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Abstract—In formal verification, cryptographic messages are
often represented by algebraic terms. This abstracts not only
from the intricate details of the real cryptography, but also
from the details of the non-cryptographic aspects: the actual
formatting and structuring of messages.

We introduce a new algebraic model to include these details
and define a small, simple language to precisely describe
message formats. We support fixed-length fields, variable-
length fields with offsets, tags, and encodings into smaller
alphabets like Base64, thereby covering both classical formats
as in TLS and modern XML-based formats.

We define two reasonable properties for a set of formats used
in a protocol suite. First, each format should be un-ambiguous:
any string can be parsed in at most one way. Second, the
formats should be pairwise disjoint: a string can be parsed as
at most one of the formats. We show how to easily establish
these properties for many practical formats.

By replacing the formats with free function symbols we
obtain an abstract model that is compatible with all existing
verification tools. We prove that the abstraction is sound for un-
ambiguous, disjoint formats: there is an attack in the concrete
message model if there is one in the abstract message model.
Finally we present highlights of a practical case study on TLS.

Keywords-Security protocols, formal verification, message
formats, soundness, compositional reasoning

I. INTRODUCTION

Formal verification approaches have proved to be success-

ful in verifying security properties of distributed systems that

exchange cryptographic messages: security protocols, web

services, or Crypto-APIs. Most approaches use a Dolev-Yao-

style model, representing cryptographic messages as terms

in a free term algebra (sometimes modulo some equations).

Here constant symbols represent “atomic” messages like

identifiers or (atomic) keys, and function symbols represent

cryptographic operators. One thus treats the cryptography

like black boxes, where the intruder can encrypt and decrypt

messages only when knowing the respective keys.

The reason for the success lies in the relative simplicity of

these abstract models, which allows for efficient automated

verification tools, compositional reasoning or refinement

approaches. Some computational soundness results exist;

they show that (under certain conditions) such an abstraction

of the cryptography is actually sound [1], [2].

We focus here on an aspect that has received much

less attention: the non-cryptographic operators. This is the

question of how messages are formatted and structured.

Abstract approaches usually use an operator cat(t1, t2) to

denote the concatenation of two messages t1 and t2. This

completely ignores how an actual implementation structures

this information, so that it is later possible to parse a given

string and extract a t1 and a t2 part.

An example where these details of message formats can

give rise to vulnerabilities are type-flaw attacks, where an

attacker exploits the similarity of two formats to make

a recipient accept a message in a different context (and

meaning) than the sender meant it. This is particularly

relevant when we use the same long-term keys for different

protocols that are deployed in parallel [3]. Another example

are injection attacks: if an intruder-chosen string is filled into

a message schema, this may break the (intended) structure

of the schema.

These vulnerabilities on the non-cryptographic level are

the low-hanging fruit as attacks seem much more common

and successful than attacks on the cryptography. Our aim is

however not to “find more attacks” (that are quite obvious

anyway when one is aware of the problem). Rather, we

give a general soundness result for a large class of message

formats: for these, the verification in abstract term models

is actually sound.

A. Contributions

We consider in this paper two paradigms for structuring

messages that cover many practically relevant protocols. The

first may be called the data-structure paradigm and is used

for instance in TLS: here we have a concatenation of fields

that can be either of fixed or of variable length. A variable-

length field starts with an offset that tells the length of

the rest of the field. This offset itself is of fixed length,

e.g. when using a two-byte offset, the field can be at most

65535 bytes long. The second paradigm we consider are

XML-style messages. Here we can easily structure messages

by tags marking the begin and end of elements. To avoid

collision of the actual data with the XML-symbols, one

uses encodings into smaller alphabets such as hexadecimal

encoding or Base64.
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We first give a simple language to describe such message

formats with a fixed number of fields. We give a simple

sufficient condition for a format to be un-ambiguous (a

string cannot be parsed in two different ways). We give

a parser for un-ambiguous formats. We then give also a

checking procedure that implements a sufficient check for

two formats to be disjoint, i.e., no string can be parsed

as both formats. Requiring that formats are un-ambiguous

and pairwise disjoint are reasonable conditions: it must be

impossible to parse any string in more than one way, neither

within one format or as two different formats.

Based on this, we define an algebra that models pre-

cisely the behavior of the non-cryptographic operators, but

abstracts from the cryptographic ones since our focus is not

a computational soundness result. For this algebra we use

a novel way of modeling. We first define a class of crypto-
graphic algebras with byte-strings as the universe and where

operators are interpreted as functions on these byte strings,

modeling exactly the real world implementations. The be-

havior of the non-cryptographic operators like concatenation

is fixed in the obvious way, while the implementation of

the cryptographic operators is arbitrary. We then abstract

from the real-world cryptography by defining a congruence

relation t1 ≈ t2 that holds for two terms t1 and t2 if they are

equal in all cryptographic algebras. In this way we get an

≈ relation that combines the details of message structuring

while abstracting from the cryptography by selecting those

equations that hold regardless of the implementation of the

cryptography.

The resulting algebra D, the term algebra modulo ≈, is

too complex to work with automated verification, especially

due to its inherent semantic nature. The main result is now:

• if we consider a system where all participants except

the intruder use only formats for structuring messages

(i.e., instead of working with low-level operators like

concatenation),

• if all the used formats are un-ambiguous and pairwise

disjoint, and

• if the system has an attack (when interpreting terms in

algebra D)

• then there is also an attack in a free algebra model (that

does not know the low-level operators).

This conclusion means it is sound to use any of the common

verification tools like ProVerif [4] or AVANTSSAR [5].

Finally, we also illustrate with a case study on the TLS

protocol, how our approach can be practically used on

complex, real-world examples.

B. Structure of the Paper

In Section II we define the class of crypto algebras. In

Section III we define formats, how to parse them and the

sufficient check for disjointness. In Section IV we define

our concrete algebra D and prove that the sub-algebra D′

without low-level operators behaves like a free algebra. In

Section V we define a Dolev-Yao style model based on D as

well as constraint systems over this model. In Section VI we

give the main soundness result. In Section VII we discuss a

problem of lexical analysis. In Section VIII we present the

highlights of the TLS case study. Finally, in Section IX we

discuss related work and conclude.

II. TOWARDS A NEW TERM MODEL

In this section we define a class of “crypto algebras”

that interpret function symbols as real cryptographic and

non-cryptographic operations on strings. This is the basis

for the novel term model of Section IV that abstracts

the cryptographic operators, but keeps all the details of

non-cryptographic aspects. For this model we then prove

our abstraction result. All algebras are based on the same

signature that we define first.

A. Signature

We fix a signature Σ. It contains a countable set Σ0 =
{c1, c2, . . .} ⊆ Σ of constants. We distinguish two kinds of

constants: a finite set of literals L and a countably infinite

set of uninterpreted constants U. The literals are strings

like XML-tags (that will later literally represent that string),

while uninterpreted constants like n7 may represent a fresh

nonce and have no fixed interpretation as a string. The

literals include the constant ε that denotes the string of length

0. We will later assume that the intruder initially knows all

literals.

Next, the signature contains black-box operations on

messages.

• scrypt(k,m, r) for symmetric encryption of clear-text

m with symmetric key k, and randomization value r.

Usually, we will omit r in the notation since it is

simply a randomly chosen value by whoever performs

the encryption to avoid deterministic encryption.

• crypt(k,m, r) similarly is asymmetric encryption

where k is a public key.

• sign(k,m, r) similarly is asymmetric encryption where

k is a private key.

• For public/private key pairs, we assume that they are

always created from some seed value s by the functions

pub(s) and priv(s).
• h(m) for the cryptographic hash of a message m.

• mac(k,m) for a key-ed hash of m using symmetric

key k.

• cat(m1,m2) for concatenation of messages m1 and

m2. As we will define below, cat(·, ·) is associative

and we may thus simply write m1 · m2 · . . . · mk

for cat(m1, cat(m2, cat(. . . ,mk))) and even omit the

“multiplication” operator · when clear from the context.

• enc(m) an encoding function for mapping into a

smaller alphabet, e.g., a Base64 encoding. For simplic-

ity, we assume here that only one such encoding is
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used, but our results can easily be extended to several

such encodings.

• offk(m) to “compute the offset” of m: it yields a k-

byte string representing the length of m. (For this to

work, m cannot be arbitrary large; we define the precise

behavior later.)

• We will in Section III augment the signature Σ with

a set of function symbols form1(·), . . . , formn(·) to

represent the clear-text structure more abstractly than

with low-level operators like cat.

We build ground terms from this signature as expected;

the set of ground terms is denoted TΣ. Given a set V of

variable symbols (disjoint from Σ) we denote with TΣ(V )
the set of terms containing also variables of V . Denote with

[x1 �→ t1, . . . , xn �→ tn] the substitution of variables xi to

terms ti where no variable xi can occur in any term tj . We

extend substitutions to functions on terms as expected.

Let us also say that a ground term is abstract if it does not

contain any of operators cat(·, ·), enc(·), and off·(·). In fact,

the main theorem below will show that we may safely avoid

reasoning about any of these “low-level clear-text operators”

and use only abstract terms.

We have so far only described the signature of the terms.

We now attach a meaning to each symbol in a very concrete

way as functions on strings.

B. Crypto Algebras

Let B∗ denote the set of all byte-strings. We now consider

a class of algebras that use B∗ as the universe and interpret

every function symbols f ∈ Σ with arity n as a function

fC : (B∗)n → B∗. Thus each fC represents the meaning of

that symbol on actual messages (note that for every constant

c ∈ Σ0, cC is simply a byte-string in B∗).
We later define a common black-box intruder model for

the cryptography, e.g., the intruder can decrypt scrypt(k,m)
to derive m iff he can derive k from his knowledge; vice-

versa he can only produce the encryption scrypt(k,m) when

he knows both k and m. We do not make any formal link be-

tween the abstract symbol scrypt and the concrete encryption

function scryptC (as it is done in cryptographic soundness

results). In fact, we actually do not exclude “absurd” models

of cryptography like scryptC(k,m) = m. (However, in

such models the black-box intruder model may not properly

reflect the properties of the real implementation.)

We do however make some requirements about the fC

functions that implement the non-cryptographic operators,

e.g., that catC is really string concatenation. This will be

made precise in Definition 1.

We fix a set of variables V (disjoint from Σ). For every

variable x ∈ V , we also fix a set |x| to be an arbitrary,

non-empty subset of the natural numbers. This represents

the allowed length of the strings that can be substituted for

x, e.g., |x| = N when x can hold strings of any length.

Similarly, for all constants c ∈ Σ0 we fix |c| = {l} to be

a singleton set. Here ε is the only constant of length {0}.
For strings str ∈ B∗ we define |str| = l to be the length in

bytes as is standard.
Definition 1 (Crypto Algebra): Let C be a Σ-algebra, and

let | · |C : TΣ(V) → P(N) be a length function. We say

(C, | · |C) is a crypto algebra iff the following holds:

• The universe of C is B∗.
• Thus, every function symbol f ∈ Σ of arity n is

interpreted in C as a function fC : (B∗)n → B∗. We

write tC for the interpretation of a ground term t in C,

i.e., f(t1, . . . , tn)
C = fC(tC1 , . . . , t

C
n).

• Recall that the literals L ⊆ Σ0 are verbatim strings. For

each such literal s, let sC = s.
• For all variables and constants t ∈ V ∪ Σ0, |t| = |t|C .

• The length of a ground term is a singleton set, namely

the length in bytes of its interpretation: |t|C = { |tC | }.
• For general terms (that are not necessarily ground) we

define [[·]]C : TΣ(V)→ P(B∗) as follows:

[[x]]C =
⋃

l∈|x| B
l

[[f(t1, . . . , tn)]]C = {fC(s1, . . . , sn) |
s1 ∈ [[t1]]C ∧ . . . ∧ sn ∈ [[tn]]C}

Note that for every ground term t, [[t]]C = {tC}.
• We require that |t|C = {|s| | s ∈ [[t]]C}
• The interpretation of cat is string concatenation, i.e.,

catC(s1, s2) = s1 · s2.

• We require that offC indeed yields the length of a given

string. Formally, for strings s, s′ and length k ∈ N,

from offCk(s) = s′ follows |s′| = k and if |s| < 256k

then s′ is a k-byte representation of |s|. (One must fix

either big-endian or little-endian representation here. If

|s| ≥ 256k, then the length is not representable and the

implementation may choose any k-byte value to return.)

• Finally, we require that enc(·) gives an encoding into

a smaller alphabet X � B: we require that enc : B∗ →
X∗ is a bijective (1-to-1) mapping. Examples would be

hexadecimal or Base64. The model indeed reflects that

the hexadecimal encoding of a string s has length 2|s|,
while the Base64-encoding has length 4 
|s|/3�. For

simplicity, we do not consider more than one encoding,

but all results can be extended accordingly.

For most of this paper (unless where noted otherwise),

we will consider a fixed crypto algebra (C, | · |C) and omit

·C subscripts when no confusion arises. We may also refer

to C alone as a crypto algebra, leaving implicit that it has

an associated length function | · |C . We conclude this section

with the concept of a string-substitution θ that is a mapping

from variables to strings such that |θ(x)| ∈ |x|. We extend

θ to a mapping from terms to strings by θ(f(t1, . . . , tn)) =
fC(θ(t1), . . . , θ(tn)).

III. FORMATS

In order to formalize the abstraction of the con-

crete message structures, we now introduce symbols
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form1(·), . . . , formn(·) to represent the different formats

abstractly. We define a small simple language to define

formats.

Definition 2: A format declaration for an operator form
has the shape:

form(x1, . . . , xn) = fld1 · fld2 . . .fldm

Here, the xi are variables (assuming we have again fixed a

set |xi| of possible lengths for each variable xi). The fld i

are called fields and each field can be any of the following:

• a literal constant c ∈ L \ {ε},
• a variable xi (1 ≤ i ≤ n),

• an offset construction offk(xi) · xi where k ∈ N,

1 ≤ i ≤ n, and |x| ⊆ {0, . . . , 256k − 1}. This means

that the length of the value x is literally written as a

k-byte field, followed by the value x itself,

• an encoding enc(xi) of a variable (1 ≤ i ≤ n).

For simplicity, we assume that forms are linear in the sense

that none of the xi occurs in more than one field.1

For a format declaration formi(x1, . . . , xn) = . . . the

admissible length of the j-th argument is |xj |. We thus say

that the term formi(t1, . . . , tn) is legal, if |ti| ⊆ |xi|. For

a term t of arbitrary shape we say that t is legal if every

form·(·)-subterm of t is legal. We generally forbid illegal

terms in the rest of this paper, i.e., we restrict TΣ(V) to the

subset of legal terms (for given length definitions of variables

and functions) without introducing a new symbol.

The rationale for excluding illegal terms is that terms simply

cannot be filled into a form when they do not have an

appropriate size. A buffer overflow is a typical example

of a flawed implementation that does not check the size

restriction of fields. The restriction to legal terms thus

excludes such flawed implementations. This is in fact not

a restriction on the intruder abilities we define below, since

we allow him arbitrary use of low-level functions like cat.
The definition of formats is specific to the protocol or

protocol suite that one wants to consider. Given a definition

of a set of formats, we extend the crypto algebras of

Definition 1 as follows.

For every declaration formi(x1, . . . , xn) = fld1 · . . . ·fldm

and every s1 ∈ [[x1]]C , . . . , sn ∈ [[xn]]C , we set

formC(s1, . . . , sn) = [x1 �→ s1, . . . , xn �→ sn](fld1·. . .·fldm).

Example 1: Recall that we may omit cat(·, ·); let |x| =
{16}, |y| = {0, . . . , 65535} and |z| = N:

form1(x, y, z) = myform x off2(y) y z

form2(x, z) = 〈myxform〉
〈nonce〉enc(x)〈/nonce〉
〈name〉enc(z)〈/name〉

〈/myxform〉
1The extension to non-linear patterns is straightforward: the parser just

additionally needs to check that the respective substrings are equal.

From the definition of [[·]] follows how to construct a parser

for form1 and form2. For form1, we first require that the

string starts with the tag myform. Then the next 16 bytes

are parsed as x. Then we read two bytes, telling us the length

l of y; then we read y to be the next l bytes. Finally, all the

rest of the message is read as z. If the string does not start

with the tag, or we reach the end of the string while more is

expected, the parsing fails and the format cannot be of kind

form1.

For form2, first note that our definition of formats does

not include whitespaces, and they would lead to confusion

in formats like form1, while XML does allow whitespaces

between all tokens. However, for machine-generated XML-

messages whitespaces are redundant and can be omitted.2

Since the technical presentation in this paper is already com-

plicated enough, we work here with XML-formats without

whitespaces, and only briefly discuss in Section VII how

to extend our result to allow whitespaces. We assume that

the alphabet X (that enc(·) encodes to) does not contain any

symbols with syntactical meaning in XML such as the angle

brackets and the slash. Thus, parsing requires the XML tags

〈myxform〉 and 〈nonce〉. Then we read the longest string

that contains only characters of the alphabet X. This is in

fact the only way to parse a string since said alphabet cannot

contain the next character after enc(x), namely 〈 . The string

read of enc(x) is then appropriately decoded and assigned

to variable x. Again, the parsing fails if x does not have

length 16 as specified by the format. The rest of parsing

this format is of course similar.

The examples indicate that format description can be used

to systematically derive parser implementations that enforce

specified restrictions. An immediate question is whether a

given format is un-ambiguous. For instance if |x| = |y| = N,

then format form(x, y) = x y is ambiguous—as we define

it next.

A. Parsing and Ambiguity

We define for a format formi(x1, . . . , xn) that a string s
can be parsed for formi as θ iff

• θ is a string-substitution with domain {x1, . . . , xn},
• |θ(xi)| ∈ |xi|,
• θ(formi(x1, . . . , xn)) = θ(fld1 · . . . · fldn) = s.

Define that a format formi(x1, . . . , xn) is ambiguous iff

there is a string s that can be parsed in two different ways,

i.e., as string substitutions θ1 and θ2 such that θ1(xi) �=
θ2(xi) for some 1 ≤ i ≤ n.

In the example form(x, y) = x y where |x| = |y| = N

for instance the single character c can be parsed either as

θ1 = [x �→ c, y �→ ε] or as θ2 = [x �→ ε, y �→ c].
It is easy to generally exclude such ambiguities: an item

that has variable length shall either be sent with an offset

2There is one exception: between tags and attributes, at least one whites-
pace is required, e.g., 〈a href = ”...”〉 requires a whitespace between a and
href. In this case we could define a standard, e.g., one space.
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construction, or as the last element of a format (“taking the

remainder of the message”), or under the encoding enc(x)
followed by a character in B \ X.

Definition 3: A form declaration formi(x1, . . . , xn) =
fld1 · . . . · fldm is said to have clear boundaries if for every

field fld i with i < m holds:

• fld i = xj implies

– |xj | = {l} (i.e., xj has a fixed length)

– or i > 1 and fld i−1 = offk(xj) (i.e., xj has

variable length with an offset construction).

• fld i = enc(xj) implies that for every s ∈ [[fld i+1]], s
is not the empty string and starts with a letter in B\X.

For formats with clear boundaries we can easily write a

parser that is given as argument a list of fields and a string

(as a list of characters)–see Fig. 1. This algorithm in Pseudo-

Haskell code uses functions

• head l and tail l that return the first element and

the rest list l, respectively. They return error when

l=[] (the empty list).

• take n l takes the first n elements of list l, similarly

drop n l removes the first n elements. Both return

an error when the list has less than n elements.

• takeWhile p l returns the longest prefix of l such

that each element satisfies p, and dropWhile is the

counter-part.

• toNum s gives the integer represented by string s.

• elemX checks whether a element belongs to set X.

• We write [x|->t] and the like for the substitutions

created. Finally, we assume that in building substitu-

tions we check conformity with the length, i.e., that

|t| ⊆ |x|.
Theorem 1: Let formi(x1, . . . , xn) = fld1 · . . . · fldm be

a format with clear boundaries. Given a string s, there is at

most one string substitution θ as which s can be parsed for

form formi. If such a θ exists, then parse [fld1, . . . ,fldm] s
will return θ and produce an error otherwise.

Proof: It is straightforward that the above algorithm is

sound. Also it is obvious that for all cases that involve fields

with fixed lengths and offset construction, there is no other

choice to parse the string. If it is any other variable, then by

clear boundaries it must be the last field of the format, so

again there is just one choice to parse, namely setting the

variable to the remaining string. The only other case is an

encoded field enc(x). By clear boundaries, the next field (if

it exists) starts with a letter that is not n X. Thus, we parse

until we hit the first element that is not in X; this yields the

longest prefix of s that we can possibly parse as enc(x). It

is also the shortest, because otherwise the remainder of s
starts with a letter in X that cannot be parsed as the next

field in the recursive call.

B. Disjoint Formats
Another aspect that is later relevant for abstracting is

whether two formats are actually sufficiently different so

that confusions are excluded. We want to exclude that one

honest agent produces a message form1(t1, . . . , tn) and

another who receives this message accidentally parses it

as form2(t
′
1, . . . , t

′
m). Note that unencrypted forms are of

course not protected against manipulations by the intruder

(e.g., he may replace tags) but one given message should

have an “un-ambiguous meaning” in the sense that it can

be parsed in only one way. Formally, we say two formats

formi(x1, . . . , xn) and formj(y1, . . . , ym) are disjoint iff

[[formi(x1, . . . , xn)]]∩ [[formj(y1, . . . , ym)]] = ∅. (Recall that

in case of variables, the semantics considers the set of byte

strings that are allowed by the declared variable lengths.)

In general, deciding whether two formats are disjoint is

difficult, for instance through the offsets we get a com-

plicated relation between lengths of one message and the

content of another. However, in practice it is often quite

easy, for instance if the formats start with distinct tags we are

already done. We give here a simple procedure for checking

disjointness that uses over-approximation in difficult cases.

For this over-approximation the procedure is a sufficient but

not necessary for disjointness: when the procedure answers

True, then the given formats are indeed disjoint.

The algorithm disjoint(F1, F2) in Fig. 2 receives two

formats as arguments, which are again given as lists of fields.

We make again several simplifications to the presentation:

• In the call disjoint(F1, F2) we make a case-distinction

on the shape of F1 and of F2. By symmetry of disjoint-

ness, we would have to write many almost identical

cases that differ only in the order of the Fi. We then

write only one case.

• Again, we assume that patterns are linear, so we do not

need to compare the value of different fields.

• We assume literal constants are only of length 1 (as

longer constants can be broken down).

• Since [[offk(x) · x]] ⊆ B∗, we can simplify the pro-

cedure by over-approximating all offset constructions

with variables of unbounded length. Similarly, we over-

approximate all variables that have more than one

length with arbitrary length. Thus we have only vari-

ables of fixed length l, which we denote as x[l] in the

algorithm, and variables of unbounded length which we

denote x[∗].
It may seem strange that after all the care we have spent

on the details of modeling variables with an offset con-

struction, we here over-approximate them by arbitrary-length

variables. In fact the precise length are most relevant for

parsing, but typically not for disjointness: in “good” designs,

the distinction between two formats will not result from

the precise lengths of some fields, but by some identifying

constant in a fixed position. We come back to this issue in

the TLS case study in Section VIII.

Theorem 2: If disjoint(F_1,F_2)=True, then

[[F1]] ∩ [[F2]] = ∅.
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parse [] s = if s=="" then [] else error
parse (t:ts) s =
case t of
c -> -- constant (for simplicity assume constant of length one)

if (head s)==c then parse ts (tail s) else error
x -> if (length x)==[l] -- fixed length l

then [ x |-> take l s]++(parse ts (drop l s))
else [ x |-> s ] -- in this case ts is empty by def. clear boundaries

off_k(x) -> -- by construction (head ts)==x
let n=toNum (take k s) -- offset

s’=drop k s -- rest of string
in [x|->take n s’]++(parse (tail ts) (drop n s’))

enc(x) -> [x|-> dec (takeWhile elemX s)]++(parse ts (dropWhile elemX s))

Figure 1. Parser for formats with clear boundaries.

disjoint [] [] = False
disjoint [] (c:F2) = True
disjoint [] (x[*]:F2) = disjoint [] F2
disjoint [] (x[l]:F2) = if l>0 then True else disjoint [] F2
disjoint [] (enc(x[*]):F2) = disjoint [] F2
disjoint (f1:F1) (f2:F2) =
case (f1,f2) of
(c,c’) -> c != c’ || disjoint F1 F2
-- if we start with different constants (both length 1) we are done
-- otherwise compare the remaining fields
(c,x[l]) -> if l==0 then disjoint (c:F1) F2 -- x is empty, discard

else disjoint F1 (x[l-1]:F2) -- the first letter of x consumes c
(c,x[*]) -> disjoint (c:F1) F2 -- x may be empty (discard)

&& disjoint F1 (f2:F2) -- otherwise x consumes c
(c,enc(x[*])) -> (not (elemX c) || disjoint F1 (f2:F2))

-- x can consume the c if c is in the alphabet
&& disjoint (c:F1) F2 -- otherwise x could be empty

(x[l],y[m]) -> if (l<=m) then disjoint F1 (y[m-l]:F2)
-- if x is longer, then it is consumed by y
else disjoint (x[l-m]:F1) F2

(x[l],y[*]) or (x[l],enc(y[*]))
-> disjoint F1 (f2:F2) -- x could be completely consumed by y

&& disjoint (x[*]:F1) (F2) -- or y could be completely consumed by x,
-- for simplicity remainder of x set to length *

all other -> disjoint F1 (f2:F2) && disjoint (f1:F1) F2) -- one consumes the other

Figure 2. Sufficient check for format disjointness (omitting symmetric cases).

Proof: The proof is by structural induction, one in-

duction step for each case of the algorithm: for each case

the property holds if it holds for each recursive call of the

algorithm.

As all cases are very similar, we give only one case:

(x[l], y[∗]). The induction hypothesis in this case (see the

recursive calls of this case): [[F1]] ∩ [[y[∗] : F2]] = ∅ and

[[x[∗] : F1]] ∩ [[F2]] = ∅. To show is that this implies

[[x[l] : F1]] ∩ [[y[∗] : F2]] = ∅.

Suppose this were not true, i.e., there is a string s ∈ [[x[l] :
F1]] and s ∈ [[y[∗] : F2]]. Thus s can be written as s = s1 ·s′1
for some s1 with |s1| = l and some s′1 ∈ [[F1]]; and also

s can be written as s = s2 · s′2 with some s2 ∈ B∗ and

s′2 ∈ [[F2]]. Consider two cases: First, if |s1| ≤ |s2| then

s2 = s1 · s3 for some string s3. Thus s3 · s′2 = s′1 ∈ [[F1]].
Also s3 · s′2 ∈ [[y[∗] : F2]] so, [[F1]] ∩ [[y[∗] : F2]] cannot be

empty, contradicting the induction hypothesis.

Second, if |s1| > |s2| then s1 = s2 · s4 for some s4. Thus
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s4 · s′1 = s′2 ∈ [[F2]] and also s4 · s′1 ∈ [[x[∗] : F1]], so [[x[∗] :
F1]] ∩ [[F2]] �= ∅, contradicting the induction hypothesis.

IV. THE CONCRETE ALGEBRA

We have so far defined a signature and semantics for

terms as strings. One can see this as an algebra C, where the

universe is P(B∗) and every function symbol f is interpreted

by fC , thus the interpretation of a term t in C is [[t]].

For automated verification, this algebra is problematic,

since we are using actual cryptography. For instance, hash

functions necessarily have collisions in real cryptography, so

there are terms t1 and t2 where [[t1]] �= [[t2]] but [[h(t1)]] =
[[h(t2)]]. Of course, it should be difficult for an attacker to

find collisions in reality (at least for good hash functions).

The same holds for randomly chosen nonces or collisions

between different constructions. For instance there may be

terms t, k, and m such that [[h(t)]] = [[crypt(k,m)]], but it

should be hard, given t, to find such k and m. One could

say that these kinds of collisions are “accidents” that happen

with a low probability and it is practically impossible for an

attacker to exploit them. Therefore most formal verification

approaches implicitly exclude these collisions by modeling

messages as terms where in a free algebra, i.e., two terms

are equal in the algebra iff they are syntactically equal.

We want to model all the details of the real world as far

as structuring/formatting of messages is concerned, but still

abstract from the cryptography. The rationale is of course

that the clear-text operations are much easier to manipulate

than cryptography, for instance it is not a problem, given

a string s ∈ X∗ to find another string s′ ∈ B∗ such that

s = encC(s′).
We now define a new algebra that picks the best of

both worlds, abstracting away all “accidental” collisions

caused by the cryptography and preserving all details of the

non-crypto operators. A key insight is that the unwanted

collisions are due to the concrete choice of C, i.e., how the

symbols are interpreted. Recall that in the definition of a

cryptographic algebra C we have made several requirements

on the interpretation of the non-cryptographic function sym-

bols (and on the universe and lengths), while we deliberately

have not specified how the cryptographic functions work.

The idea is now to define an abstract algebra in which two

ground terms t1 and t2 are equal iff they are equal in every
cryptographic algebra C. In other words, we want t1 and t2 to

be interpreted equally only when this is a consequence of our

requirements on the interpretation of the non-cryptographic

functions:

Definition 4: We define ≈ as the least relation on ground

terms such that t1 ≈ t2 iff in every cryptographic algebra

(C, | · |C) it holds that tC1 = tC2 . Note that ≈ is a congruence

relation. We extend it to non-ground terms t1 ≈ t2 iff

σ(t1) ≈ σ(t2) for every substitution σ that maps all variables

to ground terms.

We define the detailed term model D as the quotient

algebra TΣ/ ≈. (The quotient algebra is an algebra that

interprets two terms as equal iff they are equal modulo

≈. Formally, the universe of the quotient algebra is the

set {[t]≈ | t ∈ TΣ} of equivalence classes [t]≈ = {t′ |
t ≈ t′}. The interpretation of function symbols in D

is: fD([t1]≈, . . . , [tn]≈) = [f(t1, . . . , tn)]≈. Note that this

definition of fD chooses representatives t1, . . . , tn from the

respective equivalence classes, but since ≈ is a congruence

relation, the result does not depend on this choice.)

We give a few examples to illustrate this new algebra D.

First note that we have a very precise representation of the

non-cryptographic operators. For instance

• cat is associative cat(t, cat(u, v)) ≈ cat(cat(t, u), v)
and ε is the neutral element s · ε ≈ ε · s ≈ s.

• Length relates to concatenation as expected:

offk(s · t) ≈ offk(t · s),
• When using hexadecimal encoding, we have

enc(s · t) ≈ enc(s) · enc(t). We have this property for

Base64 only if |s| is divisible by 3. (Note that this level

of precision is beyond what one can axiomatize with

algebraic equations.)

On the other hand, concerning cryptography, the algebra

D behaves as standard term-algebraic message models:

• For any two different constants c and d we have c �≈ d.

• Hash functions are collision free in D: h(s) ≈ h(t) iff

s ≈ t for any ground terms s and t.
• Similarly we do not have any clashes between distinct

cryptographic elements: crypt(s, t) �≈ h(u).

Due to the “semantic” definition of ≈ as equalities that

hold in all crypto algebras, reasoning in D is not trivial. In

fact, the key contribution of this work is that we can safely

abstract from this and move to a free algebra. The first step

towards this is the following generalization of the previous

examples:

Lemma 1: Let t = f(t1, . . . , tn) and t′ = g(t′1, . . . , t
′
m)

be terms in which ε does not occur and f ∈
{crypt, scrypt, sign, h,mac}. Then t ≈ t′ implies f = g and

ti ≈ t′i for all 1 ≤ i ≤ n.

Proof: The difficulty of this proof lies in the semantic

definition of ≈ as those equations that hold in all crypto

algebras. We proceed indirectly and assume terms t and t′

as in the statement and where f �= g or ti �≈ t′i for some

1 ≤ i ≤ n; we show that this implies t �≈ t′. To prove t �≈ t′,
we construct a special crypto algebra C in which tC �= t′C .

This C is a bit “absurd” in the sense that it does not reflect

a useful implementation of the crypto operators; its mere

purpose is to easily find an interpretation in which t and t′

are unequal.

Let D = B∗ \ (X∗ ∪ L). Note that this set is countably

infinite. Thus there exists an injective function fi : (B∗)4 →
D. We may also assume that |fi(s1, s2, s3, s4)| ≥ |s1| +
|s2|+ |s3|+ |s4|. We define the injective crypto algebra C as

265



follows. We define cryptC(s1, s2, s3) = fi(crypt, s1, s2, s3)
where we literally introduce the string crypt as the first

argument. Similarly we design an interpretation for all other

uninterpreted symbols (all except {cat, enc, off}∪L); when

the arity is smaller than 3, we fill the respective si with ε.
We can easily conclude the proof for the cases f = g,

g ∈ {crypt, scrypt, sign, h,mac}, and g ∈ U, since the in-

jectivity of C ensures that t and t′ are interpreted differently.

Similarly, we already conclude for the cases when g ∈ L or

g = enc, since D is disjoint from X∗ and L.

The case g = offk(·) can be handled with a different

crypto algebra: we set the particular interpretation of t to a

string s with |s| �= k. The case g = formi is handled by

replacing it with the corresponding format definition.

Finally for the case g = cat, observe that in the injective

crypto algebra C, all crypto-operators produce a string that

is at least as long as the sum of the lengths of the arguments,

and this holds also for enc(·) and cat(·, ·); the only operator

that may produce a shorter string is offk(·). This allows us

to exclude that t′ somehow contains t as a subterm: Suppose

for some proper subterm t′′ of t′ we have t′′C = t′C and this

subterm is not under an offk(·). Since ε cannot occur (i.e.,

we cannot have t′ = cat(ε, t) and the like), we have that

|t′C | > |tC | which excludes t ≈ t′.
So we now can assume that no subterm of t′ is C-

equivalent to t except maybe under some offk(·). Therefore,

we either have tC �= t′C (and are thus already done) or, if

tC = t′C we can produce a modified crypto algebra C′ that

is identical to C except that we change the interpretation of

f for the particular argument tC1 , . . . , t
C
n to some different

result of the same length (so that offk(t) will not change).

This will not change the interpretation of t′ but of t, so

t′C
′
= t′C = tC �= tC

′
and thus t �≈ t′.

A. Freedom of Forms

We have shown that the cryptographic operators in our

algebra D behave like free functions. The non-cryptographic

operators do not, in fact they have rather complicated

properties. The crucial next step is that the form-operators

indeed also behave like free function symbols in D—if all

forms are un-ambiguous and pairwise disjoint:

Lemma 2: Given formi is an un-ambiguous format. Then

formi(t1, . . . , tn) ≈ formi(t
′
1, . . . , t

′
n) implies

t1 ≈ t′1, . . . , tn ≈ t′n.

Given two disjoint formats formi and formj (thus i �= j),
then formi(t1, . . . , tn) �≈ formj(t

′
1, . . . , t

′
m).

Proof: For the first part, let formi(x1, . . . , xn) =
fld1 , . . . ,fldm be an un-ambiguous format definition. As-

sume formi(t1, . . . , tn) ≈ formi(t
′
1, . . . , t

′
n) while ti �≈ t′i

for some i. Thus there is a crypto algebra C in which

tCk �= t′k
C

; fix such a crypto algebra C and let s =

formi(t
′
1, . . . , t

′
n)
C and si = t′i

C
for each i.

We use our parser and by Theorem 1, s can only be parsed

for formi by θ = [x1 �→ s1, . . . , xn �→ sn] (in algebra C).

The unambiguity implies that s cannot be parsed as θ′ =
[x1 �→ tC1 , . . . , xn �→ tCn] since tCk �= t′k

C
= sk and thus

θ′ �= θ. Thus, formi(t1, . . . , tn)
C �= formi(t

′
1, . . . , t

′
n)
C and

thus formi(t1, . . . , tn) �≈ formi(t
′
1, . . . , t

′
n), contradicting the

assumption.

For the second part, let formi and formj be disjoint

formats. Suppose formi(t1, . . . , tn) ≈ formj(t
′
1, . . . , t

′
m).

Then formi(t1, . . . , tn)
C = formj(t

′
1, . . . , t

′
m)C in any

cryptographic algebra C, and thus [[formi(x1, . . . , xn)]]C ∩
[[formj(y1, . . . , ym)]]C �= ∅, contradicting the disjointness of

the forms.

Now suppose we are considering only terms that do not

directly use the “low-level string operations” cat, off, enc, ε,
but instead use formats. Thus we are considering the signa-

ture Σ′ = Σ \ {cat, off, enc, ε}. Putting Lemmata 1 and 2

together we have that the resulting sub-algebra of D over Σ′

is isomorphic to the free term algebra over Σ′:
Theorem 3: Let Σ′ = Σ \ {cat, off, enc, ε} and suppose

all formats are un-ambiguous and pairwise disjoint. Then

for all s, t ∈ TΣ′ holds s ≈ t iff s = t. Moreover for

terms with variables we can use free algebra unification: let

s, t ∈ TΣ′(V) and τ be any unifier with τ(s) ≈ τ(t) and

over full Σ. Then s, t have a most general unifier σ in the

free algebra over TΣ′ and τ is an instance of σ modulo ≈.

Proof: The statement s ≈ t iff s = t for ground terms

follows from Lemmata 1 and 2. For unification assume we

are given a set of pairs of terms over TΣ′(V). We follow the

steps of the free algebra unification algorithm, obtaining the

most general unifier σ if one exists, and show for every step

that any unifier τ (over Σ and ≈) is an instance of σ.

First, if we have a pair (x, t) of a variable x to unify with

some term t (or the symmetric case (t, x)); then we check

if x occurs as a proper subterm in t. In this case there is no

unifier modulo ≈, because t = f(. . .) (for x to be a proper

subterm of t) and f cannot be cat or offk by assumption,

preventing that t could “collapse” to one of its subterms.

Otherwise, if x does not occur in t, [x �→ t] is the valid

most general unifier for this pair (and any unifier τ must

support this); so we apply it to all pairs and continue.

If we have a pair (t, t′) with t = f(t1, . . . , tn) and

g(t′1, . . . , t
′
m), then the free algebra unification algorithm

checks that f = g (and fails otherwise) and replaces the pair

(t, t′) with U = {(t1, t′1), . . . , (tn, t′n)}. We have to show

that every solution τ with τ(t) ≈ τ(t′) is also a solution for

U . Suppose τ is a grounding solution, i.e., τ(t) and τ(t′) are

ground, then by Lemmata 1 and 2, f = g and τ(ti) ≈ τ(t′i)
for every 1 ≤ i ≤ n. Also the non-grounding τ support U
since all their grounding instances do.

V. INTRUDER MODEL

We have defined an algebra D to represent terms and

defining when two terms are equal. Now we finally do

something with these terms and define a (Dolev-Yao-style)

deduction relation K � t where K is a finite set of terms
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(messages) and t is a term. We say the intruder can derive
term t from knowledge K. We define � to be the least

relation closed under the rules in Fig. 3 that we explain

in the following.

The (Axiom) rule says that every term in K is derivable.

For composing terms, we first define a subset Σp ⊆ Σ that

describes the public symbols: we assume that functions like

encryption are not themselves secret (only the keys may

be), so the intruder is able to apply them to any terms he

knows. For simplicity we assume that all symbols except

uninterpreted constants U are public.3 This in particular

means that all literals in L are public. One reason for this

is that the intruder should always be able to create formats

himself (replacing the parameters xi with values he knows).

Thus, rule (Comp) expresses that the intruder can apply

functions in Σp to any known terms.

For decomposition, the intruder can decrypt messages if

he has the necessary decryption key. This is formalized in

the rules (Dscrypt), (Dcrypt), and (Open). (We model

here a signature primitive that reveals the signed text even

without knowing the verification key; but other models are

also compatible with our approach.) Similarly, for cat and

enc and all the forms, the intruder can obtain the “contents”,

as formalized by (Split), (Dec), and (Parse). For hashes

and Macs as well as offk, we have no rules since the intruder

cannot extract the original message in these cases.

Finally, we have the rule (Eq) that says that for every

term, the intruder can derive also every ≈-equivalent variant.

Note that the rule (Parse) is redundant in the presence of

(Eq) since the intruder can first rewrite the respective form

into its definition as a concatenation (with encodings) and

then apply (Split) and (Dec) as necessary. However, we

want to show below that under certain conditions, we can

safely omit the rule (Eq) without excluding attacks.

A. The Lazy Intruder

A popular verification technique is the constraint-based

approach, that we refer to as the lazy intruder [6]–[8]. The

basic idea is that many security problems of communicating

processes can be reduced to satisfiability of a number of

constraint satisfaction problems. (In fact, this number of

constraint satisfaction problems is in general infinite, but

it is finite if all processes except the intruder can perform

only finitely many transitions.)

Each constraint satisfaction problem is a finite conjunction∧n
i=1Ki � ti. We only give an intuition why this reflects a

security problem; for a formal account see for instance [8].

The intuition is that we represent a symbolic state transition

system where each state is parametrized over some variables

(that are placeholders for arbitrary ground terms) along with

some constraints that decide which values for the variables

3As a variant, some verification approaches may use “private” functions
like shk(A,B) to denote a secret shared key of agents A and B, these
will then of course be excluded from Σp.

K � t (Axiom) t ∈ K

K � t1 . . . K � tn
K � f(t1, . . . , tn)

(Comp) f ∈ ΣP

K � scrypt(k,m) K � k
K � m (Dscrypt)

K � crypt(pub(k),m) K � priv(k)
K � m (Dcrypt)

K � sign(priv(k),m)

K � m (Open)

K � cat(m1,m2)

K � mi
(Split)

K � enc(m)

K � m (Dec)

K � formi(m1, . . . ,mn)

K � mj
(Parse) j ∈ {m1, . . . ,mn}

K � t
K � t′ (Eq) t ≈ t′

Figure 3. Intruder deduction relation.

are possible and a current knowledge K of the intruder.

Whenever the intruder receives a message, we add it his

knowledge K, and whenever the intruder sends a message,

we create a new variable x and add the new constraint K �
x. We work with x as the message sent and accordingly

substitute it for a more concrete term if the receiver has

requirements on x. Thus, roughly speaking, for constraints

of the form K � t the messages in K are received by the

intruder from honest agents, and t is the pattern of message

that an honest agent is willing to receive.

We have so far not formally defined K � t for terms with

variables. An interpretation I is a mapping from V to TΣ,

and we extend it to a function on terms and sets of terms as

expected. The define that I |= K � t iff I(K) � I(t). For

conjunctions we have of course I |= φ ∧ ψ iff both I |= φ
and I |= ψ. We say that a constraint φ is satisfiable iff there

is an interpretation I such that I |= φ.

VI. MAIN RESULT

We now use the lazy intruder approach as a convenient

way to represent and reason about attacks. We emphasize,

however, that our result is independent from a particular

verification technique like the lazy intruder. Also, while

the lazy intruder provides a decision procedure only when

limiting the steps of all non-intruder processes, our result

does not rely on such bounds. We do only assume that

one considers a security problem that can be reduced to

a number of lazy intruder constraint reduction problems

(possibly infinitely many).

Our main result is now: when using formats, a lazy

intruder constraint is satisfiable iff it is satisfiable in the free
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algebra. Here, using formats intuitively means that the hon-

est agents never use the low-level functions cat, enc, off, ε
directly but instead always use one of the formi to structure

messages. Moreover all used forms have to be un-ambiguous

and pairwise disjoint. Remember that modulo ≈, each form
is equivalent to some low-level term, and the intruder is

always able to use low-level terms. The point is that if all

honest participants use un-ambiguous and pair-wise disjoint

formats, all attempts to manipulate messages on the low-

level is pointless for the intruder.

We formalize this notion of “using formats” as conditions

on the terms in lazy intruder constraints: recall that in K � t,
all K and t terms are message patterns sent and received by

honest agents, respectively.

Definition 5: A lazy intruder constraint
∧n

i=0Ki � ti is

called well-formatted iff the following holds:

• K0 ⊆ K1 . . . ⊆ Kn

• Each variable occurring in Ki also occurs in

{t1, . . . , ti−1}. 4

• The symbols {cat, enc, off, ε} do not occur in any Ki

or ti.
• All formi of Σ are un-ambiguous and pairwise disjoint.

Theorem 4: Given a well-formatted, satisfiable intruder

constraint φ, then exists an interpretation I that satisfies φ
in the free algebra, i.e., no deduction proof I(K) � I(t)
requires the use of the (Eq) rule, and I maps every variable

to a ground term in which cat, enc, offk, ε do not occur.

Proof: Given a well-formatted constraint φ that is

satisfiable, and let I be a satisfying interpretation. Thus for

every constraint Ki � ti, we can label ti with a ground

proof tree for I(Ki) � I(ti) (formed with instances of the

rules in Fig. 3). We show that there is an interpretation I ′
that satisfies φ and that does not use any low-level symbols

and that is a solution in the free algebra (i.e., that works

without the (Eq) rule of Fig. 3). To that end, we step by

step transform the constraint, where these transformations

are sound in the sense that the constraint has either the same

set of models or fewer ones.
No top-level forms: First observe that a constraint

of shape K ∪ {formi(t1, . . . , tn)} � t is equivalent to

K∪{t1, . . . , tn} � t. To see that, we can adapt the proof tree

for I(K) � I(t) accordingly: whenever formi(t1, . . . , tn)
is needed, we can compose it from the ti using (Comp).
Similarly the constraint K � formi(t1, . . . , tn) is equivalent

to K � t1 ∧ . . . ∧ K � tn. Thus, whenever we have

formi on the left-hand or right-hand side of a constraint,

we can replace it by its subterms without changing the

set of models. We can thus silently assume through the

rest of this procedure that we do not have any terms with

root symbol formi. (Note formi terms may well occur as

4This and the previous condition are often called well-formedness and are
standard in lazy intruder approaches: the intruder knowledge monotonically
grows and all variables that occur in messages from other participants
actually result from choice of the intruder in earlier messages.

proper subterms and thus “come to the surface” during our

constraint reduction procedure.)
Simple Constraints: If the constraint has only variables

on the right-hand side, i.e., all ti ∈ V , then we are done,

because the intruder can always construct some term from

his knowledge.
Non-Simple Constraints: Thus in the following we only

need to care about constraints that have at least one ti /∈ V .

Choose the one with the lowest index i, and consider the

proof tree for I(Ki) � I(ti). We consider different cases

based on the root node in this proof tree.

• For every (Eq) node we consider also the next deeper

node in the tree; if it is again (Eq), we can merge

the two proof steps to one (since ≈ is transitive).

Otherwise, if it is one of the (Axiom), (Comp), or

destructors, we consider the (Eq) together with the

respective rule. Thus in the following we will consider

(Axiom), (Comp), and destructors, modulo ≈.

• If it is the (Axiom) rule, then there is a term t′ ∈ Ki

such that I(t′) ≈ I(ti). Note that ti is not a variable,

but t′ may be. If t′ = x is a variable, then by well-

formattedness there is an earlier tj , j < i in which x
occurs. Since ti is the first term that is not a variable,

tj = x. Thus we have Kj � x, and we can simply use

instead the derivation tree for I(Kj) � I(x). (This kind

of reduction is well-founded since there is a smallest

ti.)
If t′ is not a variable, then t′ and t′i have by Theorem 3

a unique most general unifier σ that is identical with the

most general unifier in the free-algebra and that does

not map any variable to a term with low-level symbols.

Thus I is an instance of σ (i.e., I(x) = I(σ(x)) for all

variables). We can thus apply σ to the entire constraint

without loosing the model I (and without introducing

new models). After this substitution, we have σ(Ki) �
σ(ti) which is tautological as σ(ti) ∈ σ(Ki) and we

can thus delete this conjunct.

• If it is a (Comp), i.e., we have a proof tree of the form

I(Ki) � u1 . . . I(Ki) � uk
I(Ki) � I(ti)

where I(ti) ≈ f(u1, . . . , uk) for some f ∈
Σp. Note that ti = f ′(u′1, . . . , u

′
l) where f ′ /∈

{cat, enc, off, form·(·), ε} (recall that in case of top-

level form·(·) we move to equivalent constraints with-

out top-level form·(·)). Again by Theorem 3, we have

thus f = f ′ and uj ≈ I(u′j) for all j. Thus, we can

replace conjunct Ki � ti with Ki � u′1 ∧ . . .∧Ki � u′l.
The modified constraint still supports model I and does

not introduce new models.

• The analysis steps are a bit tricky, since the proof trees

may contain further analysis or composition steps. The

general principle is here to first go to one of the “inner-

most” analysis steps, i.e., so that no sub-tree of the
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proof has further analysis steps. We will first handle

that analysis step. To make this easier to read, let us

suppose this is an (Dscrypt) step; the cases (Dcrypt),
(Open), and (Parse) are similar, the cases (Split) and

(Dec) will be handled separately.

So we have a step of the form

Π1

I(Ki) � scrypt(k,m)

Π2

I(Ki) � k
I(Ki) � m

with two sub-trees Π1 and Π2. If Π1 is a composition

step, then the intruder has just symmetrically encrypted

a message and then decrypted it again. (That this com-

position could be by any other operator than scrypt(·, ·)
is excluded here again by Theorem 3.) We can then

simplify the proof tree by replacing the derivation for

m with the corresponding subtree of Π1. Otherwise, it

can only be a leaf. Then there is a term t′ ∈ Ki such

that I(t′) ≈ scrypt(k,m).
If t′ is actually a variable, say t′ = x, then x must be

introduced in an earlier constraint Tj � tj = x, and we

replace the proof tree Π1 with the proof tree for tj , and

continue with the next applicable case.

Finally if t′ is not a variable, then t′ = scrypt(k′,m′)
for some k′ and m′ with I(k′) ≈ k and I(m′) ≈ m.

We can then indeed realize the respective decryption

step on the constraint. To that end, note that I |= Ki �
k′ (as proved by Π2), so we do not loose the model

I if we add Ki � k′ to our constraint. Then we can

safely add the decrypted message m′ to all Kj with

j ≥ i. This is possible since m′ can be derived in

every Kj ⊇ Ki and it is necessary to add to all these

Kj ⊇ Ki to ensure that they remain supersets (or else

we would destroy well-formattedness).

• If the inner-most analysis step is (Dec) (and the case

(Split) is similar). We then have a proof-subtree of the

form:
Π

I(Ki) � enc(m)

I(Ki) � m

where Π is a proof tree for enc(m). If Π is a leaf

node, then consider the corresponding term m′ ∈ Ki

with I(m′) ≈ enc(m). If it is a variable m′ = x, again

we replace the proof tree Π with the proof tree that x
has in the constraint where x was introduced.

The remaining case is that Π consists of (Comp) steps

and axioms. We claim that in this case we can find

a composition for m directly, without constructing a

more complex term enc(m) (or cat(m, ·) or cat(·,m))
that has to be decomposed. This final piece of the proof

is given in the next paragraph.

Elimination of enc and pair: It remains to show a

property for proofs that use only composition except for

a final step (Dec) or (Split): we show that these can be

done as pure composition proofs without (Dec) or (Split).
More precisely, given a set K of ground terms where every

term has a top-level symbol in {crypt, . . . , sign, h,mac} as

well as public constants. We say a comp-proof is a K � t
proof that uses only (Eq), (Comp) and (Axiom). We now

show: If there is a comp-proof K � enc(m) then there is

also a comp-proof for K � m. (Similarly, one can prove: if

there is a comp-proof for K � cat(m1,m2) then there are

comp-proofs for K � m1 and K � m2.)

Since K � enc(m), we can syntactically construct a term

t using only elements of K and public symbols, such that

t ≈ enc(m). Note that m may contain a subterm of the form

offk(m0) where m0 can not necessarily be constructed from

K. Let m′ be a modification of m where each such offk(m0)
is replaced this with an ≈-equivalent offk(m

′
0) where m′0

has the same length as m0 and can be constructed from K
and public symbols. Note that m′ ≈ m, and thus, if we can

prove K � m′ with only (Comp), so we can prove K � m
with only (Comp). To that end it suffices to prove that m′

can be syntactically constructed using only elements in K
and public symbols.

Suppose this were not the case, i.e., m′ contains some

subterm m1 that cannot be composed with elements from K
and public symbols (and this subterm cannot be underneath

an offk(·)). Let C be again the injective crypto algebra from

the proof of Lemma 1 that is injective on the cryptographic

functions and uninterpreted constants in U. Recall that

enc(m′) ≈ enc(m) ≈ t, thus enc(m′)C = tC . Since m1

is a term that occurs only in m′ and not in t, we can

create a modified crypto algebra C′ in which m′C
′
�= m′C

but tC
′
= tC . Then we have enc(m′)C

′ �= tC
′

and thus

enc(m′) �≈ t, contradicting the assumption.

Termination: One may wonder if our transformation

of the constraints can run into an infinite loop. In fact most

steps reduce the problem in some sense as they work off

nodes of the proof trees. However, there are substitutions

which can increase the actual size of the constraint store

again, since they replace variables with more complex terms.

However, since all unifiers are in the free algebra, the

number of variables in the constraints decreases with every

substitution (except the identity), and so no sequence of steps

can involve an infinite number of non-identity substitutions,

and all other steps decrease the constraint size.

We conclude this section with the remark that in some

applications also arise some inequality constraints s �≈ t
along with the intruder deduction constraints. As for instance

shown in [8], this extension can be reduced to some ≈-

unification problem. This unification problem is not hard:

since s and t are produced by honest participants, s and t
are again terms without low-level symbols and by Theorem 3

we can thus use free-algebra unification.
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VII. ABSTRACTION OF THE SCANNING PROBLEM

We have so far considered forms without whitespaces.

However formats like XML allow whitespaces between

tokens. For instance in the example ◦〈◦ nonce ◦〉 ◦ enc(x) ◦
〈/ ◦ nonce ◦〉◦ we have marked with ◦ all positions where

XML would allow whitespaces (we like nonce to be parsed

as a token name, so it cannot be broken by whitespaces);

additionally, one may insert whitespaces anywhere into the

string produced by enc(x). An implementation that allows

for whitespaces should thus accept any string for enc(x)
that consists only of symbols of X and whitespaces, and

simply filter the whitespaces. Vice-versa, if we think of

implementations generating enc(x), the implementation is

free to insert whitespaces, adding non-determinism to the

model. In order to keep this manageable, we assume a

modified function enc(t, r) where t is the term to encode

and r is a randomness string, specifying in some way where

and how to insert white spaces. As is already the case for

encryption, we may simply omit the r in the notation when

not interesting.
For all other whitespaces, we can use special variables

w1, w2, . . . to insert into the formats.5 We have usually

|wi| = N and we may have |wi| = N \ {0} for mandatory

whitespaces. We thus have an alphabet W ⊂ B of whites-

paces, W ∩ X = ∅, and string substitution must substitute

whitespace variables only with strings from W∗. We require

W ⊆ Σp. These variables are additional parameters of the

formats, and again we treat them as “silent” arguments (i.e.,

we do not denote them when no confusion arises).
This extension requires some updates on the results.

First, for ambiguity of formats, we require that whitespace

variables cannot be followed by a variable x (while enc(x) is

fine) and it cannot be followed by offk(x). This requirement

is necessary since for both x and offk(x), the concrete strings

in [[·]] can start with a byte in W, so the boundary may

be unclear. Under this additional restriction, the parser is

however easy to extend and we have again un-ambiguity.

For disjointness, the checking procedure is updated also in

a straightforward way: whitespace variables are treated like

normal (arbitrary-size) variables, except that constants that

are not in W are disjoint from them.
The results of Theorem 3 and 4 hold under this extension:

the additional silent arguments to enc(·) and formi do never

hurt, and the whitespace variables can be treated as normal

variables. Note when we have a constraint K � w for

a whitespace variable w, the intruder can also solve this

correctly, since we have set the whitespace alphabet W to

be public symbols.

VIII. CASE STUDY: TLS

As a practical case study, we examine the message formats

used in TLS [9]. Given the complexity of TLS with many

5From a users point of view, a more convenient notation is to use a special
“scanner” declaration, defining keywords/tags, whitespaces and comments.

optional choices, it is not surprising that some of its features

are at the border of what the result of this paper supports—

and some are beyond. This indicates potential future exten-

sions that would be helpful in practice, but also demonstrates

how much our current method already covers. Note that we

do not verify TLS itself here, but we formalize all message

formats of TLS and show that they are pairwise disjoint

and unambiguous, so that it is sound to abstract the formats

into free function symbols as is standard in formal models

like [10].

Structure of TLS

TLS has two layers. At the top layer we have four sub-

protocols: Handshake for negotiating session keys, Change
Cipher for setting these keys into use, Alert for warning

and error messages, and Application Data for transmitting

the actual payload data. (We discuss the later addition of

the Heartbeat protocol below.) At the bottom, we have the

record protocol that acts as a kind of envelope for the top

layer protocols and can be described by a format as follows:

RECORD(sub, data) = sub·byte(3)·byte(3)·off2(data)·data

where byte(n) denotes literal one-byte constants (e.g.,

byte(3) · byte(3) is the (fixed) version number, actually

referred to as “TLS 1.2”). Variable sub is a one-byte tag

that specifies to which subprotocol data belongs to:

• byte(20) for the change cipher spec protocol,

• byte(21) for the alert protocol,

• byte(22) for the handshake protocol, and

• byte(23) for the application data protocol.

We have set the format RECORD in small capitals to indicate

that this is actually a “meta-format”: as concrete formats

we consider said four instantiations of sub and these are

obviously pairwise disjoint.

The data is however problematic, since by the 2-byte

offset, data needs to be less than 216 bytes long (and the

standard restricts it even further for technical reasons). Thus,

longer messages need to be fragmented into several record

packets by the sender, and joined again by the recipient.

This is beyond our current soundness result, and we can

thus cover here TLS only for data packets up to that length.

However, it seems intuitively clear that the fragmenting

mechanism does not induce further vulnerabilities: an at-

tacker can of course re-order these packets, but he could

do the same in a variant of the protocol where data is

transmitted as a single chunk (with a larger size bound or

unbounded)—and for this variant our result applies.

Handshake

We illustrate some key points at hand of a few formats of

the Handshake protocol. The full formalization can be found
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in the extended version of this paper [11].

HANDSHAKE(tag, data) = tag · off3(data) · data
server hello(random, session id, cipher, compr)

= HANDSHAKE(byte(2), byte(3) · byte(3) · random
·off1(session id) · session id · cipher · compr)

cert verify(signed handshake)

= HANDSHAKE(byte(15), signed handshake)

client key ex(EncrPreMasterSecret)

= HANDSHAKE(byte(16),EncrPreMasterSecret)

PMS form(secret) = byte(3) · byte(3) · secret

Again HANDSHAKE is a meta-format where tag and data
are instantiated with concrete values to define formats like

server hello. (Variables like random that are used without

offset generally have some fixed length.) One complication

here is that the client can ask for some extended function-

alities and the server should tell in the server hello message

which of these functionalities that are actually available. In

this case we have an extended variant of the format:

server helloE(random, session id, cipher, compr, exts)

= HANDSHAKE(byte(2), . . . · compr · off2(exts) · exts)
Note that server hello and server helloE are disjoint as

they both have clear boundaries and all variables that are

not presented with offsets have fixed lengths. Also note

that there is no flag that says whether the extension is

present—this is decided by whether or not after parsing

compr further bytes are available. The server hello is an

example of a complication that is still supported by our

approach, however a more convenient notation for optional

parameters/constructions is desirable.
Forms client key ex and PMS form are an example of

messages that involve a cryptographic operations. This will

in fact be used as

client key ex(crypt(pub(k),PMS form(PMS)))

where pub(k) is the public key of the server and PMS is

the so-called pre-master-secret randomly generated by the

client. The point is that whenever we are not performing

an encryption of “raw” data like PMS, we should define

a format into which the information is embedded—in this

case, the PMS form includes the version number.
As a last example, consider the cert verify message.

Here, the signed handshake should actually contain a

signed hash of all previous handshake messages of the

session, i.e., h(m1 · . . . · mk). Here we thus concatenate a

sequence of messages without any further formatting con-

structs. Note however that each of the mi is an instance of

one of the formats, say formi(tsi) for some list of parameters

tsi. We could thus define an “all messages format” as follows

(removing duplicates in the arguments):

all(ts1, . . . , tsn) = form1(ts1) · . . . · formn(tsn)

As such, the all format is again unambiguous and disjoint

from all other formats. This follows from the fact that for

every string that can be parsed as one TLS format, no proper

prefix of that string can be parsed as the same format.

There is however a subtle problem: as mentioned some

formats like server hello have an optional extension which

simply consists of further bytes trailing the mandatory part.

When both variants are in use, also the concatenations occur

in the different variants, e.g.,

all1(. . .) = . . . · server hello · server cert . . .

all2(. . .) = . . . · server helloE · server cert . . .

and these variants are in general not disjoint, if for in-

stance the extension is not disjoint from the beginning of

server cert. The danger is that an intruder can get away with

deleting or inserting information like available/requested

extensions. In the concrete cases this seems practically in-

feasible (due to signed certificates). However this indicates a

weakness of the “trailing optionals” approach of TLS, which,

as the standard states, is an outdated approach kept for

compatibility. It seems reasonable to change this, spending

an extra byte for flagging whether an extension is present

or not.

During the publication process of this paper the so-called

Heartbleed attack was discovered in an implementation of

the Heartbeat extension of TLS [12]. One may in fact argue

that this is a problem of parsing messages: in particular the

vulnerable implementation suffers from a buffer overflow.

While the format (i.e., the protocol standard) is arguably

not to blame for the flaw, one may thus wonder if an

implementation that uses our format abstraction could have

prevented the problem. The idea is that our format descrip-

tions can be automatically translated into an API of parsers

and pretty printers, so that the implementation does not need

to directly handle byte strings anymore but rather always

uses the format API, similar to the use of crypto-APIs that

is already standard today. This could help to minimize the

chance of such accidents in implementations.

IX. CONCLUSIONS AND RELATED WORK

This paper presents a novel kind of term algebraic model

that models all details of the non-cryptographic operators

for structuring messages. At the same time it abstracts from

all details of the cryptography. It does so by taking the

real byte-string message algebra and defining a new algebra

D based on congruence relation ≈ that includes exactly

those equalities that hold regardless of the cryptographic

algorithms. While this algebra is semantically defined and

thus hard to handle directly in reasoning, we show that

when all formats are un-ambiguous and pairwise disjoint,

the sub-algebra D′ that does not use directly low-level

operators for message structuring (but uses the abstract

formats) is isomorphic to the free algebra. We then show

that if we consider a communicating system where all honest
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agents are using abstract formats (that are un-ambiguous and

pairwise disjoint), and assuming attacks can be reduced to

satisfiability of K � t intruder constraints, we can recast any

attack in D to one in D′. It is thus sound to verify protocols in

a free algebra with abstract formats and without considering

low-level structuring primitives—we can thus use existing

protocol verification tools without modification.

Closely related to our result are some soundness results

for typed models [8], [13]–[15]: these results essentially

prove that under certain conditions it is sound to bound the

depth of terms that the intruder can create. This ensures

termination in ProVerif and improves the efficiency of tools

like SATMC. These approaches are ideally suited for the

combination with our result: they assume, on the Dolev-Yao

level, the disjointness of certain message terms; our model

similarly requires disjointness of formats on the implemen-

tation level and proves the soundness of a Dolev-Yao-style

abstraction where the different formats are represented as

disjoint, free symbols formi. An interesting point is here

that for typing results we cannot allow unstructured terms

under cryptographic operators as in crypt(k, x) because an

agent receiving this message would accept any term for x.

Rather, the protocol would have to use some format in place

of x to ensure a unique interpretation of this information. In

a similar way, compositional reasoning combines well with

our results as also here disjointness of message formats is

at the core of the assumptions [16]–[19].

There are several works that use Dolev-Yao-style mod-

els with a term algebra modulo some algebraic properties

of cryptographic operators, e.g., in modular exponentia-

tion [20]. In principle it seems possible to extend our results

with some properties of cryptographic operators, but it seems

to require changes to some of the semantic proofs and we

leave this question for future work.

Several works have used the integration of more algebraic

properties into Dolev-Yao-style models in order to shrink

the gap between formal model and implementation with

regard to the structure of messages. CL-AtSe is to our

knowledge the only verification tool in this field that fully

supports an associative concatenation operator [21]. Also,

the use of associate-commutative operators has been used to

model and automatically verify protocols with XML-style

messages [22]. A problem with these approaches is that the

models still have no notion of message lengths or format

encodings. This leads to a large number of false positives,

since when applied to abstract terms, the structure often

allows mis-association that would not work in a real imple-

mentation (due to message lengths or encodings). Moreover,

one cannot really be sure that all properties that are relevant

for an attack are actually captured. This is the very reason

why our approach starts with an algebra D—without giving

any concern to automation at this point—that models exactly

the equalities of terms that the real implementation has,

except the ones that depend on the cryptography. Also, our

soundness result allows us to keep the verification process

free from all the complications of algebraic reasoning (e.g.,

that unification modulo an associative operator is infinitary).

The idea of abstract formats is not new. Most prominently,

the TulaFale tool uses a connection between XML-formats

of the concrete protocol and abstract symbols for that format

in the model used in ProVerif [23]. There is no proof of

soundness, probably since in a limited set of XML-formats,

it seems intuitively clear that nothing can go wrong. Our

result proves this formally and in a more general setting

(i.e., including also data-structure-style message formats).

In the “more cryptographic” literature, we find many

proofs of security protocols that consider no abstract Dolev-

Yao model but rather actual cryptographic algorithms and

reduce security to some (with high certainty) intractable

problems. Many of these works do not put much focus on

the non-cryptographic aspects, since these are problems that

can somehow be solved. When the details are considered,

we often have the limitation that the proofs are hard to

generalize [24]. When an implementation detail is changed,

it may have repercussions throughout the proof. In contrast,

our approach is modular: when the implementation of a

format is changed without changing the abstract formi (i.e.,

changing parameters) then all we need to check is that the

new implementation is still un-ambiguous and disjoint from

the other formats; the abstract verification on the Dolev-Yao

level does not need to be repeated.

In general, the verification on the crypto-

graphic/implementation level is much harder than on

the abstract Dolev-Yao level which is much easier for

automated and interactive verification, compositional

reasoning and refinement. In this spirit, several works

give computational soundness results linking the abstract

Dolev-Yao models with cryptographic models [1], [2].

One may see our work as the missing piece in this area,

systematically studying the structure of messages for large

classes of implementations. Since we abstracted from

cryptography, an interesting question for future work would

be whether one can combine our soundness result with the

computational soundness results. Our notion of forms is in

fact close to the notion of transparent functions in [25] and

a combination could obtain soundness for collections of

very diverse protocol formats.

As seen with the optional extensions in TLS, the real

world formats are sometimes beyond what can be conve-

niently expressed. Also, the formats we consider in this

paper are composed from a fixed number of elements.

There are however several applications for messages of an

unbounded number of elements, e.g., for certification one

may supply a chain of certificates (in a single message) and

its length should not be bounded. Most tools do not support

such open-ended messages, but first results exists [26]. More

generally, using dependent types to formalize more complex

formats with options, repetitions, or cardinality constraints
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are interesting question for future work.

ACKNOWLEDGMENT

This work was partially supported by the EU FP7 Project

no. 318424, “FutureID: Shaping the Future of Electronic

Identity” (futureid.eu). We thank Omar Almousa and Luca
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G. Erzse, S. Frau, M. Minea, S. Mödersheim, D. von Oheimb,
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