp. 149–168.

[37] D. M. Freeman, “Improved security for linearly homomorphic signa-
tures: A generic framework,” in Public Key Cryptography, ser. Lecture
Notes in Computer Science, M. Fischlin, J. Buchmann, and M. Manulis,
Eds., vol. 7293. Springer, 2012, pp. 697–714.

[38] N. Attrapadung, B. Libert, and T. Peters, “Efficient completely context-
hiding quotable and linearly homomorphic signatures,” in Proceedings
of PKC 2013, 2013, pp. 386–404.

[39] J. Groth and A. Sahai, “Efficient non-interactive proof systems for
bilinear groups,” in Proceedings of Eurocrypt 2008, ser. LNCS, vol.
4965. Springer-Verlag, 2008, pp. 415–432.

[40] G. Fuchsbauer, “Commuting signatures and verifiable encryption and an
application to non-interactively delegatable credentials,” IACR Cryptol-
ogy ePrint Archive, vol. 2010, p. 233, 2010.

[41] M. Abe and M. Ohkubo, “A framework for universally composable
non-committing blind signatures,” in ASIACRYPT, ser. Lecture Notes
in Computer Science, M. Matsui, Ed., vol. 5912. Springer, 2009, pp.
435–450.

[42] M. Abe, K. Haralambiev, and M. Ohkubo, “Signing on elements in
bilinear groups for modular protocol design,” Cryptology ePrint Archive,
Report 2010/133, 2010, http://eprint.iacr.org/2010/133.

[43] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo,
“Structure-preserving signatures and commitments to group elements,”
in Proceedings of Crypto 2010, ser. LNCS, vol. 6223, 2010, pp. 209–
236.

[44] A. de Santis, G. di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
“Robust non-interactive zero knowledge,” in Proceedings of Crypto
2001, ser. LNCS, vol. 2139. Springer-Verlag, 2001, pp. 566–598.

[45] J. Groth, “Simulation-sound NIZK proofs for a practical language and
constant size group signatures,” in Proceedings of Asiacrypt 2006, ser.
LNCS, vol. 4284. Springer-Verlag, 2006, pp. 444–459.

[46] D. Chaum and T. Pedersen, “Transferred cash grows in size,”
in Advances in Cryptology - EUROCRYPT’ 92, ser. Lecture
Notes in Computer Science, R. Rueppel, Ed. Springer Berlin
Heidelberg, 1993, vol. 658, pp. 390–407. [Online]. Available:
http://dx.doi.org/10.1007/3-540-47555-9 32

[47] M. Blum, A. de Santis, S. Micali, and G. Persiano, “Non-interactive
zero-knowledge,” SIAM Journal of Computing, vol. 20, no. 6, pp. 1084–
1118, 1991.

[48] J. Groth, R. Ostrovsky, and A. Sahai, “Perfect non-interactive zero-
knowledge for NP,” in Proceedings of Eurocrypt 2006, ser. LNCS, vol.
4004. Springer-Verlag, 2006, pp. 339–358.

[49] U. Feige, D. Lapidot, and A. Shamir, “Multiple non-interactive zero
knowledge proofs under general assumptions,” SIAM Journal of Com-
puting, vol. 29, no. 1, pp. 1–28, 1999.

213

