
Automated Generation of Attack Trees

Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson
Department of Applied Mathematics and Computer Science

Technical University of Denmark

{rvig,fnie,hrni}@dtu.dk

Abstract—Attack trees are widely used to represent threat sce-
narios in a succinct and intuitive manner, suitable for conveying
security information to non-experts. The manual construction of
such objects relies on the creativity and experience of specialists,
and therefore it is error-prone and impracticable for large
systems. Nonetheless, the automated generation of attack trees
has only been explored in connection to computer networks
and levering rich models, whose analysis typically leads to an
exponential blow-up of the state space.
We propose a static analysis approach where attack trees are
automatically inferred from a process algebraic specification in a
syntax-directed fashion, encompassing a great many application
domains and avoiding incurring systematically an exponential
explosion. Moreover, we show how the standard propositional
denotation of an attack tree can be used to phrase interesting
quantitative problems, that can be solved through an encoding
into Satisfiability Modulo Theories. The flexibility and effective-
ness of the approach is demonstrated on the study of a national-
scale authentication system, whose attack tree is computed thanks
to a Java implementation of the framework.

I. INTRODUCTION

Physical, software, and cyber-physical systems govern our
everyday life increasingly, and are exploited in the realisation
of critical infrastructure, whose security is a public concern.
The growing complexity of such systems demand for a thor-
ough investigation of the attack scenarios that threaten their
operation, and for a quantitative evaluation of their likelihood
and criticality.
Attack trees are a widely-used graphical formalism for rep-
resenting threat scenarios, as they appeal both to scientists,
for it is possible to assign them a formal semantics, and to
practitioners, for they convey their message in a concise and
intuitive way. In an attack tree, the root represents a target goal,
while the leaves contain basic attacks whose further refinement
is impossible or can be neglected. Internal nodes show how
the sub-trees have to be combined in order to achieve the
overall attack, and to this purpose propositional conjunction
and disjunction are usually adopted as combinators. On top of
this basic model, a number of extensions and applications of
attack trees have been proposed, demonstrating how flexible
and effective a tool they are in practice. Figure 1 displays a
simplistic attack tree, where the overall goal of entering a bank
vault is obtained by either bribing a guard or by stealing the
combination and neutralising the alarm.
Historically, attack trees are produced manually by teams of
experts, known as Red Teams. When considering complex and
sizeable systems, however, the manual construction of attack
trees becomes error-prone and necessarily not exhaustive.
Automated techniques are therefore needed to infer complete
and succinct attack trees from formal specifications. Existing
approaches, surveyed in Sect. II, all suffer from focusing on

∨
enter vault

∧ bribe guard

steal

combination

disable

alarm

Figure 1. How to enter a bank vault, for dummies.

computer networks, and thus suggest specification languages
tailored to this domain. Moreover, the model-checking tech-
niques that have been proposed recently for generating attack
trees lead to an exponential explosion of the state space,
limiting the applicability of automated search procedures.
In order to overcome these drawbacks, we develop a static
analysis approach where attack trees are automatically inferred
from process algebraic specifications in a syntax-directed fash-
ion. The advantage of resorting to process calculi is many-
fold. First, a process algebraic specification requires focusing
on the structural and functional definition of a system, and
from this deriving the threat scenario automatically, rather
than thinking of it from the start, as it seems necessary with
existing approaches. Second, the affinity of process calculi
with programming languages established their usefulness in
the formal design of complex systems, that are described in
terms of interacting components. In turn, formal specifications
enable the automated verification of behavioural properties
at design time, hence before the actual system is produced,
matching an ever-growing need for deploying software that
lives up to given requirements in terms of security, safety,
and performance. Finally, and most importantly, process calculi
have proven useful formal languages for describing software
systems, organisations, and physical infrastructure in a uniform
manner.
The compromise for obtaining such broad a domain coverage
while retaining a reasonable expressive power takes place at
the level of attack definition. At a high level of abstraction, an
attack can be defined as a sequence of actions undertaken by an
adversary in order to make unauthorised use of a target asset. In
a process algebraic world, this necessary interaction between
the adversary and the target system is construed in terms of
communicating processes. Input actions on the system side can
be thought of as security checks, that require some information
to be fulfilled. In particular, the capability of communicating
over a given channel requires the knowledge of the channel
itself and of the communication standard. This could include,
for example, the knowledge of some cryptographic keys used
to secure the communication. Hence, we can think of a
compound attack as a set of channels needed to activate the

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Roberto Vigo. Under license to IEEE.

DOI 10.1109/CSF.2014.31

337

desired behaviour on the target system side, that is, to reach
a particular location that should be secured from unauthorised
access. Channels will thus be the basic constituent of attacks
in our framework, for the adversary needs such knowledge to
interact with the system.
This coarse yet powerful abstraction allows modelling a great
many domains. In IT systems, a channel can be thought of as a
wired or wireless communication link. In the physical world, a
channel can represent a door, and its knowledge the ownership
of a suitable key or the capability of bypassing a retinal scan.
It is then straightforward to devise attack metrics by assigning
costs to channels, and then look for attacks that are minimal
with respect to the given notion of cost.
On the complexity side, being syntax-driven, static analysis of-
ten enjoys better scalability than model-checking approaches.
Even though the theoretical complexity of our analysis is
still exponential in the worst case, such a price depends on
the shape of the process under study, and is not incurred
systematically as when a model checker generates the state
space.

Organisation of the paper. In Sect. III we introduce the
calculus that we use as formal specification language. Then,
we define a static analysis for automatically inferring attack
trees from such specifications.
First, we translate the process P of interest into a set of
propositional formulae (Sect. IV), expressing the dependency
between the knowledge of channels and the reachability of
program points in P .
Second, given a location l indicating a program point of in-
terest, we apply a backward-chaining search to these formulae
so as to generate an attack tree (Sect. V). Considering all the
paths leading to l in P , the tree shows what information is
required to attain l and how it has to be combined. A tree for
label l is condensed into a propositional formula [[l]], whose
satisfiability establishes the reachability of l in P .
Finally, if a map from atomic attacks (i.e., channels) to
costs is provided, we compute the sets of channels that
allow reaching l incurring minimal cost, where minimality
is sought with respect to an objective function defined on
a liberal cost structure. This step reduces to computing the
cheapest satisfying assignments of formula [[l]], exploiting a
recent application of Satisfiability Modulo Theories (SMT) to
optimisation problems (Sect. VI).
A Java implementation of the framework, briefly described in
Sect. VII, is available, which takes as input a process in our
calculus and a location of interest, and displays graphically
the related attack tree. Levering the cost map, the tool also
computes the cheapest sets of atomic attacks leading to l. The
usefulness of the framework is demonstrated on the study of
the NemID system, a national-scale authentication system used
in Denmark to provide secure Internet communication between
citizens and public institutions as well as private companies.
Section VIII concludes and sketches a line for future work.

II. RELATED WORK

Graphical representations of security threats are often used
to convey complex information in an intuitive way. Formalisa-
tion of such graphical objects are referred to chiefly as attack
graphs [1], [2], [3], [4] and attack trees [5], [6], [7], [8], [9]. In
this work we prefer the phrase “attack trees”, but our procedure
can be adapted to generate attack graphs.

While different authors have different views on the information
that should decorate such objects, instrumental to the analysis
that the tree or the graph is supporting, all definitions share
the ultimate objective of showing how atomic attacks (i.e.,
the leaves) can be combined to attain a target goal (i.e., the
root). This perspective is enhanced in the seminal work of
Schneier [5], that found a great many extensions and applica-
tions. In particular, Mauw and Oostdijk [7] lay down formal
foundations for attack trees, while Kordy et al. [10] and Roy et
al. [11] suggest ways to unify attacks and countermeasures in
a single view. Even though Schneier’s work is mostly credited
for having introduced attack trees, and it had certainly a crucial
role in making attack trees mainstream in computer security,
the origin of this formalism can be traced back to fault trees,
expert systems (e.g., Kuang [12]), and privilege graphs [13].
As for the automated generation of attack graphs, the liter-
ature is skewed towards the investigation of network-related
vulnerabilities: available tools expect as input rich models,
including information such as the topology of the network
and the set of atomic attacks to be considered. The backward
search techniques of Phillips and Swiler [1] and Sheyner et
al. [6] have proven useful to cope with the explosion of the
state space due to such expressive models. However, the search
has to be carried out on a state space that is exponential in
the number of system variables, whose construction is the real
bottle-neck of these approaches, and the result graph tends to
be large even if compact BDD-based representations are used,
as argued in [14]. In particular, in [6] a model checking-based
approach is developed, where attack graphs are characterised
as counter-examples to safety properties; a detailed example
is discussed in [3]. Similarly to Phillips and Swiler, we adopt
an attacker-centric perspective, which cannot simulate benign
system events such as the failure of a component, as in [6].
Directly addressing the exponential blow-up of [6], Ammann
et al. [14] propose a polynomial algorithm, but the drop in
complexity relies on the assumption of monotonicity of the
attacker actions and on the absence of negation. On the same
line, Ou et al. [15] present an algorithm which is quadratic in
the number of machines in the network under study.
As for the analyses developed on top of attack trees, we present
a reachability analysis which computes the cheapest sets of
atomic attacks that allow attaining a location of interest in
the system, as it is standard in the attack tree literature. This
approach seamlessly encompasses the probabilistic analysis
of [6], [3] (costs to atomic attacks would represent their like-
lihood and the objective function would compute the overall
probability) and offers a uniform framework to address other
quantitative questions [16], [17].
Finally, Mehta et al. [4] present a technique for ranking sub-
graphs so as to draw attention to the most promising security
flaws. Whilst we do not directly tackle this issue, for condens-
ing an entire tree into a formula we gain in performance but
we lose the original structure, a post-processing step could be
undertaken to compute the value of the internal nodes (sub-
formulae).
The idea of translating process algebraic specifications into sets
of logical formulae has been developed in various contexts. In
particular, we have been inspired by Blanchet’s translation of
the applied π-calculus into first-order formulae [18]. However,
the main problem we discuss is propositional; ideas for a first-
order extension are sketched in Appendix B.
Our SMT-based solution technique is inspired by [19], which

338

we extend to symbolic and non-linearly ordered cost structures
in [20]. The technique proves useful to answer quantitative
questions on attack trees characterised as logical formulae, and
therefore we briefly introduce it, the main contribution of this
work and its prime focus remaining however the automated
generation of attack trees.
It is worthwhile observing that our assumption about channels
that provide given degrees of security, embedding for instance
cryptographic operations, is supported by a significant line
of research on so-called secure channels (e.g., see [21]). In
particular, when focusing on systems as opposed to protocols,
it is reasonable to assume standard mechanisms to be in place
for providing various security features. Such mechanisms are
mimicked in our work by secure communication channels, and
in this sense we say that an attack can be interpreted as a set
of such channels.

III. THE VALUE-PASSING QUALITY CALCULUS

As specification formalism we adopt the Quality Cal-
culus [22], a process calculus in the π-calculus family. In
particular, the Quality Calculus introduces a new kind of input
binders, termed quality binders, where a number of inputs are
simultaneously active, and we can proceed as soon as some of
them have been received, as dictated by a guard instrumenting
the binder. While these binders enhance the succinctness of
highly-branching process-algebraic models, thus increasing
their readability, they do not increase the expressiveness of the
language, and thus the analysis of Sect. IV carries seamlessly
to a variety of process calculi without such binders. Therefore,
as far as this work is concerned, the reader can think of
the calculus as a broadcast π-calculus enriched with quality
binders.
In the following we present the syntax and discuss informally
the semantics of a fragment of the calculus. A formal account
of the semantics is deferred to Appendix A, for it is instru-
mental to show the correctness of the entire approach but does
not constitute a novelty per se.

A. Syntax and intended semantics

The Value-Passing Quality Calculus is displayed in Table I.
The calculus consists of four syntactic categories: processes P ,
input binders b, terms t, and expressions e. A process can be
prefixed by a restriction, an input binder, an output c!t of term
t on channel c, or be the terminated process 0, the parallel
composition of two processes, a replicated process, or a case
clause. We write P =⇒ P ′ to denote that process P evolves
to process P ′, and =⇒∗ for its transitive closure.
A process c!t.P broadcasts term t over channel c and evolves to
P : all processes ready to make an input on c will synchronise
and receive the message, but we proceed to P even if there
exists no such process (i.e., broadcast is non-blocking).
An input binder can either be a simple input c?x on channel c,
or a quality binder &q(b1, . . . , bn), where the n sub-binders are
simultaneously active. A quality binder is consumed as soon
as enough sub-binders have been satisfied, as dictated by the
quality guard q. A quality guard can be any boolean predicate:
we use the abbreviations ∀ and ∃ for the predicates specifying
that all the sub-binders or at least one sub-binder have to
be satisfied before proceeding, respectively. For instance, the
process &∃(c1?x1, c2?x2).P evolves to P as soon as an input

Table I. THE SYNTAX OF THE CALCULUS.

P ::= 0 | (νc)P | P1 |P2 | lb.P | lc!t.P
| !P | lcase x of some(y) : P1 else P2 (Process)

b ::= c?x | &q(b1, · · · , bn) (Binder)

t ::= c | y (Term)

e ::= x | some(t) | none (Expression)

is received on c1, or an input is received on c2, or both the
sub-binders are satisfied.
In terms of security checks, the existential quality guard de-
scribes scenarios in which different ways of fulfilling a check
are available, e.g. different ways of proving one’s identity. In
contrast to this, the universal quality guard ∀ describes checks
that require a number of sub-conditions to be met at the same
time.
When a quality binder is consumed, some input variables
occurring in its sub-binders might have not been bound to
any value, if this is allowed by the quality guard. This is the
case of the previous example:

(νc1)(νc2)(νc3)(&∃(c1?x1, c2?x2).P |c1!c3.P ′)
evolves to P |P ′, even if no input is received on c2. In order
to record which inputs have been received and which have
not, we always bind an input variable x to an expression
e, which is some(c) if c is the name received by the input
binding x, or none if the input is not received but we are
continuing anyway. In this sense, we say that expressions
represent optional data, while terms represent data, in the
wake of programming languages like Standard ML. In order to
insist on this distinction, variables x are used to mark places
where expressions are expected, whereas variables y stand for
terms. Hence, in the previous example we obtain:

(νc1)(νc2)(νc3)(&∃(c1?x1, c2?x2).P |c1!c3.P ′) =⇒∗
(νc1)(νc2)(νc3)(P [some(c3)/x1, none/x2]|P ′)

that is, in P variable x1 is replaced by some(c3) and x2 is
replaced by none.
The case clause in the syntax of processes is then used to
inspect whether or not an input variable, bound to an expres-
sion, is indeed carrying data. The process case x of some(y) :
P1 else P2 evolves into P1[c/y] if x is bound to some(c);
otherwise, if x is bound to none, P2 is executed. Therefore,
case clauses allow detecting which condition triggered passing
a binder, that is, how a security check has been fulfilled.
The syntax presented above defines a fragment of the full
calculus presented in [22]. First, we have described a value-
passing calculus, as channels are syntactically restricted to
names; second, terms are pure, that is, only names and vari-
ables are allowed (no function application); last, the calculus
is limited to test whether or not a given input variable carries
data, but cannot test which data it is possibly carrying. We
deem that these simplifications match with the abstraction level
of the analysis, where secure channels are assumed that have to
be established by executing given security protocols, and thus
enjoy known properties. For the very same reason we opted
for pure terms, since equational reasoning is usually exploited
in process calculi to model cryptographic primitives (a Quality
Calculus with such a feature is presented in [23]). An extension

339

of the framework that encompasses the key features of the full
calculus is briefly commented upon in Appendix B.
Finally, in order to identify locations of interest in a system, we
introduce a non-functional extension to the calculus, where a
program point is instrumented with a unique label l ∈ N. This
is the case of binders, outputs, and case clauses in Table I:
we limit labels to be placed before these constructs for they
represent the real actions a process can perform. We say that
a label l occurring in a process P is reached in an actual
execution when the sub-process P ′ following l is ready to
execute, denoted C[lP ′].
As usual, in the following we consider closed processes (no
free variable), and we make the assumption that variables and
names are bound exactly once, so as to simplify the technical-
ities without impairing the expressiveness of the framework.

B. Attacker model

We assume that a system P is deployed in a hostile
environment, simulated by an adversary process Q running in
parallel with P . The ultimate aim of our analysis is to compute
an attack tree that shows what channels Q has to communicate
over (and thus, to know) in order to drive P to a given location
l, i.e., P |Q =⇒∗ C[lP ′], where C[lP ′] denotes a sub-process
of P |Q that has reached label l.
For an attack tree shows the channels that Q needs in order
to attain a program point l, the implicit assumption is that the
attacker is capable of obtaining any required channel, namely,
the attacker is able to fulfil any security check implemented
by P on the way to l. Obviously, different checks pose
different challenges to the attacker, and therefore we temper
this essentially qualitative view with a quantification of the
cost Q incurs to learn a channel, i.e., the effort related to
obtaining some information, such as a cryptographic key, or
a tool. Therefore, after having computed an attack tree Tl for
l, our question will be what are the attacks of minimal cost
among those described by Tl.

C. Example

Let us introduce now an example that will be developed
throughout the paper. NemID (literally: EasyID)1 is an asym-
metric cryptography-based log-in solution for on-line banking
and public on-line services in Denmark, used by virtually
every person who resides in the country. The log-in application
is based on a Java applet which is distributed to authorised
service providers, and through which their customers can
be authenticated. For technological and historical reasons,
the applet allows proving one’s identity with various sets of
credentials. In particular, private citizens can log-in with their
social security number, password, and a one-time password, or
by exhibiting an X.509-based certificate. Moreover, on mobile
platforms that do not support Java, a user is authenticated
through a classic id-password scheme.
The system is modelled in the Value-Passing Quality Calculus
as follows:

NemID � (νlogin) . . . (νaccess)(!Login | !Applet | !Mobile)

1https://www.nemid.nu/dk-en/

Applet �
1&∃(cert?xcert,&∀(id?xid, pwd?xpwd, otp?xotp)).
2case xcert of some(ycert) :

3login!ok else
4case xid of some(yid) :

5case xpwd of some(ypwd) :
6case xotp of some(yotp) :

7login!ok else 0
else 0

else 0

Mobile � 8&∀(id?x′id, pin?xpin).
9case x′id of some(y′id) :

10case xpin of some(ypin) :
11login!ok else 0

else 0

Login � 12login?x.13access!ok

The system consists of three processes running in parallel
an unbounded number of times. For the sake of brevity, we
have omitted to list all the restrictions in front of the parallel
components, that involve all the names occurring in the three
processes.
Process Login is in charge of granting access to the system:
whenever a user is authenticated via the applet or a mobile
app, an output on channel login is triggered, which is received
at label 12 leading to the output at label 13, which simulates
a successful authentication.
Process Applet models the applet-based login solution, where
login is granted (simulated by the outputs at label 3 and 7)
whenever the user exhibits a valid certificate or the required
triple of credentials. The quality binder at label 1 implements
such a security check: in order to pass the binder, either (∃)
a certificate has to be provided, simulated by the first sub-
binder, or three inputs have to be received (∀), mimicking an
id (id), a password (pwd), and a one-time password (otp). This
behaviour is obtained by nesting a universal quality binder in a
binder instrumented with an existential quality guard. Observe
how case constructs are used to determine what combination
allowed passing the binder: at label 2 we check whether the
certificate is received, and if this is not the case then we
check that the other condition is fulfilled. The main abstraction
of our approach takes place at this level, as we can only
test whether something is received on a given channel, but
we cannot inspect the content of what is received. In other
words, the knowledge of channel cert mimics the capability
of producing a valid certificate, and thus we say that the
semantic load of the communication protocol is shifted onto
the notion of secure channel. Observe that this perspective
seamlessly allows reasoning about the cost of attacking the
system: to communicate over cert, an adversary has to get hold
of a valid certificate, e.g. bribing someone or brute-forcing a
cryptographic scheme, and this might prove more expensive
than guessing the triple of credentials necessary to achieve
authentication along the alternative path.
Finally, process Mobile describes the intended behaviour of
the mobile login solution developed by some authorities (e.g.
banks, public electronic mail system), where an id and a
password or pin have to be provided upon login.

In the remainder of the paper, we show how an attack
tree is inferred automatically given a process P and a label l,
according to the following plan:

1) P is translated into a set containing propositional
formulae, (i) stating the dependency between the

340

knowledge of channels, and (ii) expressing the rela-
tionship between such knowledge and the reachability
of locations (Sect. IV);

2) backward chaining the formulae representing P , a
formula [[l]] is synthesised, stating what channels have
to be in the knowledge of Q so as to drive P to l; a
parse tree of such formula is an attack tree showing
the combinations of channels that allow reaching l
(Sect. V);

3) given a map from channels to costs, we compute
the set of minimal-cost attacks that allow reaching
l among those described by the tree. This is achieved
by solving a sequence of SMT problems (Sect. VI).

Each step will be demonstrated on the NemID example intro-
duced above.

IV. FROM PROCESSES TO PROPOSITIONAL FORMULAE

The recursive function [[P]]tt, defined in Table II, translates
a process P into a set containing propositional formulae of the
form ϕ ⇒ p, where ϕ is a propositional formula and p is an
atom. In the following, we refer to ϕ as the antecedent and
to p as the consequent of the implication. The semantics of
one such formula prescribes that if ϕ evaluates to true (tt)
under the knowledge of the adversary Q, then Q can obtain
p with no additional effort. In other words, if Q can fulfil the
security checks described by ϕ, then it can also satisfy the
check represented by p. Technically, this approach exploits an
inductive definition of the attacker knowledge, first introduced
in connection to security protocols verification.
In ϕ⇒ p, the consequent p is either

• a channel c, atom c expressing whether or not Q can
get hold of c: if c = tt then c is known to the attacker,
otherwise if c = ff it is not;

• an input variable x, x expressing whether x is bound
to some value (x = tt) or to none (x = ff), that is,
atom x accounts for the capability of Q of satisfying
the input binding x;

• a label l, atom l expressing whether or not Q can make
P reach l.

In each step of the evaluation, the first parameter of [[·]]·
corresponds to the sub-process of P that has still to be
translated, while the second parameter is a logic formula Φ,
intuitively carrying the hypothesis on the knowledge Q needs
to attain the current point in P . The translation function is
structurally defined over processes. The initial invocation [[P]]tt
assumes that P is executable, thus setting Φ = tt.
If P is the terminated process 0, then there is no location to be
attained and thus no formula is produced. If P is a replicated
process !P ′, then the attacker does not need any knowledge
in order to make P reach P ′, as it evolves spontaneously
whenever necessary. Similarly, if P is the process (νc)P ′,
then the attacker does not need any knowledge in order to
make P reach P ′. Parallel processes are translated taking the
union of the sets into which the components are translated.
Communication actions and case clauses determine instead
what Q has to know, for we construe input actions as security
checks. Whenever the translation reaches a labelled action a,
that is, [[la.P ′]]Φ, then a formula Φ⇒ l is generated, denoting

that l is reached if the adversary’s knowledge satisfies Φ (the
attacker can fulfil all the security checks on at least one path to
l). Moreover, in order to pass a and attain P ′, Q has to comply
with some further requirements, depending on the nature of a,
and some additional formulae may be produced.
The translation of a binder lb.P ′ has two effects. First, some
conditions have to be met for reaching P ′, i.e., the security
checks expressed by b have to be fulfilled: this is taken
care of by function hp(b), that given a binder derives the
combinations of channels that allows passing it, expressed as
a propositional formula; such formula will then extend the
hypothesis Φ. Second, whenever b is passed, the adversary
gains some knowledge about the content of the input variables
defined by the binder: if a binder is satisfied, then some of the
input variables receive values other than none; this is taken
care of by function th(Φ, b).
Consider a simple input lc?x.P ′: in order to make P consume
the input and evolve to P ′, the adversary has to know channel
c, and thus hp(c?x) = c is added to the hypothesis Φ in
[[P ′]](Φ ∧ c). Moreover, once a simple input is consumed, it
must be the case that the input variable x has been bound to
some(c′), hence we generate the formula (Φ ∧ c) ⇒ x: if Q
can reach the input lc?x.P ′ and Q knows c, then the input can
be satisfied. This idea is generalised for quality binders, where
the quality guard q determines how to compose the constraints
related to the sub-binders. The last section of Table II shows
some cases for q, but in general any boolean predicate can be
used as guard.
When an output lc!t is encountered, the knowledge of Q
increases, as the attacker can now control c at the price of
satisfying the hypothesis for reaching the output, and thus a
formula Φ ⇒ c is generated. In other words, satisfying the
checks prescribed by Φ, the attacker automatically fulfils c.
It is worthwhile observing that this choice is justified by the
broadcast semantics, and by the fact that the calculus is limited
to testing whether or not something has been received over
a given channel, shifting the semantic load on the notion of
secure channel.
Finally, a case construct is translated by taking the union of
the formulae into which the two branches are translated: for
the check is governed by the content of the case variable x,
we record that the then branch is followed only when x is
bound to some(c) by adding a literal x to the hypothesis, as
we do for inputs, and we add ¬x if the else branch is followed.
Observe that the mutual exclusion of the two branches is
accounted for by the conjunction of the hypothesis with x and
¬x, respectively. This approach is equivalent to consider xor
nodes in the tree, as in [24].

In Appendix C-A we show that the cardinality of the set of
formulae [[P]]tt is linear in the number of actions n occurring
in P , while the number of literals occurring in the formulae
grows with n2, and we argue that this a precise theoretical
bound. Nonetheless, the examples arising from the NemID
system and other realistic scenarios suggest a better behaviour
than a quadratic growth.
Moreover, in the appendix we also show the following result,
that has a crucial role in the correctness of the backward-
chaining procedure of Sect. V.

Lemma 1. Let P be a closed process in the Value-Passing
Quality Calculus, and assume that each variable x and name c
occurring in P is bound exactly once. Then, for any variable x

341

Table II. THE TRANSLATION FROM PROCESSES TO PROPOSITIONAL

FORMULAE.

[[0]]Φ = ∅
[[!P]]Φ = [[P]]Φ

[[(νc)P]]Φ = [[P]]Φ

[[P1|P2]]Φ = [[P1]]Φ ∪ [[P2]]Φ

[[lb.P]]Φ = [[P]](Φ ∧ hp(b)) ∪ th(Φ, b) ∪ {Φ ⇒ l}
[[lc!t.P]]Φ = [[P]]Φ ∪ {Φ ⇒ c} ∪ {Φ ⇒ l}
[[lcase x of some(y) : P1 else P2]]Φ =

[[P1]](Φ ∧ x) ∪ [[P2]](Φ ∧ ¬x) ∪ {Φ ⇒ l}

hp(c?x) = c

hp(&q(b1, . . . , bn)) = [{q}](hp(b1), . . . , hp(bn))
th(Φ, c?x) = {(Φ ∧ c) ⇒ x}
th(Φ,&q(c1?x1, . . . , cn?xn)) =

⋃n
i=1 th(Φ, ci?xi)

[{∀}](ϕ1, . . . , ϕn) =
∧n

i=1 ϕi

[{∃}](ϕ1, . . . , ϕn) =
∨n

i=1 ϕi

in P , there exists exactly one formula ϕ⇒ x in the translation
[[P]]tt, and x does not occur in ϕ.

Finally, a similar result holds for every label l in P , as
labels are unique and the translation encounters l exactly once.

A. Example

Consider the process NemID discussed in Sect. III-C, and
its translation [[NemID]]tt. Applying the rules of Table II, we
obtain the union of the following sets of formulae (tt conjuncts
are omitted).

[[Applet]]tt = {
1,
cert⇒ xcert,
id⇒ xid,
pwd⇒ xpwd,
otp⇒ xotp,
cert ∨ (id ∧ pwd ∧ otp)︸ ︷︷ ︸

ϕ

⇒ 2,

ϕ ∧ xcert ⇒ 3,
ϕ ∧ xcert ⇒ login,
ϕ ∧ (¬xcert)⇒ 4,
ϕ ∧ (¬xcert) ∧ xid ⇒ 5,
ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp ⇒ 7,
ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp ⇒ login

}

[[Mobile]]tt = {
8,
id⇒ x′id,
pin⇒ xpin,
id ∧ pin⇒ 9,
id ∧ pin ∧ x′id ⇒ 10,
id ∧ pin ∧ x′id ∧ xpin ⇒ 11,
id ∧ pin ∧ x′id ∧ xpin ⇒ login

}
[[Login]]tt = {

12,
login⇒ x,
login⇒ 13,
login⇒ access

}
Notice how each formula models the checks on a given path:
for being granted access, i.e., reaching label 13, a commu-
nicating process has to know channel login. In turn, other
formulae describe what is needed in order to get hold of such
information, giving rise to a backward search formalised in
Sect. V. Therefore, the translation accounts for the ways a
given location or piece of knowledge can be obtained playing
according to the system rules. To make an analogy, this
approach resembles the perfect cryptography assumption often
made in security protocol verification, stating that an encrypted
term can be decrypted only knowing the corresponding cryp-
tographic key. Similarly, in the example we are saying that
the only way for logging in is to possess a set of required
credentials: the only way for getting login is to satisfy the
checks on one path the leads to issuing login.

B. Compositionality

It is worthwhile highlighting the modularity of process
algebraic specification, which results in a high degree of
flexibility when analysing complex systems. In the example
above, for instance, while the Java applet is developed by
a national contractor, and hence is common to all service
providers, each company offers its own mobile app. Assume
that a new way to access the system were offered by a bank,
which would authenticate a user via a phone number:

Phone �
14phone?xph.

15case xph of some(yph) :
16login!ok else 0

NemID ′ � (νlogin) . . . (νphone)
(!Login | !Applet | !Mobile | !Phone)

Then we have [[NemID ′]]tt = [[NemID]]tt ∪ [[Phone]]tt, that
is, the translation of a new top-parallel process is independent
from the formulae that have already been generated. Obviously,
due care has to be paid to names, e.g., name login in Phone
has to be the same used in NemID. However, while restrictions
play a crucial role in the semantics, they are simply ignored
by the translation.
Besides being flexible with respect to the analysis of new
components, the translation suitably integrates in a refinement
cycle, where we start from a coarse abstraction of the sys-
tem and then progressively refine those components that are
revealed as candidates for being attacked, by replacing the
corresponding set of formulae with a finer one. The constraint

342

on names translates to a constraint on the interface of the
component: if process A is replaced by process B, then B
must be activated by the same inputs that activate A, and vice-
versa it must produce the same outputs towards the external
environment that A is producing.

V. FROM FORMULAE TO ATTACK TREES

Once a process has been translated into propositional
formulae, it is possible to build an attack tree for each
program point automatically, showing what information has to
be obtained and how it has to be combined in order to attain
the desired goal.
Given a process P and a label l occurring in P , we generate a
formula [[l]] representing the attack “l is reached” by backward
chaining the formulae in [[P]]tt so as to derive l.
Before explaining the algorithm, it is worthwhile discussing the
nature of the backward chaining-like procedure defined in the
following. Standard backward chaining [25, Chp. 7] combines
Horn clauses so as to check whether a given goal follows from
the knowledge base. Instead, we are in fact trying to derive
all the knowledge bases that allow inferring the goal given
the inference rules [[P]]tt, which are not strict Horn clauses as
they can contain more than one positive literal. Using a slightly
different terminology, we are here interested in computing all
the implicants of l, while in Sect. VI we will show how to
select those implicants that are minimal with respect to a given
notion of cost (i.e., prime implicants).
The rules for generating [[l]] are displayed in Table III. For our
formulae are propositional, there is no unification other than
syntactical identity of literals involved in the procedure. Notice
that the algorithm only applies valid inference rules.
Rule (Sel) selects the antecedent of the formula leading to the
goal l: since there is a unique such rule, in order to derive l
we have to derive the antecedent ϕ of ϕ⇒ l. Observe that we
are not interested in deriving l in any other way.
Rule (Pone-c) encodes either a tautology (if c has to be inferred
then c is in the knowledge base) or applications of modus
ponens (c is derived assuming ϕ, thanks to ϕ⇒ c): the whole
rule is an instance of disjunction introduction. This is the point
where our algorithm differs from plain backward chaining:
since we are building the knowledge bases that allow inferring
l, whenever we encounter a literal c we need to account for
all the ways of deriving c, namely by placing c itself in the
knowledge base or by satisfying a rule whose consequent is
c. Similarly, rule (Pone-x) encodes an application of modus
ponens, taking advantage of the uniqueness of ϕ ⇒ x (cf.
Lemma 1).
Rules (Tolle-) collect applications of modus tollens, in the
classic backward fashion (i.e., when considering the derivation
from the leaves to the root such steps would encode that
modus). Rules (DM-) encode De Morgan’s laws. Finally, rules
(Comp-) simply state the compositionality of the procedure.
It is worthwhile observing that in classic backward chaining
loops are avoided by checking whether a new sub-goal (i.e.,
literal to be derived) is already on the goal stack (i.e., is
currently being derived): component D in Table III is in charge
of keeping track of the current goals, but this is done on a local
basis as opposed to the traditional global stack, that would
result if D were treated as a global variable. As shown in
Remark 1 below, in our settings the global stopping criterion
would lead to unsound results. Moreover, observe that using

Table III. HOW TO SYNTHESISE A PROPOSITIONAL FORMULA

DESCRIBING THE ATTACK TREE Tl .

[[l]] = [[ϕ]]∅ where (ϕ ⇒ l) ∈ [[P]]tt (Sel)

[[c]]D = c ∨
{ ∨

{ϕ|(ϕ⇒c)∈[[P]]tt}
[[ϕ]](D ∪ {c}) if c
∈ D

ff otherwise
(Pone-c)

[[¬c]]D =

{ ∧
{ϕ|(ϕ⇒c)∈[[P]]tt}

[[¬ϕ]](D ∪ {¬c}) if ¬c
∈ D
tt otherwise

(Tolle-c)

[[x]]D = [[ϕ]]D where (ϕ ⇒ x) ∈ [[P]]tt (Pone-x)

[[¬x]]D = [[¬ϕ]]D where (ϕ ⇒ x) ∈ [[P]]tt (Tolle-x)

[[¬(ϕ1 ∧ · · · ∧ ϕn)]]D = [[¬ϕ1]]D ∨ · · · ∨ [[¬ϕn]]D (DM-1)
[[¬(ϕ1 ∨ · · · ∨ ϕn)]]D = [[¬ϕ1]]D ∧ · · · ∧ [[¬ϕn]]D (DM-2)

[[ϕ1 ∧ · · · ∧ ϕn]]D = [[ϕ1]]D ∧ · · · ∧ [[ϕn]]D (Comp-1)
[[ϕ1 ∨ · · · ∨ ϕn]]D = [[ϕ1]]D ∨ · · · ∨ [[ϕn]]D (Comp-2)

[[tt]]D = tt [[ff]]D = ff

the local environment D we lose the linear complexity in
|[[P]]tt| typical of backward chaining, and incur an exponential
complexity in the worst case. Nonetheless, mind to observe
that this theoretical bound is not incurred systematically.
Notice that, in virtue of Lemma 1, we do not need to keep
track of literals x in D, as we cannot meet with a cycle.
Finally, observe that a parse tree Tl of [[l]] is an attack tree,
showing how l can be attained by combining the knowledge
of given channels. The internal nodes of the tree contain a
boolean operator in {∧,∨}, while the leaves contain literals
representing the knowledge of channels. As De Morgan’s laws
are used to push negations to literals of [[l]], negation can
only occurs in the leaves of Tl. This approach is in line with
the literature, where propositional formulae are interpreted as
denotations of attack trees (e.g., see [8]). In the following, we
shall manipulate attack trees always at their denotation level.
For the sake of discussion, it is worthwhile noticing that
the procedure for generating [[l]] can be used to generate a
tree explicitly during the computation, or even an AND-OR

graph [25, Chp. 4]. It is unclear to us, however, whether
the more compact graph representation would be simpler to
understand.

A. Formal correctness

Appendix C-B gives a formal account of the soundness of
the framework, first showing the correctness of the backward-
chaining procedure, and then connecting it to the semantics of
the calculus.
The formal correctness of the backward-chaining procedure is
discussed in Theorem 1. The theorem argues that a model m
satisfying [[l]] (that is, an assignments to atoms of [[l]] such
that the formula evaluates to tt) is a knowledge base that
allows deriving l using the formulae in [[P]]tt as inference rules
(together with classic propositional rules). Hence, whenever
we want to establish the viability of the attack tree Tl, we can
limit to look for models of [[l]]. Section VI explains how such
models can be computed.

343

Moreover, to complete the picture, we need to establish the
correctness of [[l]] with respect to the reachability of l in the
semantics of process P . This is formalised in Theorem 2. The
central idea is that a model m of [[l]] denotes a set of channels
{c1, . . . , cn} (such that m(ci) = tt), and these channels are
sufficient for satisfying all the inputs performed in P along
at least one path to l. In other words, if the adversary Q can
perform outputs on {c1, . . . , cn}, then P |Q =⇒∗ C[lP ′].
It is worthwhile noticing that the correctness of the analysis
with respect to the semantics corresponds to the exhaustiveness
of attack trees as defined in [?]: [[l]] covers all possible attacks
leading to l.
Finally, observe that [[l]] only contains literals c corresponding
to channels, that is, the backward chaining-like procedure
described above and formalised in Table III eliminates all the
literals x. Therefore, the reachability of l is only expressed
in terms of knowledge of channels. This result is formalised
in Lemma 3, and will be leveraged in Sect. VI in order to
guarantee that a map from channels to cost suffices to quantify
an attack.

B. Example

Consider the process NemID discussed above and its trans-
lation [[NemID]]tt. Label 13 marks the point where a user is
authenticated into the system, and therefore is a location of
interest for our analysis. Figure 2(a) shows the attack tree T13,
as generated by our implementation, presented in Sect. VII.
The backward-chaining procedure takes about 1 second on
an ordinary laptop. The denotation of T13 is given by the
following formula:

[[13]] = login ∨ (
(cert ∨ (id ∧ pwd ∧ otp)) ∧ cert

) ∨(
(cert ∨ (id ∧ pwd ∧ otp)) ∧ (¬cert)

∧ id ∧ pwd ∧ otp
) ∨(

id ∧ pin
)

As a matter of fact, the algorithm tends to generate simple but
redundant formulae, that can be simplified automatically, e.g.
via a reduction to a normal form. The following formula, for
instance, is equivalent to [[13]] but highlights more clearly the
ways in which an attack can be carried out:

login ∨ (id ∧ pin) ∨ (id ∧ pwd ∧ otp) ∨ cert

Observe that the formula above is in Disjunctive Normal
Form (DNF). Such normal form has the merit of providing
an immediate intuition of the alternative conditions that lead
to attain the program point under study, as displayed in
Fig. 2(b). However, the conversion to DNF may cause an
exponential blow-up in the number of literals, and compact
translations require to introduce fresh atoms, garbling the
relation between the tree and the original system. Therefore,
we did not implement such conversion in our tool.
Finally, notice that the disjunct login encodes the possibility
of obtaining a login token in any other way not foreseen in
the system, and thus accounts for all the attacks not explicitly
related to the shape of our formalisation. Such component can
be disregarded by assigning it the maximum possible cost, as
we shall see in the next section.

Remark 1. We conclude this section showing why the global
stopping criterion is unsound for the procedure of Table III.

Consider the following set of formulae:

a⇒ b b⇒ a a ∧ b⇒ 7

which stems from a conveniently simplified translation of the
process

P � 1a?xa.
2b!b | 3b?xb.

4a!a | 5a?x′a.6b?x′b.7c!c
The generation of [[7]] unfolds as follows:

[[7]] = [[a ∧ b]]∅ = [[a]]∅ ∧ [[b]]∅
where, in particular, it is

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b
[[b]]∅ = b ∨ [[a]]{b} = b ∨ a ∨ [[b]]{b, a} = b ∨ a ∨ ff = b ∨ a

leading to [[7]] = a∨b, which is consistent with the reachability
of label 7 in P .
Assume now to carry out the generation of [[7]] applying a
global stopping criterion, that is, to keep track of derived goals
in a global environment, initially empty. We would obtain:

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b

at this point, however, the environment contains a, b, and thus
the generation of [[b]] leads to b, resulting in [[7]] = (a∨ b)∧ b,
which is not satisfied by the model where only a is tt, and thus
is wrong. Analogously, we would obtain a wrong result if we
chose to unfold [[b]] before [[a]].

VI. ASSESSING ATTACK TREES

A number of quantitative problems have been defined on
attack trees [17]. Once a tree is characterised as a logical
formula, however, a great many of them can be reduced to
the problem of computing a satisfying assignment that is
minimal (or, dually, maximal) with respect to a given notion
of cost. There exist various techniques to cope with such an
optimisation problem. In case of numerical costs, for example,
the problem can be encoded as a Pseudo-Boolean or an Answer
Set Programming optimisation problem. We resort to a more
general encoding into Satisfiability Modulo Theories (SMT),
as it allows to consider symbolic and non-linearly ordered cost
structures.
For [[l]] only contains literals related to the knowledge of
channels, we attach the concept of cost to these objects,
representing the effort to be paid for obtaining the channel.
For instance, an adversary can obtain a secure wireless channel
by breaking a given encryption scheme, whose cost can be
quantified as number of bits of cryptographic keys, or as time.
In the physical world, a channel may represent a door, the
cost of passing it being quantifiable in grams of dynamite
or symbolically in the lattice easy � medium � difficult,
accounting for the strength of the door.
Technically, a map cost : Names → K is introduced, where
Names is the set of names in the process under study (chan-
nels), (K,�) is a complete lattice, and (K,⊕) is a monoid,
⊕ expressing the way costs are combined along a path. We
require ⊕ to be extensive and monotone [26], and we assume
that the least element ⊥ of K is the neutral element for ⊕.
It is worthwhile noticing how this method seamlessly lends
itself to modelling insiders: by setting to ⊥ the cost of a
given channel, we are stating that the adversary is free to use
the channel incurring no cost, as if it were already known.

344

(a) T13 as displayed by the Quality Tree Generator, presented in Sect. VII.

∨
T13

∧ login cert ∧

id pin id pwdotp

(b) The simplified DNF attack tree.

Figure 2. The attack tree T13 of the running example.

Similarly, we can model the scenario in which the adversary
partially knows a secret, for instance the first character of a
password, by decreasing its cost. For the sake of simplicity, we
assume that the costs of channels related to literals occurring
in [[l]] are independent.
Finally, observe that the quest for assignments of minimal cost
integrates with the backward-chaining procedure of Sect. V,
that avoids derive a literal twice in the same sub-tree. In this
sense, our analysis is qualitative with respect to the number of
attempts are made to guess a channel: whenever the adversary
decides to incur the corresponding cost, a channel is disclosed.

A. Optimisation Modulo Theories

In the following, we briefly explain how to encode our
problem in SMT. The goal is to compute satisfying assign-
ments of [[l]] of minimal costs in K. We achieve this objective
by solving a sequence π0, . . . , πn of SMT problems, progres-
sively tightening the bound on the cost of the solution we are
looking for, according to the partial order �. The cost of an
assignment satisfying [[l]] is defined by the objective function

f(c1, . . . , cn) = (c1 × cost(c1))⊕ · · · ⊕ (cn × cost(cn))

where ci× cost(ci) returns ⊥ if ci = ff, or cost(ci) otherwise:
we count the cost of guessing channel c only if c is needed to
achieve the attack, i.e., when c = tt.
Problem π0 corresponds to

[[l]] ∧ (goal := f(c1, . . . , cn))

where the value of the solution (if any) is stored in variable
goal. Moreover, the monoid has to be encoded in the SMT
problem: numeric sets are already available in standard solvers,
while more elaborate structures have to be explicitly formalised
(elements, ordering relation, monoid operator).
Finally, we build a sequence π1, . . . , πn of problems, where πi

is a more constrained version of πi−1, in particular asking for
(i) a different solution and (ii) a non-greater cost, until πn is
reported unsatisfiable. The correctness of the algorithm stems
from the construction of the sequence, according to which
there cannot exist further assignments complying with the cost

constraints after unsatisfiability has been claimed.
Finally, observe that even if SAT is NP-complete, modern
solvers can handle problems with millions of variables. More-
over, this complexity is in line with the complexity of the
minimisation analysis of [?], [3].

B. Example

There are several techniques for quantifying the cost of
guessing secret information. Quantification of information
leakage [27] is an information theory-based approach for esti-
mating the information an adversary gains about a given secret
s by observing the behaviour of a program parametrised on s.
If s is quantified in bits, then the corresponding information
leaked by the program is quantified as the number of bits learnt
by the adversary by observing one execution of the system. For
instance, consider a test program T parametrised on a secret
password. T inputs a string and answers whether or not the
password is matched. Under the assumptions that the adversary
knows the program and the length of the secret (no security-
by-obscurity), we can estimate the knowledge gained by the
adversary after one guessing attempt.
We leverage QUAIL [28], a freely-available tool for quanti-
fying information leakage, for determining costs to channels.
Denoted λT (s) the leakage of T on a secret s, we quantify
the strength of a channel c of n bits as

cost(c) =
n

λT (c)

where we assume the security offered by c to be uniformly
distributed over the n bits. In this settings we are thus working
in the cost monoid (Q,+).
In our running example, the secrets to be guessed are pwd, otp,
cert, pin, while we assume that id is known to the attacker
and thus has cost 0 (in particular, in the NemID system is
not difficult to retrieve such id, corresponding to the social
security number of an individual). Moreover, we know that
pwd contains between 6 and 40 alphanumeric symbols and
it is not case sensitive: assuming an average length of 10
symbols, given that there are 36 such symbols, we need 5.17
bits to represent each symbol, for a total length of 52 bits.

345

cheap

cpu enrg

expensive

Figure 3. The Hasse diagram of a partially ordered cost structure.

Analogously, we determine the length of otp as 20 bits, while
the length of the pin depends on the service provider: in case
of a major bank it is just 14 bits. As for the certificate, the
authority is following NIST recommendations, using 2048-bit
RSA keys for the time being, and for the sake of simplicity
we assume that guessing an RSA key cannot be faster than
guessing each of the bits individually. Finally, we disregard
login by assigning it the least upper bound of the costs of all
the other channels. Exploiting QUAIL and the formula defined
above, we obtain the following cost map:

cost(pwd) = 4.4× 1015 cost(pin) = 1.5× 104

cost(otp) = 106 cost(cert) = 3.4× 10616

Fed to the SMT-based optimisation engine, the problem is
found to be satisfiable with cheapest assignment

[id �→ tt, pin �→ tt]

whose cost is 1.5×104 bits, meaning that the most practicable
way to break the authentication protocol is attacking the mobile
app, as long as we believe that our cost map is sensible.
We have shown one elegant way of quantifying the cost of
guessing a channel in the monoid (Q,+), but any cost map
suitable to a specific application can be used. Nonetheless, it
is often difficult to provide an absolute estimate of the strength
of a protection mechanism: sometimes different mechanisms
are even incomparable, as cyber and physical means might
be. In such cases, it is more natural to describe the relative
strength of a set of mechanisms with respect to each other.
This is achieved in the implementation by computing the
analysis over symbolic and partially ordered cost structures.
As a basic example, consider the lattice displayed in Fig. 3:
we could characterise the cost of obtaining given information
as cheap, if it does not require a specific effort, as cpu, if it
requires significant computational capabilities (e.g. breaking
an encryption scheme), as enrg, if it requires to spend a
considerable amount of energy (e.g. engaging in the wireless
exchange of a number of messages), or as expensive, if it
requires both computations and energy. In order to combine
such costs, a suitable choice is to take as monoid operator ⊕
the least upper bound � of two elements in the cost lattice.
Observe that in general there could be more than one optimal
model for [[l]], and our tool computes all of them.

VII. THE QUALITY TREE GENERATOR

A proof-of-concept implementation of the framework has
been developed in Java and is available at

http://www.imm.dtu.dk/∼rvig/quality-trees.html

together with the code for the NemID example described in
the paper.

The Quality Tree Generator takes as input an ASCII repre-
sentation of a Value-Passing Quality Calculus process P and
generates the set [[P]]tt. Moreover, given a label l occurring
in P , the tool generates the formula [[l]], and given the cost to
channels computes the cheapest assignments to [[l]].
Costs can be specified in two ways: numeric costs can be
directly fed to the tool, while before specifying symbolic costs
the finite lattice (K,�) has to be loaded. In order to specify
a lattice, one as to declare � and ⊥, and then operator ⊕ as
a list of entries x⊕ y = z. The names of the elements of the
lattice and the partial order � are automatically inferred from
the graph of ⊕.
As for the engine, we have implemented the backward-
chaining procedure of Sect. V, defining our own simple infras-
tructure for propositional logic, as available libraries tend to
avoid the explicit representation of implications, that is instead
handy in our case during the backward-chaining computation.

Once the backward-chaining procedure is executed, and thus
[[l]] has been derived, the tool can graphically represent the
corresponding tree Tl, thanks to an encoding in DOT2 and
using ZGRViewer3 for displaying it.
In order to compute attacks (i.e., assignments to [[l]]) of optimal
cost we rely on Microsoft Z3 [29] (Java API), an SMT solver.
All these components are glued together thanks to a simple
graphical interface.

VIII. CONCLUSION

The increasing complexity of IT systems demands for
a formal investigation of their security properties, able to
quantify the threats to which they are subject and to treat cyber
and physical features in a uniform manner. Attack trees have
proven a useful tool to study threat scenarios and convey them
in an intuitive way, but any manual construction is doomed
to be incomplete whenever the size of the tree exceeds a few
hundred nodes.
In order to tackle this problem, we have presented a novel
method for the automated generation of attack trees. In par-
ticular, our technique improves on the existing literature by
resorting to a process algebraic specification of the system.
This choice allows to model a great many scenarios, beyond
the standard network security domain, and enables designing
syntax-directed static analyses, avoiding the systematic state
space explosion suffered by model checking algorithms, even
if retaining an exponential worst-case complexity. Moreover,
process calculi have proven useful notations for the formal
design of complex systems, embracing the need for analysing
vulnerabilities at design time, and thus before the actual system
is produced.
In our process-algebraic specification we identify the notion
of attack as a set of channels that an adversary has to know
in order to attain a given location in the system. Hence, our
approach handles in a uniform way both cyber and physical
protection mechanisms, such as channels exploiting cryptogra-
phy, or reinforced gates. Moreover, if a map from channels to
costs is provided, the framework computes the cheapest sets
of channels that enable attaining a location of interest. Both
numerical and partially-ordered symbolic cost structures can
be relied on, so as to facilitate the encoding of the problem

2http://www.graphviz.org/
3http://zvtm.sourceforge.net/zgrviewer.html

346

when it is hard to devise sensible absolute estimates of the
available security mechanisms.
The feasibility of the approach is witnessed by a freely-
available implementation, and has been demonstrated on the
study of a real system used for authentication purposes on a
national scale.
As future work, besides consolidating the proof-of-concept
implementation, we plan to investigate how the capability
of testing data carried by input variables integrates in the
framework. The basic ideas behind the necessary technical
developments are sketched in Appendix B: it is however un-
clear to us whether the benefit in providing more detailed trees
would balance the increase in complexity of their structure
and therefore the drop in human-readability. Finally, a direct
performance comparison with existing tools based on model
checking would be interesting, even though the usefulness
of our approach partly lies in the capability of dealing with
scenarios not encodable in those tools.

ACKNOWLEDGMENT

This work is supported by the IDEA4CPS project, granted
by the Danish Research Foundations for Basic Research
(DNRF86-10). Special thanks to Zaruhi Aslanyan and Alessan-
dro Bruni for many inspiring and fruitful discussions.

REFERENCES

[1] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on New
security paradigms NSPW 98, vol. pages, 1998, pp. 71–79.

[2] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Proceedings 15th IEEE Computer Security Foundations Workshop
CSFW15, 2002, pp. 49–63.

[3] O. Sheyner and J. Wing, “Tools for Generating and Analyzing Attack
Graphs,” in 2nd International Symposium on Formal Methods for
Components and Objects (FMCO’03), ser. LNCS, vol. 3188. Springer,
2004, pp. 344–371.

[4] V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing, “Ranking
Attack Graphs,” in 9th International Symposium on Recent Advances in
Intrusion Detection (RAID’06), ser. LNCS, vol. 4219. Springer, 2006,
pp. 127–144.

[5] B. Schneier, “Attack Trees,” Dr. Dobb’s Journal, 1999.

[6] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated Generation and Analysis of Attack Graphs,” in 2002 IEEE
Symposium on Security and Privacy, 2002, pp. 273–284.

[7] S. Mauw and M. Oostdijk, “Foundations of Attack Trees,” in 8th
International Conference on Information Security and Cryptology
(ICISC’05), ser. LNCS, vol. 3935. Springer, 2006, pp. 186–198.

[8] M. Rehák, E. Staab, V. Fusenig, M. Pěchouček, M. Grill, J. Stiborek,
K. Bartoš, and T. Engel, “Runtime Monitoring and Dynamic Reconfigu-
ration for Intrusion Detection Systems,” in Recent Advances in Intrusion
Detection (RAID’09), ser. LNCS, vol. 5758. Springer, 2009, pp. 61–80.

[9] A. Jürgenson and J. Willemson, “Serial Model for Attack Tree Com-
putations,” in Information, Security and Cryptology (ICISC’09), ser.
LNCS, vol. 5984. Springer, 2010, pp. 118–128.

[10] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Foundations of
Attacks-Defense Trees,” in 7th International Workshop on Formal As-
pects of Security and Trust (FAST’10), ser. LNCS, vol. 6561. Springer,
2010, pp. 80–95.

[11] A. Roy, D. S. Kim, and K. S. Trivedi, “Attack countermeasure trees
(ACT): towards unifying the constructs of attack and defense trees,”
Security and Communication Networks, vol. 5, no. 8, pp. 929–943,
2012.

[12] R. W. Baldwin, “Rule Based Analysis of Computer Security,”
1987. [Online]. Available: http://publications.csail.mit.edu/lcs/pubs/pdf/
MIT-LCS-TR-401.pdf

[13] M. Dacier, Y. Deswarte, and M. Kaaniche, “Models and tools for
quantitative assessment of operational security,” in 12th International
Information Security Conference (IFIP/SEC’96), 1996, pp. 177–186.

[14] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM conference
on Computer and communications security, ser. CCS’02. ACM, 2002,
pp. 217–224.

[15] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference
on Computer and communications security, ser. CCS’06. ACM, 2006,
pp. 336–345.

[16] S. Bistarelli, M. Dall’Aglio, and P. Peretti, “Strategic games on defense
trees,” in Formal Aspects in Security and Trust (FAST’06), ser. LNCS,
vol. 4691. Springer, 2007, pp. 1–15.

[17] B. Kordy, S. Mauw, and P. Schweitzer, “Quantitative Questions on
Attack-Defense Trees,” in 15th International Conference on Information
Security and Cryptology (ICISC’12), ser. LNCS, vol. 7839. Springer,
2012, pp. 49–64.

[18] B. Blanchet, “Automatic verification of correspondences for security
protocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434,
2009.

[19] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico, “Sat-
isfiability Modulo the Theory of Costs: Foundations and Applications,”
in Tools and Algorithms for the Construction and Analysis of Systems,
ser. LNCS, vol. 6015, 2010, pp. 99–113.

[20] R. Vigo, F. Nielson, and H. Riis Nielson, “Uniform Protection for Multi-
exposed Targets,” in E. Ábrahám and C. Palamidessi (Eds.), FORTE
2014, ser. LNCS, vol. 8461. Springer, 2014, pp. 182–198.

[21] S. Mödersheim and L. Viganò, “Secure Pseudonymous Channels,” in
14th European Symposium on Research in Computer Security (ES-
ORICS’09), ser. LNCS, vol. 5789. Springer, 2009, pp. 337–354.

[22] H. R. Nielson, F. Nielson, and R. Vigo, “A Calculus for Quality,” in
9th International Symposium on Formal Aspects of Component Software
(FACS’12), ser. LNCS, vol. 7684. Springer, 2012, pp. 188–204.

[23] R. Vigo, F. Nielson, and H. R. Nielson, “Broadcast, Denial-of-Service,
and Secure Communication,” in 10th International Conference on
integrated Formal Methods (iFM’13), ser. LNCS, vol. 7940, 2013, pp.
410–427.

[24] J. Mallios, S. Dritsas, B. Tsoumas, and D. Gritzalis, “Attack Modeling
of SIP-Oriented SPIT,” in 2nd International Workshop on Critical
Information Infrastructures Security (CRITIS’07), ser. LNCS, vol. 5141,
2008, pp. 299–310.

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice-Hall, 2009.

[26] C. Meadows, “A cost-based framework for analysis of denial of service
in networks,” Journal of Computer Security, vol. 9, no. 1, pp. 143–164,
2001.

[27] F. Biondi, A. Legay, P. Malacaria, and A. Wasowski, “Quantifying
Information Leakage of Randomized Protocols,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI’13), ser. LNCS, vol.
7737. Springer, 2013, pp. 68–87.

[28] F. Biondi, A. Legay, L.-M. Traonouez, and A. Wasowski, “QUAIL:
A Quantitative Security Analyzer for Imperative Code,” in Computer
Aided Verification (CAV’13, ser. LNCS, vol. 8044. Springer, 2013, pp.
702–707.

[29] L. de Moura and N. Bjørner, “Z3 : An Efficient SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08), ser. LNCS, vol. 4963, 2008, pp. 337–340.

[30] F. Nielson, H. R. Nielson, and R. R. Hansen, “Validating firewalls using
flow logics,” Theoretical Computer Science, vol. 283, no. 2, pp. 381–
418, 2002.

APPENDIX A
BROADCAST SEMANTICS

The labelled semantics of the Value-Passing Quality Cal-
culus is presented in Table V, and is parametrised on the struc-
tural congruence relation of Table IV. In the congruence, we
denote the free names in a process P as fn(P), where (νc)P

347

Table IV. THE STRUCTURAL CONGRUENCE OF THE CALCULUS.

P ≡ P P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3

P1 ≡ P2 ⇒ P2 ≡ P1 P |0 ≡ P

P1 |P2 ≡ P2 |P1 P1 |(P2 |P3) ≡ (P1 |P2) |P3

(νc)P ≡ P if c /∈ fn(P) (νc1) (νc2)P ≡ (νc2) (νc1)P

!P ≡ P |!P P1 ≡ P2 ⇒ C[P1] ≡ C[P2]

(νc) (P1 | P2) ≡ ((νc)P1) | P2 if c /∈ fn(P2)

binds the name c in process P . Moreover, the congruence holds
for contexts C defined as

C ::= [] | (νc)C | C |P | P |C
As usual in π-like calculi, processes are congruent under α-
conversion, and renaming is enforced whenever needed in
order to avoid accidental capture of names during substitution.
The semantics of Table V is based on the transition relation
P =⇒ P ′, which is enabled by combining a local transition

λ−−−→ with the structural congruence.
The semantics models asynchronous broadcast communica-
tion, and makes use of a label λ ::= τ | c1!c2 to record
whether or not a broadcast c1!c2 is available in the system.
If not, label τ is used to denote a silent action. Output is thus
a non-blocking action, and when it is performed the broadcast
is recorded on the arrow. When a process guarded by a binder
receives an output, the broadcast remains available to other
processes willing to input. This behaviour is encoded in rules
(In-ff) and (In-tt), where we distinguish the case in which a
binder has not received enough input, and thus keeps waiting,
from the case in which a binder is satisfied and thus the
computation may proceed, applying the substitution induced
by the received communication to the continuation process.
These rules rely on two auxiliary relations, one defining how
an output affects a binder, and one describing when a binder
is satisfied (enough inputs have been received), displayed in
the third and fourth section of Table V, respectively.
We write c1!c2 � b → b′ to denote that the availability of
a broadcast makes binder b evolve into binder b′. When a
broadcast name c2 is available on the channel over which an
input is listening, the input variable x is bound to the ex-
pression some(c2), marking that something has been received.
Otherwise, the input is left unchanged. Technically, the syntax
of binders is extended to include substitutions. This behaviour
is seamlessly embedded into quality binders: a single output
can affect a number of sub-binders, due to the broadcast
paradigm and to the intended semantics of the quality binder,
according to which the sub-binders are simultaneously active.
As for evaluating whether or not enough inputs have been
received, the relation b ::v θ defines a boolean interpretation
of binders. An input evaluates to ff, for it must be performed
before continuing with the computation; a substitution evalu-
ates to tt, since it stands for a received input; a quality binder
is evaluated applying the quality guard, which is a boolean
predicate, to the boolean values representing the status of
the sub-binders. The substitution related to a quality binder
is obtained by composing the substitutions given by its sub-
binders.

It is worthwhile observing that substitutions are applied di-
rectly by the semantics, and as we consider closed processes,
whenever an output c1!t is ready to execute, t must have been
replaced by a name c2. For this reason the evaluation of a
case clause is straightforward, as the variable x checked by the
instruction must have been replaced with a constant expression.
Finally, rules (Res-) and (Par-) take care of restrictions and
interleaving. It is worthwhile observing that the transitions
of these constructs cannot be embedded in contexts. On the
one hand the labelled semantics, which does not mention the
synchronising prefixes explicitly in the input rules, compels
to consider the case of bound outputs; on the other hand, the
broadcast paradigm forces us to prevent possibly synchronising
processes to interleave. Therefore, a process (νc)P is forbid-
den to use the name c in a broadcast before having extruded
the scope of c. In the case of parallel composition, if a process
P1 can make a broadcast, it is allowed to interleave with any
process that is not ready to make an input, in which case
either rule (In-ff) or (In-tt) applies. Moreover, the formalisation
obliges to execute τ -transitions before unfolding a replication
or broadcasting a value.

Finally, observe that the distinction between local (
λ−−−→) and

global transitions (=⇒), and the identification of the semantics
with the latter, ensures that names are properly extruded as
dictated by rule (Sys) in Table V, where (ν−→c) denotes the
restriction of a list of names.

APPENDIX B
FIRST-ORDER ATTACK TREES

We present in this section an extension to the framework
whose detailed development deserves to be deepened in future
work. The ideas discussed in the following have not been
implemented in the tool of Sect. VII.
The notion of knowledge needed to perform an attack adopted
so far shifts the semantics load on the concept of secure
channel. Besides its simplicity, this abstraction proves useful
to model a great many different domains and lead to a sensible
notion of attack tree. Nevertheless, it seems interesting to
explore less abstract scenarios, where messages exchanged
over channels enjoy a structure and their content is exploitable
in the continuation. There is a substantial corpus of literature
on how to extend a process calculus to handle reasoning on
terms (e.g., via equational theories or pattern matching), but at
the semantic heart of such calculi lies the capability of testing
if what is received matches what was expected.
In order to fully encompass the original Quality Calculus
we should introduce both testing capabilities and structured
messages. Due to space constraints we show how to deal with
the first extension, and we refrain from discussing the second
one, which is obtained defining terms and expressions over an
algebraic signature. As a matter of fact, distinguishing between
a term t and an expression some(t) we are already dealing with
a (very simple) signature, and this gives the necessary insight
onto our idea.
The syntax of the Value-Passing Quality Calculus, introduced
in Sect. III, is enhanced as follows. First of all, we allow
now input and output channels to range over terms t, writ-
ing t?x and t1!t2. Secondly, we update the case clause as
lcase x of some(t) : P1 else P2, allowing to check the data
payload (if any) of an input variable x. The semantics of

348

Table V. THE TRANSITION RULES OF THE CALCULUS.

P1 ≡ (ν−→c)P2 (ν−→c)P2
λ−−−→ P3

P1 =⇒ P3

(Sys)

lc1!c2.P
c1!c2−−−→ P (Out)

P1
c1!c2−−−→ P ′1 c1!c2 � b→ b′ b′ ::ff θ

P1 | lb.P2
c1!c2−−−→ P ′1 | lb′.P2

(In-ff)

P1
c1!c2−−−→ P ′1 c1!c2 � b→ b′ b′ ::tt θ

P1 | lb.P2
c1!c2−−−→ P ′1 | P2θ

(In-tt)

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y] (Then)

lcase none of some(y) : P1 else P2
τ−−−→ P2 (Else)

P
τ−−−→ P ′

(νc)P
τ−−−→ (νc)P ′

(Res-tau)

P
c1!c2−−−→ P ′

(νc)P
c1!c2−−−→ (νc)P ′

if c �= c1 ∧ c �= c2 (Res-out)

P1
τ−−−→ P ′1

P1|P2
τ−−−→ P ′1|P2

(Par-tau)

P1
c1!c2−−−→ P ′1

P1|P2
c1!c2−−−→ P ′1|P2

if P2 = !P ′2 ∨ P2 = lc′1!c
′
2P
′
2 (Par-out)

c1!c2 � c1?x→ [some(c2)/x]

c1!c2 � c3?x→ c3?x if c1 �= c3

c1!c2 � b1 → b′1 · · · c1!c2 � bn → b′n
c1!c2 � &q(b1, . . . , bn)→ &q(b

′
1, . . . , b

′
n)

c?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn
&q(b1, . . . , bn) ::v θn · · · θ1 [{q}](v1, . . . , vn) = v

Appendix A is modified accordingly:

lcase some(c) of some(c) : P1 else P2
τ−−−→ P1

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y]

lcase some(c) of some(c′) : P1 else P2
τ−−−→ P2 if c �= c′

lcase none of some(c) : P1 else P2
τ−−−→ P2

lcase none of some(y) : P1 else P2
τ−−−→ P2

The translation from processes to formulae of Sect. IV is lifted
from propositional to first-order logic, so as to account for the

richer expressiveness of the case clause:

[[lcase x of some(t) : P1 else P2]]Φ =
[[P1]](Φ ∧ ∃fv(t).(x = some(t)) ∪
[[P2]](Φ ∧ ¬(∃fv(t).(x = some(t))) ∪
{Φ⇒ l}

where some(·) is a unary predicate, fv(t) denotes the variables
free in t, and we write x instead of x for now x ranges over
a set of optional data. Similarly, the translation of binders has
now to record the term to which an input variable is bound
when the corresponding binder is satisfied:

th(Φ, t?x) = {∃y.(Φ ∧ t⇒ (x = some(y))}
where t ranges over a set of data (the translation of output has
to be updated similarly).
Finally, for building the tree some unification is needed in the
backward-chaining search of Sect. V:

[[∃fv(t)(x = some(t))]]D =∨
{h | ∃fv(t′)(h⇒(x=some(t′)))∈ [[P]]tt ∧ ∃σ.t=t′σ}

[[hσ]]D

[[¬∃fv(t)(x = some(t))]]D =∧
{h | ∃fv(t′)(h⇒(x=some(t′)))∈ [[P]]tt ∧ ∃σ.t=t′σ}

[[¬hσ]]D

where σ is a most general unifier.
We have thus shown how to lift all levels of the framework to
name-passing calculi with standard testing capabilities. From
a high-level perspective, the extension allows inspecting how
security checks are performed, while the developments in
the paper consider checks as atomic entities, distinguishing
between them through the cost map.
Though such an extension may sound interesting to the scien-
tist, it is unclear to us whether the more detailed “first-order”
trees would be of any use in practice, the main risk being that
additional information would decrease readability drastically.
In addition to this, whenever a finer-grained investigation is
needed, we could take advantage of the modularity of the
propositional framework, as discussed in Sect. IV-B.
Finally, in order to carry the extension to the Quality Tree
Generator of Sect. VII, the main obstacle would be to intro-
duce unification of terms in the backward-chaining procedure.
While the tool has been implemented in Java for easing the
development of a graphical interface, the extension naturally
calls for a functional approach.

APPENDIX C
CORRECTNESS OF ATTACK TREES

A. Property of [[P]]tt

Proof of Lemma 1: By induction on the structure of
processes. In particular, observe that in Table II a literal x is
added to Φ only when a case clause is met, and by hypothesis
x must previously appear in a binder, for processes are closed.

Let us discuss now the complexity of the translation given
in Table II. Let size(C) denote the number of literals occurring
in a set of formulae C, that is, size(C) =

∑
ϕ∈C (size(ϕ)),

where size(ϕ) counts the literals in ϕ.

349

Lemma 2. Let P be a closed process in the Value-Passing
Quality Calculus. Assuming that P contains n actions, then
size([[P]]tt) = O(n2).

Proof: If P consists of n actions, [[P]]tt consists of at most
O(n) formulae4. The number of literals in a formula depends
linearly on the number actions preceding the label at which
the formula is generated (cf. Table II), hence the number of
literals in [[P]]tt is asymptotically bounded by n2.

It is interesting to observe that from a theoretical point
of view O(n2) is a precise bound to size([[P]]tt). Con-
sider the process IN n that consists of n sequential inputs
c1?x1.cn?xn. The number of literals in [[IN n]]tt grows
with
∑n

i=1 (2(i− 1) + 3) =
∑n

i=1 (2i+ 1) =

= n+ 2
∑n

i=1 i = n+ 2n(n+1)
2 =

= n2 + 2n

where i records the number of literals in the hypothesis Φ,
we have omitted counting the tt conjuncts, and we leverage
the fact that an input generates two formulae whose size is
size(Φ)+ 2 adding 1 literal to the hypothesis, from which the
relation 2(i − 1) + 3 is derived. Similarly, the translation of
a process made of alternating inputs and case clauses would
grow quadratically (with greater constants than IN n).

B. Correctness of [[l]]

The correctness statement supporting the procedure of
Table III and validating the solution technique of Sect. VI is
stated in Th. 1 below.
Before presenting the result, let us fix some notation. Given
a truth assignment m and a propositional formula ϕ, we say
that m satisfies ϕ (or, equivalently, m is model for ϕ), denoted
m |= ϕ, if the values assigned by m to the variables in ϕ
are such that ϕ evaluates to tt. The value of a propositional
variable v in m is denoted m(v). Moreover, given a truth
assignment m and a set of inference rules R, we say that
a formula ϕ is derived from m by R, denoted m �R ϕ, if
there is a proof showing that ϕ is derived by m under the
inference rules R together with classic propositional rules.

Theorem 1. Let P be a closed process in the Value-Passing
Quality Calculus, and assume that each variable x and name c
occurring in P is bound exactly once. Consider the translation
[[P]]tt into propositional formulae; then, for each label l
occurring in P and truth assignment m, it holds

m |= [[l]] ⇒ m �[[P]]tt l

Proof sketch. Let ϕ be the antecedent in ϕ ⇒ l, which
exists and is unique in [[P]]tt. Since [[l]] = [[ϕ]]∅ and ϕ⇒ l ∈
[[P]]tt, it suffices to show

m |= [[ϕ]]∅ ⇒ m �[[P]]tt ϕ

from which the statement follows. The proof is by induction
on the number of steps in the unfolding of the generation of

4More in detail, [[P]]tt consists of no + nc + ni + nb formulae, no being
the number of outputs in P , nc the number of case clauses, ni the number
of simple inputs (including the ones occurring within quality binders), and nb

the number of binders.

[[ϕ]]∅, and relies on the validity of the rules in Table III as
inference rules.

Theorem 2. Let P be a closed process in the Value-Passing
Quality Calculus, and assume that each variable x and name c
occurring in P is bound exactly once. Consider the translation
[[P]]tt of P into propositional formulae. Then, for all labels l
occurring in P , it holds

if P |Q =⇒∗ C[lP ′] then

∃m s.t. m |= [[l]] ∧ {c |m(c) = tt} ⊆ fn(Q)

Proof sketch. Technically, it seems convenient to organise
a formal proof in two lemmata. First, if P |Q reaches l then
P |H[fn(Q)] reaches l, where process H is the hardest attacker
possible and is parametrised on the knowledge of Q. H can
be thought of as the process executing all possible actions on
fn(Q), and the proof simply argues that whatever Q can, H
can. A similar proof is detailed in [30].
The second lemma concludes showing that if P |H[M] reaches
l, then there must be a model m of [[l]] such that {c |m(c) =
tt} ⊆ M . The proof combines induction on the length of the
derivation sequence leading to l with Th. 1. In the interesting
case of quality binders, the computation of [[l]] ensures that all
the minimal combinations are considered that allow passing a
binder, and thus also the one chosen by H .

Lemma 3. Let P be a closed process in the Value-Passing
Quality Calculus, and assume that each variable x and name
c occurring in P is bound exactly once. Then, for all labels l
occurring in P , the formula [[l]] built according to the rules of
Table III contains no literal x. In particular, [[l]] only contains
literals related to channels c.

Proof: By induction on the number of steps in the
unfolding of the generation of [[l]], according to the rules in
Table III.

350

