
Proving differential privacy in Hoare logic

Gilles Barthe∗, Marco Gaboardi‡, Emilio Jesús Gallego Arias†, Justin Hsu†, César Kunz∗, and Pierre-Yves Strub∗

∗IMDEA Software Institute, Spain ‡University of Dundee, Scotland †University of Pennsylvania, USA

Abstract—Differential privacy is a rigorous, worst-case notion
of privacy-preserving computation. Informally, a probabilistic
program is differentially private if the participation of a single
individual in the input database has a limited effect on the
program’s distribution on outputs. More technically, differential
privacy is a quantitative 2-safety property that bounds the
distance between the output distributions of a probabilistic
program on adjacent inputs. Like many 2-safety properties, dif-
ferential privacy lies outside the scope of traditional verification
techniques. Existing approaches to enforce privacy are based on
intricate, non-conventional type systems, or customized relational
logics. These approaches are difficult to implement and often
cumbersome to use.

We present an alternative approach that verifies differen-
tial privacy by standard, non-relational reasoning on non-
probabilistic programs. Our approach transforms a probabilistic
program into a non-probabilistic program which simulates two
executions of the original program. We prove that if the target
program is correct with respect to a Hoare specification, then
the original probabilistic program is differentially private. We
provide a variety of examples from the differential privacy
literature to demonstrate the utility of our approach. Finally,
we compare our approach with existing verification techniques
for privacy.

I. INTRODUCTION

Program verification provides a rich array of techniques

and tools for analyzing program properties. However, they

typically reason about single program executions or trace

properties. In contrast, many security properties—such as non-

interference in information flow systems—require reasoning

about multiple program executions. These hyperproperties [16]

encompass many standard security analyses, and lie outside the

scope of standard verification tools—to date, there is no gen-

erally applicable method or tool for verifying hyperproperties.

Instead, ad hoc enforcement methods based on type systems,

customized program logics, and finite state automata analyses

have been applied to specific hyperproperties. While these

approaches are effective, their design and implementation

often require significant effort.

A promising alternative is to reduce verification of a hy-

perproperty of a program c to verification of a standard

property of a transformed program T (c). For instance, self-
composition [7], [17] is a general method for reducing 2-safety
properties of a program c—which reason about two runs of c—
to safety properties of the sequential composition c; c′, where

c′ is a renaming of c. Self-composition is sound, complete,

and applies to many programming languages and verification

settings. For instance, it has been used to verify information

flow properties using standard deductive methods like Hoare

logic.

A close relative of self-composition is the synchronized
product construction [40]. This transformation also produces

a program which emulates two executions of the original

program, but while self-composition performs the executions

in sequence, synchronized products perform the executions

in lockstep, dramatically simplifying the verification task for

certain properties. This transformation is an instance of the

more general class of product transformations, as studied by

Zaks and Pnueli [40], and recently by Barthe et al. [4], [5].

While there has been much research on combining prod-

uct constructions and deductive verification to reason about

2-safety for deterministic programs, this approach remains

largely unexplored for probabilistic programs. This is not

for lack of interesting use cases—many security notions of

probabilistic computation are naturally 2-safety properties.

Verifying differential privacy: In this paper, we con-

sider on one such property: differential privacy, which pro-

vides strong guarantees for privacy-preserving probabilistic

computation. Formally, a probabilistic program c is (ε, δ)-
differentially private with respect to ε > 0, δ ≥ 0, and a

relation1 Φ on the initial memories of c if for every two initial

memories m1 and m2 related by Φ, and every subset A of

output memories,

Pr [c,m1 : A] ≤ exp(ε) Pr [c,m2 : A] + δ.

Here Pr [c,m : A] denotes the probability of the output mem-

ory landing in A according to distribution �c� m, where �c�
maps an initial memory m to a distribution �c� m of output

memories. Since this definition concerns two runs of the same

probabilistic program, differential privacy is a probabilistic 2-

safety property.

Differentially private algorithms are typically built from two

constructions: private mechanisms, which add probabilistic

noise to their input, and composition, which combines dif-

ferentially private operations into a single one. This composi-

tional behavior makes differential privacy an attractive target

for program verification efforts.

Existing methods for proving differential privacy have been

based on type systems, automata analyses, and customized

program logics. For instance, Fuzz [34], DFuzz [24] and

related systems [23] enforce differential privacy using linear

type systems. This approach is expressive enough to type many

examples, but it is currently limited to pure differential privacy

1We are here taking a generalization of Differential Privacy with respect
to an arbitrary relation Φ. The usual definition is obtained by considering an
adjacency relation between databases.

2014 IEEE 27th Computer Security Foundations Symposium

© 2014, Gilles Barthe. Under license to IEEE.

DOI 10.1109/CSF.2014.36

411

(where δ = 0), and cannot handle more advanced examples.

Alternatively, Tschantz et al. [39] consider a verification

technique based on I/O automata; again, this approach is

limited to pure differential privacy. Finally, CertiPriv [11] and

EasyCrypt [6] use an approximate relational Hoare logic for

probabilistic programs to verify differential privacy. This ap-

proach is very expressive and can accommodate approximate

differential privacy (when δ �= 0), but relies on a custom and

complex logic. For instance, ad hoc rules for loops are required

for many advanced examples. Finally, a common weakness of

all of the above approaches is that their implementation is

non-trivial.

Self-products for differential privacy: To avoid these

drawbacks, we investigate a new approach where proving

(ε, δ)-differential privacy of a program c is reduced to proving

a safety property of a transformed program T (c). In view of

previous work verifying 2-safety properties, a natural choice

for T is some notion of product program. However, the trans-

formed programs would then be probabilistic, and there are

few tools for deductive verification of probabilistic programs.

Targeting a non-probabilistic language is more appealing in

this regard, as there are many established tools for deductive

verification of non-probabilistic programs. Since the original

program is a probabilistic program, a key part of our approach

is to remove the probabilistic behavior from the target.

To define the transformation, we proceed in two steps.

Starting from a probabilistic program c, we first construct the

synchronized product of c with itself. Using the synchronized

product instead of self-composition is essential for our second

step, in which the probabilistic product program is transformed

into a non-probabilistic program.

For this step, we rely on specific features of the differential

privacy property. First, we observe that differential privacy

bounds the ratio—hereafter called the privacy cost—between

the probabilities of producing the same output on two exe-

cutions on nearby databases. Second, we recall that there are

two main tools for building differentially private computations:

private mechanisms, and composition. Private mechanisms and

composition interact with the privacy cost in different ways;

we consider each in turn.

A private mechanism run over two different inputs returns

two closely related distributions, at the cost of consuming

some privacy budget. The privacy cost depends on the distance

between the inputs: as the two inputs become farther apart,

the privacy cost also grows. One fundamental insight (due to

Barthe et al. [10]) we use is that the property of being “closely

related” can be understood as being at distance 0 for a suitable

notion of distance on distributions.

Composition takes a set of differentially private operations

and returns the sequential composition of the operations, which

is also differentially private. By a property of differential

privacy, the privacy cost of the composition is upper bounded

by the sum of the privacy costs of the individual operations.

We build this reasoning directly into our verification system.

First, we apply the synchronized product construction. Then,

we replace two corresponding calls to a mechanism with a call

to an abstract procedure that returns equal outputs, at the cost

of consuming some privacy budget—roughly, being at distance

0 in the probabilistic setting is equivalent to being equal in the

non-probabilistic setting. To keep track of the privacy cost, we

use ghost variables vε and vδ which are incremented after each

mechanism is executed, in terms of the distance between their

two inputs.

Note that the second step leverages the synchronized prod-

uct construction: since the two executions are simulated in

lockstep, corresponding calls to a mechanism are next to each

other in the product program. Since mechanisms are the only

probabilistic parts of our source program, our output program

is now non-probabilistic.

To illustrate our approach, consider the following simple

program c:

s; x← Lapε(e); return x

where s is a deterministic computation and Lap is the Laplace

mechanism—a probabilistic operator that achieves differential

privacy by adding noise to its input. The synchronized product

T (c) of the program c is

T (s); x1 ← Lapε(e1); x2 ← Lapε(e2); return (x1, x2)

where T (s) is the synchronized product of s. Then, we make

the program non-probabilistic by replacing the two calls to the

Laplace mechanism with a call to an abstract procedure Lap�,
giving the following transformed program T (c).

T (s); (x1, x2)← Lap�(e1, e2); return (x1, x2)

Roughly, the specification of the procedure invocation Lap�

states that the same value is assigned to x1 and x2. Also, as

side effect, the variable vε is updated to increment the privacy

cost, which depends on the distance between the inputs (e1, e2)

to the Laplace mechanism.

Our main result (Theorem 5 in §III) states that once we

perform this transformation, we can use plain Hoare logic to

complete the verification. More concretely, for the example

above, we represent the relation on memories Φ as a predicate

Φ̂ on pairs of memories, and prove that c is (ε, 0)-differentially

private if the following Hoare specification is valid.

� T (c) : Φ̂ ∧ vε = 0 =⇒ x1 = x2 ∧ vε ≤ ε0

In the remainder of this article we use the same representation

for a relation and its representation as a predicate on memories.

Contributions: The main contribution of the paper (§III)
is a program transformation that operates on programs built

from sequential, non-probabilistic constructs and differentially

private, probabilistic primitives—such as the Laplace and

Exponential mechanisms. The transformed program is non-

probabilistic, and differential privacy of the original program

can be reduced to a safety property of the transformed pro-

gram. Then we show in §IV that our approach subsumes the

core apRHL logic of Barthe et al. [11], in the sense that every

algorithm provable with core apRHL is also provable with our

approach.

412

We illustrate the expressiveness of our approach in §V
by verifying differential privacy of several probabilistic algo-

rithms, including a recent algorithm that produces synthetic

datasets using a combination of the multiplicative weights

update rule and the exponential mechanism [28], [27], and

the Propose-Test-Release (PTR) framework [20], [38], which

achieves approximate differential privacy without relying on

output perturbation. Finally, we discuss the example of vertex

cover, which is provable apRHL, but cannot be handled

directly by our approach.

II. A PRIMER ON DIFFERENTIAL PRIVACY

Let us begin by recalling the basic definitions of differential

privacy.

Definition 1: Let ε, δ ≥ 0, and let Φ ⊆ S×S be a relation on

S . A randomized algorithm K taking inputs in S and returning

outputs in R is (ε, δ)-differentially private with respect to Φ
if for every two inputs s1, s2 ∈ S such that s1 Φ s2 and every

subset of outputs A ⊆ R,

Pr [K(s1) : A] ≤ exp(ε) Pr [K(s2) : A] + δ.

When δ = 0, we will call this ε-differential privacy.

Our definition is a variant of the original definition of

differential privacy, [21] where input memories are considered

to be databases and Φ relates databases that differ in a

single individual’s data; let us briefly explain the intuition

of differential privacy in this setting. Recall that differential

privacy aims to conceal the participation of individuals in

a study. To distinguish between the participation or non-

participation of an individual, we think of two databases D
and D′ are adjacent or neighboring if they differ only in the

presence or absence of a single record; note that the adjacency

relation is necessarily symmetric.

Differential privacy then states that the two distributions

output by K on a pair of adjacent databases are close. In the

simple case where δ = 0, the definition above requires that the

probability of any output changes by at most a exp(ε) factor

when moving from one input to an adjacent input. When δ > 0
these bounds are still valid except with probability δ. In other

words, ε controls the strength of the privacy bound, and δ is

the probability of failure in ensuring the privacy bound.

Building private programs: Let F be a deterministic

computation with inputs in T and outputs in R. Suppose that

we want to make the computation of F (ε, δ)-differentially

private with respect to some relation Φ. A natural way to

achieve this goal is to add random noise to the evaluation

of F on an input. In general, the noise that we need to add

depends not only on the ε and δ parameters (which control the

strength of the privacy guarantee), but also on the sensitivity
of F , a quantity that is closely related to Lipschitz continuity

for functions.

Definition 2: Assume that F is real-valued, i.e. R = R, and

let k > 0. We say that F is k-sensitive with respect to Φ if

|F (t1)− F (t2)| ≤ k for all t1, t2 ∈ T such that t1 Φ t2.

A typical mechanism for privately releasing a k-sensitive

function is the Laplace mechanism.

Theorem 1 ([18]): Suppose ε > 0. The Laplace mechanism
is defined by

Lapε(t) = t+ v,

where v is drawn from the Laplace distribution L(1/ε), i.e.

with probability density function

P (v) = exp(−ε|v|).

If F is k-sensitive with respect to Φ, then the probabilistic

function that maps t to Lapε(F (t)) is (kε, 0)-differentially

private with respect to Φ.

Additionally, the Laplace mechanism satisfies a simple

accuracy bound.

Lemma 1: Let ε, δ > 0 and let T = log(2/δ)/(2ε). Then

for every x, Lapε(x) ∈ (x−T, x+T) with probability at least

1− δ.

Another mechanism that is fundamental for differential

privacy is the Exponential mechanism [32]. Let T be the set of

inputs, typically thought of as the private information. Let R
be a set of outputs, and consider a function F : T ×R → R,

typically called the score function. We first extend the defini-

tion of sensitivity to this function.

Definition 3: Assume F : T × R → R and let c > 0. We

say that F is k-sensitive on T with respect to Φ if |F (t1, r)−
F (t2, r)| ≤ k for all t1, t2 ∈ T such that t1 Φ t2 and r ∈ R.

Then, the Exponential mechanism can be used to output

an element of R that approximately maximizes the score

function, if the score function is k-sensitive.

Theorem 2 ([32]): Let ε, c > 0. Suppose that F is k-

sensitive in T with respect to Φ. The Exponential mechanism2

Expε(F, t) takes as input t ∈ T , and returns r ∈ R with

probability equal to

exp(εF (t, r)/2)∑
r′∈R exp(εF (t, r′)/2)

.

This mechanism is (kε, 0)-differentially private with respect

to Φ.

A powerful feature of differential privacy is that by com-

posing differentially private mechanisms, we can construct

new mechanisms that satisfy differential privacy. However, the

privacy guarantee will degrade: more operations on a database

will lead to more privacy loss. In light of this composition

property, we will often think of the privacy parameters ε and

δ of a program as privacy budgets that are consumed by sub-

operations. This is formalized by the following composition

theorem.

Theorem 3 ([31]): Let q1 be a (ε1, δ1)-differentially private

query and let q2 be a (ε2, δ2)-differentially private query. Then,

their composition q(t) = (q1(t), q2(t)) is (ε1 + ε2, δ1 + δ2)-
differentially private.

Finally, differential privacy is closed under post-
processing—an output of a private algorithm can be

2The Exponential mechanism as first introduced by McSherry and Tal-
war [32] is parameterized by a prior distribution μ on R. We consider the
special case where μ is uniform; this suffices for typical applications.

413

arbitrarily transformed, so long as this processing does not

involve the private database.
Theorem 4: Let q be (ε, δ)-differentially private mapping

databases to some output range R, and let f : R → R′ be

an arbitrary function. Then, the post-processing f ◦ q is also

(ε, δ)-differentially private.

III. SELF-PRODUCTS

In this section, we formalize the verification of differential-

privacy using traditional Hoare logic. We start with some

preliminary definitions and the pWHILE programming lan-

guage, which will serve as our source language. Then, given a

probabilistic pWHILE program c, we show how to build a non-
probabilistic program T (c) that simulates two executions of c
on different inputs and tracks the privacy cost via two ghost

variables vε and vδ . We show that the verification of T (c)
with respect to a particular Hoare logic specification ensures

differential privacy of the original program c.

A. Distributions
We define the set D(A) of sub-distributions over a set A as

the set of functions μ : A→ [0, 1] with discrete support(μ) =
{x | μx �= 0}, such that

∑
x∈A μx ≤ 1; when equality holds,

μ is a true distribution. (We will often refer to sub-distributions

as distributions when there is no confusion.) Sub-distributions

can be given the structure of a complete partial order: for all

μ1, μ2 ∈ D(A),

μ1 μ2
def
= ∀a ∈ A. μ1 a ≤ μ2 a.

Moreover, sub-distributions can be given the structure of

a monad: for any function g : A → D(B) and distribution

μ : D(A), we define g� μ : D(B) to be the sub-distribution

g� μ (b) def
=

∑
a∈A

(g a b)(μa),

for every b ∈ B. Given an element a ∈ A, let 1a be the

probability distribution that assigns all mass to the value a.
We will use a normalization construction (·)# that takes as

input a function f : B → R
≥0 over a discrete set B and

returns (f)# ∈ D(B) such that the probability mass of f# at

b is given by

(f)# b def
=

f b∑
b′∈B f b′

.

Intuitively, sampling from the distribution (f)# is equivalent

to sampling “with probability proportional to” f .

B. pWHILE Language
pWHILE programs will serve as our source language, and

are defined by the following grammar:

C ::= skip
| C; C sequencing

| V ← E deterministic assignment

| V $← Lapε(E) Laplace assignment

| V $← Expε(E , E) Exponential assignment

| if E then C else C conditional

| while E do C while loop

| return E return expression

Here, V is a set of variables and E is a set of expressions. We

consider expressions including simply typed lambda terms and

basic operations on booleans, lists and integers. (pWHILE is

equipped with a standard type system; we omit the typing

rules.)

The probabilistic assignments involving Lapε(E) and

Expε(E , E) internalize the (discrete version of the) mechanisms

of Theorem 1 and Theorem 2 respectively. Note that for exam-

ples based on the exponential mechanism we allow function

types for representing the score functions; alternatively these

score functions can be modeled as finite maps if their domain

is finite (as will be the case in our examples).

The semantics of a well-typed pWHILE program is defined

by its (probabilistic) action on memories; we denote the set

of memories by M. A program memory m ∈ M is a partial

assignment of values to variables. Formally, the semantics of

a return-free pWHILE program c is a function �c� : M →
D(M) mapping a memory m ∈M to a distribution �c�m ∈
D(M), as defined in Fig. 1.

For simplicity, we only consider programs of the form

c; return e in the rest of this paper. Then, the semantics of

a program c; return e is simply defined as

�c; return e� m def
= λu.1�

�e�u (�c�m).

C. Target Language

To define the target language of our transformation, we re-

move probabilistic assignments and add an assert instruction,

giving the following grammar:

C ::= skip
| C; C sequencing

| V ← E deterministic assignment

| assert (ϕ) assert

| (V,V)← Lap�ε (E , E) Laplace invocation

| (V,V)← Exp�ε (E , E , E , E) Exponential invocation

| if E then C else C conditional

| while E do C while loop

| return E return expression

The semantics of this non-deterministic target language is

defined in Figure 2 as a function from a memory to a set of

memories. The assert (ϕ) statement checks at runtime whether

the predicate ϕ is valid, and stops the execution if not. In

order to distinguish the failure of assert statements from non-

terminating while loops, we lift the domain P(M) with a ⊥
element: where

⋃
m∈⊥ f m is defined as ⊥ for any f . We defer

the presentation of the abstract procedures Lap� and Exp� until

the definition of the self-product construction in §III-E.

The enforcement of safety properties over this target lan-

guage is formalized by a standard Hoare logic, with judgments

of the form

� c : Ψ =⇒ Φ.

Here the pre- and post-conditions Ψ and Φ are standard

unary predicates over memories. Hoare logic judgments can

be derived using the rules in Fig. 3; by the standard soundness

of Hoare logic, the derivability of a judgment � c : Ψ =⇒ Φ

414

�skip� m = 1m

�c1; c2� m = �c2�
� (�c1�m)

�x← e� m = 1m{�e�E m/x}

�x $← Lapε(e)� m =
(
λv. 1m{v/x}

)� (
λr.exp

(
− ε|r−�e�m|

2

))#

�x $← Expε(s, e)� m =
(
λv. 1m{v/x}

)� (
λr.exp

(
ε�s�m(�e�m,r)

2

))#

�if e then c1 else c2� m = if (�e�E m = true) then (�c1�m) else (�c2�m)

�while e do c� m =
⊔

wi m

where w0 m = ⊥
wi+1 m = if (�e�E m = true) then w�

i (�c�m) else unitm

Fig. 1: pWHILE semantics

�skip� m = {m}
�c1; c2� m =

⋃
m′∈�c1�m�c2�m

�x← e� m = 1m{�e�E m/x}
�assert (ϕ)�m = if (�ϕ�E m) then {m} else ⊥
�(x1, x2)← Lap�ε (e1, e2)�m =

⋃
v m {v/x1} {v/x2} {vε + |e1 − e2|ε/vε}

�(x1, x2)← Exp�ε (s1, e1, s2, e2)�m = if (�s1 = s2�E m = true) then⋃
v m {v/x1} {v/x2} {vε + |e1 − e2|ε/vε}

else ⊥
�if e then c1 else c2� m = if (�e�E m = true) then (�c1�m) else (�c2�m)

�while e do c� m =
⊔

ŵi m

where ŵ0 m = ∅
ŵi+1 m = if (�e�E m = true) then

⋃
m′∈(�c�m) ŵi m

′ else {m}

Fig. 2: Semantics of the target language

entails the correctness of c with respect to its specification

Ψ,Φ.

D. Product Construction

Before we define the product transformation from pWHILE

to our target language, let us first review some preliminaries

about product programs.

Product programs have been successfully used to verify 2-

safety properties like information-flow, program equivalence,

and program robustness. As mentioned in in the introduction,

a synchronized product program can be used to simulate two

runs of the same program, interleaving the two executions

and often simplifying the verification effort. This technique,

however, has been mostly used in the verification of non-

probabilistic programs. In the rest of this section we provide

a brief introduction to relational verification by product con-

struction and then extend the approach to handle quantitative

reasoning over probabilistic programs.

A simple but necessary concept for the product construction

is memory separability: we say that two programs are sepa-
rable if they manipulate disjoint sets of program variables. In

order to achieve separability in the construction of the product

of a program with itself, program variables are duplicated and

marked with a left (−1) or right (−2) tag. For any program

expression e or predicate ϕ, we let ei and ϕi stand for the

result of renaming every program variable with the tag −i.

Similarly, we say that two memories are disjoint when their

domains (the sets of variables on which they are defined) are

disjoint. Given two disjoint memories m1 and m2, we can

build a memory m = m1 ⊕ m2 representing their (disjoint)

union. In the following, we exploit separability and use

predicates to represent binary relations over disjoint memories

m1 and m2. We will suggestively write m1 Φm2 to denote

the unary predicate Φ(m1 ⊕m2) over the combined memory

m1 ⊕m2.

Given two deterministic programs c1 and c2, a general

product program c1×c2 is a syntactic construction that merges

415

� skip : Ψ =⇒ Ψ � x← e : Φ {e/x} =⇒ Φ � assert (ϕ) : Φ ∧ ϕ =⇒ Φ

� c1 : Ψ =⇒ ϕ � c2 : ϕ =⇒ Φ

� c1; c2 : Ψ =⇒ Φ

� c1 : Ψ ∧ b =⇒ Φ � c2 : Ψ ∧ ¬b =⇒ Φ

� if b then c1 else c2 : Ψ =⇒ Φ

Ψ ∧ v ≤ 0⇒ ¬b � c : Ψ ∧ b ∧ v = k =⇒ Ψ ∧ v < k

� while b do c : Ψ =⇒ Ψ ∧ ¬b
� c : Ψ′ =⇒ Φ′ Ψ⇒ Ψ′ Φ′ ⇒ Φ

� c : Ψ =⇒ Φ

Fig. 3: Hoare logic for non-probabilistic programs

the executions of c1 and c2; this construction is required to

correctly represent every pair of executions of c1 and c2.

Traditional program verification techniques can then be used

to enforce a relational property over c1 and c2.

In self-composition [7], [17], the product construction c1×
c2 is defined simply by the sequential composition c1; c2.

An inconvenience of self-composition is that the verification

of c1; c2 usually requires independent functional reasoning

over c1 and c2. The synchronized product construction solves

this problem by interleaving execution of two runs of the

same program—by placing corresponding pieces of the two

executions of a program close together, synchronized product

programs can more easily maintain inductive invariants relat-

ing the two runs. Not only does synchronization reduce the

verification effort, we will soon see that synchronization is

the key feature that enables our verification approach.

E. Building the Product

We embed the quantitative reasoning on probabilistic pro-

grams by introducing the special program variables vε and

vδ , which serve to accumulate the privacy cost. For every

statement c, the self-product �c� is formally defined by the

rules shown in Fig. 5. In a nutshell, the deterministic fragment

of the code is duplicated with appropriate variable renaming

with the flags −1 and −2, and the control flow is fully
synchronized, i.e., the two executions of the same program

must take all the same branches—we use the assert statements

to enforce this property.

Moreover, for the self-product of a program c to correctly

represent two executions of itself, we require that loop guards

do not depend on probabilistically sampled values; we assume

in the remainder of this work that the programs under veri-

fication satisfy this condition. Additionally, the soundness of

the method relies on the fact that all verified programs are

terminating, which is enforced by the Hoare logic rules in

Fig. 3.

The probabilistic constructions are mapped to invocations

to the abstract procedures Lap� and Exp�. The semantics of

these procedures is non-deterministic, in order to simulate

sampling from a probability distribution. We axiomatize these

abstract procedures with Hoare specifications: Figure 4 gives

the new specifications. Notice that both abstract procedures

have a side effect: they increment the privacy budget variable

vε. In Section V-C, we introduce a alternative specification for

Lap� that also increments the budget variable vδ .

�skip� = skip

�c1; c2� = �c1�; �c2�
�x← e� = x1 ← e1; x2 ← e2

�x $← Lapε(e)� = (x1, x2)← Lap�(e1, e2)
�x $← Expε(s, e)� = (x1, x2)← Exp�(s1, e1, s2, e2)
�if b then c else d�= assert (b1 = b2);

if b1 then �c� else �d�
�while b do c� = assert (b1 = b2);

while b1 do
�c�; assert (b1 = b2)

Fig. 5: Self-product construction

F. An alternative characterization of privacy

For the proof of soundness, we will use an alternative char-

acterization of (ε, δ)-differential privacy based on the notion of

ε-distance. This notion is adapted from the asymmetric notion

of distance used by Barthe et al. [11].

Definition 4 (ε-distance): The ε-distance Δε is defined as

Δε(μ1, μ2)
def
= max

S⊆A
(μ1 S − exp(ε)μ2 S),

where μS def
=

∑
a∈S μa. We define max over an empty set

to be 0, so Δε(μ1, μ2) ≥ 0.

By the definition of ε-distance, a probabilistic program c
is (ε, δ)-differentially private with respect to ε > 0, δ ≥ 0,

and a relation Φ on the initial memories of c if for every two

memories m1 and m2 related by Φ, we have

Δε(�c� m1, �c� m2) ≤ δ.

The proof of our main theorem relies on a lifting oper-

ator that turns a relation on memories into a relation on

distributions over memory. Given a relation on memories Φ,

and real values ε, δ we define the lifted relation on memory

distributions Φ〈ε,δ〉 as follows.

Definition 5: For all memory distributions μ1, μ2,

μ1 Φ〈ε,δ〉 μ2 if there exists μ such that:

1) πi μ ≤ μi,

2) ∀m1,m2. μ(m1 ⊕m2)⇒ m1 Φm2, and

3) Δε(μi, πi μ) ≤ δ,

where

• (π1 μ)m1 =
∑

m2∈M μ (m1,m2), and

• (π2 μ)m2 =
∑

m1∈M μ (m1,m2).

416

� (x1, x2)← Lap�ε (e1, e2) : vε = ε0 ∧ vδ = δ0 =⇒ x1 = x2 ∧ vε = ε0 + |e1 − e2|ε ∧ vδ = δ0

� (x1, x2)← Exp�ε (s1, e1, s2, e2) : s1 = s2 ∧ vε = ε0 ∧ vδ = δ0 =⇒ x1 = x2 ∧ vε = ε0 + ε maxr |s1(x1, r)− s2(x2, r)|

Fig. 4: Hoare specification for Lap� and Exp�

Notice that ε-distance between distributions is closely related

to the lifting of the equality relation, i.e.,

μ1 =〈ε,δ〉 μ2 ⇐⇒ Δε(μ1, μ2) ≤ δ. (1)

Note that the second equation is precisely the condition on

output distributions needed for (ε, δ)-differential privacy.

G. Soundness of the self-product technique

We can now state the soundness theorem for our approach.

Recall that we consider only programs with a single return

statement; we will label this returned value out1 and out2 in

the first and second runs, respectively.

Theorem 5: If the following Hoare judgment is valid

� �c� : Ψ ∧ vε=0 ∧ vδ=0 =⇒ out1=out2 ∧ vε≤ε ∧ vδ≤δ

then c satisfies (ε, δ)-differential privacy.

The proof of Theorem 5 follows from the next lemma.

Lemma 2: Let Φ be a relation on memories, and suppose

� �c� : Ψ ∧ vε = 0 ∧ vδ = 0 =⇒ Φ ∧ vε ≤ ε ∧ vδ ≤ δ.

Then, for all memories m1,m2 such that m1 Ψm2, we have

(�c�m1) Φ〈ε,δ〉 (�c�m2).

The lemma is proved by structural induction on c; we provide

technical details in the full version of the paper.

IV. COMPARISON WITH apRHL

Now that we have defined our transformation, we com-

pare our approach to a custom logic for verifying privacy.

apRHL [11] is a quantitative, probabilistic and relational

program logic for reasoning about differential privacy, with

judgments of the form3

� c1 ∼〈α,δ〉 c2 : Ψ =⇒ Φ,

where c1 and c2 are probabilistic programs, Ψ and Φ are

memory relations, and ε, δ are real values. The main result of

apRHL states that if � c1 ∼〈ε,δ〉 c2 : Ψ =⇒ out1 = out2 is

derivable, where c1 and c2 are the result of renaming variables

in c to make them separable, then c is (ε, δ)-differentially

private with respect to the relation Ψ on initial memories.

The original presentation of the apRHL logic [11] is or-

ganized in three sets of rules: the first set includes a set of

core rules, the second set includes a generalized rule for loops

(see Fig. 7), and the third set includes rules for mechanisms

3The original apRHL rules are based on a multiplicative privacy budget.
We adapt the rules to an additive privacy parameter for consistency with the
rest of the article.

such as the Laplace and Exponential Mechanism. We refer

to the fragment consisting of the first and third set of rules

as core apRHL; its rules are displayed in Fig. 6. Note that

the, in contrast with [11], the rule for sequential composition

does not have any side condition; this is due to the fact that

the rule for random assignments in [11] allows sampling from

strict sub-distributions, whereas we only allow sampling using

the Laplace and Exponential mechanisms.

The following lemma shows that our approach subsumes

core apRHL, in the sense that every probabilistic program c
verified (ε, δ)-differentially private using core apRHL can be

verified using our self-product technique.

Lemma 3: For every probabilistic program c, memory

relations Ψ,Φ and real expressions ε, δ such that the following

core apRHL judgment is derivable

� c ∼〈ε,δ〉 c : Ψ =⇒ Φ

we have

� �c� : Ψ =⇒ Φ ∧ vε ≤ ε ∧ vδ ≤ δ.

The proof of this result is straightforward, by induction on the

derivation of the apRHL judgement.

The embedding is more expressive than core apRHL in

its treatment of loops. This is because privacy consumption

in core apRHL is tracked by an accumulator which is part

of the judgment itself, independent of the pre-condition and

the initial memory. Using self-products, reasoning about the

privacy budget is carried out in the Hoare specification and

consequently inherits the full expressivity of the Hoare logic.

On the other hand, we have not been able to capture the

generalized rule for loops from apRHL, which is given in

Fig. 7, with self-products. In the following section, we provide

a more detailed comparison with apRHL based on examples.

We conclude with a broader perspective on the two for-

malisms. The primary goal of our approach is to strike a good

balance between expressivity and simplicity, including for the

latter ease of use and ease of implementation. In contrast to

apRHL, which requires a relational verification infrastructure,

our approach reuses a very standard verification technology,

namely Hoare logic, and can be directly implemented by

defining the appropriate program transformation, and using

off-the-shelf tools for Hoare logic or even invariant generation.

We believe this latter approach is simpler to deploy for

programming languages for which verification environments

based on Hoare logic are already available.

417

� x1 ← e1 ∼〈0,0〉 x2 ← e2 : Φ {e1/x1} {e2/x2} =⇒ Φ
[assn]

� y1 $← Lapε(e1) ∼〈|e1−e2|ε,0〉 y2 $← Lapε(e2) : true =⇒ y1 = y2
[lap]

� y1 $← Expε(s1, e1) ∼〈ε maxr |s1(x1,r)−s2(x2,r)|,0〉 y2 $← Expε,s(s2, e2) : s1 = s2 =⇒ y1 = y2
[exp]

� skip ∼〈0,0〉 skip : Ψ =⇒ Ψ
[skip]

� c1 ∼〈ε,δ〉 c2 : Ψ ∧ b1 =⇒ Φ � d1 ∼〈ε,δ〉 d2 : Ψ ∧ ¬b1 =⇒ Φ

� if b1 then c1 else d1 ∼〈ε,δ〉 if b2 then c2 else d2 : Ψ ∧ b1 = b2 =⇒ Φ
[cond]

� c1 ∼〈ε,δ〉 c2 : Θ ∧ b1 ∧ k = e =⇒ Θ ∧ k < e
Θ ∧ n ≤ e =⇒ ¬b1 Θ =⇒ b1 = b2

� while b1 do c1 ∼〈nε,nδ〉 while b2 do c2 : Θ ∧ 0 ≤ e =⇒ Θ ∧ ¬b1
[while]

� c1 ∼〈ε,δ〉 c2 : Ψ =⇒ Φ′ � c′1 ∼〈ε′,δ′〉 c′2 : Φ′ =⇒ Φ

� c1; c
′
1 ∼〈ε+ε′,δ+δ′〉 c2; c′2 : Ψ =⇒ Φ

[seq]

� c1 ∼〈ε′,δ′〉 c2 : Ψ′ =⇒ Φ′ Ψ⇒ Ψ′ Φ′ ⇒ Φ ε′ ≤ ε δ′ ≤ δ

� c1 ∼〈ε,δ〉 c2 : Ψ =⇒ Φ
[weak]

Fig. 6: Core proof rules of the approximate relational Hoare logic

Θ =⇒ b1〈1〉 ≡ b2〈2〉 ∧ P 〈1〉 ≡ P 〈2〉 ∧ i〈1〉 = i〈2〉 Θ ∧ n ≤ i〈1〉 =⇒ ¬b1〈1〉
� c1; assert (¬P) ∼〈εj ,0〉 c2; assert (¬P) : Θ ∧ (b1 ∧ i = j ∧ ¬P)〈1〉 =⇒ Θ ∧ i〈1〉 = j+1
� c1; assert (P) ∼〈ε,0〉 c2; assert (P) : Θ ∧ (b1 ∧ i = j ∧ ¬P)〈1〉 =⇒ Θ ∧ i〈1〉 = j+1
� c1 ∼〈0,0〉 c2 : Θ ∧ (b1 ∧ i = j ∧ P)〈1〉 =⇒ Θ ∧ (i = j+1 ∧ P)〈1〉

� while b1 do c1 ∼〈ε+∑n−1
i=0 εi,0〉 while b2 do c2 : Θ ∧ i〈1〉 = 0 =⇒ Θ ∧ ¬b1〈1〉

[gwhile]

Fig. 7: Generalized rule for loops

V. EXAMPLES

In this section, we apply our method to four examples.

The first example (smart sum) is an algorithm for computing

statistics; it involves intricate applications of the composition

theorem, and is thus an interesting test case. The second

example (Iterative Database Construction, or more precisely

the Multiplicative Weights Exponential Mechanism) is an

algorithm that computes a synthetic database; it combines the

Laplace and the Exponential mechanisms, and has not been

verified in earlier work using relational logic. The third exam-

ple (Propose-Test-Release) is an algorithm that only achieves

approximate differential privacy (i.e., (ε, δ)-differential privacy

with δ > 0) using both the privacy and accuracy properties

of the Laplace distribution. To best of our knowledge, we

provide the first machine-checked proof of this mechanism.

Finally, our last example (vertex cover) is an algorithm that

achieves differential privacy by carefully adding noise to

sampled values; this example can only be verified partially

using our method, and illustrates the differences with apRHL.

A. Smart sum

In this example, a database db is a list of real numbers

[r1, . . . , rT] and we consider two databases adjacent if they

are the same length T , at most one entry differs between the

two databases, and that entry differs by at most 1.

Suppose we want to release private sums of the first i
entries, simultaneously for every i ∈ [1 . . . T]: that is, given

[r1, r2, r3, r4, . . . , rT] we want to privately release[
r1,

2∑
i=1

ri,
3∑

i=1

ri,
4∑

i=1

ri, . . . ,
T∑

i=1

ri

]
.

An interesting sophisticated differentially private algorithm

for this problem is the two-level counter from Chan, et al. [14];

we call this algorithm smartsum.

At a high level, this algorithm groups the input list into

blocks of length q, and adds Laplace noise to the sum for

each block. More concretely, to compute a running sum from

1 to t with t a multiple of q, we simply add together the first

t/q block sums. If t is not a multiple of q, say t = qs + r

418

with r < q, we take the first s block sums and add a noised

version of each of the r remaining elements.

For an example, suppose we take q = 3 and T is a multiple

of 3. For brevity, let us use the notation L(r) to describe the

result of the application of Laplace, for a fixed value ε to r.

Then, the output of smartsum is[
L (r1) , L (r1) + L (r2) , L

(
3∑

i=1

ri

)
,

L

(
3∑

i=1

ri

)
+ L (r4) , . . . ,

T/3∑
j=0

L

(
3∑

i=1

r3j+i

)⎤
⎦ .

To informally argue privacy, observe that if we run the

Laplace mechanism on each individual entry, there is no pri-

vacy cost for the indices where the adjacent databases are the

same. So, the privacy analysis for smartsum is straightforward:

changing an input element will change exactly two noisy

sums—the sum for the block containing i, and the noisy

version of i—and each noisy sum that can change requires

ε privacy budget, since we are using the Laplace mechanism

with parameter ε. Thus, smartsum is 2ε-private.

The full program, together with the transformation into a

synchronized product program, is presented in Fig. 8. The

formal verification of the 2ε-differential privacy follows the

argument above. The pre-condition states that the two input

databases are adjacent, while the post-condition requires equal-

ity on the outputs and bounds the accumulated privacy budget

by 2ε.
The interesting part for our verification is the while loop.

Indeed, this requires a loop invariant to keep track of the

privacy budget, which depends on whether the differing entry

has been processed or not. Note that this invariant does not fit

the core apRHL while rule of Fig. 6: to deal with this example,

Barthe et al. [11] use the generalized while rule from Fig. 7.

This rule is able to perform a refined analysis depending on

a predicate that is preserved across the first iterations, until

some critical iteration is reached. In contrast, here we do not

require any special verification rule: the standard while rule

from Hoare logic suffices.

More precisely, we apply the Hoare while rule with the

invariant:

adjacent(l1, l2) ∧ out1 = out2 ∧ next1 = next2 ∧ n1 = n2∧
|c1 − c2| ≤ 1 ∧ (l1 �= l2 ⇒ vε = 0)∧
(c1 �= c2 ⇒ l1 = l2 ∧ vε ≤ ε) ∧ (l1 = l2 → vε ≤ 2 ε)

Notice from the invariant that if the accumulators c1 and c2
differ we have l1 = l2. This corresponds to the fact that

the differing entry has been processed and so the remaining

database entries coincide. Also, if this is the case then the

privacy budget of 2 ε has been already consumed.

The verification of this invariant proceeds by case analysis.

We have three cases: a) the differing entry has not been

processed yet and will not be processed in the following

iteration, b) the differing entry has not been processed yet

but is going to be processed in the next iteration, and c) the

next← 0;n← 0; c← 0;
while 0 < length l do

if length lmod q = 0 then
x← Lap ε(c+ hd l);
n← x+ n;
next← n;
c← 0;
out← next :: out;

else
x← Lap ε(hd l);
next← next+ x;
c← c+ hd l;
out← next :: out;

l← tl l;
return out;

(a) Original probabilistic algorithm

vε ← 0; next1 ← 0; next2 ← 0;
n1 ← 0; n2 ← 0; c1 ← 0; c2 ← 0;
assert ((0 < length l1)⇔ (0 < length l2));
while 0 < length l1 do
assert ((length l1 mod q = 0)⇔ (length l2 mod q = 0));
if length l1 mod q = 0 then
(x1, x2)← Lap�ε (c1 + hd l1, c2 + hd l2));
n1 ← x1 + n1; n2 ← x2 + n2;
next1 ← n1; next2 ← n2;
c1 ← 0; c2 ← 0;
out1 ← next1 :: out1; out2 ← next2 :: out2;

else
(x1, x2)← Lap�ε (hd l1, hd l2));
next1 ← next1 + x1; next2 ← next2 + x2;
c1 ← c1 + hd l1; c2 ← c2 + hd l2;
out1 ← next1 :: out1; out2 ← next2 :: out2;

l1 ← tl l1; l2 ← tl l2;
return (out1, out2);

(b) Synchronized non-probabilistic product

Fig. 8: smartsum algorithm

differing entry has already been processed, in which case there

is no more privacy budget consumption.

B. Multiplicative Weights Exponential Mechanism

While answering queries on a database with the Laplace

mechanism is a simple way to guarantee privacy, the added

noise quickly renders the results useless as the number of

queries grows. To handle larger collections of queries, there

has been much research on sophisticated algorithms based on

learning theory.

One such scheme is Iterative Database Construction (IDC),
due to Gupta et al. [26]. The basic idea is simple: given a

database d̂, the algorithm gradually builds a synthetic database
that approximates the original database. The synthetic database

is built over several rounds; after some fixed number of rounds,

419

the synthetic database is released and used to answer all

queries.

The essence of the algorithm is the computation that it

performs at each round. Let Q be a collection of queries

that we want to answer and let di be the synthetic database

computed at round i. During round i+1, the algorithm selects

a query q ∈ Q with high error; that is, a query where the

current approximate database di and the true database d̂ give

very different answers. This selection is done in a differentially

private way. Next, the algorithm computes a noisy version

v of q evaluated on the true database d̂. Again, this step

must be differentially private. Finally, q, v and the current

database di approximation are fed into an update algorithm,

which generates the next approximation di+1 of the synthetic

database (hopefully performing better on q).

The idea is that in many cases, this iterative procedure

will provably find an approximation with low error on all
queries in Q in a small number of steps. Hence, we can

run IDC for a small number of steps, and release the final

database approximation as the output. Queries in Q can then

be evaluated on this output for an accurate estimate of the true

answer to the query.

IDC is actually a family of algorithms parameterized by

an algorithm to privately find a high-error query (called the

private distinguisher), and the update function (called the

database update algorithm). For concreteness, let us consider

one well-studied instantiation, the Multiplicative Weights Ex-
ponential Mechanism (MWEM) algorithm originally due to

Hardt and Rothblum [28] and experimentally evaluated by

Hardt et al. [27].

MWEM uses the exponential mechanism to privately select

a query with high error—the quality score of a query q to

be maximized is the error of the query, i.e., the absolute

difference between q evaluated on the approximate database

di and q evaluated on the true database d̂. The update function

applies the multiplicative weights update [3] to adjust the

approximation to perform better on the mishandled query. This

step is non-private: it does not touch the private data directly.

Hence, we do not concern ourselves with the details here, and

treat the update step as a black box. (The reader can find

further details in Hardt et al. [27].) The full program, together

with the transformation into a synchronized product program,

is presented in Fig. 9.

We briefly comment on the program. We let di denote the

i-th iteration of the synthetic database, and d̂ denote the true

database. Initially the synthetic database d0 is set to some

default value def . Then we define the score function si that

takes as inputs a database D and a query Q and returns

the error of the query Q on the current approximation di

compared to D. We then apply the exponential mechanism

to the true database d̂ with the score function si, and we call

the result qi. We then evaluate qi on the real database, and

add Laplace noise; we call the result ai. Finally, we apply

the update function to obtain the next iteration di+1 of the

synthetic database. Once the number of rounds is exhausted,

we return the last computed synthetic databases.

i← 0;
d0 ← def;
while i < T do

si ← λD Q. |Q(di)−Q(D)|
qi ← Expε (s

i, d̂);

ai ← Lapε (q
i d̂);

di+1 ← update (di, ai, qi);
i← i+ 1;

return dT ;

(a) Original probabilistic algorithm

vε ← 0; i1 ← 0; i2 ← 0;
d01 ← def; d02 ← def;
assert (i1 < T ⇔ i2 < T);
while i1 < T do

si1 ← λD Q. |Q(di1)−Q(D)|;
si2 ← λD Q. |Q(di2)−Q(D)|;
(qi1, q

i
2)← Exp�ε (s

i
1, d̂1, s

i
2, d̂2);

(ai1, a
i
2)← Lap�ε (q

i
1(d̂1), q

i
2(d̂2));

di+1
1 ← update (di1, a

i
1, q

i
1);

di+1
2 ← update (di2, a

i
2, q

i
2);

i1 ← i1 + 1;
i2 ← i2 + 1;
assert (i1 < T ⇔ i2 < T);

return (dT1 , d
T
2);

(b) Synchronized non-probabilistic product

Fig. 9: MWEM algorithm

For the privacy proof, we assume that all queries in Q are

1-sensitive. Note that we run T iterations of MWEM; by the

composition theorem, it is sufficient to analyze the privacy

budget consumed by each iteration. Each iteration, we select a

query with the exponential mechanism with privacy parameter

ε, and we estimate the true answer of this query with the

Laplace mechanism, parameter ε. By the composition theorem

(Theorem 3), the whole algorithm is private with parameter

2 · T · ε = 2Tε, as desired. The proof can be transcripted

directly into Hoare logic using self-products; we take as pre-

condition adjacency of the two databases, and use adjacency

to conclude that the sensitivity of the score function si is 1 at

each iteration.

C. Propose-Test-Release

The examples we have considered so far all rely on the

composition theorem. While this is a quite powerful and

useful theorem, not all algorithms use composition. In this

section, we consider one such example: the Propose-Test-
Release (PTR) framework [20], [38]. PTR is also an example

of an (ε, δ)-differentially private mechanism for δ > 0.

The motivation comes from private release of statistics that

are sometimes, but not always, very sensitive. For example,

suppose our database is an ordered list of numbers between 0
and 1000, and suppose we want to release the median element

420

x← DistToInstability (q, d);
y ← Lap ε x;
if (|y| > log(2/δ)/(2ε))

return (q d);
else

return (⊥);

Fig. 10: PTR algorithm

of the database. This can be highly sensitive: consider the

database [0, 0, 1000] with median 0. Adding a record 1000
to the database would lead to a large change in the median

(now 500, if we average the two elements closest to the

median when the database has even size). However, many

other databases have low sensitivities: for [0, 10, 10, 1000],
the median will remain unchanged (at 10) no matter what

element we add or remove from the database. We may hope

that we can privately compute the median in this second case

with much less noise than needed for the first case. More

generally, the second database is quite stable—all adjacent

databases have the same median value. In contrast, the first

database is instable—adjacent databases may have wildly

different median values. With this example in mind, we now

explain the general PTR framework.

Suppose we want to privately release the result of a query q
evaluated on a database d. We assume that databases are taken

from a set D and that there exists a notion of distance Δ on

D, such that pairs of input memory related by Φ correspond

to databases at distance at most 1 under Δ. First, we estimate

the distance to instability—that is, the largest distance x such

that q(d) = q(d′) for all databases d′ at distance x or less from

d. Since this a 1-sensitive function (moving to a neighboring

database can change the distance to instability by at most

1), we can release this distance privately using the Laplace

mechanism (say, with parameter ε). Call the result y. Now,

we compare y to a threshold t (to be specified later). If y is

less than the threshold, we output q(d) with no noise. If y is

greater than the threshold, we output a default value ⊥. The

program is given in Fig. 10.

The privacy of the algorithm can be informally justified in

two parts. First, suppose that instead of outputting q(d) or

⊥, we simply output which branch the program took. This is

ε-differentially private: computing y is ε-differentially private

(via the Laplace mechanism), and the resulting branch is a

post-processing of y. Hence, we can assume that the same

branch is taken in both executions.

Second, we can conclude that the original program (out-

putting q(d) or ⊥) is (ε, δ)-differentially private if for any

adjacent databases d and d′ with q(d) �= q(d′), the first

branch is taken with probability at most δ. By properties of the

Laplace mechanism, we can set the threshold t large enough

so that with probability at least 1− δ, the first branch is only

taken if x is strictly positive. In this case we can conclude

q(d) = q(d′), since q(d) �= q(d′) implies that x is 0 on both

executions. So, we can safely release q(d) = q(d′) with no

{Δ(d1, d2) ≤ 1}
vε ← 0;
vδ ← 0;
x1 ← DistToInstability (q, d1);
x2 ← DistToInstability (q, d2);{

(q(d1) = q(d2) ∨ x1 = x2 = 0)
∧vε = 0 ∧ vδ = 0

}
(y1, y2)← Lap�ε (x1, x2);⎧⎨
⎩

(q(d1) = q(d2)) ∨ (x1 = x2 = 0
∧|y1 − x1| ≤ log(2/δ)/(2ε))
∧y1 = y2 ∧ vε ≤ ε ∧ vδ ≤ δ

⎫⎬
⎭

assert (|y1| > log(2/δ)/(2ε)⇔ |y2| > log(2/δ)/(2ε));
if (|y1| > log(2/δ)/(2ε)){

q(d1) = q(d2) ∧ vε ≤ ε ∧ vδ ≤ δ
}

return (q(d1), q(d2));{
out1 = out2 ∧ vε ≤ ε ∧ vδ ≤ δ

}
else{

vε ≤ ε ∧ vδ ≤ δ
}

return (⊥,⊥);{
out1 = out2 ∧ vε ≤ ε ∧ vδ ≤ δ

}
Fig. 11: Proof of Propose-Test-Release

noise. Of course, if the second branch is taken, then it is also

safe to release ⊥ in both runs.

More formally, the proof of (ε, δ)-differential privacy for

PTR rests on two properties of the Laplace mechanism: the

privacy property captured by Theorem 1 and the accuracy

property captured by Lemma 1.

Fig. 11 presents the proof of PTR using the synchronized

product program—the code is interleaved with some of the

pre- and post-conditions. The proof uses the accuracy property

of the Laplace mechanism and the properties of the distance

to instability that we give as specifications in Fig. 12. For

simplicity, we treat distance to instability as an abstract

procedure; however, it can be implemented as a loop over

all databases, in which case the specification can be proved.

The soundness of the accuracy specification for the Laplace

mechanism follows by Lemma 1.

D. Vertex cover

A vertex cover for a graph g = (N,E) is a set S of nodes

such that for every edge (t, u) ∈ E, either t ∈ S or u ∈ S.

The minimum vertex cover is the problem of finding a vertex

cover of a minimum size. Gupta et al. [25] study the problem

of privately computing a minimum vertex cover in a setting

where the nodes of the graph are public, but its edges are

private. Since a vertex cover leaks information about vertices

(for instance, any two nodes that are not in the vertex cover are

certainly not connected by an edge), their algorithm outputs

an enumeration of the nodes of the graph, from which a vertex

cover can be recomputed efficiently from the knowledge of the

set E. Their algorithm is challenging to verify because rather

421

� (y1, y2)← Lap�ε (x1, x2) : x1 = x2 ∧ vδ = δ̂ =⇒ y1 = y2 ∧ |y1 − x1| ≤ log(2/δ)/(2ε) ∧ vδ = δ̂ + δ

� x1 ← DistToInstability (q, d1);x2 ← DistToInstability (q, d2) : Δ(d1, d2) ≤ 1 =⇒ q(d1) = q(d2) ∨ x1 = x2 = 0

Fig. 12: Accuracy specification for the Laplace mechanism, and specification for distance to instability.

n← |E|;
out← [];
while g �= ∅ do

v ← chooseε,n(g);
out← v :: out;
g ← g \ {v};

return out;

Fig. 13: Minimum vertex cover

than relying on mechanisms, it achieves privacy by sampling

according to a suitable noisy distribution choose. The code of

the algorithm is shown in Fig. 13.

We say that two graphs g1 and g2 are adjacent if they differ

at most in one edge 〈t, u〉. By defining choose as

Pr [v ← chooseε,n(g) : v = v′] ∝
(
dE,V (v

′) +
4

ε

√
n

|E|

)

where g = (E, V) and n is a given parameter, one obtains

an (ε, 0)-differentially private algorithm with respect to the

adjacency relation as defined above.

In [11], Barthe et al prove differential privacy of vertex

cover in apRHL. The proof uses the generalized rule for

loops, a code motion rule that allows to swap independent

statements, and a rule for dealing with statements of the form

x $← μ; assert (φ). It also relies on apRHL specifications of

choose, that are proven correct in the Coq proof assistant

from the definition of choose.

We now consider the formal verification of the vertex cover

algorithm using self-products. We first extend the definition of

self-product to choose. Then, there are two cases to consider:

g2 = g1 ∪ {〈u, t〉} and g1 = g2 ∪ {〈u, t〉}. In the first case,

we can use the first Hoare specification from Fig. 14. In the

second case, we use the second and third specifications from

Fig. 14. Using these specifications, it is possible to verify

that the self-product of the vertex cover algorithm satisfies

the Hoare specification of Theorem 5. However, we have not

yet been able to extend the proof of Theorem 5 to deal with

the choose self-product.

E. Formal verification of the examples

The examples above (with the exception of vertex cover)

have been formally verified. For each example, we have built

the corresponding self-product program, and verified this result

using the non-probabilistic and non-relational Hoare logic

rules available in the EasyCrypt [6] framework. As described

above, we have used non-probabilistic axiomatic specifications

for the primitives. Apart from the axiomatic specification, and

the code for the program and the self-product construction, the

longest Hoare logic verification proof (for MWEM) consists

of about 50 lines of code. This demonstrates the simplicity

offered by the self-product construction. The code for these

examples (and others) is available online [1].

VI. RELATED WORK

Differential privacy, first proposed by Blum et al. [13] and

formally defined by Dwork et al. [21], has been an area

of intensive research in the last decade. We have touched

on a handful of private algorithms, including algorithms for

computing running sums [14], [22] (part of a broader literature

on streaming privacy), answering large classes of queries [28],

[27] (part of a broader literature on learning-theoretic ap-

proaches to data privacy), the Propose-Test-Release framework

for answering stable queries in a noiseless way [20], [38],

and private combinatorial optimization [25]. We refer readers

interested in a more comprehensive treatment to the excellent

surveys by Dwork [18], [19].

Verifying differential privacy: Several tools have been

proposed for providing formal verification of the differen-

tial privacy guarantee; we can roughly classify them by

the verification approach they use. PINQ [31] provides an

encapsulation for LINQ —an SQL-like language embedded

in C#—tracking at runtime the privacy budget consumption,

and aborting the computation when the budget is exhausted.

Airavat [35] combines a similar runtime monitor with access

control in a MapReduce framework. While PINQ is restricted

to ε-differential privacy, Airavat can handle also approximate

differential privacy using a runtime monitor for δ.

Another approach is based on linear type systems.

Fuzz [34] and DFuzz [24] use a type-based approach for

inferring and checking the sensitivity of functional programs.

This sensitivity analysis combined with the use of trusted prob-

abilistic primitives provides the differential privacy guarantee.

Interestingly, this type-based approach can be combined with

type systems for cryptographic protocols to verify differential

privacy for distributed protocols [23]. All these systems pro-

vide automatic verification of differential privacy. However,

they fail to verify all the examples that we can handle, like

advanced sum statistics [14] and the Propose-Test-Release

framework [20]. Moreover, so far they can address only pure

differential privacy, where δ = 0.

Tschantz, et al. [39] consider a verification framework for

interactive private programs, where the algorithm can receive

new input and produce multiple outputs over a series of steps.

They follow an approach similar to ours by verifying the

correct use of differentially private primitives. However, their

programs are well-modeled by probabilistic I/O-automata,

422

� (v1, v2)← choose�ε,n(g1, g2) : g1 ∪ {〈u, t〉} = g2 ∧ vε = ε0 =⇒ v1 = v2 ∧ vε = ε0 + ε/
(
2
√
n
√
|g1|

)
� (v1, v2)← choose�ε,n(g1, g2) : g1 = g2 ∪ {〈u, t〉} ∧ vε = ε0 =⇒ (v �= t ∧ v �= u) ∧ vε = ε0

� (v1, v2)← choose�ε,n(g1, g2) : g1 = g2 ∪ {〈u, t〉} ∧ vε = ε0 =⇒ (v = t ∨ v = u) ∧ vε = ε0 + ε/4

Fig. 14: Hoare specifications for choose�

and they provide a proof technique based on probabilistic

bisimulation. Also, their method is currently limited to pure

differential privacy.

Finally, CertiPriv [11] and EasyCrypt [6] use custom

relational logics to verify differential privacy. These systems

are very expressive: they supports general (ε, δ)-differential

privacy, they can verify privacy for mechanisms like the

Laplace and the Exponential mechanism, and they can capture

advanced examples that go beyond mechanisms and compo-

sition, like the private vertex cover algorithm of Gupta et

al. [25]. The difficulty with their approach is that it relies

on a customized and complex logic. Moreover, ad hoc rules

for loops are required for many advanced examples.

Verifying 2-safety properties: Beyond differential privacy,

there is a large body of literature on verifying 2-safety prop-

erties. Our work is most closely related to deductive methods

based on program logics; more precisely, approaches that

reduce 2-safety of a program c to safety of a program c′ built

from c. Such approaches include self-composition [7], prod-
uct programs [40], and type-directed product programs [37].

These approaches are subsumed by work by Barthe et al. [4],

[5].

Another alternative is to reason directly on two programs

(or two executions of the same program) using relational

program logics such as Benton’s relational Hoare logic [12],

or specialized relational logics, e.g., for information flow [2].

CertiCrypt [9], and EasyCrypt [8], [6], are computer-aided

tools that support relational reasoning about probabilistic

programs and have been used to prove security of crypto-

graphic constructions and computational differential privacy of

protocols. For such applications, reasoning about structurally

different programs is essential.

Chaudhuri et al. [15] develop an automated method for

analyzing the continuity and the robustness of programs.

Robustness is a 2-safety property that is very similar to

sensitivity as used in differential privacy. An interesting aspect

of their work is that their analysis is able to reason about two

unsynchronized pairs of executions; that is, pairs of executions

that may have different control flow.

Verification of hyperproperties: Developing general veri-

fication methods for hyperproperties remains a challenge; how-

ever, there have been some recent proposals in this direction

(e.g., [?], [33]).

Other work: There is an extensive body of work on

deductive verification of non-probabilistic and probabilistic

programs, as well as many works that consider product con-

structions of Labeled Transition Systems; summarizing this

large literature is beyond the scope of this paper.

VII. CONCLUSION

We have proposed a program transformation that reduces

proving (ε, δ)-differential privacy of a probabilistic program

to proving a safety property of a deterministic transformed

program. The method applies to all standard examples where

privacy is achieved through mechanisms and composition

theorems; on the other hand, differentially private algorithms

based on ad hoc output perturbation, such as the differentially

private vertex cover algorithm [25], are more difficult to

handle. In particular, they fall outside the scope of Theorem 5

which proves the soundness of our approach. Our method is

particularly suited for reasoning about differential privacy, be-

cause the transformed program can be analyzed with standard

verification tools. Our method can also be extended to reason

about probabilistic non-interference, at the cost of targeting an

assertion language that supports existential quantification over

functions. Directions for further work include extending the

scope of Theorem 5 to deal with more complex examples, like

vertex cover. On a more practical side, it would be interesting

to implement our transformation for a realistic setting, for

instance modeling the PINQ language [31].

Acknowledgments

We thank the anonymous reviewers for their close read-

ing and suggestions. This research is partially supported

by European project FP7-291803 AMAROUT II, Spanish

projects TIN2009-14599 DESAFIOS 10, TIN2012-39391-

C04-01 Strongsoft, and Madrid regional project S2009TIC-

1465 PROMETIDOS. Marco Gaboardi has been supported by

the European Community’s Seventh Framework Programme

FP7/2007-2013 under grant agreement No. 272487. Justin Hsu

has been supported by NSF grant CNS-1054229.

REFERENCES

[1] Proving differential privacy in hoare logic; supplementary code for
the examples verified in EasyCrypt, 2014. http://www.easycrypt.info/
selfproduct/selfproduct.tar.gz.

[2] Torben Amtoft and Anindya Banerjee. Information flow analysis in
logical form. In 11th International Symposium on Static Analysis, SAS
2004, volume 3148 of Lecture Notes in Computer Science, pages 100–
115, Heidelberg, 2004. Springer.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative
weights update method: a meta-algorithm and applications. Theory of
Computing, 8(6):121–164, 2012.

[4] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verifi-
cation using product programs. In Michael Butler and Wolfram Schulte,
editors, FM, volume 6664 of Lecture Notes in Computer Science, pages
200–214. Springer, 2011.

423

[5] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Beyond 2-safety:
Asymmetric product programs for relational program verification. In
Sergei N. Artëmov and Anil Nerode, editors, LFCS, volume 7734 of
Lecture Notes in Computer Science, pages 29–43. Springer, 2013.

[6] Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and
Santiago Zanella Béguelin. Verified computational differential privacy
with applications to smart metering. In CSF, pages 287–301. IEEE,
2013.

[7] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure informa-
tion flow by self-composition. In Jonathan Herzog, editor, CSFW, pages
100–114. IEEE Computer Society, 2004.

[8] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptogra-
pher. In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture
Notes in Computer Science, pages 71–90. Springer, 2011.

[9] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. For-
mal certification of code-based cryptographic proofs. In 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2009, pages 90–101, New York, 2009. ACM.

[10] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella
Béguelin. Probabilistic relational reasoning for differential privacy. In
John Field and Michael Hicks, editors, POPL, pages 97–110. ACM,
2012.

[11] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella
Béguelin. Probabilistic relational reasoning for differential privacy. ACM
Trans. Program. Lang. Syst., 35(3):9, 2013.

[12] Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, pages 14–25,
New York, 2004. ACM.

[13] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
Practical privacy: the SuLQ framework. In ACM SIGACT–SIGMOD–
SIGART Symposium on Principles of Database Systems (PODS), Balti-
more, Maryland, pages 128–138, 2005.

[14] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual
release of statistics. ACM Transactions on Information and System
Security, 14(3):26, 2011.

[15] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continu-
ity analysis of programs. In Manuel V. Hermenegildo and Jens Palsberg,
editors, POPL, pages 57–70. ACM, 2010.

[16] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In 21st
IEEE Computer Security Foundations Symposium, CSF 2008, pages 51–
65, Los Alamitos, 2008. IEEE Computer Society.

[17] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving
approach to analysis of secure information flow. In Dieter Hutter
and Markus Ullmann, editors, SPC, volume 3450 of Lecture Notes in
Computer Science, pages 193–209. Springer, 2005.

[18] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume 4052
of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

[19] Cynthia Dwork. Differential privacy: A survey of results. In Manindra
Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory
and Applications of Models of Computation, volume 4978 of Lecture
Notes in Computer Science, pages 1–19. Springer Berlin Heidelberg,
2008.

[20] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics.
In Michael Mitzenmacher, editor, STOC, pages 371–380. ACM, 2009.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In IACR Theory
of Cryptography Conference (TCC), New York, New York, pages 265–
284, 2006.

[22] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum.
Differential privacy under continual observation. In ACM SIGACT Sym-
posium on Theory of Computing (STOC), Cambridge, Massachusetts,
pages 715–724, 2010.

[23] Fabienne Eigner and Matteo Maffei. Differential privacy by typing in
security protocols. In CSF, pages 272–286. IEEE, 2013.

[24] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. Linear dependent types for differential privacy. In
Roberto Giacobazzi and Radhia Cousot, editors, POPL, pages 357–370.
ACM, 2013.

[25] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal
Talwar. Differentially private combinatorial optimization. In ACM–SIAM

Symposium on Discrete Algorithms (SODA), Austin, Texas, pages 1106–
1125, 2010.

[26] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative con-
structions and private data release. In IACR Theory of Cryptography
Conference (TCC), Taormina, Italy, pages 339–356, 2012.

[27] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and
practical algorithm for differentially private data release. In Peter L.
Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou,
and Kilian Q. Weinberger, editors, NIPS, pages 2348–2356, 2012.

[28] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mecha-
nism for privacy-preserving data analysis. In FOCS, pages 61–70. IEEE
Computer Society, 2010.

[29] Andrew K. Hirsch and Michael R. Clarkson. Belief semantics of
authorization logic. In Sadeghi et al. [36], pages 561–572.

[30] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Relational abstract
interpretation for the verification of 2-hypersafety properties. In Sadeghi
et al. [36], pages 211–222.

[31] Frank McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In Proc. SIGMOD, 2009.

[32] Frank McSherry and Kunal Talwar. Mechanism design via differential
privacy. In FOCS, pages 94–103. IEEE Computer Society, 2007.

[33] Dimiter Milushev and Dave Clarke. Incremental hyperproperty model
checking via games. In Hanne Riis Nielson and Dieter Gollmann,
editors, NordSec, volume 8208 of Lecture Notes in Computer Science,
pages 247–262. Springer, 2013.

[34] Jason Reed and Benjamin C. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. In Paul Hudak and Stephanie
Weirich, editors, ICFP, pages 157–168. ACM, 2010.

[35] Indrajit Roy, Srinath Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett
Witchel. Airavat: Security and privacy for MapReduce. In USENIX
Symposium on Networked Systems Design and Implementation (NDSI),
San Jose, California, 2010.

[36] Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013.

[37] Tachio Terauchi and Alex Aiken. Secure information flow as a safety
problem. In 12th International Symposium on Static Analysis, SAS 2005,
volume 3672 of Lecture Notes in Computer Science, pages 352–367,
Heidelberg, 2005. Springer.

[38] Abhradeep Thakurta and Adam Smith. Differentially private feature
selection via stability arguments, and the robustness of the lasso. In
Shai Shalev-Shwartz and Ingo Steinwart, editors, COLT, volume 30 of
JMLR Proceedings, pages 819–850. JMLR.org, 2013.

[39] Michael Carl Tschantz, Dilsun Kaynar, and Anupam Datta. Formal
verification of differential privacy for interactive systems (extended
abstract). Electronic Notes in Theoretical Computer Science, 276(0):61 –
79, 2011. Twenty-seventh Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXVII).

[40] Anna Zaks and Amir Pnueli. Covac: Compiler validation by program
analysis of the cross-product. In 15th International Symposium on
Formal Methods, FM 2008, volume 5014 of Lecture Notes in Computer
Science, pages 35–51, Heidelberg, 2008. Springer.

424

