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Abstract—Automated analysis of protocols involving Diffie-
Hellman key exchange is challenging, in part because of the
undecidability of the unification problem in relevant theories. In
this paper, we justify the use of a more restricted theory that
includes multiplication of exponents but not addition, providing
unitary and efficient unification.

To justify this theory, we compare it to a computational model
of non-uniform circuit complexity through several incremental
steps. First, we give a model closely analogous to the computa-
tional model, in which derivability is modeled by closure under
simple algebraic transformations. This model retains many of the
complex features of the computational model, including defining
success based on asymptotic probability for a non-uniform family
of strategies. We describe an intermediate model based on formal
polynomial manipulations, in which success is exact and there
is no longer a parametrized notion of the strategy. Despite the
many differences in form, we are able to prove an equivalence
between the asymptotic and intermediate models by showing that
a sufficiently successful asymptotic strategy implies the existence
of a perfect strategy. Finally, we describe a symbolic model in
which addition of exponents is not modeled, and prove that (for
expressible problems), the symbolic model is equivalent to the
intermediate model.

I. INTRODUCTION

Automated analysis of protocols involving Diffie-Hellman
key exchange [10] is a challenging area that has attracted
much recent interest [7], [11], [16], [20]. Diffie-Hellman key
exchange differs from other protocol building blocks in that
its security properties are more difficult to describe than
the underlying derivability assumptions that guarantee those
properties. Thus, it is typical to focus on modeling derivability
in Diffie-Hellman environments.

Much of this work deals with a restricted theory of Diffie-
Hellman derivability that includes multiplication of exponents
but not addition. This paper focuses on the problem of giving
a rigorous justification for formal modeling of Diffie-Hellman
derivability, especially including this restricted view. Our ap-
proach to justification is to compare our model to a compu-
tational model for derivability in the Diffie-Hellman scenario.
The computational model we work with is computability by
a polynomially bounded non-uniform family of randomized
circuits with non-negligible probability.

In comparing the computational model, the validity of
which is well accepted, to this restricted DH theory, we
observe a number of major differences. First, the compu-
tational model is parametrized and deals with non-uniform
families of circuits that represent strategies. The symbolic
theory is not parametrized and aims to capture only generic
solutions. The computational model is based on probability
and incorporates randomness both in the challenge to be solved

and in the circuits that attempt to solve it. There is no notion
of probability in the symbolic theory: derivability is an all-or-
nothing proposition. Finally, the notion of derivations in the
symbolic theory is based on closure under simple, obviously-
computable algebraic transformations, while the computational
model gives a more implicit definition of what is computable.
The last of these does represent a fundamental difference in the
models, but we establish in this paper that the other differences
are not fundamental.

We justify the restricted model as follows. First, we give
a model closely analogous to the computational model, in
which derivability is modeled by closure under simple alge-
braic transformations. The gap between this model and the
computational one is unknown, but such a change in our
notion of derivability is necessary to make at some point.
Moreover, considering this model is a minimal change of
this type, since this model retains all complex features of
the computational model, including defining success based on
asymptotic probability for a non-uniform family of strategies.
Second, we describe a rich Diffie-Hellman theory modeling
both multiplication and addition of exponents, but with an
exact notion of derivability not involving asymptotic behavior
or probability. We prove that derivability in the asymptotic
model is equivalent to derivability in this intermediate model.
Then we present the symbolic restricted model in which
addition of exponents is not modeled, and prove that, for
derivability problems expressible without reference to addition
of exponents, derivability in the restricted model is equivalent
to derivability in the intermediate model.

Non-standard analysis.
The problem of dealing with the asymptotic behavior of

a parameterized sequence of objects is similar to a long-
standing problem with calculus. The concept of an infinites-
imal number, greater than zero but smaller than all positive
numbers, does not fit comfortably with theories of the real
numbers. Therefore the standard approach to calculus deals
with sequences and limits. There is, however, another approach
to this problem, to enhance our notion of numbers in such
a way that infinitesimals can be rigorously justified: non-
standard analysis.

In non-standard analysis, we may view sequences parame-
terized by the integers as extensible to non-standard integers,
including hyperfinite ones. When we extend the sequence of
Diffie-Hellman parameters to a hyperfinite index, we obtain
a field of hyperfinite prime order. Dougherty and Guttman
have described a model for Diffie-Hellman as an ultraproduct
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[11], which is effectively identical. However, the use of
ultraproducts soon becomes burdensome for the other objects;
our use of non-standard analysis allows us to apply the same
approach to notions of probability, nonuniform families of
circuits, and so on. Most particularly, we are able to describe
the notions of negligible and non-negligible probability via
measure at a hyperfinite index.

The results we obtain in the nonstandard setting imply
completely standard results about families of computational
problems indexed by a security parameter. That this transition
from nonstandard to standard is valid follows from the transfer
principle and the known theorem that nonstandard analysis
is a conservative extension of ZFC set theory. In fact [18]
gives an algorithm to “unwind” any proof of a standard
result using nonstandard methods to a standard one. However,
the nonstandard formulation provides an intuitively appealing
framework for proving asymptotic security properties.

All-or-nothing nature of polynomial derivations.
Our model of Diffie-Hellman derivability is based on

polynomial1 derivation. Although we define the success of
polynomial derivation probabilistically (over uniform choices
of unknown exponents), and although we allow a non-uniform
family of polynomials restricted only by a very generous
limitation on degree, it turns out this is no more descriptive
than a single uniform polynomial that exactly matches the
target. This is a consequence of the fact that polynomials that
have more zeroes than their degree over a finite field must be
uniformly zero.

Conservative extension.
Once we have justified the rich polynomial-derivation

model, the remaining issue is how to justify our restricted
model, in which derivability is based on monomials rather
than polynomials. Such a restriction necessarily reduces the set
of derivability problems we can describe, but the justification
issue remains: since we know all polynomial derivations are
feasible, are we making too bold a restriction on the power of
the adversary?

We answer this question in the negative. We prove that any
monomial that can be expressed as a polynomial of monomials
can be expressed as a monomial of those same monomials,
and use this to prove that any polynomial-derivable problem
that can be expressed in the restricted model is monomial-
derivable. In other words, we are restricting our scope but not
fundamentally changing the derivability of any statements by
restricting the model.

A. Prior work

Diffie-Hellman models.
Automated analysis of security protocols has received much

attention in recent years. Early work on such techniques

1“Polynomial” here is a handy description but not fully accurate. Actually
the adversary can compute any rational function (quotient of polynomials) on
exponents and can raise any known base to any derivable exponent. Similarly
we use “monomial” derivation as a name for our restricted model, but again
the adversary may also involve bases.

focused on modeling basic building blocks of secure protocols
such as encryption [1], [5], [19], but researchers have more and
more turned their attention to capturing the implicit security
properties of algebraic structures such as those that drive the
Diffie-Hellman protocol [10].

Symbolic modeling is the primary approach to accomplish-
ing automated analysis. There has been substantial work on
modeling DH key agreement. Boreale and Buscemi [6] and
Goubault-Larrecq, Roger, and Verma [14] describe symbolic
reasoning approaches for DH. Tools such as Maude-NPA
[12] and Tamarin [20] incorporate symbolic reasoning into
automated analysis of protocols involving DH. All of these
works have two features in common: they rely on solving
unification problems as a core functionality in their analysis,
and they model only the multiplication of exponents but do
not model their addition.

Dougherty and Guttman present an algebraic framework for
DH that does model addition of exponents [11]. They note that
this is challenging partly because unification is undecidable
in the theory of rings, by the unsolvability of Hilbert’s tenth
problem. There are, however, other related theories that are
decidable [15], [16]. Thus, while our restricted model is not
universally relied upon in prior work on symbolic analysis of
DH protocols, it is the norm.

On comparing computational and symbolic approaches.
Although symbolic security analysis has had numerous

successes, a recurrent theme in criticism of such work is
that it relies on models that are too abstract, and that not
enough is understood about the implications of adopting such
models. Much research in the cryptologic community is based
on a far less abstracted model of computational hardness
that traces its roots to work of Goldwasser and Micali [13].
Symbolic approaches are not alone in being the target of
such criticism: wherever work in the cryptologic community
involves highly abstracted elements such as the random oracle
model of Bellare and Rogaway [4] or Shoup’s generic group
model [21], their use is regarded as an undesirable feature.

Although the computational model and symbolic models
remain far apart, there have been some important contributions
in understanding the relationship between them. The most im-
portant class of results is the approach known as computational
soundness, in which the aim is to identify the requirements for
security proofs in symbolic models to hold in a computational
one [1], [3], [9], [17]. The computational soundness approach
has also been applied to a symbolic model capturing DH keys
by Bresson et al [7].

Our paper presents a different type of result. We aim to
show that a practically useful symbolic model is equivalent
to a well-accepted computational model, under an assumption
that would clearly be necessary to conclude such a result.

B. Structure of the paper

In Section II we cover basic background material and
define the notion of a Diffie-Hellman derivation problem. In
Section III we describe four derivability models for Diffie-
Hellman problems: the computational model, the asymptotic
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polynomial model, the formal polynomial model, and the
monomial model, the last of which is the symbolic model
we seek to justify. We then state the main theorems of the
paper. In Section IV, we give an exposition of the concepts
of non-standard analysis and discuss how these concepts may
apply to asymptotic models. In Section V, we address the proof
of the first main theorem: the equivalence of the asymptotic
polynomial model and the formal polynomial model. In Sec-
tion VI, we prove the second main theorem: the equivalence of
derivability in the formal polynomial and monomial models,
for monomial derivation problems.

II. DIFFIE-HELLMAN DERIVATION PROBLEMS

The Diffie-Hellman protocol is described in a finite group
𝐺 of prime order Ord(𝐺) = 𝑝, along with a generator 𝑔. It is
believed that in such groups the “discrete logarithm problem”
of finding a random 𝑥 given (𝐺, 𝑔, 𝑔𝑥) is hard. It is further
believed that if 𝑥 and 𝑦 are random, it is hard to find 𝑔𝑥𝑦 given
(𝐺, 𝑔, 𝑔𝑥, 𝑔𝑦); this is called the computational Diffie-Hellman
problem.

The hardness of these computational problems is the ba-
sis of Diffie-Hellman key exchange and many other crypto-
graphic techniques. There are certain aspects of the standard
computational model in which statements of the tractability
or intractability of such problems are stated that need to
be reviewed here. In particular, it is important to state the
computational hardness of such problems in a way that seems
realistic.

First of all, such statements are asymptotic ones. These
problems may be solved via brute force if the prime order 𝑝 is
small enough. Thus, any asymptotic definition will necessarily
include an infinite family of 𝑝, 𝐺, and 𝑔. However, one attrac-
tive feature of discrete logarithm-based cryptography is that no
“trap-door” is thought to exist making the discrete logarithm
problem or the computational Diffie-Hellman problem easy
under a given set of parameters. Thus, the same parameters
can be used by everyone.

Second, hardness is meant to be as close as possible to
impossibility, but we must recognize that randomized algo-
rithms will always be able to have a tiny chance of success,
for instance, by guessing the right answer at random. Thus,
the standard computational model concerns problems that can
be solved with non-negligible probability.

A. Preliminaries and notation

The expression Pr[𝑣1 ← 𝐴1; . . . ; 𝑣𝑛 ← 𝐴𝑛 :
𝑃 (𝑣1, . . . , 𝑣𝑛)] denotes the probability that 𝑃 (𝑣1, . . . , 𝑣𝑛)
holds given assignment of each of 𝑣1 through 𝑣𝑛 based
on probability distributions 𝐴1, . . . , 𝐴𝑛. When a finite set
is given in place of a probability distribution, the uniform
distribution on that set is implied. When an algorithm is in
place of a probability distribution, it is implied that a run of
that algorithm is performed, with uniform randomness if the
algorithm is randomized.

Negligible functions. A function 𝑓 : ℕ −→ ℝ is negligible
if and only if for every positive 𝑛 there is a positive constant

𝐶 such that ∣𝑓(𝑘)∣ ≤ 𝐶𝑘−𝑛. This is equivalent to the form
preferred in the cryptography literature:

∀𝑛 ∈ ℕ ∃𝑘0 ∀𝑘 ≥ 𝑘0 ∣𝑓(𝑘)∣ ≤ 𝑘−𝑛 (1)

Condition (1) clearly implies negligibility. Conversely, if 𝑓
is negligible, for positive 𝑛 there is a 𝐶 such that ∣𝑓(𝑘)∣ ≤
𝐶𝑘−(𝑛+1) for all 𝑘. Let 𝑘0 be such that 𝐶𝑘−1

0 ≤ 1. Then
∣𝑓(𝑘)∣ ≤ 𝑘−𝑛. Contrapositively, a function is 𝑓 non-negligible
if and only if there are 𝑛 and infinitely many 𝑘 such that
∣𝑓(𝑘)∣ ≥ 𝑘−𝑛.

A rational expression with integer coefficients is an element
of the field of quotients of the polynomial ring ℤ[𝑥1, . . . , 𝑥𝑛].
We denote it by ℤ(𝑥1, . . . , 𝑥𝑛). A monomial is an expression
of the form 𝑀(�̄�) = �̄��̄� = 𝑥𝛼1

1 ⋅ ⋅ ⋅𝑥𝛼𝑛
𝑛 where 𝑛 ∈ ℕ and

𝛼𝑖 ∈ ℤ. We associate to the monomial 𝑀 the function (which
by abuse of language we also denote by 𝑀 ) �̄� �→ 𝑎𝛼1

1 ⋅ ⋅ ⋅ 𝑎𝛼𝑛
𝑛

defined whenever all 𝑎𝑖 ∕= 0.
We use a bar to indicate a sequence of values. Thus, we

may describe a particular rational expression as 𝑅(�̄�), which
leaves ambiguous the value of 𝑛 such that 𝑅 ∈ ℤ(𝑥1, . . . , 𝑥𝑛).
If �̄� is a sequence of rational expressions �̄� = 𝑅1, . . . , 𝑅𝑛,
we can use �̄�(�̄�) to refer to (𝑅1(�̄�), . . . , 𝑅𝑛(�̄�)) and 𝑔�̄�(�̄�) to
refer to (𝑔𝑅1(�̄�), . . . , 𝑔𝑅𝑛(�̄�)).

Systems of exponent environments. Let 𝐺 be a cyclic group
of prime order 𝑝. Since 𝐺 is of prime order, every 𝑔 ∈ 𝐺 such
that 𝑔 ∕= 1𝐺 is a generator for 𝐺. In particular, exponentiation
is a mapping 𝐺 × ℤ → 𝐺. However, since 𝑔𝑘 depends
only on the equivalence class of 𝑘 modulo 𝑝, we can view
exponentiation as a mapping 𝐺× ℤ/(𝑝) → 𝐺. We thus view
the set of exponents as a field. Suppose 𝐺𝑘 is a sequence of
such cyclic groups where each 𝐺𝑘 is of prime order 𝑝𝑘, such
that 𝑝𝑘 →∞. Assume that 𝑔𝑘 is a sequence of generators for
each 𝐺𝑘.

Definition 1: A sequence 𝒮 = {(𝐺𝑘, 𝑔𝑘, 𝑝𝑘) : 𝑘 ∈ ℕ} is an
admissible system of exponentiation environments if 𝐺𝑘 is a
cyclic group of prime order 𝑝𝑘, where 𝑔𝑘 is a generator, and
there are constants 0 < 𝑐 ≤ 𝐶 < ∞ and 0 < 𝑅 < ∞ such
that 𝑐 𝑅𝑘 ≤ 𝑝𝑘 ≤ 𝐶 𝑅𝑘.

Remark 2: It is clear that the exponential growth assump-
tion on 𝑝𝑘 is equivalent to the inequality

𝑀 log 𝑝𝑘 − 𝑎 ≤ 𝑘 ≤𝑀 log 𝑝𝑘 −𝐴 (2)

for some constants 𝑎,𝐴 and 𝑀 > 0.
In this paper we are concerned with whether certain values

can be derived from certain other values. We restrict to a class
of such problems in which the information provided and the
values to be derived are both based on rational expressions in
the exponent.

Definition 3: A rational algebraic expression on vari-
ables 𝑥1, . . . , 𝑥𝑛 is either (1) a rational expression 𝑅 ∈
ℤ(𝑥1, . . . , 𝑥𝑛), or (2) 𝑔𝑅 where 𝑅 ∈ ℤ(𝑥1, . . . , 𝑥𝑛). If 𝑅 is a
rational algebraic expression we use 𝑅[�̄�] to denote the value
taken by 𝑅 when �̄� is the input to the rational expression
within 𝑅.
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Definition 4: Given an admissible system 𝒮 of exponen-
tiation environments, a derivation problem for 𝒮 is a pair
(�̄�1, 𝑅2) where 𝑅2 and the components of �̄�1 are rational
algebraic expressions.

The derivation problem (�̄�1, 𝑅2) represents the problem of
deriving 𝑅2[�̄�] from �̄�1[�̄�] for random �̄�.

Note that this notion of a derivation problem includes
both presumed hard problems such as the discrete logarithm
problem (�̄�1[𝑥] = 𝑔

𝑥 and 𝑅2[𝑥] = 𝑥) and the Diffie-Hellman
problem (�̄�1[𝑥1, 𝑥2] = (𝑔𝑥1 , 𝑔𝑥2) and 𝑅2[𝑥1, 𝑥2] = 𝑔𝑥1𝑥2 ),
but also includes easy problems such as modular exponentia-
tion (�̄�1[𝑥] = 𝑥,𝑅2[𝑥] = 𝑔

𝑥).

III. DIFFIE-HELLMAN DERIVABILITY MODELS

In this section, we describe four models of computation that
lead to four distinct notions of solvability for DH derivability
problems. Each model has its own notion of acceptable compu-
tation strategies as well as a threshold for success. A derivation
problem is solvable if there is an acceptable computation
strategy that meets the success threshold.

Each notion of solvable gives us a natural corresponding
notion of “hard”: namely, a derivability problem is hard if it
is not solvable.

∙ The computational model involves polynomially
bounded non-uniform randomized circuit families, and
a family is regarded as successful if it computes the
correct result with non-negligible probability.

∙ The asymptotic polynomial model involves non-uniform
families of random distributions on log-sublinear-degree
polynomial derivations, again with non-negligible proba-
bility of success.

∙ The formal polynomial model concerns DH derivation
problems in the abstract. A strategy is a polynomial
derivation, and success means that the strategy equals the
target as algebraic expressions over formal polynomials.

∙ The monomial model is just the same as the formal poly-
nomial model, but strategies are restricted to polynomial
derivations which are monomials.

A. The computational model

In order to define the computational view of when a
derivation problem is solvable, we must introduce the notion
of a polynomially bounded non-uniform randomized circuit
family. Roughly, a circuit is a composition of a finite number
of NAND gates. The size of a circuit is the number of NAND
gates. Each circuit is the implementation of a unique function
{0, 1}𝑙 → {0, 1}𝑙′ .

A randomized circuit is a circuit with a subset of its input
bits designated to be random; the non-designated bits are the
actual input of the randomized circuit.

A set {𝐴𝑘∣𝑘 ∈ ℕ} of circuits is a non-uniform circuit
family. A non-uniform circuit family {𝐴𝑘} is polynomially
bounded if there exists a polynomial 𝜌(𝑘) such that for all 𝑘,
∣𝐴𝑘∣ ≤ 𝜌(𝑘). Let 𝒫𝒩𝒞 be the set of polynomially bounded
non-uniform circuit families.

Computation by randomized polynomially-bounded non-
uniform circuit families is the most general standard notion
for security of discrete logarithm-based cryptographic schemes
[8]. The non-uniform stipulation is important to model security
where parameters are reused as they often are for Diffie-
Hellman. This scenario is a bit more complex than the more
typical case of computation by a probabilistic polynomial-time
Turing machine, because that amounts to a uniform family
of circuits rather than a non-uniform one. The distinction is
important: computation by a non-uniform family is possible if
“trapdoors” exist, whereas computation by a uniform family
with those trapdoors would imply that they are efficiently
computable.

It is essential to consider the non-uniform case to capture the
assumption that there do not exist trapdoors for the common
parameters.

Definition 5: A derivation problem (�̄�1, 𝑅2) is circuit-
solvable if: ∃{𝐴𝑘} ∈ 𝒫𝒩𝒞 : Pr[�̄� ← (ℤ/(𝑝𝑘))

𝑛; 𝑣 ←
𝐴𝑘(�̄�1(�̄�)) : 𝑣 = 𝑅2(�̄�)] is non-negligible.

B. Formal strategies

The other three models of derivation involve a formal notion
of strategy that corresponds to natural closure rules for the
adversary. First we describe these closure rules, and then give
a definition of algebraic strategies based on rational functions.

Definition 6 (Closure rules): If 𝑈 is a set of base values
known to the adversary and 𝐸 is a set of exponents known
to the adversary, we expect 𝑈 and 𝐸 to be closed under the
following rules:

1) 𝑔 ∈ 𝑈 and 0, 1 ∈ 𝐸.
2) If 𝑢, 𝑣 ∈ 𝑈 then 𝑢 ⋅ 𝑣 ∈ 𝑈 .
3) If 𝑡1, 𝑡2 ∈ 𝐸 then 𝑡1𝑡2 ∈ 𝐸 and 𝑡1 + 𝑡2 ∈ 𝐸.
4) If 0 ∕= 𝑡 ∈ 𝐸 then 𝑡−1 ∈ 𝐸.
5) If 𝑡 ∈ 𝐸 then −𝑡 ∈ 𝐸.
6) If 𝑢 ∈ 𝑈 and 𝑡 ∈ 𝐸, then 𝑢𝑡 ∈ 𝑈 .

We next define an algebraic strategy as a way of describing
particular implications of these closure rules.

Proposition 7: If 𝐸 satisfies the closure rules of Defini-
tion 6, and if 𝑅 ∈ ℤ(𝑥1, . . . , 𝑥𝑛) and 𝑡1, . . . , 𝑡𝑛 ∈ 𝐸 then
𝑅(𝑡) ∈ 𝐸.

Proof: Scalar multiplication of 𝑡 values can be accom-
plished by repeated application of Rule 3 and Rule 5 if
necessary. Constants are available due to Rule 1. Coefficient-1
monomials may be formed by Rule 3, and thus polynomials
may be formed by Rule 3. Rule 4 allows us to form arbitrary
rational functions.

Proposition 8: If 𝑈 and 𝐸 satisfy the closure rules of Defi-
nition 6, and if 𝑅1, . . . , 𝑅𝑚 ∈ ℤ(𝑥1, . . . , 𝑥𝑛) and 𝑡1, . . . , 𝑡𝑛 ∈
𝐸 and 𝑢1, . . . , 𝑢𝑚 ∈ 𝑈 , then

∏𝑚
𝑖=1 𝑢𝑖

𝑅𝑖(𝑡) ∈ 𝑈 .
Proof: We know each 𝑅𝑖(𝑡) ∈ 𝐸 due to Proposition 7.

Each 𝑢𝑅𝑖(𝑡)
𝑖 is thus in 𝑈 due to Rule 6, and so

∏𝑚
𝑖=1 𝑢𝑖

𝑅𝑖(𝑡) ∈
𝑈 by Rule 2.

Definition 9: An algebraic strategy over exponent variables
E and base variables U is either (1) a rational expression
𝑅 ∈ ℤ(E), or (2) a monomial of the form

∏
𝑢𝑖∈U 𝑢𝑖

𝑅𝑖 where
each 𝑅𝑖 ∈ ℤ(E).
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Note that due to the closure rules of Definition 6, all
derivations have an algebraic strategy.

If E is a set of exponent variables and U is a set of base
variables, we use B⟨U,E⟩ to denote the set of monomials
forming the latter type of algebraic strategy.

An algebraic strategy thus represents an allowable derivation
under the closure rules of Definition 6.

If 𝐹 is an algebraic strategy, and ℎ̄ and 𝑡 are tuples of base
and exponent values, respectively, we write 𝐹 (ℎ̄, 𝑡) to indicate
the value of 𝐹 on those inputs: either 𝑅(𝑡) or

∏
𝑖 ℎ

𝑅𝑖(𝑡)
𝑖 .

C. The asymptotic polynomial model

The asymptotic polynomial model is meant to be a direct
analogue of the computational model, but with circuits re-
placed with algebraic strategies in a direct manner. Instead of
non-uniform families of circuits, we deal with non-uniform
families of algebraic strategies.

Rather than a polynomial bound on the circuit family,
we require that the rational expressions involved are of log-
sublinear degree in 𝑝: in other words, the expressions are of
degree significantly less than 𝑝. A function 𝑓 : ℝ −→ ℝ is
log-sublinear in 𝑟 if and only if for every 𝑘 ∈ ℕ,

lim
𝑟→∞

𝑓(𝑟)

𝑟(log 𝑟)−𝑘
= 0. (3)

For example, any function such that 𝑓(𝑟) = 𝑂(𝑟1−𝜀) for pos-
itive 𝜀 is log-sublinear. This is a very conservative restriction,
because the degree of the rational expressions can still grow
exponentially in ℓ, when 𝑟 has an exponential bound in ℓ. This
is the case, for instance, if 𝑟 is a parameter whose bit length
is bounded by ℓ.

Let ℒ𝒮𝒮 (for “log-sublinear strategies”) denote the set of
non-uniform families of algebraic strategies, such that there
is a log-sublinear bounding function 𝑓 such that the rational
expressions in 𝐹𝑘 have degree bounded by 𝑓(𝑘).

As this model is our “bridge” between the computational
and the formal polynomial model, we also refer to this model
as our bridge model.

Definition 10: A derivation problem (�̄�1, 𝑅2) is bridge-
solvable if ∃{𝐹𝑘} ∈ ℒ𝒮𝒮 : Pr[�̄� ← (ℤ/(𝑝𝑘))

𝑛; 𝑦 ←
(ℤ/(𝑝𝑘))

𝑛′
: 𝑅2(�̄�) = 𝐹𝑘(�̄�1(�̄�)∣∣𝑦)] is non-negligible.

In the definition, 𝑦 is an explicit representation of random-
ness in the strategy. By �̄�1(�̄�)∣∣𝑦 we mean the pair ℎ̄, 𝑡∣∣𝑦
where �̄�1(�̄�) = (ℎ̄, 𝑡).

D. The formal polynomial model

The formal polynomial model is a much simplified model
in which computation strategies are simply single algebraic
strategies. The notion of success is equality of formal poly-
nomials (or, more accurately, formal rational expressions). In
other words, variables are treated as abstract field extension
elements with no non-trivial relations among them.

Definition 11: A derivation problem (�̄�1, 𝑅2) is formally
solvable if ∃ an algebraic strategy 𝐹 such that 𝑅2 = 𝐹 ∘ �̄�1.

This allows us to state the first main theorem of the paper.
Theorem 12: Derivation problems are formally solvable if

and only if they are bridge-solvable.

Sorts: BASE, EXPN

(⋅)(⋅) BASE × EXPN → BASE

⋅ ⋅ EXPN × EXPN → EXPN

(⋅)−1 EXPN → EXPN

1 EXPN

𝑔 BASE

Equations
𝑔𝑥𝑦 ≡ (𝑔𝑥)𝑦 𝑔 : BASE, 𝑥, 𝑦 : EXPN

𝑥𝑦 ≡ 𝑦𝑥 𝑥, 𝑦 : EXPN

𝑥(𝑦𝑧) ≡ (𝑥𝑦)𝑧 𝑥, 𝑦, 𝑧 : EXPN

𝑔1 ≡ 𝑔 𝑔 : BASE

1𝑥 ≡ 𝑥 𝑥 : EXPN

𝑥(𝑥−1) ≡ 1 𝑥 : EXPN

Derivations
∅ ⊢ 𝑔, 1
𝑥, 𝑦 ⊢ 𝑥𝑦 𝑥, 𝑦 : EXPN

𝑥 ⊢ 𝑥−1 𝑥 : EXPN

ℎ, 𝑥 ⊢ ℎ𝑥 ℎ : BASE, 𝑥 : EXPN

Fig. 1. Our restricted Diffie-Hellman algebra

E. The monomial model

Unfortunately, the formal polynomial model is not a sym-
bolic model. Prior work on automated protocol analysis fo-
cuses on symbolic models in which the addition of exponents
is not represented [6], [12], [14], [20]. Moreover, Dougherty
and Guttman observe that the notion that all exponents other
than 0 have inverses cannot be simply expressed in an equa-
tional theory [11], so it may be necessary to make such
a restriction in order to have a symbolic model for DH
derivability.

Definition 13: An algebraic strategy is monomial if all the
rational expressions involved are monomials.

Definition 14: A derivation problem (�̄�1, 𝑅2) is monomial
solvable if ∃ a monomial algebraic strategy 𝐹 such that 𝑅2 =
𝐹 ∘ �̄�1

For monomial derivation problems (�̄�1, 𝑅2) (those involv-
ing only monomials), monomial solvability is equivalent to
derivability in the Diffie-Hellman algebra and derivability
model illustrated in Figure 1. The derivability rules are simply
those of Definition 6 restricted to the multiplicative rules for
exponents.

This brings us to the statement of our second main theorem:
Theorem 15: For all monomial derivability problems

(�̄�1, 𝑅2), (�̄�1, 𝑅2) is monomial solvable if and only if it is
formally solvable.

IV. NON-STANDARD ANALYSIS

Our next aim is to prove the main theorems of the paper,
starting with the proof of Theorem 12.

In order to prove equivalence of bridge and formal solv-
ability, we apply ideas from non-standard analysis to the
asymptotic polynomial model. Specifically, we consider that
asymptotic definition at an appropriate infinite index. Bridge
solvability is thus equivalent to a non-negligibly successful
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℧ ∘℧
∈ ∈
⊆ ⊆∪ ∪

(⋅, ⋅) (⋅, ⋅)
𝒫 ∙𝒫
card ∙card

℧ ∘℧
ℕ ∙ℕ
ℝ ∙ℝ∑ ∙∑
∏ ∙∏

function function
finite ∙finite

TABLE I
TRANSLATION TABLE FOR RELATIONS, OPERATORS AND PREDICATES

solution by a non-uniform family of randomized strategies. We
show this implies the existence of some uniformly successful
strategy via an argument about the size of non-trivial algebraic
varieties.

In this section, we give a basic exposition of non-standard
analysis and describe the main technique of choosing an
infinite index, and how this applies to concepts such as
probability and negligible functions. In the next section, we
prove the first main theorem.

A. Basic concepts of non-standard analysis

Beyond its foundational role for a theory of infinitesimals,
non-standard analysis provides a general and efficient limit
construction for sequences of discrete objects [22]. Our refer-
ence for non-standard analysis is [2]. The main constituents
of non-standard analysis are a pair of universes ℧ and ∘℧ and
an operator ∙ : ℧ −→ ∘℧ called an enlargement operator.
The transfer principle is the fact that the operator ∙ preserves
the validity of first order formulas. Mathematical terms such as
function, cardinality, finiteness, field can be carried over to ∘℧
and the enlargement operator preserves their basic properties.
We will refer to ℧ as the standard universe and ∘℧ as the non-
standard universe. The transfer principle is stated as follows:

Axiom 16 (Transfer): If Φ(𝑥1, . . . , 𝑥𝑛) is a formula with
bounded quantification whose free variables are among
𝑥1, . . . , 𝑥𝑛, then for 𝑎1, . . . , 𝑎𝑛 ∈ ℧, Φ(𝑎1, . . . , 𝑎𝑛) is valid in
℧ if and only if Φ(∙𝑎1, . . . , ∙𝑎𝑛) is valid in ∘℧.
By formula we mean first order formula with the predicate
symbols “∈” and “=” and some constants such as 1 and ℕ.
The restriction to bounded formulas is not strictly necessary,
but it allows us to assume that the model ∘℧ interprets the
membership operator as ∈. The reference [2] follows this
approach while [18] allows for unrestricted quantifiers.

We could build a correspondence table between symbols
in the standard universe and symbols in the non-standard
one. To each construct (predicate, operator, relation) 𝐶 in
the standard universe corresponds a construct ∙𝐶 in the non-
standard universe. The table would look something like the
table in Figure I. The notations that are used in practice differ
from those in this list. For example, for the predicates ∙finite,
∙integer, ∙real we use hyperfinite, hyperinteger, hyperreal
respectively, A partial mapping 𝜑 : ∘℧ −→ ∘℧ is internal
if there is an 𝑓 ∈ ∘℧ satisfying the function predicate such
that 𝜑(𝑎) is defined if and only if 𝑎 ∈ ∙dom𝑓 and for such
values of 𝑎, 𝜑(𝑎) = 𝑓(𝑎). Otherwise, the mapping is said to

be external. A set is internal (respectively external) if and only
if its indicator function is internal (respectively external).

Elements 𝑟 of a set 𝑆 are identified with ∙𝑟. Thus 𝑆 is
viewed as a subset of ∙𝑆.

An element 𝑢 ∈ ∘℧ is standard if and only if 𝑢 =
∙𝑥 for some 𝑥 ∈ ℧. Thus ∙

ℕ and ∙
ℝ are standard sets

even though they have non-standard elements. We denote
the formula “𝑥 is standard” by st(𝑥). We use the notation
∀st𝑥Φ(𝑥) and ∃st𝑥Φ(𝑥) which are abbreviations for the
formulas ∀𝑥 [st(𝑥) =⇒ Φ(𝑥)] and ∃𝑥 [st(𝑥) ∧ Φ(𝑥)]
respectively. More generally, if Φ is a first order formula, Φst

is the formula where all quantifications of the form ∀𝑥 and ∃𝑥
are replaced with quantifications ∀st𝑥 and ∃st𝑥 respectively.
The transfer principle then takes the form:

Axiom 17: If Φ(𝑥1, . . . , 𝑥𝑛) is a bounded formula whose
free variables are among 𝑥1, . . . , 𝑥𝑛, then for all standard
𝑎1, . . . , 𝑎𝑛 ∈ ∘℧,

Φst(𝑎1, . . . , 𝑎𝑛) ⇐⇒ Φ(𝑎1, . . . , 𝑎𝑛).

Non-standard analysis uses, in an essential way, the non-
standard integers. The following principle guarantees their
existence:

Axiom 18 (Countable Saturation): If {𝐴𝑛 : 𝑛 ∈ ℕ} is a
sequence of internal sets in ∘℧ such that for all 𝑛 ∈ ℕ 𝐴1 ∩
𝐴2 ∩ ⋅ ⋅ ⋅ ∩𝐴𝑛 is non-empty, then there is an internal element
𝑎 such that 𝑎 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ.

Proposition 19: ∙ℕ ∖ ℕ is non-empty.
Proof:

For finite subsets of ℧ we have

∙{𝑎1, . . . , 𝑎𝑛} = {∙𝑎1, . . . , ∙𝑎𝑛}. (4)

Now ℕ ∖ {1, . . . , 𝑛} is non-empty. Therefore for all 𝑛 ∈ ℕ,

𝐴𝑛 = ∙
ℕ ∖ {1, . . . , 𝑛} ∕= ∅

and thus there is an 𝑎 ∈ ∩
𝑘 𝐴𝑘. Such an 𝑎 is distinct from

all 𝑘 ∈ ℕ.
Countable saturation also establishes the following princi-

ple:
Proposition 20 (Extension of sequences principle.): For

any sequence {𝑎𝑛}𝑛∈ℕ of elements of ∘℧ such that 𝑎𝑛 ∈ 𝐴,
there is an internal sequence {𝑎′𝑛}𝑛∈∙ℕ which extends the
original sequence, that is 𝑎′𝑛 = 𝑎𝑛 for all 𝑛 ∈ ℕ.

Proof: For each 𝑛 ∈ ℕ, let 𝐴𝑛 be the set of se-
quences {𝑏𝑘}𝑘∈∙ℕ which coincide with {𝑎𝑘}𝑘∈ℕ in the interval
{1, 2, . . . , 𝑛}. For all 𝑛 ∈ ℕ, 𝐴𝑛 is non-empty since we can
exhibit an element 𝑏 ∈ 𝐴𝑛 as follows:

𝑏𝑘 =

{
𝑎𝑘 if 𝑘 ≤ 𝑛
0 otherwise

The sequence is internal, since it is defined by an internal
formula. By countable saturation, there is an internal 𝑎 that is
an element of all the sets 𝐴𝑛.

Some interesting non-standard numbers we can create us-
ing this principle include infinitesimal numbers and infinite
numbers.
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Definition 21: An 𝑟 ∈ ∙ℝ is infinitesimal if and only if for
every 𝑛 ∈ ℕ, ∣𝑟∣ ≤ 𝑛−1.
𝑥 is infinitesimal is written as 𝑥 ≃ 0.
Proposition 22: There are infinitesimal hyperreal numbers.

Proof: For 𝑛 ∈ ℕ, let 𝐴𝑛 = {𝑟 ∈ ∙
ℝ : 0 ≤ 𝑟 ≤ 1/𝑛}.

𝐴𝑛 is non-empty and this by countable saturation,
∩

𝑛𝐴𝑛 is
non-empty.

Definition 23: A positive hyperreal 𝑟 is infinite, written as
𝑥 ≃ ∞, if and only if ∀𝑛 ∈ ℕ, 𝑟 ≥ 𝑛.

We use the notation 𝑟 ≫ 0 to indicate 𝑟 is not infinitesimal
and 𝑟 ≪∞ to indicate 𝑟 is not infinite.

Besides the ubiquitous transfer principle, we use two other
techniques of non-standard analysis: countable saturation in
the form of the extension of sequences principle and the
overspill principle according to which any internal property
which holds for all elements of a non-internal set must spill
over into at least one non-standard element.

B. Non-standard treatment of asymptotic derivability models

Remark 24 (Notation): Given any standard sequence 𝒮 =
{𝑆𝑘}𝑘∈ℕ , ∙𝒮 denotes the family indexed by ∙

ℕ obtained by
applying the transfer operator to 𝒮. The family ∙𝒮 can be
viewed as extension of 𝒮 . By overloading of notation, we
denote each term of the family ∙𝒮 by 𝑆𝑘.

Now let 𝒮 = {(𝐺𝑗 , 𝑔𝑗 , 𝑝𝑗) : 𝑗 ∈ ℕ} be an admissible
system of groups and generators; ∙𝒮 is a family indexed on
∙
ℕ which extends 𝒮 . By transfer, for each 𝑘 ∈ ∙

ℕ, 𝐺𝑘 is a
cyclic group, generated by 𝑔𝑘, of prime order 𝑝𝑘. In particular,
exponentiation is defined as a mapping 𝐺𝑘 × ℤ/(𝑝𝑘) → 𝐺𝑘.
Now let 𝑘 ≃ ∞. Then 𝑝𝑘 ≃ ∞ due to growth requirements on
the sequence {𝑝𝑘}𝑘 in Definition 1. The internal characteristic
of this field is 𝑝𝑘 ≃ ∞.

Non-standard view of negligibility
First, we prove the following proposition.
Proposition 25: A necessary and sufficient condition for a

(standard) function 𝑓 on ℕ to be negligible is that for all
standard 𝑛 and 𝑘 ≃ ∞, ∣∙𝑓(𝑘)∣ ≤ 𝑘−𝑛.

Proof: For necessity, suppose 𝑓 is negligible and 𝑛 is
standard. By the definition of negligible

∃stℓ ∀st𝑘 ≥ ℓ ∣∙𝑓(𝑘)∣ ≤ 𝑘−𝑛

is valid. Applying transfer, which is legitimate since it is
applied to the innermost quantifier

∃stℓ ∀𝑘 ≥ ℓ ∣∙𝑓(𝑘)∣ ≤ 𝑘−𝑛

In particular, if 𝑘 ≃ ∞, ∣∙𝑓(𝑘)∣ ≤ 𝑘−𝑛 as claimed.
The proof of sufficiency relies on a common technique

involving overspill and transfer. Suppose that for all 𝑘 ≃ ∞
and all standard 𝑛, ∣∙𝑓(𝑘)∣ ≥ 𝑘−𝑛. In particular,

∀ℓ ≃ ∞ ∀𝑘 ≥ ℓ ∣∙𝑓(𝑘)∣ ≥ 𝑘−𝑛

and thus by overspill,

∃stℓ ∀𝑘 ≥ ℓ ∣∙𝑓(𝑘)∣ ≥ 𝑘−𝑛

By transfer
∃stℓ ∀st𝑘 ≥ ℓ ∣∙𝑓(𝑘)∣ ≥ 𝑘−𝑛

which is the claim 𝑓 is negligible.

Non-standard view of probability
Let 𝒳 = {𝑋𝑘}𝑘∈ℕ be a sequence of finite sets. A sequence

of subsets 𝐴𝑘 ⊆ 𝑋𝑘 is negligible if and only if Pr𝑘(𝐴𝑘)
is negligible as a function of 𝑘, where Pr𝑘 is the uniform
probability measure on 𝑋𝑘.

We will consider any hyperfinite set 𝑋 as a space equipped
with the probability measure

Pr(𝐴) =
∙card𝐴
∙card𝑋

(5)

Proposition 26: Let {𝑋𝑘}𝑘∈ℕ be a sequence of finite sets.
A necessary and sufficient condition a sequence {𝐴𝑘}𝑘 of
subsets be negligible is that for every standard 𝑚 and 𝑘 ≃ ∞

Pr(𝐴𝑘) ≤ 𝑘−𝑚 (6)

Proof: The proof of this follows the same lines as the
proof of Proposition 25.

Definition 27: Let 𝐾 ≃ ∞. A hyperreal 𝜃 is 𝐾-negligible
if and only if for all standard 𝑚, ∣𝜃∣ ≤ 𝐾−𝑚. A hyperreal 𝜃
is of order 𝐾 if and only if there is a standard 𝑚, such that
∣𝜃∣ ≤ 𝐾−𝑚.

Remark 28: Any 𝐾-negligible number 𝜃 is infinitesimal,
since 𝜃 ≤ 𝐾−1 and𝐾−1 is already infinitesimal. The converse
is false, since 𝐾−1 is infinitesimal but not negligible. We
introduce this stronger concept motivated by Proposition 26
and the transfer principle to translate the property of negligible
sequence into a “limit” property of a single hyperfinite set.
Note that negligible is defined relative to a scale parameter 𝐾.

In the statement of Proposition 26 there is no relation
assumed between the cardinality of 𝑋𝑘 and 𝑘. If we assume
𝑋𝑘 has an exponential growth, that is for some constants
0 < 𝑐 ≤ 𝐶 <∞ and all 𝑘,

𝑐 ≤ card𝑋𝑘

𝑅𝑘
≤ 𝐶

then we can rewrite (6) as for all 𝑘 ≃ ∞, Pr𝑘(𝐴𝑘) is
log ∙card𝐴𝑘 negligible.

V. NON-STANDARD TREATMENT OF BRIDGE-SOLVABILITY

In this section, use techniques from non-standard analysis
to prove Theorem 12.

Recall that our formalized version of a non-uniform family
of circuits is a non-uniform family of algebraic strategies. The
notion of solvability relies on an underlying notion of rough
equivalence between a non-uniform process and a uniform
one, which we formalize here. First, we define this sort of
equivalence as it would apply to exponents:

Definition 29: Suppose 𝑅 ∈ ℤ(𝑥1, . . . , 𝑥𝑛) and {𝑆𝑘}𝑘∈ℕ is
a sequence of elements of ℤ(𝑥1, . . . , 𝑥𝑛). 𝑅 ∼ {𝑆𝑘}𝑘 if and
only if there is a non-negligible function 𝜀 such that for all
𝑘 ∈ ℕ,

Pr𝑘 {�̄� ∈ (ℤ/(𝑝𝑘))
𝑛 : 𝑅(�̄�) = 𝑆𝑘(�̄�)}︸ ︷︷ ︸
𝐴𝑘

≥ 𝜀(𝑘) (7)
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Remark 30: In (7), the symbol Pr𝑘 refers to the uniform
probability measure on (ℤ/(𝑝𝑘))

𝑛. Implicit in the defining
condition for the sets 𝐴𝑘 is that both the RHS and the LHS of
the equation within the braces are defined. In particular, the
denominators of both 𝑅(�̄�) and 𝑆𝑘(�̄�) must be non-zero in
order for �̄� to be an element of 𝐴𝑘.

Remark 31: A necessary and sufficient condition that 𝑅 ∼
{𝑆𝑘}𝑘 is that there exist an 𝑚 ∈ ℕ such that

Pr𝑘 {�̄� ∈ (ℤ/(𝑝𝑘))
𝑛 : 𝑅(�̄�) = 𝑆𝑘(�̄�)}︸ ︷︷ ︸
𝐴𝑘

≥ (log 𝑝𝑘)
−𝑚 (8)

for infinitely many 𝑘. This is a trivial rewrite of (7) using
Remark 2.

Proposition 32: Suppose 𝑅1, 𝑅2, 𝑆𝑘 ∈ ℤ(𝑥1, . . . , 𝑥𝑛) and
𝑅2 ∼ {𝑆𝑘 ∘ 𝑅1}𝑘. If the degree of 𝑆𝑘 is a log-sublinear
function of 𝑝𝑘 (that is the degrees of the numerator and
denominator of 𝑆𝑘 are log-sublinear in 𝑝𝑘) as 𝑘 → ∞ then
there is an 𝑆 ∈ ℤ(𝑥1, . . . , 𝑥𝑛) such that 𝑆 ∘𝑅1 = 𝑅2.

In other words, when such an {𝑆𝑘} family exists for a
given (�̄�1, 𝑅2) exponent-only derivability problem, 𝑅2 can
be derived from �̄�1 in a uniform way.

Next we state the more general notion which includes both
base and exponent expressions and state the equivalent propo-
sition. The more general version of Proposition 32 proves
Theorem 12

Definition 33: Suppose �̄� ∈ U𝑚, �̄� ∈ E𝑛, 𝐹 (�̄�, �̄�) ∈
B⟨�̄�, �̄�⟩ and {𝐺𝑘(�̄�, �̄�)}𝑘∈ℕ a sequence of elements of B⟨�̄�, �̄�⟩.
Then 𝐹 ∼ {𝐺𝑘}𝑘 if and only if there is a non-negligible
function 𝜀 such that for all 𝑘 ∈ ℕ,

Pr𝑘{(𝜏 ,�̄�) ∈ (ℤ/(𝑝𝑘))
𝑚 × (ℤ/(𝑝𝑘))

𝑛 :

𝐹 (𝜏 , �̄�) = 𝐺𝑘(𝜏 , �̄�)} ≥ 𝜀(𝑘).
(9)

Proposition 34: Suppose 𝑅1, 𝑅2, 𝑆𝑘 ∈ B⟨U,E⟩ and 𝑅2 ∼
{𝑆𝑘∘𝑅1}𝑘. If the degree of 𝑆𝑘 is log-sublinear in 𝑘 then there
exists 𝑆 ∈ B⟨U,E⟩ such that 𝑅2 = 𝑆 ∘𝑅1.

A. Generalizing to infinite index

We now strive to prove Propositions 32 and 34.
We apply non-standard analysis techniques, in particular the

transfer principle, to extend these definitions and propositions
to infinite 𝑘. By applying the overspill principle we can then
isolate these statements to a single, infinite 𝑘. This produces
almost the environment we expect; the one difference is that
we get a definition of solvable based on a non-negligible prob-
ability of success of being solved by an allowable derivation,
rather than being exactly solved by it. However, we are able to
prove that these amount to the same thing. In order to do this,
we require some preliminary concepts that restrict the size of
algebraic varieties over finite fields.

B. Varieties and Negligible Sets

Let F be an internal field. We consider internal multivariate
polynomials 𝑃 ∈ F[𝑥1, . . . , 𝑥𝑛] where 𝑛 ∈ ∙

ℕ. Elements
of F[𝑥1, . . . , 𝑥𝑛] are internal functions from the free internal
Abelian semigroup generated by 𝑥1, . . . , 𝑥𝑛 into the field F.
We also use the notation F[�̄�] to denote the ring F[𝑥1, . . . , 𝑥𝑛].

An element 𝑃 ∈ F[𝑥1, . . . , 𝑥𝑛] defines a function F𝑛 −→ F
which by abuse of language we also denote by 𝑃 . Note that
in general distinct polynomials can define the same function.

Now suppose F is a hyperfinite field and 𝑃 ∈ F[𝑥1, . . . , 𝑥𝑛]
is a polynomial of degree 𝑚. The variety defined by 𝑃 is the
set 𝐸 ⊆ F𝑛

𝐸 = {(𝑥1, . . . , 𝑥𝑛) ∈ F𝑛 : 𝑃 (𝑥1, . . . , 𝑥𝑛) = 0} (10)

If 𝑓 is log-sublinear, then for 𝑅 ≃ ∞ and standard
hyperinteger 𝑘,

∙𝑓(𝑅)
𝑅(log𝑅)−𝑘

≃ 0. (11)

An internal set 𝐸 ⊆ 𝑋 is negligible if and only if Pr(𝐸)
is negligible relative to the scale parameter log ∙card𝑋 . The
key result we use is the following:

Proposition 35: Suppose 𝐸 ⊆ F𝑛 is an algebraic variety
defined by a non-trivial polynomial 𝑃 such that

deg𝑃 ≤ ∙𝑓(∙cardF) (12)

where 𝑓 is log-sublinear. Then 𝐸 is negligible.
The result is proved in §V-D.

Remark 36: Note that the degree of 𝑃 need not be standard.
Stated contrapositively, Proposition 35 states that if 𝑃 defines
a variety which is non-negligible, then 𝑃 is trivial.

Remark 37: Stated contrapositively, Proposition 35 states
that two polynomials whose degrees are not too large (in
the sense of the inequality (12)) and which agree on a non-
negligible set are in fact identical.

C. Derivability in the Formal Model

Fix a derivability problem (�̄�1, 𝑅2), and let 𝑈 , 𝐸 be the sets
of base expressions and exponent expressions, respectively,
derivable by the adversary. In other words, 𝑈 and 𝐸 consist of
base and exponent expressions obtained by composing rational
expressions with the 𝑅1 values. We use the notation and
context of §IV-B, in particular 𝒮 = {(𝐺𝑗 , 𝑔𝑗 , 𝑝𝑗) : 𝑗 ∈ ℕ}
is an admissible system of groups and generators and ∙𝒮 is
the extension obtained by transfer. The following remark is
crucial in what follows:

Remark 38: Suppose 𝐹 is standard and 𝐹 ∈ ∙𝑈 (respec-
tively 𝐹 ∈ ∙𝐸). Then 𝐹 ∈ 𝑈 (respectively 𝐹 ∈ 𝐸). This is
immediate from the transfer principle.

The previous remark is the basic idea behind our use of non-
standard analysis. We first consider exponent expressions:

Proof of Proposition 32: Since the set of {𝑝𝑗 : 𝑗 ∈ ℕ}
is unbounded, there is an 𝑀 ≃ ∞ such that 𝑝𝑀 ≃ ∞ and

𝑅(�̄�)− 𝑆𝑀 (�̄�) = 0 (13)

for �̄� ∈ (∙ℤ/(𝑝𝑀 ))𝑛 on a non-negligible set 𝐴𝑀 . Let

𝑅(�̄�) =
𝑅num(�̄�)

𝑅den(�̄�)
, 𝑆𝑀 (�̄�) =

𝑆num(�̄�)

𝑆den(�̄�)
(14)

so (13) can be regarded as the conjunction

1) 𝑅den(�̄�) and 𝑆den(�̄�) are non-zero
2) 𝑅num(�̄�)𝑆den(�̄�) = 𝑆num(�̄�)𝑅den(�̄�)
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The result now follows from Proposition 35 and the transfer
principle.

Proof of Proposition 34: There is an 𝑀 ≃ ∞ such that
𝑝𝑀 ≃ ∞ and the set

{(𝜏 , �̄�) ∈ (∙ℤ/(𝑝𝑀 ))𝑚×(∙ℤ/(𝑝𝑀 ))𝑛 : 𝐹 (𝜏 , �̄�) = 𝐺𝑀 (𝜏 , �̄�)}
has non-negligible probability. Equivalently (𝜏 , �̄�) ∈
(∙ℤ/(𝑝𝑀 ))𝑚 × (∙ℤ/(𝑝𝑀 ))𝑛 such that

𝜏
𝑅1(�̄�)
1 ⋅ ⋅ ⋅ 𝜏𝑅𝑚(�̄�)

𝑚 = 𝜏
𝑆1(�̄�)
1 ⋅ ⋅ ⋅ 𝜏𝑆𝑚(�̄�)

𝑚 (15)

has non-negligible probability, where

𝐺𝑀 (�̄�, �̄�) = 𝑢
𝑆1(�̄�)
1 ⋅ ⋅ ⋅𝑢𝑆𝑚(�̄�)

𝑚

Choose a generator 𝜌 for 𝐺𝑀 . Then (15) can be expressed as

𝜌𝛼1𝑅1(�̄�)+⋅⋅⋅+𝛼𝑚𝑅𝑚(�̄�) = 𝜌𝛼1𝑆1(�̄�)+⋅⋅⋅+𝛼𝑚𝑆𝑚(�̄�) (16)

which holds for (�̄�, �̄�) ranging over a subset 𝐴𝑀 of
(∙ℤ/(𝑝𝑀 ))𝑚 × (∙ℤ/(𝑝𝑀 ))𝑛 of non-negligible probability.
Therefore

𝛼1(𝑅1(�̄�)− 𝑆1(�̄�)) + ⋅ ⋅ ⋅+ 𝛼𝑚(𝑅𝑚(�̄�)− 𝑆𝑚(�̄�)) = 0.

for (�̄�, �̄�) ∈ 𝐴𝑀 . Thus for all 𝑘, 1 ≤ 𝑘 ≤ 𝑚, 𝑅𝑘(�̄�)−𝑆𝑘(�̄�) =
0 which proves the result.

D. Negligibility of Algebraic Varieties

We now turn to the main technical result which limits the
size of algebraic varieties defined by polynomials of log-
sublinear degree in the field size.

Proposition 39: Suppose 𝐸 ⊆ F𝑛 is an algebraic variety
defined by a non-trivial polynomial 𝑃 . Then

∙card𝐸 ≤ 𝑛deg𝑃 (∙cardF)𝑛−1 (17)

Proof: Let 𝑚 = deg𝑃 . The proof is by induction on 𝑛.
𝑃 is of the form

𝑃 (�̄�, 𝑦) = ∙∑
𝑘≤𝑚

𝑎𝑘𝑃𝑘(�̄�)𝑦
𝑘, (18)

where 𝑃𝑘(�̄�) ∈ F[𝑥1, . . . , 𝑥𝑛−1] is a polynomial of degree at
most 𝑚. Now for each �̄� ∈ F𝑛−1, one of the following holds:

1) The polynomial in one variable 𝑃 (�̄�, 𝑦) is identically 0
or equivalently,

𝑃0(�̄�) = 𝑃1(�̄�) = ⋅ ⋅ ⋅ = 𝑃𝑚(�̄�) = 0.

By the inductive hypothesis there are at most (𝑛− 1)×
𝑚× (∙cardF)𝑛−2 elements �̄� ∈ F𝑛−1 in this case and
each one contributes ∙cardF solutions to 𝑃 (�̄�, 𝑏) = 0

2) There are possibly as many as (∙cardF)𝑛−1 elements �̄�
in this case, but each one contributes at most𝑚 solutions
to 𝑃 (�̄�, 𝑏) = 0 as 𝑏 ranges over F.

Altogether therefore, there are at most

(𝑛−1)𝑚(∙cardF)𝑛−1+(∙cardF)𝑛−1𝑚 = 𝑛𝑚(∙cardF)𝑛−1

elements in 𝐸. In case (1), therefore 𝑃 (�̄�, 𝑏) = 0 has at
most (∙cardF)𝑛−1 × 𝑚 solutions as �̄�, 𝑏 range over F𝑛−1,
F respectively.

Henceforth we assume without further mention that F is
a hyperfinite field such that ∙cardF ≃ ∞. In this section, F
will be instantiated with a field ∙ℤ/(𝑝) with 𝑝 a infinite prime.

Proof of Proposition 35: Let 𝑚 = deg𝑃 . By Proposi-
tion 39 and the assumption that ∙cardF ≃ ∞,

Pr(𝐸)(log ∙cardF)𝑘 =
∙card𝐸
∙cardF𝑛

(log ∙cardF)𝑘

≤ 𝑛𝑚 ∙cardF𝑛−1

∙cardF𝑛
(log ∙cardF)𝑘

≤ 𝑛 𝑓(
∙cardF)
∙cardF

(log ∙cardF)𝑘 ≃ 0.

Another consequence of Proposition 35 is that it gives rise
to a notion of “defined almost everywhere” that applies to log-
sublinear degree rational function families. A partial internal
function 𝑓 on 𝑋 is defined almost everywhere if and only if
𝑋 ∖ dom 𝑓 is a negligible set (relative to log ∙card𝑋).

Remark 40: Suppose F is a hyperfinite field such that
∙cardF ∈ ∙ℕ∖ℕ and 𝑅(�̄�) = 𝑃 (�̄�)/𝑄(�̄�) where 0 ∕= 𝑄(�̄�) ∈
F[𝑥] and deg𝑄(�̄�) ≤ 𝐶𝑓(∙cardF) with 𝑛𝑓 log-sublinear.
Then 𝑅 is almost everywhere defined.

Proof: 𝑃 is defined precisely when 𝑄(�̄�) ∕= 0 which by
Proposition 35 holds everywhere except a negligible set.

VI. RESTRICTING TO THE DIFFIE-HELLMAN ALGEBRA

The formal polynomial model thus far developed unfortu-
nately falls short of what we need for protocol analysis. As
Dougherty and Guttman point out, the notion that all exponents
other than 0 have inverses cannot be simply expressed in
an equational theory [11]. Worse, any reasonable attempt at
emulating this formal model with an algebra would be prob-
lematic because the exponents would form a ring structure, and
unification, a key technique in automated exploratory protocol
analysis, is not known to be decidable for rings.

In this section we present the proof of Theorem 15, that
monomial solvability is equivalent to formal solvability for
monomial derivation problems.

The results of Proposition 42 and Corollary 43 are the main
results supporting this conclusion. They state that monomials
that can be expressed as polynomials (respectively, rational
expressions) of monomials can be expressed as monomials of
those monomials.

A. Monomials and Polynomials

Suppose 𝑟, 𝑛 ∈ ℤ and 𝐴 ∈M𝑟×𝑛(ℤ). Let

𝐴 =

⎡
⎢⎢⎣
𝛼11 𝛼12 ⋅ ⋅ ⋅ 𝛼1𝑛

𝛼21 𝛼22 ⋅ ⋅ ⋅ 𝛼2𝑛

. . . . . . . . . . . . . . . . . . . .
𝛼𝑟1 𝛼𝑟2 ⋅ ⋅ ⋅ 𝛼𝑟𝑛.

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
𝐴1

𝐴2

...
𝐴𝑟

⎤
⎥⎥⎥⎦ (19)
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𝑀𝐴(�̄�) is the vector of monomials (displayed as a column
vector for readability):

𝑀𝐴(�̄�) =

⎡
⎢⎢⎢⎣
𝑀𝐴1

(�̄�)
𝑀𝐴2

(�̄�)
...

𝑀𝐴𝑟
(�̄�)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
𝑥𝛼11
1 𝑥𝛼12

2 ⋅ ⋅ ⋅𝑥𝛼1𝑛
𝑛

𝑥𝛼21
1 𝑥𝛼22

2 ⋅ ⋅ ⋅𝑥𝛼2𝑛
𝑛

...
𝑥𝛼𝑟1
1 𝑥𝛼𝑟2

2 ⋅ ⋅ ⋅𝑥𝛼𝑟𝑛
𝑛

⎤
⎥⎥⎥⎦ (20)

As a special case, if �̄� ∈ M1×𝑛(ℤ) (i.e. �̄� is a row vector
with 𝑛 entries), then

𝑀�̄�(�̄�) = 𝑥
𝛼1
1 𝑥

𝛼2
2 ⋅ ⋅ ⋅𝑥𝛼𝑛

𝑛

We regard 𝑀𝐴(�̄�) as a mapping F𝑛 −→ F𝑟. Since each
component 𝑀ℓ of 𝑀𝐴 is almost everywhere defined and the
number of components is standard, 𝑀𝐴 is almost everywhere
defined. The proof of the following is a straightforward
computation:

Proposition 41: If 𝐶 ∈M𝑟×𝑛(ℤ) and 𝐷 ∈M𝑟×𝑛(ℤ) then

𝑀𝐶(�̄�) ⋅𝑀𝐷(�̄�) =𝑀𝐶+𝐷(�̄�) (21)

where the product is the coordinatewise product. If 𝐵 ∈
M𝑠×𝑟(ℤ) and 𝐴 ∈M𝑟×𝑛(ℤ), then

𝑀𝐵

(
𝑀𝐴(�̄�)

)
=𝑀𝐵⋅𝐴(�̄�). (22)

In particular, if 𝛽 ∈M1×𝑟(ℤ)

𝑀𝛽⋅𝐴(�̄�) =𝑀𝛽𝑀𝐴(�̄�) =𝑀
𝛽1

𝐴1
(�̄�)𝑀𝛽2

𝐴2
(�̄�) ⋅ ⋅ ⋅𝑀𝛽𝑟

𝐴𝑟
(�̄�)

(23)
We now consider composition with polynomials. Suppose

𝑃 (𝑦) ∈ F[𝑦1, . . . , 𝑦𝑟] is a polynomial of degree 𝑚. Thus

𝑃 (𝑦1, . . . , 𝑦𝑟) =
∑
∣𝛽∣≤𝑚

𝑐𝛽𝑦
𝛽1

1 𝑦
𝛽2

2 ⋅ ⋅ ⋅ 𝑦𝛽𝑟
𝑟 =

∑
∣𝛽∣≤𝑚

𝑐𝛽𝑀𝛽(𝑦)

(24)
If 𝐴 is an 𝑟 × 𝑛 matrix as in (19), then by (23),

𝑃
(
𝑀𝐴(�̄�)

)
=

∑
∣𝛽∣≤𝑚

𝑐𝛽𝑀𝛽(𝑀𝐴(�̄�))

=
∑
𝛽

𝑐𝛽𝑀𝛽⋅𝐴(�̄�)

=
∑
𝛾

{ ∑
𝛽⋅𝐴=𝛾

𝑐𝛽

}
𝑀𝛾(�̄�).

Since the family 𝑀𝛾(�̄�) of monomials in the vector space
F[𝑥1, . . . , 𝑥𝑛] is linearly independent, we have shown:

Proposition 42: If 𝑃 (𝑦) =
∑

𝛽 𝑐𝛽𝑦
𝛽 ∈ F[𝑦1, . . . , 𝑦𝑟] and

𝐴 ∈M𝑟×𝑛(ℤ) is such that

𝑃 (𝑀𝐴1
(�̄�),𝑀𝐴2

(�̄�), . . . ,𝑀𝐴𝑟
(�̄�)) = 0

then for every 𝛾, ∑
𝛽⋅𝐴=𝛾

𝑐𝛽 = 0. (25)

An immediate corollary is the conclusion that polynomial
identities between monomials are essentially monomial iden-
tities. This result has the following significance: an adversary
that can compute arbitrary polynomials on monomials has can

produce exactly those monomials that can be produced by an
adversary restricted to computing monomials.

Corollary 43: Suppose

𝑅(𝑦) =

∑
𝛽 𝑐𝛽𝑀𝛽(𝑦)∑
𝛽 𝑑𝛽𝑀𝛽(𝑦)

∈ F(𝑦1, . . . , 𝑦𝑟), (26)

𝐴 ∈M𝑟×𝑛(ℤ) and 𝛾 ∈M1×𝑛(ℤ) are such that

𝑅 (𝑀𝐴1
(�̄�),𝑀𝐴2

(�̄�), . . . ,𝑀𝐴𝑟
(�̄�)) =𝑀𝛾(�̄�) (27)

Then there is a 𝜏 ∈M1×𝑟(ℤ) such that 𝛾 = 𝜏 ⋅𝐴 and for any
such 𝜏

𝑀𝜏1
𝐴1

(�̄�)𝑀𝜏2
𝐴2

(�̄�) ⋅ ⋅ ⋅𝑀𝜏𝑟
𝐴𝑟

(�̄�) =𝑀𝜏 (𝑀𝐴(�̄�)) =𝑀𝛾(�̄�).
(28)

Proof: From (26) and (27) it follows that

∑
𝛽

𝑑𝛽𝑀𝛾+𝛽⋅𝐴(�̄�) =𝑀𝛾(�̄�)
∑
𝛽

𝑑𝛽𝑀𝛽(𝑀𝐴(�̄�))

=
∑
𝛽

𝑐𝛽𝑀𝛽(𝑀𝐴(�̄�))

=
∑
𝛽

𝑐𝛽𝑀𝛽⋅𝐴(�̄�)

By Proposition 42, for every 𝜏 ,

∑
𝛾+𝛽⋅𝐴=𝜏

𝑑𝛽𝑀𝛾+𝛽⋅𝐴(�̄�) =
∑

𝛽⋅𝐴=𝜏

𝑐𝛽𝑀𝛽⋅𝐴(�̄�) (29)

Let 𝜏 be such that
∑

𝛾+𝛽⋅𝐴=𝜏 𝑑𝛽 ∕= 0. Such a 𝜏 exists, for
otherwise the rational function 𝑅 would be identically 0 which
is impossible by (27). Choose some 𝜌 such that 𝛾 + 𝜌 ⋅ 𝐴 =
𝜏 ; such an index exists for otherwise the sum

∑
𝛾+𝛽⋅𝐴=𝜏 𝑑𝛽

would be 0. If 𝛾 + 𝛽 ⋅𝐴 = 𝜏 , then

𝑀𝛾+𝜌⋅𝐴(�̄�) =𝑀𝛾+𝛽⋅𝐴(�̄�).

Similarly choose some �̄� such that �̄� ⋅𝐴 = 𝜏 . If 𝛽 ⋅𝐴 = 𝜏

𝑀�̄�⋅𝐴(�̄�) =𝑀𝜏 (�̄�) =𝑀𝛽⋅𝐴(�̄�)

Then from (29).
( ∑

𝛾+𝛽⋅𝐴=𝜏

𝑑𝛽

)
𝑀𝛾+𝜌⋅𝐴(�̄�) =

( ∑
𝛽⋅𝐴=𝜏

𝑐𝛽

)
𝑀�̄�⋅𝐴(�̄�) (30)

Thus

𝑀𝛾(�̄�) =

∑
𝛽⋅𝐴=𝜏 𝑐𝛽∑

𝛾+𝛽⋅𝐴=𝜏 𝑑𝛽

𝑀�̄�⋅𝐴(�̄�)
𝑀𝜌⋅𝐴(�̄�)

=

∑
𝛽⋅𝐴=𝜏 𝑐𝛽∑

𝛾+𝛽⋅𝐴=𝜏 𝑑𝛽
𝑀𝜅1−𝜌1

𝐴1
(�̄�) ⋅ ⋅ ⋅𝑀𝜅𝑟−𝜌𝑟

𝐴𝑟
(�̄�)

which is of the form (28).
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VII. CONCLUSION

In this paper we justify a simple algebra for the modeling
of Diffie-Hellman protocols. The algebra represents multipli-
cation of exponents and exponentiation but does not represent
addition of exponents or multiplication of bases. We justify
our model by linking it to a standard computational model,
and show a link between the concept of derivability in the
computational model and in our model. To recap:

1) The computational model is consistent with state-of-the
art methods of expressing the difficulty of computational
Diffie-Hellman and related problems.

2) The asymptotic polynomial model is a direct analogue
of the computational model where circuits are replaced
by strategies based on randomized, explicit rational
functions. Although this notion is not shown equivalent
to the computational notion, crossing the divide of this
sort is implicit, and we do so as directly and clearly as
possible.

3) The formal polynomial model deals with randomly
selected values as abstract variables and concerns formal
derivation using a uniform rational expression-based
strategy. We prove that solvability in this model is
equivalent to solvability in the asymptotic polynomial
model.

4) The monomial model is equivalent to an algebra-based
model of Diffie-Hellman derivability. We prove that
monomial solvability is equivalent to formal solvability
for monomial derivation problems. In other words, by
restricting the model we necessarily lose the expressive
power to describe non-monomial derivation problems,
but apart from this, the notion of solvability is un-
changed.
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APPENDIX

A. Non-standard view of computational derivability

In this section, we give a non-standard analysis-based view
of the computational model of DH derivability. This allows
us to state computational derivability without direct reliance
on asymptotic behavior and parameters. This may be of inde-
pendent interest, as explicit handling of security parameters is
frequently necessary in cryptographic papers so as to remain
faithful to asymptotic notions of computation, but is rarely
directly illuminating.

We have already discussed a non-standard treatment of
admissible systems, probability, and negligible functions. We
thus need only explore the idea of infinite indices in poly-
nomially bounded non-uniform circuit families. This is done
by applying the transfer operator to everything in sight. In
keeping with our notation, we use ∙𝒞 to denote the class of
circuits in the universe ∘℧, ∙∣ ⋅ ∣ denotes the size function.

If 𝒜 = {𝐴𝑘} ∈ 𝒫𝒩𝒞 is a standard polynomially bounded
non-uniform circuit family, by transfer we simply think of
𝐴𝑘 as being of size ≤ 𝜌(𝑘) even when 𝑘 ≃ ∞. Using non-
standard analysis, we can restate the condition with a single
infinite index.

In the following 𝔓 denotes the set of primes.
Proposition 44: A derivation problem (�̄�1, 𝑅2) is solvable

if and only if for some 𝑘 ≃ ∞, there is a 𝑝 ∈ ∙𝔓 such that
0 ≪ 𝑝/2𝑘 ≪ ∞ and an 𝐴 ∈ ∙𝒞 such that for some standard
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𝑚, ∣𝐴∣ ≤ 𝑘𝑚 and

Pr[�̄�← (ℤ/(𝑝)); 𝑣 ← 𝐴(�̄�1(�̄�)) : 𝑣 = 𝑅2(�̄�)}] (31)

is not 𝑘-negligible.
Proof: If the derivation problem is solvable in the sense

of Definition 5, then overspill implies the stated condition.
Conversely, if the stated condition holds, there are 𝑘 ≃ ∞,
standard constants 0 < 𝑐 ≤ 𝐶 <∞ such that 𝑐 ≤ 𝑝/2𝑘 ≤ 𝐶,
a standard positive integer 𝑚 and a circuit 𝐴 such that 𝜌(𝐴) ≤
𝑘𝑚

Pr[�̄�← (ℤ/(𝑝)); 𝑣 ← 𝐴(�̄�(�̄�)) : 𝑣 = 𝛽(�̄�)}] ≥ 𝑘−𝑚 (32)

Therefore the following formula with standard parameters
�̄�, 𝛽, 𝑐, 𝐶 is valid in ∘℧:

∀stℓ, ∃𝑘 ≥ ℓ, ∃𝑝 ∈ ∙𝔓, ∃𝐴 ∈ ∙𝒫𝒩𝒞,
𝑐 ≤ 𝑝/2𝑘 ≤ 𝐶
and

Pr[�̄�← (ℤ/(𝑝)); 𝑣 ← 𝐴(�̄�(�̄�)) : 𝑣 = 𝛽(�̄�)}] ≥ 𝑘−𝑚

(33)
By transfer, we obtain the following completely standard
formula.

∀ℓ ∈ ℕ, ∃𝑘 ≥ ℓ, ∃𝑝 ∈ 𝔓, ∃𝐴 ∈ 𝒫𝒩𝒞,
𝑐 ≤ 𝑝/2𝑘 ≤ 𝐶
and

Pr[�̄�← (ℤ/(𝑝)); 𝑣 ← 𝐴(�̄�(�̄�)) : 𝑣 = 𝛽(�̄�)}] ≥ 𝑘−𝑚

(34)
This is precisely the condition for solvability.

Note that since Proposition 44 refers only to a single infinite
𝑘, and since the properties observed in subsection IV-B apply
to any infinite 𝑘, this allows us to view the environment in the
simple way we described at the beginning of this section: as
a single environment, with no overly specific properties.
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