
Decidability for Lightweight Diffie-Hellman
Protocols

Daniel J. Dougherty Joshua D. Guttman

Worcester Polytechnic Institute

{dd, guttman}@wpi.edu

Abstract—Many protocols use Diffie-Hellman key agreement,
combined with certified long-term values or digital signatures for
authentication. These protocols aim at security goals such as key
secrecy, forward secrecy, resistance to key compromise attacks,
and various flavors of authentication. However, these protocols
are challenging to analyze, both in computational and symbolic
models. An obstacle in the symbolic model is the undecidability
of unification in many theories in the signature of rings.

In this paper, we develop an algebraic version of the sym-
bolic approach, working directly within finite fields, the natural
structures for the protocols. The adversary, in giving an attack
on a protocol goal in a finite field, may rely on any identity in
that field. He defeats the protocol if there are attacks in infinitely
many finite fields. We prove that, even for this strong adversary,
security goals for a wide class of protocols are decidable.

I. INTRODUCTION

Diffie-Hellman (DH) key agreement [15] is widely used.
It produces a shared secret, and is often combined with
additional techniques intended to authenticate the participants
to each other. Despite vigorous research in symbolic analysis
of security protocols, many questions remain about these fun-
damental techniques. While systems such as NPA-Maude [18],
ProVerif [5], AVISPA [2], [3], CPSA [41], and Scyther [14] are
extremely useful, indirect or ad hoc techniques are still needed
to analyze protocols using DH, as in [29]. Computational
techniques, also, for these protocols, have led to arduous proofs
after which controversy remains [24], [26], [28], [35].

Much of the challenge for symbolic analysis derives from
the fact that DH works in a finite cyclic group Cq , using
exponentiation to combine secret values. The exponents permit
both addition and multiplication, forming a field Fq . Equa-
tional theories extending the theory of rings tend to have
undecidable unification problems [33]. Symbolic approaches
typically simplify this signature, retaining the multiplicative
but not the additive operator. Some theoretical work supports
the restricted, multiplication-only framework [8], [25], [32].

However, important protocols, e.g. the implicitly authen-
ticated DH protocols MQV and HMQV [4], [24], [26], [31],
are out of reach of these techniques, even recent work such
as Tamarin [43]. These protocols use the full field structure of
the exponents, and call for a strong adversary model to match.

In this paper,1 we make the following main contributions.
First, we identify a class of DH protocols Π and a set of
security goals G such that, whenever Π has an execution which
is a counterexample to G, then there is a counterexample

1Funded by the National Science Foundation under Grant CNS-1116557.

using no more than a bounded number b of runs of roles
of Π. The bound b is determined from Π and G. We call
these the lightweight Diffie-Hellman protocols, and they are
reasonably inclusive. The Station-to-Station protocol [16] is
not lightweight, but several variants of it are. Lightweight
protocols also include implicitly authenticated DH protocols
such as the Unified Model [1], as well as MQV and HMQV.

Second, we introduce a strong adversary model, motivated
by the algebraic mechanisms underlying DH protocols. In this
model, the adversary acts against a protocol Π in particular
finite fields Fq . In staging an attack, he can rely on any valid
identity of Fq , without restricting the adversary’s algebraic
operations (or those in the protocol). The adversary defeats
a security goal G of Π if, for infinitely many q, he has coun-
terexamples to G when Π executes in Fq (see Section III-E).

Our security goals are geometric sequents, which are
formulas ∀x .Φ ⊃ Ψ, where Φ,Ψ are positive-existential, and
may contain ∧, ∨, and ∃, but not ∀, ⊃, or ¬. An execution
is a structure (model) in which a goal may be satisfied; if it
is falsified, then this structure is an attack on the goal. Each
structure involves a particular finite field F, so an attack for F
may not carry over to a different field F

′. Structures over a free
algebra, although not themselves real executions, summarize
common patterns in potential attacks over different fields.

We show that it is decidable whether a lightweight DH
protocol enforces a security goal.

Thus, we combine symbolic and algebraic methods for rea-
soning about DH protocols. Unlike previous work that regards
the messages as defined by a rewriting theory, including our
recent work [17], we use the traditional algebraic structures
of groups and fields. Hence, mathematical methods such as
Gaussian elimination can replace rewriting methods, especially
unification, in key places. This paper has seven main steps:

1. We define the lightweight protocols (Definition II.1).
2. We define a first-order logical language GL(Π) for each

protocol Π. It expresses security goals for DH protocols as
geometric sequents (Section IV). These goals include key
secrecy, which we formalize as a reachability property,
not by indistinguishability. They also include authentica-
tion of several flavors, as well as forward secrecy and
resistance to impersonation attacks (Section IV-A).

3. Many questions about rings and fields are undecidable.
Thus, GL(Π) is constructed to express our security goals,
but to be insensitive to other characteristics of the under-
lying algebraic structures (Lemmas IV.3 and VI.16).

4. We prove a small model property for security goals and

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Daniel J. Dougherty. Under license to IEEE.

DOI 10.1109/CSF.2014.23

217

lightweight protocols, i.e. a size bound such that, if any
protocol run can falsify the goal, then some run smaller
than the bound falsifies it (Thm. V.4).

5. In a very spare symbolic model we call FAlg, there are
only finitely many non-isomorphic structures smaller than
the bound (Lemma. III.3). Each one represents a (possibly
empty) set of potential executions.

6. For each of these FAlg structures, we use a constraint
solving method [10], [36], followed by Gaussian elimi-
nation, to determine for which q it yields a non-empty
set of executions over Fq . This produces either a solution
that works uniformly in q, or else a solution for at most
finitely many choices of q. Thus, when the adversary can
defeat the protocol for infinitely many choices of q, a
fixed solution wins for all q. This leads to decidability
for lightweight DH protocols (Section VI).

7. We illustrate our method, showing the main part of
checking that MQV achieves key secrecy. We also derive
Kaliski’s unknown key share attack against MQV [24].

Step six is more challenging than the NP-completeness
shown by Rusinowich and Turuani [42], since the adversary
may rely on the identities true in each Fq .

Thus we have obtained a stronger, cleaner analysis by
working with a richer algebra—fields of rational functions—
than rewriting methods allow.

Related Work. Two characteristics distinguish our work.
First, we offer all the operations of fields, including addition
and division. Addition occurs in many key computations.
Division occurs in some protocols, but, more importantly, the
adversary may use it, and some actual attacks depend on it
(e.g. Kaliski’s unknown key share attack on MQV [24]; cf. Sec-
tion VII). Second, we do not assume the bounded session
model, which asserts security goals only about small execu-
tions (see Chevalier et al. [8], and Millen and Shmatikov [37]).
On the contrary, for lightweight protocols, we prove all at-
tacks can be found among small executions. The lightweight
conditions adapt an idea of Suresh and Ramanujam [40]. Our
paper appears to be the first DH decidability result outside
the bounded session model. Since several real protocols, often
using the full field structure, are lightweight, this seems a major
step forward.

We focus on defining the underlying semantics of mes-
sages, and their relations to groups and fields, accurately. Many
papers have treated the operators and their properties purely
syntactically, e.g. [11], [25]. Meadows and Pavlovic adopt an
axiomatic approach, which leads to a flexible and suggestive
method, but does not elucidate the message structures [38].
Many papers also use linear algebra as we do, such as
Pereira and Quisquater’s generic insecurity for AGDH [39] and
Kremer and Mazaré on protocols using bilinear pairings [27].

Our use of extension fields in which the field extension
elements are exponents chosen by the regular participants
and then by the adversary, provides an algebraic framework
which matches our strong symbolic adversary model. Bresson
et al. [7] study a related adversary model, showing it sound
relative to a passive computational adversary.

◦ ��
A,a

• ��
gx

��

• �� • �� ◦
A, B, K

•
cP
��

gζ��

gξ
��

cA,cB
��

cB ,cA��◦ ��
B,b

• �� • ��
gy
��

• �� ◦
A, B, K

cP = [[cert gπ, P]]sk(CA)

Initiator Parameters: A,B, a, x, ξ, β,K
Responder Parameters: A,B, b, y, ζ, α,K

Fig. 1. IADH Initiator, Responder, and CA Roles

II. SOME DH PROTOCOLS

Many Diffie-Hellman style protocols, including some im-
plicitly authenticated DH protocols, have the form shown in
Fig. 1. We use t0, t1 for the pair or concatenation of two
messages t0 and t1, and we use [[t]]K for a digital signature
on t produced using signing key K.

Each party has a long-term secret exponent, which we
write a for the participant named A and b for B, etc. Each
party gets his or her secret certified. The signed message
[[cert ga, A]]sk(CA) binds A’s public long-term value ga to A’s
name. We regard the CA as simply transmitting the relevant
certificate (Fig. 1, top right). The CA may require procedures
such as a proof of knowledge before issuing the certificate;
their consequences may be expressed via axioms.

We represent each role of the protocol as a strand, namely
a linear sequence of events (called nodes) each of which is
a transmission, a reception, or a neutral node. Neutral nodes
neither transmit nor receive, but only retrieve or store values
into the principal’s long term state [21]. We write ◦ for these
local events, and • for transmissions and receptions.

Each party first retrieves its name and long term secret from
storage without sending or receiving anything. They transmit
the public exponentiated ephemeral values gx, gy matching
their secrets x, y. They receive group elements gξ, gζ . These
are the partners’ ephemeral public values when the adversary is
not active in a particular session (and the network cooperates).
The roles differ only in the order of the transmission and
reception events. A does not know that gξ is the same as the
gy that B sent, and conversely for B. All they know is that
they have received group elements (which they test, ensuring
gξ, gζ �= g0). Although the participants do not explicitly know
ξ and ζ, we regard them as parameters. We use Greek letters
for parameters that the participants cannot identify.

Next, each party receives a certificate containing a name,
possibly the actual name of his peer, and a value gα, possibly
equal to the actual public value ga. The last event is a key
computation. It deposits a record containing the new session
key and the associated principal names into local storage. This
key is never transmitted, though it may subsequently be used
for encryption, or to derive keys.

Fig. 1 is compatible with many protocols, because the
session key may be computed in many ways. Several of these
are shown, as computed by the initiator, in Fig. 2. Hash(t) and
hash(t) are hash functions that produce values in Mesg and E
respectively. MQV uses an operator [t], returning an exponent
from any message. Since this “poor man’s hash function”

218

UM Hash((gβ)a, (gξ)x)

Naxos Hash((gξ)a, (gβ)x
′
, (gξ)x

′
, A, B)

CF (gξgβ)x+a

(H)MQV (gξ(gβ)E)x+Da

MQV: E = [gξ], D = [gx]

HMQV: E = hash(gξ, B), D = hash(gx, A)

Naxos, etc: Use x′ = hash(x, a) and y′ = hash(y, b)

Fig. 2. Some IADH key computations for initiator [1], [13], [26], [30], [31]

• ��
gx

��

• �� • ��
[[ir B, gξ, gx]]sk(A)

��

◦

KA

gζ

��

gξ, [[ri A, gx, gξ]]sk(B)

��

[[ir B, gy, gζ]]sk(A)��
• �� • ��

gy, [[ri A, gζ, gy]]sk(B)

��

• �� ◦
KB

Fig. 3. Variant of the Station-to-Station protocol

satisfies Assumption III.7, we view it as a hash. Many other
key computations have been proposed (see e.g. [4], [6]).

Naxos [30] suggests using the hashed values hash(x, a) and
hash(y, b) in place of x and y respectively. This doubles the
number of candidate protocols, and is an advantage in attack
models where the long-term value a is protected by hardware,
but the short term value x can be compromised more easily.
We will not include the Naxos-style protocols as lightweight.

Protocols may also take other forms. Cremers-Feltz [13]
place each ephemeral value gx, gy inside a digital signature.
By contrast, the Station-to-Station protocol [16] signs the pair
of both ephemeral values, and does not use certified long-term
DH values. The session key is KA = (gξ)x. The original STS
uses encryptions to protect the signatures. The variant in Fig. 3
omits the encryptions. The tags ri, ir distinguish the directions
of the signed units as responder-to-initiator or the reverse.

The encryptions and syntactically ambiguous signatures
entail that STS itself is not a lightweight protocol. Another
example of a protocol that we will not cover is MTI(C) [6],
[34]. In this protocol, each participant chooses an ephemeral
value x, y, but in fact transmits (gβ)x or (gα)y . The message
flow differs from Fig. 1, because the certificates must be
received before these group elements are transmitted. The key
in a successful session, in which the transmitted values are
received unchanged, and in which α = a and β = b, is gxy . A
computes this from gαy by exponentiating to the power x/a;
B’s computation is symmetric. In MTI(C), a group element is
transmitted that depends partly on a value that was received,
and partly on an exponent chosen by the principal. This type of
protocol, like Naxos, calls for separate treatment in the future.

Definition II.1. The lightweight Diffie-Hellman protocols are
those that satisfy the following four assumptions:

Well-typed messages are sent and received by the regular
participants (Defn. III.6.1). In particular, every message
sent or received is either a group element gv or other
primitive value such as a nonce or principal name; or
built recursively by pairing and digital signature.

Exponents x assumed uncompromised are chosen on a role

only when the group element gx is transmitted. This
concerns x ∈ rl non(ρ) (see Defn. III.6.2); it applies if
the chosen exponent x is assumed uncompromised, for
every strand instantiating role ρ.

Simple digital signatures are used. Specifically, there is a
globally compatible order on the sequence in which dif-
ferent digitally signed messages may be used. This order
has only finitely many different classes. See Def. V.2.

Linear use of received exponents α in a key computation.
If group elements gα0 , gα1 etc. are received in a role, then
any monomial in the resulting key has, for these variables
αi, at most total degree 1. See Def. III.14.

This last assumption is really not a restriction on the pro-
tocols considered. For the compliant participants to compute
a monomial of total degree > 1 in the αi, they would need to
circumvent the Computational Diffie-Hellman assumption.

The assumption on digital signatures is crucial for the
boundedness result, as helped by the uncompromised expo-
nent principle. The first assumption entails that lightweight
protocols do not send and receive encrypted messages; the
purpose of these protocols being to agree on session keys,
they therefore do not assume shared keys. The assumption that
exponents appear only simply in the form gx, in combination
with the last assumption, excludes MTI(C) and Naxos.

III. MESSAGES, PROTOCOLS, AND THE ADVERSARY

We work with message algebras of two kinds. To model
protocol executions we work with algebras including cyclic
groups and fields as the interpretations of some of their sorts.
These field-based algebras are not syntactic: they are not freely
generated by taking a quotient under theory consisting of
equations or conditional equations. This is unavoidable: fields
cannot be axiomatized by conditional equations (as is shown
by the fact that the product of fields is not a field). This
essentially distinguishes protocol analysis in this new setting.

We also use syntactic algebras, generated from given values
by free operators. They allow us to represent patterns that
are independent of the choice of field, especially patterns for
counterexamples to security goals. In fact we use two different
syntactic algebras. One has a signature that includes the group
and field operators; the other has a more restrictive signature.
The latter allows only finitely many non-isomorphic structures
with a bounded number of sessions (Section I, claim 5).

A. Strands and Protocols

We define strands, protocols, etc., uniformly for different
algebras. Our algebras are order-sorted, with top sort D. We
also distinguish two subsets Param and Basic, where Param ⊆
Basic ⊆ D. We assume that each algebra is equipped with
a relation of occurrence and an ingredient relation �; these
features are defined when we instantiate them in Sections III-B,
III-C. The term algebra TΔ(Param) over a signature Δ consists
of terms freely generated from Param.

Homomorphisms from one algebra to another, or to itself
(endomorphisms), are defined as usual; we usually write σ for
a homomorphism, since they represent substitutions (among
other purposes).

219

We use these algebras to build models of protocol behavior.
We follow previous strand space practice (e.g. [22]) except that
we allow the roles of a protocol to have constraints. A role
constraint rconstr(ρ, i) gives an equation that must be true
when the ith step of the role ρ is instantiated. We use them
to represent the key computations, relating a key parameter K
to the other parameters, via a condition such as K = (gξ)x;
the right hand side also can take any of the forms in Fig. 2.
Constraints may be expressed in a signature richer than Δ.

A strand has a sequence of nodes, each of which is a
transmission, a reception, or a local or neutral event. Each
node n has a message msg(n). The messages are all chosen
from an algebra Alg with some signature Δ. We write s ↓ i
for the ith node on s. We write n0 ⇒ n1 when n0 = s ↓ i
and n1 = s ↓ i + 1 for some s, i. We lift substitutions σ to
strands pointwise: msg(σ(s) ↓ i) = σ(msg(s ↓ i)).

Message t originates at n if n is a transmission node,
t � msg(n), and for all n0, n0 ⇒+ n implies t �� msg(n0).

A protocol Π is a set of strands over a signature Δ, called
the roles of the protocol. Each role ρ may have some basic
values that are assumed uniquely originating, rl unique(ρ) ⊆
Basic; this means that the corresponding value in every in-
stance of the role will always be assumed to originate at most
once. Similarly, rl non(ρ) ⊆ Basic is a set of values assumed
non-originating in every instance. Finally, rconstr(ρ, i) yields
a set of equations t = t′ for each i less than the length of
ρ. These are constraints that must be satisfied in a possible
execution of Π. The constraints rconstr(ρ, i) may belong to
an extended signature Δ′.

Each protocol Π contains special roles for specifying

security goals. A listener role
t→ •, has a single reception

node documenting t’s availability unprotected on the network.

A blab role • t→ has a transmission node documenting when
a compromised value becomes available to the adversary.

The parameters of a role ρ ∈ Π are all parameters v ∈
Param that occur in msg(ρ ↓ i) for any i. The regular strands
of Π over algebra Alg with signature expanding Δ are all
substitution instances (in Alg) of all ρ ∈ Π. An adversary
model is a set of strands, called adversary strands.

Skeletons are fragmentary executions of the regular par-
ticipants, which factor out adversary behavior. A skeleton
A = (nodes,�, non, unique) consists of a finite set of regular
nodes, a partial ordering on them, a set of values assumed non-
originating, and a set of values assumed uniquely originating.
These components are designed to code in the aspects of
executions that we care about, namely the ordering, and
what values are uncompromised (“non”) or freshly chosen
(“unique”). For a precise description, see [20].

Definition III.1. An adversary recipe from messages S, us-
ing adversary choices C is a directed, acyclic graph G =
〈N,→G,⇒G〉 consisting only of adversary nodes, such that

1. msg(m) ∈ S if m is a reception node with no incoming
communication arrow n→G m;

2. msg(m) ∈ C if m = s ↓ 1 ∈ N is a transmission node,
and the first node on s.

Sorts: Name,Data, SigKey, E,G ≤ Basic ≤ Mesg

Functions: cat : TAG→ Mesg→ Mesg→ Mesg
dsig : Mesg→ SigKey→ Mesg
sk : Name→ SigKey gexp : E → G

Fig. 4. The formal DH signature Σ0

G derives t avoiding N iff t = msg(n) for some n ∈ N, and
N ∩ C = ∅.

The avoidance set VDA of A defines what the adversary
cannot choose when deriving values in A; it is the set nonA ∪
{a ∈ uniqueA : a originates on some n0 ∈ nodes(A)}.

A message t is derivable at n ∈ nodes(A) iff it is derivable
from earlier transmissions avoiding VDA.

A is realized over Alg1 iff (i) for every reception n ∈
nodes(A), msg(n) is derivable at n; and (ii) each n ∈
nodes(A) satisfies its constraints in Alg1. I.e. σ(t) = σ(t′)
in Alg1 whenever n = σ(ρ ↓ i), and t = t′ ∈ rconstr(ρ, i). ///

The realized skeletons represent actual executions. The only
essential addition in this section to earlier strand space treat-
ments are the constraints rconstr(ρ, i).

B. The Formal Algebras

We now instantiate the definitions of the previous sections.
Two algebras are syntactic structures, one without the group
and field operations, and one in which they are included.

Definition III.2. Fix a set TAG. The sorts and functions
of the order-sorted formal DH signature Σ0 are in Fig. 4.
The functions are tagged concatenation; digital signature; the
signature keys of principals; and exponentiation with fixed
base g. We write tag t0, t1 for cat(tag, t0, t1), and [[t]]K
for dsig(t,K). When the write t0, t1, we mean nil t0, t1, for
a distinguished “null” tag nil.

For each of the sorts Name, Data, SigKey, and E (but not
G), we supply disjoint countable sets; Param is their union.
The parameters of sort E are called the E-parameters EParam.

FAlg = TΣ0
(Param), the formal message algebra, is freely

generated from Param by the functions of Σ0, subject to
the sort discipline. Its members are messages or terms. Basic
includes the sorts Name, Data, SigKey, E, and G. a parameter
v ∈ Param occurs in a message t ∈ D if it is used in the
inductive generation of t. The ingredient relation � is the
smallest reflexive, transitive relation such that t0 � tag t0, t1;
t1 � tag t0, t1; and t0 � [[t0]]t. ///

The key of a digital signature contributes no ingredients;
only the plaintext does. For t1 ∈ Basic, “ingredient” is the
identity, i.e. t0 � t1 implies t0 = t1.

Every term of sort E is an E-parameter x ∈ EParam.
There are no G-parameters. Since gexp(e) will be interpreted
as ge, where g is a fixed generator of G, group elements are
represented in the form gexp(e). Thus, FAlg, the terms of sort
G are precisely the expressions gexp(x) for x ∈ EParam. We
also do not provide any parameters over the top sort Mesg;
they are unnecessary for the lightweight DH protocols (see the
Well-typed message clause of Assumption II.1). The usefulness
of FAlg lies in the following lemma:

220

· :G×G→ G id :→ G inv : G→ G
+, −, ∗ : E × E → E 0 :→ E exp : G× E → G

i : E → E 1 :→ E g :→ G

Hash : Mesg→ Mesg hash : Mesg→ E

Fig. 5. Extended formal DH signature Σ1, in addition to Σ0

Lemma III.3. To within isomorphism, there are only finitely
many Π-skeletons over FAlg of bounded size.

Definition III.4. The order-sorted extended formal DH sig-
nature Σ1 consists of Σ0 together with the group and field
operators in Fig. 5, and two hash functions, into Mesg and E.
We write exp(t, e) as te.

eFAlg = TΣ1(Param), is freely generated from
Param(FAlg) by Σ1, subject to the sort discipline. ///

Henceforth, each Π will be over Σ0 with constraints in Σ1.

C. The Field-based Algebras

If q is a prime, let Cq and Fq be the cyclic group of order
q and the field of characteristic q. Whenever X ⊆ EParam, let
Fq[X] be the ring of polynomials over X with coefficients in
Fq , and let Fq(X) be the field of fractions of these polynomi-
als. Polynomials have the usual equalities, based on the laws
of Fq . These laws are not a set of equations or conditional
equations, since the cancellation law has a negative premise:
e1 �= 0 ⊃ e1 ∗ i(e1) = 1. An E-parameter x ∈ EParam occurs
in a polynomial if x has non-zero degree in it.

Definition III.5. 1. Let F be a field, and let the sort G con-
tain the values gexp(v) for v ∈ F. AlgF is freely generated
from G,F, and Param by the remaining operators, subject
to the group laws and gexp(x) = gx. AlgF is called the
algebra of messages over F. When F = Fq(EParam) for
q a prime, we write the q-Alg for AlgF.

2. For any field F, there is a canonical homomorphism
hF : eFAlg ·→ AlgF. It identifies terms of TΣ1

using the
identities true in F. The restriction of hF to FAlg is
also a canonical homomorphism h−F : FAlg ·→AlgF. When
F = Fq(EParam), we write hq for hF. ///

The homomorphism hq : eFAlg·→q-Alg maps parameters of
FAlg to themselves, and reduces modulo q: 1+1+. . .+1, with q
ones, equals 0 in q-Alg. This extends uniquely to hq : eFAlg→
q-Alg. We lift hF to skeletons by applying hF to the message
of each node. Two restrictions on lightweight protocols are:

Definition III.6. A message t is well-typed iff t ∈ Param is
of type Name,Data, or SigKey; or t : G is gv for some v ∈
EParam; or (recursively) t is built from well-typed messages
by tagged concatenation and digital signature.

1. A protocol Π handles well-typed messages iff, for every
role ρ ∈ Π, either ρ is a blab or listener role, or else
every message sent or received on ρ is well-typed.

2. Π sends role-nons iff, for x ∈ EParam, if x ∈ rl non(ρ),
then x first occurs in a transmission ρ ↓ i, and gx �
msg(ρ ↓ i). ///

+v, where v ∈ Basic, but v �∈ G,E

−t⇒ +hash(t) and − t⇒ +Hash(t) +nop

−t⇒ −K ⇒ +[[t]]K −a⇒ +uop(a)

−[[t]]K ⇒ +t −a⇒ −b⇒ +bop(a, b)

−t1 ⇒ −t2 ⇒ +tag t1, t2 +x, where x ∈ EParam

−(tag t1, t2)⇒ +t1 ⇒ +t2

Fig. 6. Adversary strands. Transmission of t is +t; reception of t is −t.
Nullary, unary, and binary operators written nop, uop, and bop, resp.

Hashes generate algebraically unpredictable values. But
since each Fq is finite, we can engineer polynomials to define
them in one Fq . However, those polynomials fail as q varies.

Assumption III.7. Let hash(t1), . . . , hash(tk) be distinct
terms; let x1, . . . , xj ∈ EParam; and let p be a polynomial
in x1, . . . , xj , hash(t1), . . . , hash(tk) that is non-trivial in the
hashes. Then p = 0 is valid in Fq for at most finitely many q.

Lightweight protocols use hashes only in the key compu-
tation, as in Fig. 2, which constraints rconstr(ρ, i) formalize.

D. Adversary Model

We now specify the adversary model of interest to us.
Although it consists of the same adversary strands across all
of our algebras, it leads to different realized skeletons over the
different q-Algs, since whether the right message is derivable
depends on equality in the relevant algebra.

Definition III.8 (Adversary Strands). Adversary strands of
Adv fall into two groups. The symbolic rules [23] allow
the adversary to originate values, to create signatures with
access to plaintext and key, to access the message within a
digital signature, to create hashes from the plaintext, and to
concatenate or separate messages (Fig. 6, left).

Next, for the algebraic rules, if op is a nullary, unary, or
binary operator of Def. III.4, and a, b are values in G,E, then
the adversary can execute op on the given values. If x : EParam
is a parameter of sort E, he can send x (Fig. 6, right). ///

The adversary obeys a “normal proof” property.

Lemma III.9 (Normal form [23]). If t is penetrator derivable
in Alg from S using C, then it may be derived using a G in
which, if n0 lies on a Signature Access or Separation, and n1

lies on any strand of another kind, n1 ��G n0.

Any value is derivable if it has previously originated.

Lemma III.10. Suppose that n0 ≺A n1, where n0 is a
transmission node. If t � msg(n0), then t is derivable at n1.

Definition III.11. Fix N ⊆ EParam; let P = {p1, . . . , pn};
and let S ⊆ q-Alg. An N -avoiding (linear) combination of P
with S is a polynomial

e = f0 + f1p1 + · · ·+ fnpn

where each fi : E is derivable from S avoiding N . ///

Lemma III.12. Fix q-Alg and N ⊆ EParam, and let S ⊆
q-Alg. Let P = {e : E | ge � S}.

Any G-value ge is derivable from S avoiding N iff e is an
N -avoiding combination of P ∩N with S.

221

E. Adversary strategies

The adversary plays a game. He wants to exhibit attacks
against a protocol Π. Thus, he will select an FAlg-skeleton A

in which something occurs that would be contrary to the goals
of Π. This could be disclosure of some intended secret t, as

indicated by a listener node
t→ •, or it could be a failure of

authentication, as indicated by a run of one participant with
no matching run of the peer (Section IV-A).

To win, the adversary must show how to realize A in
different algebras. He supplies a recipe for each regular recep-
tion node n. This recipe generates msg(n) using transmissions
on regular nodes m ≺A n as desired, making any adversary
choices compatible with the assumptions uniqueA and nonA.

An adversary strategy is a map f from reception nodes
n ∈ nodes(A) to adversary recipes. An adversary strategy f
wins for A at q if for each reception node n ∈ nodes(A), f(n)
derives msg(n) avoiding the avoidance set of A, and satisfies
all the role constraints (Defn. III.1). This depends on q-Alg,
which defines the equalities between what f(n) produces, and
what n must receive. The adversary wins for A against Π if,
for infinitely many q, some strategy f wins for A at q.

The adversary model generates any polynomial involving
“unrestricted” values v ∈ EParam where v �∈ nonA. For values
v ∈ nonA available only in the form gv , the adversary can
manipulate them only as described in Lemma III.12.

Whenever a value v ∈ EParam is chosen by a regular
participant, and used to prepare a gv which originates on
this strand, we will regard v as being selected randomly
and independently of all other parameters to the strands in
this execution. If v �∈ nonA, then the adversary may be
able to gain access to the value chosen, e.g. via a hacked
operating system. However, we will regard all of these values
as indeterminates or field extension elements. This means that
a successful adversary strategy f must always produce the right
value, uniformly in all values that could be chosen for v. This
genericity applies only to v ∈ EParam; for other sorts, unique
and non express the assumptions constraining the adversary.

Definition III.13. A parameter x ∈ EParam is regular-chosen
(or r.c.) on n = ρ ↓ i iff n is a transmission node or local
node, and n is the earliest node in which x occurs.

R vals(A) = {σ(x) : ∃n ∈ nodes(A) . n = σ(ρ ↓ i) and x
is r.c. on ρ ↓ i}.

A params(A) = {v ∈ EParam : v occurs in A} −
R vals(A).

If A is a FAlg skeleton, then A makes distinct choices iff
any two distinct r.c. parameters take different values in A.
More precisely, for all n, n′ ∈ nodes(A), letting n = σ(ρ) ↓ i
and n′ = σ′(ρ′) ↓ j, for all x r.c. on ρ ↓ i and x′ r.c. on ρ′ ↓ j,
σ(x) = σ′(x′) implies ρ = ρ′, i = j, and x = x′. ///

Our linearity assumption on lightweight protocols is for-
malized in terms of A params.

Definition III.14. Π has linear adversary contributions if each
polynomial p occurring in any s = t in rconstr(ρ, i) has total
degree 0 or 1 for all A params.

[A,B, a, . . . , β,K] ◦ �� • �� • �� • �� n1

[B′, A′, b′, . . . , α,K] ◦ �� • �� • �� • �� n2

Fig. 7. Strong implicit authentication premise. Assume a, b′, sk(CA) ∈ non.
Conclusion is A′ = A

IV. GOAL LANGUAGES

Security goals are formulas of the form:

∀x . (Φ ⊃
∨

i

∃yi .Ψi) (1)

where Φ and each Ψi are conjunctions of atomic formulas [19].
Any geometric sequent (i.e. implication between positive exis-
tential formulas) can be rewritten in this form. The vocabulary
for the atomic formulas is identical to the goal language GL(Π)
in our non-Diffie-Hellman protocol analysis [19].

Small model arguments apply to formulas of the form of
Eqn. 1. Suppose that S is a set of small models A such that
for every B model satisfying Φ, there is an A ∈ S and a
homomorphism h : A ·→B. Then, if one of the formulas Ψi is
found to be true in each A ∈ S, homomorphisms h : A·→B will
preserve that Ψi. Hence, checking

∨
i ∃yi .Ψi in the models

in S ensures that Eqn. 1 holds in general.

The signature of GL(Π) is sparser than Σ1, or even Σ0,
but skeletons determine the models of GL(Π). The domains
consist of the messages in a message algebra Alg, together
with the regular nodes of the skeleton. The skeletons of Π are
axiomatizable in richer languages, though not in the language
GL(Π), which we will not linger over doing here.

A. Some Protocol Goals

We illustrate the language by examples. The first formalizes
the implicit authentication goal in a strong form central to
many of our protocols, that entails “preventing unknown key-
share attacks” [4], [24], [31]. Fig. 7 illustrates the assumption
Φ of our assertion. In it, n1 is the last node of an initiator
strand, and n2 is the last node of a responder strand. The “self”
parameter of n1 is the variable A, meaning that principal A
executes it. The “peer” parameter is the variable B, meaning
that A believes this run to be an exchange with principal B;
more concretely, B’s name appears in the certificate cB used
in the next-to-last node. On n2’s strand, the self and peer are
the variables B′, A′. The “key” parameters defined by the two
strands are the same variable K; i.e. the assumption is that
these two strands have agreed on the key. The long term private
values are represented by variables a, b, resp.

InitLast(n1) ∧ RespLast(n2) ∧
Self(n1, A)∧ Peer(n1, B) ∧ Key(n1,K) ∧ MyLT(n1, a)∧
Self(n2, B

′)∧ Peer(n2, A
′) ∧ Key(n2,K) ∧ MyLT(n2, b

′)∧
Non(a)∧ Non(b′) ∧ Non(sk(CA)) (2)

⊃ A = A′

The desired conclusion is that A = A′. Since A = A′ depends
on the CA not recertifying the long term value ga

′
of A′ to

a second principal, the mathematical core is that α = a. The

222

[. . . , a, gb,K] ◦ �� • �� • �� • �� n1

[K] m

Fig. 8. A key secrecy goal. Assume a, b ∈ non. Conclusion is falsehood.

◦ �� • �� • �� • �� ◦

◦ �� • �� • �� • �� ◦

• K��

◦ �� • �� • �� • �� ◦ �

•
sk(CA)
��

• K�� •
ga
�� •

gb
��

Fig. 9. Forward secrecy, with x, y ∈ non: (l) weak; (r) strong, with
ga, gb, sk(CA) ∈ unique

authentication goal of the responder, who would like to infer
that B = B′ is symmetric. Eqn. 2 is an instance of Eqn. 1
with only one disjunct, and a vacuous variable list yi.

The “unknown key share resistance” goal is somewhat
weaker than Eqn. 2. It includes additional assumptions that
the ephemeral secrets are also uncompromised. We will derive
Kaliski’s attack on it for MQV in Section VII.

Second, we formalize a key secrecy property, illustrated in
Fig. 8. Here the desired goal is that this diagram cannot occur.
We express the goal explicitly as the formula:

InitLast(n1) ∧ Lsn(m) ∧ Key(n1,K) ∧ Hear(m,K) ∧
MyLT(n1, a) ∧ Non(a) ∧ YourLT(n1, b) ∧ Non(b) (3)

⊃ falsehood

Here, the conclusion is falsehood, namely the disjunction
with zero disjuncts. Lsn(m) means that m is a listener
node, i.e. one that simply receives a value to document its
availability. Hear(m,K) means that K is the value that the
listener node m hears.

Conclusions may also use existential quantifiers to assert
the presence of new items, especially additional regular nodes,
as in “explicit” authentication properties.

An important security goal of DH protocols is forward
secrecy. Suppose that after a session of A with peer B
computing a session key K, all of the long-term secrets of
A and B, and of the CA, are compromised. Can the adversary
compute K?

The weak version of forward secrecy assumes that both
participants contributed an ephemeral value; no assumption is
needed about the long-term values ga, gb, sk(CA). The left side
of Fig. 9 (l) illustrates the assumption, with K received on a
listener node. The goal—achieved in many DH protocols—is
to ensure that this diagram cannot occur in a real execution.

The strong version assumes instead that the long term
values were secret when the session occurred, and were
subsequently exposed. We model this in Fig. 9 (r) by assuming
that the long-term values ga, gb, sk(CA) ∈ unique are uniquely
originating, and originate after the session. Again, the goal is

Functions: sk(a) inv(k)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Fig. 10. Protocol-independent predicates of the languages GL(Π)

to ensure that this cannot occur. If a protocol achieves ex-
plicit authentication, rather than merely implicit authentication,
that implies occurrence of a second strand, representing the
presence of the peer’s session. Thus, the assumption of weak
forward secrecy is also satisfied. Generally, this is the only
way to achieve strong forward secrecy.

In the cryptographic literature, e.g. [26], this property may
be expressed as a real-or-random challenge for the adversary,
and in somewhat different terms. However, the differences
seem inessential (see also below).

Both varieties of forward secrecy are directly expressible
in this language. Other expressible goals include resisting
impersonation attacks; resisting unknown key share attacks;
other variants of implicit authentication; and explicit authen-
tication. A strength of this language is that it expresses the
bulk of the properties that interest us in a framework that is
unproblematically first order and linguistically very spare.

The most important gap concerns indistinguishability prop-
erties. They require a quite different language and semantics,
since they are simply not properties of a single execution [9].
However, with the help of Cortier and Kremer, we have proved,
for all lightweight DH protocols, that the most relevant indis-
tinguishability property, namely the real-or-random property
for the key, is equivalent to key disclosure [12].

B. Defining the Languages

For each protocol Π, GL(Π) is a single-sorted first order
language. These languages match the languages for non-
Diffie-Hellman protocols in [22], and their semantics, i.e. the
definition of the satisfaction relation, is unchanged. GL(Π)
says nothing about the structure of Π’s messages. Instead,
it classifies nodes by which action they are, on which role,
and how they instantiate the role’s parameters. This has two
main advantages. First, it mean goals expressed in GL(Π)
can be preserved when message format changes. Second, it
makes the goal formulas simpler. A decidability result would
be hopeless if there were existentially quantified equations in
the full vocabulary of fields. GL(Π)’s vocabulary, which we
write in typewriter font, has two parts.

The protocol-independent part. This part, shown in Fig. 10,
is shared by the languages for all Π. Its function symbol
sk(a) returns a’s private signature key. It also includes the
predicate symbols shown in Table 10. Preceq(m,n) expresses
that node m precedes node n. Coll(m,n) expresses that nodes
m and n lie on the same strand. Unq(v) holds if the basic
value v originates uniquely. UnqAt(n, v) holds if v originates
uniquely, and originates at the node n. Non(v) holds if v is
non-originating. As always, = is equality. This vocabulary
expresses structural properties of skeletons.

The protocol-specific part. The protocol-specific vocabulary
consists of two kinds of predicates. Role position predicates

223

R(n) assert that node n is a node lying at a particular position
on a strand that is an instance of that regular role. For instance,
RespFirst(n) asserts that n is an instance of the first node
of a responder role. We have used RespLast and InitLast
as role position predicates in Eqns. 2–3.

The second kind of predicate concerns the values of the
parameters. A parameter predicate P (n, v) asserts that node n
is formed by instantiating a particular parameter of its role with
the value v. The same parameter predicate may be used for
different roles, so long as—whenever a node may be viewed
as lying on instances of two different roles—it satisfies the
same parameter predicates for both of those roles. We have
used Self, Peer, Key, YourLT, MyLT, and Hear as parameter
predicates in Eqns. 2–3.

The language GL(Π) thus expresses almost nothing about
the structure of messages, and certainly none of the operations
on E, but focuses only on the parameters.

The semantics of GL(Π) is unchanged from [22], and we
omit it. The formulas satisfied for A, η depend only on the
nodes within A. What a strand would do “after” the part in A

never changes the truth value of any atomic formula. Indeed:

Lemma IV.1 ([22]). Let ϕ be a positive existential formula,
and let H : A ·→ B for Alg-skeletons A,B. If A |=η ϕ then
B |=(H◦η) ϕ.

C. Relating FAlg and q-Alg skeletons

If the only tests we have available are positive existential
formulas of GL(Π), q-Alg skeletons and the corresponding
FAlg skeletons are difficult to distinguish. Indeed, GL(Π) was
designed to express no more than is needed for security goals.
We use FAlg skeletons and q-Alg skeletons in complementary
ways: FAlg skeletons enumerate the relevant ways to satisfy
or falsify security goals, and q-Alg skeletons to assess whether
those patterns can occur in realized executions.

Definition IV.2. Let F be a finite or countable field. Fix a
bijection u from F(Param) to the E-atoms EParam. Extend u
to map AlgF to FAlg injectively, acting as the identity on sorts

other than E and introducing gexp by: gexp(x) = g(u
−1(x)).

Lift u to map AlgF skeletons to FAlg skeletons by preserv-
ing the nodes and precedence relations, and determining the
messages using u. ///

Lemma IV.3. Let Θ ∈ GL(Π) be any formula and let B be
any AlgF-skeleton. Then B |=η Θ iff u(B) |=u◦η Θ.

Proof: For atomic formulas, this holds essentially because
GL(Π) expresses none of the field structure of F. Preservation
under propositional operators is routine, and preservation under
quantifiers holds because u is a bijection preserving the open
formula (by the induction hypothesis).

Of these skeletons, the ones that interest us are the FAlg
skeletons that make distinct choices (Def. III.13), and the q-Alg
skeletons that leave these R vals as parameters.

Definition IV.4. Let Θ be a security goal as in Eqn. 1.

A q-Alg skeleton B is a q-counterexample to Θ iff (i)
B �|= Θ; (ii) R vals(B) ⊆ EParam; and (iii) u(B) = A makes
distinct choices.

An FAlg skeleton A is a counterexample to Θ if there is an
infinite family {Bq : q ∈ I} of q-counterexamples for Θ such
that, for every q ∈ I , A = u(Bq). ///

V. BOUNDING THE SIZE OF COUNTEREXAMPLES

In this section, given a lightweight Diffie-Hellman protocol
Π and a geometric sequent ∀x . (Φ ⊃ ∨ ∃y .Ψi), we will
calculate a bound b depending only on Π and the antecedent
Φ. For every q-Alg-skeleton B that satisfies Φ, we can select
a subset of the regular strands of B of cardinality ≤ b. These
strands form a realized q-Alg-skeleton A themselves, where
A→ B. Moreover, Φ is also satisfied in A.

If A also satisfies some positive existential formula Ψi,
then the inclusion ensures that B also satisfies it. Or, by
contraposition, if B falsifies Φ ⊃ ∨ ∃y .Ψi, then so does A.
Moreover, A is small, containing ≤ b regular strands.

A. Criterion for Realized Skeletons

We say that t is a component of t′ if either t = t′, or else t′
is a tagged concatenation tag t0, . . . , tj , and t is recursively
a component of one of the ti. Recall that VDA is the avoidance
set of A, the set of values that the adversary cannot choose,
consistent with the assumptions of A (Defn. III.1).

Lemma V.1. Let A be a q-Alg skeleton for a lightweight
protocol Π. A is realized if and only if, for every reception
node n ∈ nodes(A), and for every component c of msg(n)
there is a set S of hashes hash(t),Hash(t) such that:

if c = ge is of sort G, then e is an N -avoiding combination
of {d : gd originates on some n0 ≺A n} with S.

if c is a base value of non-G sort, then either c originates
on some n0 ≺A n, or c �∈ VDA.

if c = [[t]]K is a digital signature, then either c originates
on some n0 ≺A n; or else K �∈ nonA, and every
component of t recursively satisfies these conditions.

if c ∈ S is a hash Hash(t) or hash(t), then either c origi-
nates on some n0 ≺A n; or else every component of t
recursively satisfies these conditions.

Proof: By definition, if c is a component of msg(n)
for n ∈ nodes(A), then c �∈ nonA. Hence, if the conditions
are fulfilled for every c, then (by Lemmas III.12 and III.10)
each received message can in fact be derived from earlier
transmissions, using adversary choices that avoid VDA.

But otherwise, the adversary cannot derive c from earlier
transmissions, so that A is not realized.

B. Simple digital signatures

We now define the Simple digital signatures property.

Definition V.2. Π has simple digital signatures if there exists
a finite partition of the digitally signed messages of FAlg, and
a strict ordering
 on the partition classes such that, for all
digitally signed messages d1 and d2:

1. If d1 = σ(d2) for some σ, then class(d1) = class(d2).

2. Let ρ ∈ Π be a role such that d1 � ρ ↓ i and d2 � ρ ↓ j.

224

If i < j, then class(d1)
 class(d2). If i = j, then
class(d1) = class(d2).

If there are k partition classes, then Π has simple digital
signatures of index k. ///

For instance, the IADH protocols of Fig. 1, we partition
digital signatures into certificates [[cert gπ, P]]sk(CA) and all
others. Only certificates appear in the protocol, and each role
handles certificates on just one node; thus Defn. V.2 is satisfied.
In the STS variant of Fig. 3, each role handles a digitally
signed unit with tag ri before one with tag ir. Thus, we may
partition digital signatures into these two classes, as well as all
others, stipulating that [[ri s]]K
 [[ir t]]K . Thus, Fig. 3 satisfies
Defn. V.2 also.

Lemma V.3. Let Π have simple digital signatures of index k.
Suppose that A is a Π skeleton, and n1,m1, n2, . . . , nj ,mj ∈
nodes(A). Then j ≤ k if:

1. Each ni is a transmission node and mi is a reception;

2. For each i, mi ⇒+ ni+1;

3. For each i, ni �A mi, and there is a t and a K ∈ nonA
such that [[t]]K � msg(ni) and [[t]]K � msg(mi).

Proof: class(ni) = class(mi), and class(mi)

class(ni+1), so each transmission/reception node pair re-
duces the available partition classes by one.

C. Bounding sizes

If Φ is a conjunction of atomic formulas in GL(Π), we
will write ndv(Φ) for the node variables of Φ, i.e. the set of
variables x that appear in Φ as argument to a role predicate, the
collinear predicate Coll, or the precedence predicate Preceq;
or as first argument to a parameter predicate; or as second
argument to the UnqAt predicate. These are precisely the
variables x such that η(x) ∈ nodes(A) for every η,A such
that A |=η Φ. Thus, ndv(Φ) is the set of nodes that Φ is
“talking about.”

We also write nonv(Φ) for the set of variables x that appear
in Φ as argument to the Non predicate. These are the non-
originating values that Φ is “talking about.”

We also use the notion of the width of a protocol Π; it
is one greater than the largest number of components that are
digital signatures in a single node along any role of Π. For
instance, the protocol shown in Fig. 1 has width 3, because
the next-to-last node on each strand receives two certificates
cA, cB . Let r = maxρ∈Π |rl non(ρ)| be the maximum number
of role-non values on any role ρ ∈ Π. We say that a skeleton
A is b-bounded if the number of regular strands in A is ≤ b.

Theorem V.4 (Boundedness). Let Π be a lightweight protocol,
of width w, with simple digital signatures of index k. Let Φ be
a conjunction of atomic formulas. Let B be a realized q-Alg-
skeleton for Π, and η an environment such that B |=η Φ.
There is a b-bounded realized subskeleton A of B such that
A |=η Φ, where

b = |ndv(Φ)| · (1 + |nonv(Φ)|+ r|ndv(Φ)|) · wk.

Proof sketch: Define A0 to be the substructure of B

containing a strand s in B only if η(v) lies on s, for some
v ∈ ndv(Φ). A0 may not be realized. Lemma V.1 tells what to
add from B to build a realized A which is a substructure of B.
These are nodes at which needed messages originate, either gx

for x ∈ non, or digital signatures. We add origination nodes
for gx first, and digital signatures after. Since Π sends its role-
nons (Defn. III.6.2), we will never add a digital signature that
requires yet more gx origination nodes. Finally, Lemma V.3
bounds the number of backward steps that adding digital
signatures can require, and w is a branching factor.

Corollary V.5. Let Π be lightweight; let Θ be a security goal.
There exists a b such that, for all primes q, if there is any
realized q-Alg skeleton falsifying Θ, then there is a b-bounded
realized q-Alg skeleton falsifying Θ.

Indeed, if for infinitely many q, there is a q-counterexample
to Θ, then some b-bounded FAlg skeleton A is a counterexam-
ple to Θ.

The second claim holds because, there being only finitely
many b-bounded FAlg skeletons, we must use the same one
for infinitely many q. Its converse is immediate.

VI. FINDING REALIZED INSTANCES

We now use constraint-solving methods [10], [36] followed
by Gaussian elimination, to determine whether a given FAlg
skeleton A is a q-counterexample to a goal Θ.

A. Constraints

We will define two kinds of constraints: (i) derivability
constraints S �N t, and (ii) equality constraints t1 = t2. In
the first kind of constraint S is a finite set of messages, t, t1, t2
are messages and N ⊆ Basic. Such a constraint expresses
the requirement that message t has to be explained based on
the messages S sent earlier, avoiding the restricted values in
N . The second kind of constraint expresses either a pattern-
matching problem of the kind familiar from typical symbolic
analysis or an algebraic equation whose variables range over
rational functions with coefficients in various finite fields. As
the formal development illustrates, different algebraic variables
will range over different fields, containing different field ex-
tension elements, so a system of constraints also includes a
map ARestr to control this choice.

We work relative to a fixed partition of EParam
into regular-controlled parameters R params and adversary-
controlled parameters A params. The A params are like vari-
ables; the adversary wants to instantiate them to satisfy the
constraints. Not all R params can be used in the derivation:
If x ∈ non, then x cannot be used. If x ∈ unique, then x
can be used only if it was previously transmitted, or if it is
transmitted nowhere in A. In the latter case, its sole point of
origination can be an adversary node.

Transformations reduce derivability constraints to sets of
equations. Hashes and digital signatures intertwine the process
of reducing to equations and the process of solving the
equations themselves. For example, consider the question of
whether the message ghash(t1)+hash(t2) is derivable in some
q-Alg from a set S of messages. One way this is possible is for

225

each of ghash(t1) and ghash(t2) to be derivable. But another alter-
native is that t1 and t2 are equal in q-Alg and, say, ghash(t1) is
derivable. This motivates the E-hashes transformation below.

In the standard constraints-based approaches to protocol
analysis a solution to a constraint S �N t is a substitution
θ over the A params such that the message θ(t) is derivable
by the adversary from the messages in θ(S). One looks for a
simultaneous solution to all of these constraints.

Our situation is more delicate, since we cannot work over
a single message algebra. The notion of adversary derivability
only makes sense in specific message algebras q-Alg, since
the notion of equality varies with q. The potential solutions
take values in eFAlg, so we compose such a solution θ with
the canonical homomorphism hq : eFAlg → q-Alg; then ask
whether (hq ◦ θ)(t) is derivable from (hq ◦ θ)(S) avoiding
AvoidA(S) in q-Alg.

Thus, a substitution θ may be a solution at some q-Alg and
not others; we focus on the θ that succeed at infinitely many
q. Remarkably, we find that if there are θq in infinitely many
q-Alg, there is a single θ that works for infinitely many q-Alg.

The adversary’s choices at type E can be viewed as
ranging over the field obtained by viewing EParam as a set
of indeterminates adjoined to Fq . Certain basic values will be
assumed to be non-originating or uniquely originating, and this
will be reflected in the fact that we will not allow adversary-
chosen variables to range over all of this field. This is the role
of the restriction sets ARestrT(α) below (see Definition VI.1).

We write Fq(EParam) for the field of quotients of the
polynomial ring Fq[EParam], and if X is a subset of EParam
then Fq(EParam \ X) is the the field of quotients of the
polynomial ring excluding X .

Definition VI.1 (Constraint System). Let
A params,R params partition EParam. A constraint system
T is given by the following data, where S is a finite set of
messages, t, t1, t2 are messages, and v is an R param:

• a set of derivability constraints S �N t

• a set of an equational constraints t1 = t2, including a set
of hash abbreviations v = hash(t)

• a restriction function ARestr : P → P(R params)

We write elements of A params as lowercase Greek letters.

Definition VI.2 (Solutions). A function θ : A params →
eFAlg is a q-solution to T if

• If S �N t ∈ T, then (hq ◦ θ)(t) is derivable from
(hq ◦ θ)(S) in q-Alg avoiding N , as in Definition III.1.

• If t1 = t2 ∈ T, then in q-Alg, (hq ◦ θ)(t1) = (hq ◦ θ)(t2).
• For each α ∈ A params, (hq ◦ θ)(α) �= 0.

• θ(α) ∈ Fq(EParam \ ARestr(α)).
T is infinitely-often solvable if, for infinitely many q, T has a
q-solution. ///

We require non-0 solutions for α : E, because most protocols
require checking that a received group element gα �= g0.

B. Construction of an Initial Constraint System

Given an FAlg skeleton A for a protocol Π we can construct
a system expressing the constraints for A to be “fleshed out”
to a realized skeleton. We need to reflect the origination
assumptions on A. Let UA = unique∩{a ∈ Basic : a originates
on some n ∈ nodes(A)}, and let O(n) = {a ∈ Basic : a
originates on some m �A n}. Define AvoidA(n) to be
nonA∪(UA−O(n)); these are the things that started restricted
and have not yet been released. AvoidA is non-increasing
through time; n0 �A n1 implies AvoidA(n1) ⊆ AvoidA(n0).

Definition VI.3. Let A = (nodes,�, non, unique) be a Π-
skeleton over FAlg. Let A params,R params partition EParam
into two infinite sets such that A params(A) ⊆ A params
and R params(A) ⊆ R params (Defn. III.13). The constraint
system T for (A,Π) is generated as follows.

• If n ∈ nodes(A) is a reception, T contains S �N msg(n)
where S = {n′ ≺A n : n′ is a transmission node } contains
all earlier transmissions, and N = AvoidA(n).

• If n ∈ nodes(A) is σ(ρ ↓ i) and t = t′ is in rconstr(ρ, i),
then σ(t) = σ(t′) is an equality constraint in T.

• We replace every term of the form gexp(e) by ge.

• For all α, ARestr(α) = ∅.

Although lightweight Π have very restricted message
forms, defined over Σ0, the role constraints are over Σ1. Thus,
the constraint systems we work with involve terms over Σ1.

Lemma VI.4. Let T be the constraint system for (A,Π). If θ
is a q-solution to T, and (hq ◦ θ)(A) satisfies the origination
assumptions for Π, then (hq ◦ θ)(A) is a realized skeleton for
Π. If (hq ◦ θ)(A) is a realized Π-skeleton over q-Alg then θ is
a q-solution to T.

Proof: By the definitions of realized skeleton (Defini-
tion III.1) and q-solution to a system (Definition VI.2).

C. Transformations

The transformations reduce constraints systems, ultimately,
to systems of linear algebraic equations. Pattern-matching on
the “non-algebraic” structure of messages, such as pairing and
signatures, leaves a residue of algebraic problems to be solved
over the finite fields in each q-Alg.

Definition VI.5 (Transformations). See Figure 11. ///

The rules E-hashes and Span act globally on a system T.
The other rules replace a single constraint by one or more
derivability constraints or equations; we indicate only these
local actions in the figure. The symbols � and ⊥ represent
trivial constraints, always true and always false, respectively.
We use the comma for union and the semicolon for disjoint
union, so that “S, t” means S ∪ {t}, but “S; t” also
asserts that t is not an element of S. It is understood that
a transformation is applied only if it causes a change n the
system (e.g. redundant Pairs-left transformations are not done).

The first group of rules—Pairs-left, Pairs-right, Signatures-
left, Signatures-right, and Basic— simplify derivability con-
straints. The rules Span, E-hashes and Select generate equality
constraints. Decompose simplifies equality constraints.

226

Pairs-left S; (tag m1, m2) �N t =⇒
S, (tag m1, m2),m1,m2 �N t

Pairs-right S �N (tag t1, t2) =⇒ S �N t1, S �N t2

Signatures-left S; [[m]]k �N t =⇒ S, [[m]]k, m �N t

Signatures-right S �N [[t]]k =⇒ S �N t k �∈ N

Basic S �N t =⇒ � t /∈ N

S �N t =⇒ ⊥ t ∈ N

when t ∈ Basic and contains no A-params.

Select S; m �N t =⇒ m = t

Decompose ge1 = ge2 =⇒ e1 = e2

f(t1, . . . , tn) = f(t′1, . . . , t
′
n) =⇒ . . . , ti = t′i, . . .

f(t1, . . . , tn) = g(t′1, . . . , t
′
n′) =⇒ ⊥

when f �= g are among sk,Hash, (tag ·, ·), or [[·]]·
—-

E-hashes T =⇒ Tv , {v = hash(t), t = t′ : hash(t), hash(t′) ∈W}
when W is some subset of the set of E-hashes occurring in
T; where v is freshly-chosen E-param; and Tv is the result of
replacing each occurrence of a term in W by v.

—-

Span is detailed in Definition VI.6

Fig. 11. Constraint-Solving Transformations

The Signatures-right rule reflects that if the signing key k
is not in N , then one can derive [[t]]k as soon as one can derive
t. When the signing key may be in N , we may instead use
Select. It guesses a member m of S and converts S � [[t]]k
into the equality constraint that [[t]]k match m.

In the E-hashes rule, since the hashes are intended to
be uniformly algebraically independent of every value (c.f.
Assumption III.7) a solution θ must match hashes on the
left with hashes on the right. However, the terms inside the
hashes can be complex terms with algebraic relations among
them. To allow for this possibility a transformation may replace
any number of hashes with the same fresh parameter, adding
constraints to record that these equalities must hold.

The Span transformation is the crux of our approach.

Definition VI.6 (Span). Suppose

S1; g
d1 , . . . gdn �N ge

is saturated with respect to Pairs-left, Signatures-left, and E-
hashes and satisfies S1 ∩ G = ∅. Furthermore, suppose V is
the collection of R params occurring in S1; gd1 , . . . gdn that
are associated with hash-abbreviations. Partition V as V0∪V1.
Then Span transforms T as follows

1. Replace this constraint with the equation e = α0+α1d1+
· · ·+ αndn where each αi is a fresh A param

2. For each hash abbreviation vi = hash(ti) associated with
an R param in V0, we add the derivability constraint
S1; g

d1 , . . . gdn �N ti.

3. For each j, ARestrT(αj) = N ∪ V1. ///

D. Analysis of the Transformations

Three useful invariants follow by induction. The “linear
adversary contribution” clause (Defn. III.14) yields the last.

Lemma VI.7. Let T be the constraint system for (A,Π), and
suppose T ⇒ · · · ⇒ T′. Then

1. If S �N t is in T′ and m ∈ S, then m � σ(msg(ρ ↓ i))
for some ρ ∈ Π (possibly blab), i, and substitution σ.

2. For every constraint S �N t of T′, S ∩N = ∅.
3. Each message in T′ of sort E in linear in the A params:

no monomial has more than one A-parameter occurring.

Theorem VI.8 (Irreducible Forms). If T is an irreducible
system other than ⊥ then each constraint of T is an equality
constraint e1 = e2 where e1 and e2 are polynomials over
EParam.

Proof: By inspection we see that any derivability con-
straint with a non-G term as its subject can be reduced, and
Span will eventually apply to the others. Any equation between
terms of non-E sort will submit to Decompose. Any equation
between E terms is of the form indicated; note that E-hashes
ensures that terms are purely algebraic, that is, with no hash-
terms.

Elementary techniques show that the system of transfor-
mations is terminating

Theorem VI.9 (Termination). Each sequence of transforma-
tions is finite.

Theorem VI.10 (Soundness). Suppose T =⇒ T′. If θ is a
solution to T′ at q-Alg, then θ is a solution to T at q-Alg.

Proof: We examine each transformation in turn, to check
that the transformed system does not admit any new solutions.
The two Pairs transformations are standard. The Signatures-left
rule is sound since we assume that the adversary can access
the payload of a digital signature. The Signatures-right rule
reflects the fact that if the signing key is not secret then the
adversary can construct [[t]]k if he can construct t. The Basic
rules simply reflect the role of the restricted values N . Select
and Decompose are clearly sound.

For the E-hashes rule we first note that the new parameter
v is not an adversary-controlled parameter, so θ(v) = v. The
hashes from W behave as indeterminates in any algebraic
calculation or derivability construction: the only way they can
interact is by cancellation. The fact for each of the new equa-
tions t = t′ associated with W we have (hq◦)(t) = (hq◦)(t′)
means that θ was a solution to the original system.

As for Span, assuming that θ is a q-solution to T′, we need
only show that θ solves the eliminated derivability constraint,
that is, that θ(S1); gθd1 , . . . gθdn derives gθe avoiding N .
But this is clear from θe = θαo + θα1d1 · · · + θαndn (cf.
Lemma III.12).

Soundness says that transformations cannot introduce spu-
rious solutions. Completeness says, intuitively, that they gener-
ate all solutions, but that is not true as naively stated: hashing
can create “accidental” solutions at finitely many q. The E-
hashes transformation spoil these (as it should!). The notion
of completeness that our transformations enjoy is more subtle.

227

Theorem VI.11 (Progress). Let Δ = {θq : q ∈ I} be an
infinite family of q-solutions for T. If T is not irreducible, there
exists a transformation T =⇒ T′, an infinite subset I ′ ⊆ I ,
and a family Δ′ = {θ′q : q ∈ I ′} of q-solutions for T’ with
θ′q �V ars(T)= θq �V ars(T) for each q ∈ I ′.

Proof: We first show that each transformation other
than E-hashes, Span, Signatures-right, and Select enjoys the
property that every solution of T is also a solution of the
transformed result (so if any of them can be applied the result
follows). This property is evident for the rules Pairs-left, Pairs-
right, Signatures-left, and Decompose. The first Basic rule
preserves solutions simply because it removes a constraint;
for the ⊥ rule we observe that by Lemma VI.7.2, if t ∈ N
then there are no solutions to S �N t.

Next suppose T has some occurrences of E-hashes. Choose
any term of the form hash(t) that occurs in T. Say that θq ∈ Δ
“makes a collision” with hash(t) if there is at least one term
hash(t′) occurring in T such that θ(hash(t)) = θ(hash(t′))
but θ(t) �= θ(t′). By Assumption III.7 and the fact that there
are only finitely many possible hash(t′), there can be only
finitely many q at which this happens for t. So in fact we
may assume without loss of generality that our family Δ of
solutions never makes any collisions with this hash(t). Now for
each q let Tq = {hash(ti) : 1 ≤ i ≤ n} be the set of E-hashes
in T such that θq(ti) = θq(t). There are only finitely many
possible such Tq and so one of these sets T occurs infinitely
often. In particular, there is an infinite family Δ′ ⊆ Δ of
solutions that solve the result of applying E-hashes with this
T .

So suppose that T is irreducible with respect to the rules
other than Select, Signatures-right, and Span. Since no equa-
tion can be reduced, and there is a reducible S �N t, and t
must be either a digital signature or a G-term ge.

In the former case, t is [[n]]k and—depending on whether
θ(k) is in N or not— either Select or Signatures-left will apply
and preserve any given θq . The choice of transformation in
each case above might not be uniform across the θq ∈ Δ. But
because there are only two choices in each case, at least one
of them will preserve infinitely many elements of Δ.

In the latter case, there is some derivability constraint

S1; g
d1 , . . . gdn �N ge

obeying the preconditions of the Span rule. Consider the
collection V of R params occurring in S1; gd1 , . . . gdn that
are associated with hash-abbreviations. Define V0 to be the
set of those v ∈ V such that, letting v = hash(t) be the
hash abbreviation associated with v, θt is derivable from
θ(S1); gθd1 , . . . gθdn . Let V1 be the complement of V0 in V.
This determines the data for an application of Span.

We may apply Lemma III.12, because the remaining rules
ensure that any ge � t for t ∈ S1 is one of the gdi . Thus, there
are terms f0, f1, . . . , fn such that e = f0+ f1d1+ · · ·+ fndn,
where each fi is derivable from the left-hand side avoiding
N ∪V1. We may then take Δ′ to be the family of substitutions
obtained from Δ by adding to each δ ∈ Δ the bindings
mapping αi to fi.

Theorem VI.12. Suppose that Δ = {θq : q ∈ I} is an infinite
family of q-solutions for T. Then there exists a sequence of

transformations out of T resulting in an irreducible T∗, an
infinite subset I∗ ⊆ I , and a family Δ∗ = {θ∗q : q ∈ I∗} of
q-solutions for T∗ with θ∗q �V ars(T)= θq �V ars(T) for each
q ∈ I∗.

Proof: By the Progress Theorem VI.11, the Termination
Theorem VI.9, and König’s Lemma (the transformation system
is finitely-branching).

We have reduced the problem of satisfying systems of
constraints—and hence, testing security goals—to solving sys-
tems where the derivability constraints have been eliminated,
and each equality constraint is an equation between purely
algebraic terms. We call such systems purely algebraic.

Definition VI.13. If δ ∈ A params, an equation of the form
δ = α0 + α1d1 + · · ·+ αndn is a principal constraint for δ.

Lemma VI.14. Let T be the constraint system for (A,Π),
and suppose T ⇒ · · · ⇒ T∗ with T∗ irreducible. If δ is
an A-parameter of sort E in T then T∗ contains a principal
constraint for δ.

Proof: Consider a �-minimal constraint where δ appears
in T. This corresponds to a regular reception node n, which
generates a derivability constraint S �N msg(n) with δ
occurring in msg(n). Since A is an FAlg skeleton, msg(n) is
built from gδ using pairing and digital signatures. An invariant
of the sequence T ⇒ · · · ⇒ T∗ is that there is always some
derivability constraint whose right-hand side contains gδ , and
since T∗ is irreducible we conclude that at some stage there
was some derivability constraint S �N gδ whose right-hand
side is precisely gδ . Since T∗ is irreducible with respect to
Span the result follows.

Theorem VI.15. Let T be the constraint system for (A,Π).
If T is infinitely-often solvable then there exists a single
substitution θ : A params → eFAlg that is a q-solution for
infinitely many q. Such an θ is effectively computable from T.

Proof: Apply the transformations systematically and ex-
haustively to T; by Theorem VI.9 and the fact that the
transformation system is finite-branching there is a finite set of
irreducible systems reachable from T. It suffices to test whether
any of these are infinitely-often solvable. So consider a fixed
such irreducible system T∗. For rest of this proof we fix a q
and describe how to determine solvability of T∗ at q. But it
will be clear that our reasoning is independent of q, except for
the very last step, which will depend on q in a quite transparent
way.

By Lemma VI.14, for each A-var δ there is at least one
principal constraint for δ:

δ = α0 + α1d1 + . . . αndn

We can replace δ everywhere it occurs in T∗ by α0 +α1d1 +
. . . αndn.

After normalizing each equation e1 = e2 to be of the form
e1 − e2 = 0, we have transformed each constraint into an
equation p = 0 where p is a term over Fq(EParam), and
we want to solve for the αi, These equations have the form
of linear equations over the αi with coefficients in the field
Fq(EParam), the field of quotients of the ring Fq[EParam]

228

obtained by viewing EParam as a set of indeterminates ad-
joined to Fq . The fact that the original equations are linear in
the A params was observed in Lemma VI.7.3, and we have
replaced each δ ∈ A params by a linear combination of the
αj .

A subtlety is that our notion of solution does not allow
variables to range over all of Fq(EParam): any given variable
α must avoid its restriction set ARestr(α) (see Definition VI.1).
So straightforward Gaussian Elimination is not suitable.

But any equation can always be organized as Σ αimi = 0
where αi is a parameter to be solved for and mi is a power
product of elements of Fq(EParam). Now write such an m as
a1 . . . anb1 . . . bm where the bi are the elements of EParam in
ARestr(α). (If there is a non-1 element of Fq in the monomial,
it will be one of the ai.) Let us call αa1 . . . an the “flexible
part” of the monomial and b1 . . . bm the “rigid part” of the
monomial. Now, writing each equation in the system as a
sum of such differentiated monomials, we can collect terms
according to their rigid parts and set each of the combinations
of the flexible parts to 0. For example if a is in the restriction
set of both α and γ and β is in the restriction set of y then
γa+βb−αa = 0 if and only if (γ−α)a+βb = 0 if and only
if α = γ and β = 0. The key to this construction is that each
combination of flexible parts consists of a sum of monomials
involving variables and R params that are available to be in
the range of an instantiation of those variables.

A given equation will generate a set of such linear equa-
tions that set each flexible part to 0. Each of these can
be viewed as a system of linear equations, with coefficients
guaranteed, by construction, to be in a field generated by
adjoining to Fq some parameters that are available to each
variable to be solved for. We then solve each of these systems,
by Gaussian Elimination. Note that the process of Gaussian
Elimination can be done uniformly over the various q-Alg:
we can always reduce a system to row echelon form by
computations that are generic across the different primes q. The
fact that the coefficients of the equations lie in an extension
field Fq(EParam) of the “concrete” finite field Fq is of course
no obstacle to the computability of the operations required for
Gaussian Elimination.

At the end of each Gaussian Elimination we arrive at the
general row-echelon form of a system of equations. This may
turn out to involve some equations of the form a = 0 where
a is not identically the 0 term. We are working over finite
fields, where such equations between formally non-0 terms
are not necessarily failures. For instance, the equation 0 = 22
is solvable in q-Alg as long as q = 2 or q = 11. Our system
is solvable at q if and only if in each equation of the form
0 = a, a is a constant divisible by q. It is precisely here that
we can see that the “infinitely-often” notion of solution is the
most natural one. The system is infinitely-often solvable if and
only if there are no equations 0 = a with a not identically 0.

If we obtain a solution—in the linear algebra sense— to
these equations then it is a solution satisfying the restriction
requirement in Definition VI.1. We also need to establish that if
Gaussian Elimination finds no solutions, then there are indeed
no solutions to the original equation. That is, if there are no
solutions to a system over the field determined by adjoining
the R params in the flexible part, then there are no solutions in

any larger field (for example using adversary-derivable creative
constructs involving the available parameters). This is a general
fact about linear algebra: if a system of linear equations with
coefficients in a field F has no solutions in F then it has no
solutions in any extension F ′ of F .

If—and only if—there is an infinite set of counterex-
amples, then for some FAlg skeleton A the above process
will construct an eFAlg skeleton θ(A) such that for infinitely
many q, hq(θ(A)) �|= Θ. We have seen how to compute an
exhaustive search for such candidate θ(A). The final step in
the decidability procedure is to recognize whether an eFAlg
skeleton we have constructed does indeed falsify the original
security goal Θ at infinitely many q. That is, we want to check
whether, when our eFAlg skeleton is interpreted in q-Alg via
the various hq maps, Θ holds. This would be impossible if
our goal language were able to make interesting algebraic
assertions. But for assertions in the goal language there is an
easy test, as described in the following lemma.

Recall that hQ is the canonical homomorphism mapping
an eFAlg skeleton to a skeleton over the rational numbers.

Lemma VI.16. Suppose C is a skeleton over eFAlg and Θ is
a sentence of the goal language. Then hq(C) falsifies Θ for
infinitely many q if and only if hQ(C) falsifies Θ.

Proof: The goal language does not speak of the structure
of messages and the maps hq and hQ are the identity outside
of E, so the only way the hq maps affect the interpretation
of goal-language formulas is through equality. So it suffices to
make the following easy observation that for E terms e1 and
e2: infinitely many hq satisfy hq(e1) = hq(e2) if and only if
hQ(e1) = hQ(e2).

We can now assert our main result, the decidability of
security goals for lightweight Diffie-Hellman protocols.

Theorem VI.17. Algorithm DH-Decide satisfies the following
specification, for input π and goal Θ: If A is empty then Π
satisfies Θ. Otherwise, for each A ∈ A and for infinitely many
q, the image of A under hq falsifies Θ.

Input: A lightweight protocol Π and a security goal
Θ ≡ Φ ⊃ Ψ

Output: A list A of realized skeletons for Π over Σ0

/* Π satisfies Θ almost everywhere iff A is empty */

let b be the bound for Φ ⊃ Ψ per Corollary V.5 ;
foreach FAlg Π-skeleton A |= Φ with no more than b

strands do
let T be the constraint system for (A,Π) ;
foreach reduction of T to an irreducible system T∗
and for each solution θ to T∗ do

if θ(A) satisfies the role-origination
assumptions of Π and falsifies Ψ with �a then

add θ(A) to the output list

Algorithm 1: DH-Decide

229

VII. SOME EXAMPLES

Two Analyses Concerning MQV We present two analyses
concerning MQV. As remarked in Section II it is sensible to
treat the operator [·] as a hash function.

Key Secrecy for MQV

The MQV protocol was defined in Section II. To determine
whether key secrecy is guaranteed, let us assume A completes
a run and that the A receives the correct certificate value for
B, in other words, that β = b. Let us further assume that
the long-term and ephemeral private keys are uncompromised:
non= {a, b, x, y}

Among the FAlg skeletons constructed by the process in
Section V is one with (i) one initiator strand for A, with long-
term private key a, sending gx, receiving message gδ , and
receiving a certificate with component gb, and computing the
key gκ, with a role constraint setting gκ = (gβgδ)(a+x) and
(ii) a listener strand, receiving gκ

The resulting constraint system has

• the derivability constraints {gx, ga, gβ , } � gκ and
{gx, ga, gβ , } � gδ

• the role constraint capturing the key computation

gκ = gδ+(b[gδ])(x+a[gx]) = gδx+δa[gx]+xb[gδ]+ab[gδ][gx]

• the equation β = b capturing the assumption that A
does receive the correct certificate for B.

This system happens to already be irreducible in the sense of
the first part of Section VI. So we proceed to the algebraic
process described in Theorem VI.15.

We are led to

κ = κ0 + κ1x+ κ2a+ κ3b = δx+ δa[gx] + xb[gδ] + ab[gδ][gx]

δ = δ0 + δ1x+ δ2a+ δ3b

Next we use the E-hashes rule to introduce new indeterminates
to stand in for the [·] expressions. There are two cases: we
introduce one R param c to replace all such expressions, or
we use two new R params c1 and c2. In the former case we
also add another constraint to the system, namely that gx = gδ ,
which implies x = δ.

Case 1: we have

κ = κ0 + κ1x+ κ2a+ κ3b = δx+ δac+ xbc+ abc2

δ = δ0 + δ1x+ δ2a+ δ3b

This has no solutions: no values for the κi can cancel out the
monomials with non-elements.

Case 2 is similar.

Unknown Key-Share for MQV

Here we show how the “unknown key-share” attack on
MQV defined by Kaliski [24] would be discovered by our
algorithm.

We want to ask whether the following goal is satisfied: if
A and B compute the same key, is each the other’s expected

peer? Taking the perspective of B, we want to ask whether, if
B executes a run, then is the principal with which B shares the
key the same principal whose certificate B used in computing
the key? Since key secrecy has been established, it is sensible
to refer to “the” principal with whom the key is shared.

This goal was expressed formally in Equation 2 in Sec-
tion IV. In the same manner as for key secrecy we derive, for
each bounded FAlg skeleton representing the hypothesis of the
goal, a set of equations; we test the goal by asking whether
there is a solution to these equations which does not satisfy
α = a. The UKS attack will be available if one principal can
arrange to have a key certified that incorporates information
from the message sent by the other principal: this will be
reflected in our model by a skeleton with the property that
a message containing gγ comes before that for gα.

After making the obvious instantiations by the role con-
straints we arrive at the following equations.

κ = δx+ δa[gx] + xb[gδ] + aβ[gδ][gx]

= γy + γb[gy] + yα[gγ] + αb[gγ][gy]

As before we introduce R params to stand in for the [·] terms.
One of the possible choices that will be explored is that in
which [gδ] and [gy] are set equal, with the consequence that δ
and y are set equal: this one will lead to the attack. Using c
to name these terms and d and e for the others we have

κ = yx+ yae+ xbc+ abce

κ = γy + γbc+ yαd+ αbdc

which is equivalent to the equation x+ ae = γ + αd.

Introducing principal constraints α = δ0+ δ1x+ δ2a+ δ3b
and γ = κ0 + κ1x+ κ2a+ κ3b yields

κ0 + κ1x+ κ2a+ κ3b+ δ0d+ δ1xd

+δ2ad+ δ3bd− x− ae = 0

Since d, corresponding to the [gγ] is emitted before the
reception of gα, the value d is not in the restriction set of
the δi. A solution is readily computed:

δ0 = d−1 κ0 = −1 κ1 = 1 κ2 = e all other variables = 0.

This is precisely the Kaliski attack.

Conclusion and Acknowledgments. The decidability of a
rich class of security goals for the lightweight DH protocols
validates the power of our method, with its algebraic faithful-
ness and strong adversary. Unfortunately, this result does not
yield a practical procedure, since it relies on an exhaustive
enumeration of exponentially many possible counterexamples.
An important avenue for future work is to use this model to
justify an “enrich-by-need” analysis method [22].

We are grateful to the anonymous referees, and also
to Véronique Cortier, Steve Kremer, Moses Liskov, Dusko
Pavlovic, John Ramsdell, and Paul Rowe.

230

REFERENCES

[1] R. Ankney, D. Johnson, and M. Matyas. The Unified Model. contribu-
tion to ANSI X9F1. Standards Projects (Financial Crypto Tools), ANSI
X, 42, 1995.

[2] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Man-
tovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool for the
automated validation of internet security protocols and applications. In
Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576
of Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

[3] David A. Basin, Sebastian Mödersheim, and Luca Viganò. OFMC:
A symbolic model checker for security protocols. Int. J. Inf. Sec.,
4(3):181–208, 2005.

[4] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffe-Hellman
key agreement protocols. In Selected Areas in Cryptography, pages
630–630. Springer, 1999.

[5] Bruno Blanchet. An efficient protocol verifier based on Prolog rules.
In 14th Computer Security Foundations Workshop, pages 82–96. IEEE
CS Press, June 2001.

[6] Colin Boyd and Anish Mathuria. Protocols for authentication and key
establishment. Springer, 2003.

[7] Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan
Warinschi. Computational soundness: The case of Diffie-Hellman keys.
In Veronique Cortier and Steve Kremer, editors, Formal Models and
Techniques for Analyzing Security Protocols, Cryptology and Informa-
tion Security Series. IOS Press, 2011.

[8] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu
Turuani. Complexity results for security protocols with Diffie-Hellman
exponentiation and commuting public key encryption. ACM Transac-
tions on Computational Logic (TOCL), 9(4):24, 2008.

[9] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal
of Computer Security, 18(6):1157–1210, 2010.

[10] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zălinescu. Decid-
ing security properties for cryptographic protocols. application to key
cycles. ACM Transactions on Computational Logic (TOCL), 11(2):9,
2010.

[11] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey
of algebraic properties used in cryptographic protocols. Journal of
Computer Security, 14(1):1–43, 2006.

[12] Véronique Cortier, Daniel J. Dougherty, Joshua D. Guttman, and Steve
Kremer. The real-or-random property for lightweight Diffie-Hellman
protocols. Meetings, January 2014.

[13] Cas Cremers and Michele Feltz. One-round strongly secure key
exchange with perfect forward secrecy and deniability. Cryptology
ePrint Archive, Report 2011/300, 2011. http://eprint.iacr.org/2011/300.

[14] C.J.F. Cremers. Scyther - Semantics and Verification of Security
Protocols. Ph.D. dissertation, Eindhoven University of Technology,
2006.

[15] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[16] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Au-
thentication and authenticated key exchanges. Designs, Codes and
Cryptography, 2(2):107–125, 1992.

[17] Daniel J. Dougherty and Joshua D. Guttman. An algebra for symbolic
Diffie-Hellman protocol analysis. In C. Palamidessi and M. Ryan,
editors, Trustworthy Global Computing, LNCS. Springer, 2012. Post-
proceedings to appear.

[18] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-
NPA: Cryptographic protocol analysis modulo equational properties.
Foundations of Security Analysis and Design V, pages 1–50, 2009.

[19] Joshua D. Guttman. Security goals and protocol transformations. In
Sebastian Mödersheim and Catuscia Palamidessi, editors, Tosca: Theory
of Security and Applications, LNCS. Springer, March 2011.

[20] Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In
Veronique Cortier and Steve Kremer, editors, Formal Models and Tech-
niques for Analyzing Security Protocols, Cryptology and Information
Security Series. IOS Press, 2011.

[21] Joshua D. Guttman. State and progress in strand spaces: Proving fair
exchange. Journal of Automated Reasoning, 48(2):159–195, 2012.

[22] Joshua D. Guttman. Establishing and preserving protocol security goals.
Journal of Computer Security, 2014.

[23] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the
structure of bundles. Theoretical Computer Science, 283(2):333–380,
June 2002.

[24] Burton S. Kaliski. An unknown key-share attack on the MQV key
agreement protocol. ACM Transactions on Information and System
Security, 4(3):275–288, 2001.

[25] Deepak Kapur, Paliath Narendran, and Lida Wang. An E-unification
algorithm for analyzing protocols that use modular exponentiation.
Rewriting Techniques and Applications, 2003.

[26] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman
protocol. In Advances in Cryptology–CRYPTO 2005, pages 546–566.
Springer, 2005.

[27] Steve Kremer and Laurent Mazaré. Computationally sound analysis
of protocols using bilinear pairings. Journal of Computer Security,
18(6):999–1033, 2010.

[28] Sebastian Kunz-Jacques and David Pointcheval. About the Security of
MTI/C0 and MQV. Security and Cryptography for Networks, pages
156–172, 2006.

[29] Ralf Küsters and Tomasz Truderung. Using ProVerif to analyze
protocols with Diffie-Hellman exponentiation. In IEEE Computer
Security Foundations Symposium, pages 157–171. IEEE, 2009.

[30] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of
authenticated key exchange. Provable Security, 4784, 2007. DOI:
dx.doi.org/10.1007/978-3-540-75670-5 1.

[31] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An
efficient protocol for authenticated key agreement. Designs, Codes and
Cryptography, 28(2):119–134, 2003.

[32] Moses D. Liskov and F. Javier Thayer. Formal modeling of Diffie-
Hellman derivability for exploratory automated analysis. Technical
report, MITRE, June 2013. TR 13-0411.

[33] Yuri V Matiyasevich. Enumerable sets are diophantine. Doklady
Akademii Nauk SSSR, 191(2):279–282, 1970.

[34] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key
distribution systems. Transactions of the IECE of Japan, E69:99–106,
1986.

[35] Alfred Menezes. Another look at HMQV. Journal of Mathematical
Cryptology, 1:47–64, 2007.

[36] Jonathan Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In Proceedings of the 8th ACM
conference on Computer and Communications Security, pages 166–175.
ACM, 2001.

[37] Jonathan K. Millen and Vitaly Shmatikov. Symbolic protocol analysis
with an abelian group operator or diffie-hellman exponentiation. Journal
of Computer Security, 13(3):515–564, 2005.

[38] D. Pavlovic and C. Meadows. Deriving secrecy in key establishment
protocols. Computer Security–ESORICS 2006, pages 384–403, 2006.

[39] Olivier Pereira and Jean-Jacques Quisquater. On the impossibility
of building secure cliques-type authenticated group key agreement
protocols. Journal of Computer Security, 14(2):197–246, 2006.

[40] R. Ramanujam and S. P. Suresh. Decidability of context-explicit
security protocols. Journal of Computer Security, 13(1):135–166, 2005.
Preliminary version appeared in WITS ’03, Workshop on Issues in the
Theory of Security, Warsaw, April 2003.

[41] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic pro-
tocol shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

[42] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with
finite number of sessions is NP-complete. In Computer Security
Foundations Workshop, pages 174–, 2001.

[43] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin.
Automated analysis of Diffie-Hellman protocols and advanced security
properties. In IEEE Symposium on Computer Security Foundations,
pages 78–94, 2012.

231

