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Abstract—In capability-safe languages, components can access
a resource only if they possess a capability for that resource. As a
result, a programmer can prevent an untrusted component from
accessing a sensitive resource by ensuring that the component
never acquires the corresponding capability. In order to reason
about which components may use a sensitive resource it is
necessary to reason about how capabilities propagate through
a system. This may be difficult, or, in the case of dynamically
composed code, impossible to do before running the system.

To counter this situation, we propose extensions to capability-
safe languages that restrict the use of capabilities according
to declarative policies. We introduce two independently useful
semantic security policies to regulate capabilities and describe
language-based mechanisms that enforce them. Access control
policies restrict which components may use a capability and are
enforced using higher-order contracts. Integrity policies restrict
which components may influence (directly or indirectly) the use
of a capability and are enforced using an information-flow type
system. Finally, we describe how programmers can dynamically
and soundly combine components that enforce access control or
integrity policies with components that enforce different policies
or even no policy at all.

Keywords-Capabilities; Capability policies; Information-flow
control; Language-based security.

I. INTRODUCTION

Capabilities are a popular mechanism for managing au-

thority in both historical and modern systems and lan-

guages (e.g., [1, 2, 3]). Authority is the right to use resources,

and capabilities reify authority as objects or nonces (un-

forgeable tokens). Capability safety requires that a component

must possess an appropriate capability in order to access a

resource. Capability-safe languages enforce capability safety

at the language level, ensuring that authority of language-

level components is conveyed exclusively via capabilities.

Appropriate design patterns for capabilities can enforce fine-

grained application-specific access control requirements, in-

cluding confinement and selective revocation [4].

However, in order to reason about which components may

exercise a given authority it is necessary to reason about how

capabilities and references to capabilities propagate through a

system. This in turn requires reasoning about the functionality

and implementation of the system. In the extreme, reasoning

about the use of a single capability may be as complicated as

reasoning about the implementation of an entire system [5].

This paper proposes two extensions to capability-safe lan-

guages that restrict the use of capabilities according to two
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Fig. 1. A mashup for writing scientific papers. The page layout is shown on
the left (which also depicts the DOM representation of the page). Rounded
boxes are components; arrows indicate object references.

independently useful kinds of declarative fine-grained poli-

cies: access control policies and integrity policies. Declarative

policies for capabilities simplify reasoning about the correct

use of capabilities by separating policy from implementation:

the components that may use or influence the use of a

given capability can be determined by examining the policy

associated with the capability, without needing to examine the

implementation of the entire system.

More specifically, access control policies restrict which

components may use a capability; integrity policies restrict

which components may influence the use of a capability. The

two extensions cover non-overlapping security requirements

and readily interoperate. In fact, the security guarantees can

be soundly enforced even when components that use our

extensions are composed with those that do not.

A. Example: securing a web mashup

Web mashups embed third-party code into a host web page.

For mashups to be useful, the embedded code needs to share

resources with the host page. Yet to avoid jeopardizing the

security of the host page, the programmer of the host page

needs to carefully restrict the authority of embedded code.

To help programmers resolve this tension, tools for “taming”

third-party JavaScript code, such as Caja [1] and JSand [6],

use JavaScript proxy technology [7, 8, 9] to enforce the

principles of object capabilities on mashups. Object-capability

systems [10] treat all object references as capabilities and

achieve capability safety by restricting object interactions

to message passing. However, capability safety alone is not

sufficient to guarantee security requirements of a mashup as

we demonstrate with the following example.

Figure 1 illustrates the page layout and object references

of a JavaScript mashup for authoring scientific papers. The
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1 var deadlineDOM = ...;
2 var todoDOM = ...;
3 var vStore = new VirtualStore(localStorage);
4 var deadlineStore = vStore.make(’deadlines’);
5 var todoStore = vStore.make(’todo’);
6 var deadlineManager =
7 new DeadlineManager(deadlineStore,deadlineDOM);
8 var todoList = new ToDoList(todoStore,todoDOM);
9

10 function VirtualStore(localStore) {
11 var store = localStore;
12 this.make = function (id) {
13 return {
14 put : function (key,value)
15 { store.put(id + ’.’ + key, value); },
16 get : function (key)
17 { store.get(id + ’.’ + key); },
18 del : function (key)
19 { store.removeItem(id + ’.’ + key); }
20 }; }
21 }

Listing 1. The host page delegates initial authority to the plugins.

mashup incorporates two plugins: a to-do list plugin, called

ToDoList, and a plugin for managing upcoming conference

deadlines, called DeadlineManager. The deadline manager

also displays third-party advertisements via a component

called AdService. Both plugins generate content on the web

page, and thus have references to DOM nodes corresponding

to portions of the page they use. DeadlineManager gives a

reference to a descendant DOM node to AdService to allow

it display advertisements.

Both plugins also need to maintain persistent state: the

list of to-do items and upcoming deadlines. HTML5 offers

a persistent local store via a simple key-value API, exposed

in JavaScript as the localStorage object. To avoid giving

the two components access to each other’s entries in the

local store, we can apply a standard object-capability design

pattern that provides ToDoList and DeadlineManager with

limited access to localStorage. Listing 1 sketches code

to do so.1 Constructor VirtualStore takes a capability

for localStorage and returns an object that can make

a new “namespace”: an object that provides limited access

to the local store by ensuring that all keys start with a

common prefix. The host page makes one separate namespace

(deadlineStore and todoStore) for each component.

Access control requirements. Consider the security re-

quirement that neither ToDoList nor DeadlineManager has

unrestricted access to the local store. Capability safety helps

us reason about this security requirement, but by itself is not

enough. What code must we trust in order to achieve this

requirement? To start with, we rely on the implementation of

VirtualStore to not propagate capability localStorage

to its clients. In addition, if there is other code in the system

that possesses capability localStorage and interacts with

1For clarity, we do not show calls to an API such as Caja that enforces
capability safety. These calls do not change the structure of the mashup or
the interaction pattern between plugins and the host web page. We assume
that capability safety is enforced.

ToDoList or DeadlineManager, then we must also trust that

this other code does not propagate the capability inappropri-

ately. In sum, to prohibit ToDoList and DeadlineManager

from using localStorage we may need to trust large por-

tions of the code base.

From a high-level viewpoint, this is a problem of ac-

cess control: components ToDoList and DeadlineManager

should not be allowed to directly use (a reference of) the

localStorage capability. In fact, the 2013 OWASP Top Ten

project ranks direct uses of objects without appropriate access

control checks the fourth most common security risk for web

applications [11]. To mitigate these pervasive vulnerabilities,

rather than trusting large portions of the code base, we

introduce and enforce declarative access control policies that

restrict which components may use a capability.

Integrity requirements. Consider an additional security

requirement that AdService must not affect the content of

the local store. If it could do so, it could perhaps cre-

ate “supercookies” that uniquely identify a computer. Al-

though enforcing the access control policy from the previ-

ous paragraph suffices to establish that AdService never

directly accesses the local store, AdService interacts with

DeadlineManager, which has limited access to the local

store. Therefore AdService may indirectly affect the local

store’s contents. As before, in order to exclude this possibility,

we may need to trust large amounts of code in the system:

specifically any code that can access localStorage and can

be influenced (directly or indirectly) by AdService.

This is a problem of information-flow control for integrity:

component AdService should not influence key-value pairs

in the local store, even though it needs to interact with

components that use the store. Thus, we introduce and enforce

information-flow control policies that ensure the integrity of

uses of capabilities (such as the integrity of localStorage

against the influence of AdService) without needing to trust
large portions of the code base.

While in general integrity policies are stronger than access

control policies, in many cases they may be too coarse

because they conflate direct and indirect uses of capa-

bilities. For instance, our mashup’s security requires that

localStorage adheres to both an access control and an

integrity policy: ToDoList or DeadLineManager should not

use localStorage and AdService should not influence

uses of localStorage. Separating the two kinds of policies

allows the specification of flexible security requirements for

capabilities.

B. Overview of approach

We propose two extensions to capability-safe languages that

allow programmers to annotate capabilities with declarative

policies restricting their use. An access control policy is a

white-list of components; when associated with a capability c,
only white-listed components are allowed to use c. An integrity
policy is also a white-list of components; when associated with

a capability c, only white-listed components are allowed to

(directly or indirectly) influence the use of c. For both access
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control and integrity, we give a semantic definition and present

an enforcement mechanism that provably achieves security.
We enforce access control policies with higher-order con-

tracts [12]. Contracts provide a run-time mechanism to enforce

access control policies without modifying existing components

of the program. In the event of an attempted policy violation

(i.e., a component C tries to use a capability but C is not on

that capability’s white-list), the contract mechanism intervenes

and prevents the use. Moreover, the contract mechanism

accurately detects which component violates the policy [13],

simplifying debugging and auditing.
To enforce integrity policies, we must track and control

information-flow within the system. This requirement is be-

yond the grasp of higher-order contracts, so we use a security

type-system [14, 15]: a well-typed component is guaranteed

to use capabilities according to their integrity policies (i.e.,

only information from a capability’s white-listed components

influences the use of the capability).
These two independent enforcement mechanisms yield a

gradual path for increasing the security of programs com-

ponent by component. Programmers can start with a basic

program that meets capability safety and then add access

control policies to important capabilities and components. If

beneficial, the programmer can invest more time to isolate the

use of sensitive capabilities from external influences by adding

integrity policies to sensitive capabilities and type annotations

to sensitive components.
Our work makes the following contributions:

• We formalize capability safety using a simple calculus.

This general model is a sound basis for exploring capa-

bilities in a language-agnostic setting.

• We extend our model with declarative access control and

integrity policies for capabilities. This greatly simplifies

reasoning about the use of capabilities without needing

to trust large portions of the code base.

• We prove that we can soundly enforce these declarative

policies using higher-order contracts and a security type

system. Moreover, we show that these mechanisms can

be soundly composed.

• We use standard programming language abstractions and

techniques to both model and enforce the policies. This

bodes well for the practicality of both the security guar-

antees and enforcement mechanisms.

The rest of this paper is structured as follows. In Sec-

tion II, we present a core model of a capability-safe language.

Section III introduces access control policies for capabili-

ties, states the semantic guarantee, and shows how contracts

can enforce it. Section IV introduces integrity policies as a

noninterference guarantee [16] and gives a mechanism for

specifying and enforcing them. In Section V, we describe

how higher-order contracts allow the sound composition of

components with different policies, thus allowing correct en-

forcement of both access control policies and integrity policies

within a single system, despite the presence of untrusted code.

In Section VI we discuss how our model applies to real lan-

guages and how to implement our extensions to capability-safe

Terms e = v | x | e e | μx:τ.e
| e+ e | e− e | e∧ e | e∨ e
| zero?(e) | if e e e

| Kl(k e) | new | use(e)

Values v = b | λx:τ.e
b = 0 | 1 | − 1 | . . . | tt | ff

Labels k, l, p, q ∈ L

Types τ = Int | Bool | τ→τ | Cap

Fig. 2. CapPCF: source syntax

clientserverKl(k )

Fig. 3. CapPCF: components, component boundaries and labels

languages. Section VII reviews related work and Section VIII

concludes.

II. A CORE CALCULUS FOR CAPABILITIES

In this section we introduce CapPCF, an extension of

Plotkin’s strongly typed call-by-value PCF [17]. We show

that CapPCF is capability-safe. This makes CapPCF a suit-

able foundation on which to develop further extensions in

Sections III–V.

Figure 2 shows the source syntax of CapPCF. In addition to

the standard constructs of PCF, CapPCF includes constructs to

designate boundaries between components and to create and

use capabilities.

Construct Kl(k e) defines a boundary between component e
and the context in which it appears. Label k is the server

label and identifies the component. Label l is the client

label and identifies the context in which the term appears.

Server and client labels on component boundaries represent

security principals in CapPCF. Figure 3 depicts component

composition and component boundaries in CapPCF.

We use component boundaries both to syntactically iden-

tify the origin of code (i.e., the component to which code

belongs) and (in following sections) to help restrict the use of

capabilities. In real languages, components may correspond

to functions or objects, and labels may correspond to names

or source locations of modules, classes, scripts or packages to

which the component belongs. We further discuss components

in real languages in Section VI but note here that component

boundaries in CapPCF are a modeling technique. In partic-

ular, programmers do not need to explicitly add component

boundary labels to their programs, as they can be constructed

automatically from the structure of the code.

Capabilities in CapPCF are abstract objects drawn from an

enumerable set. Term new creates a new abstract capability

and term use(e) uses a capability. To reason about how

capabilities are used in a CapPCF program, we record the uses

of capabilities in the usage trace of the program. Since our
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Values v = ... | γ
Capabilities γ = c | Gl{k γ }

Fig. 4. CapPCF: intermediate syntax

E = E e | v E | E + e | v+E | E − e | v−E

| E ∧ e | v ∧E | E ∨ e | v ∨E | use(E)

| zero?(E) | if E e e | Kl(kE )

Fig. 5. CapPCF: evaluation contexts

goal is to investigate which parts of a program affect the use

of capabilities, abstract capabilities associated with a general

use operation are sufficient and reduce unnecessary clutter.

Abstract capabilities in CapPCF can be thought of as modeling

resources such as file-system entities, DOM nodes, or APIs

that interact with the external environment.

Note that CapPCF is a strongly typed language with a

standard type system, omitted here for conciseness. Types do

not have any runtime significance and type annotations can be

erased after type checking. Thus we ignore them throughout

the paper when discussing examples or the semantics of

CapPCF and its extensions unless needed.

A. Semantics of CapPCF

We define the behavior of CapPCF programs with a re-

duction semantics [18]. Figure 4 displays the intermediate

syntax of the language as an extension of its source syntax

and Figure 5 defines the evaluation contexts. A program state

is a pair 〈U, e〉 of a usage trace U and a term e.

Reduction relation → for CapPCF (Figure 6) extends the

standard rules of PCF with rules for the additional features of

our language: component boundaries and capabilities.

When a component calls a function f that belongs to another

component, the argument crosses the component boundary. To

express this, component boundary Kl(k f ) around function f
reduces to the term λx.Kl(k f Kk(lx)). Note that the argu-

ment x is now wrapped in a component boundary that marks x
as originating from the client component: Kk(lx). This ensures

that when the function is applied, we correctly track the origin

of the actual argument.

When a component boundary wraps around a capabil-

ity Kl(k γ ), it reduces to a guard Gl{k γ }. Guards are values,

and as such can migrate from one component to another.

In essence, they establish a proxy that mediates uses of an

abstract capability between the capability’s server and its

client. Thus, in CapPCF, capabilities include both abstract

capabilities c and guards Gl{k γ }. In the remainder of the paper,

unless otherwise indicated, we use the term “capability” to

refer to both abstract capabilities and guards.

Unlike component boundaries around functions and capa-

bilities, a component boundary around a base value, Kl(k b),
lets client l absorb b, i.e., the boundary disappears. This is

because we are not concerned with tracking the origin of base

values such as integers and booleans.

〈U,E [· · · ]〉 → 〈U,E [· · · ]〉
Kl(k v ) . λx.Kl(k v Kk(lx)) if v = λx.e
Kl(k γ ) . Gl{k γ }
Kl(k b) . b

〈U,E [new]〉 → 〈U,E [c]〉 where c is fresh

〈U,E [use(γ)]〉 → 〈U :: c, E [γ]〉
where γ = Gln{kn ...Gl1{k1 c }...}

Fig. 6. CapPCF: reduction semantics

Reduction of term new creates a new capability c. Use of

a capability (use(γ)) records the use of capability c at the

bottom of the stack of guards of γ (if any) by appending it to

the usage trace U , and evaluates to γ.

B. Ownership annotations

As mentioned above, we want to prove capability safety for

CapPCF, i.e., that a component can add a capability to the

usage trace only if it uses a capability the component created

or received from other components. To formalize this property,

we apply the standard technique of Dimoulas et al. [19] for

defining and establishing the correctness of contract systems.

In particular, we use ownership annotations as a mechanism to

describe which components possess which capabilities at every

step of program execution. An ownership annotation on a term

specifies the term’s originating component. By establishing

that ownership is invariant during execution of well-formed

programs, we show that components can possess only capabil-

ities that they create or obtain from other components through

component boundaries. Note that ownership annotations are a

modeling technique to establish capability safety, and do not

place any burden on either the programmer or the runtime of

a real language. The remainder of this section gives a brief

overview of the proof technique.2

As a first step, we extend the syntax of CapPCF with

ownership annotations |e|l, which indicates that component l
is the owner of term e. The extended syntactic categories of

terms, values, and capabilities each include their annotated

versions. Ownership annotations describe the ownership of

terms independently of component boundaries. Yet, in order

for these annotations to be meaningful, they need to agree with

the notion of ownership derived from component boundaries

in the source code. We express this as a well-formedness

relation on source terms, G; l � e. Here, G is an environment

that associates variables to ownership labels. Term e is well

formed under environment G and owner l if its sub-terms are

also well-formed under the same owner and environment, with

two exceptions. The rules corresponding to these exceptions

appear in Figure 7.

First, the owner of a term changes when checking the well-

formedness of a term inside a component boundary. This is

2We refer the interested reader to Dimoulas et al. [13, 19] for a more
detailed explanation.
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G; k � e k �= l

G; l � Kl(k |e|k )
G 	 {x : l}; l � e

G; l � λx.e

G 	 {x : l}; l � e

G; l � μx.e

Fig. 7. CapPCF with annotations: well-formed source terms

El = El e | v El | El + e | v+El | El − e

| v−El | El ∧ e | v ∧El | El ∨ e | v ∨El

| zero?(El) | if El e e | Kk(lElo )

| Kk(pEl ), l �= lo | |Elo |l | |El|p, l �= lo
Elo = [ ] | Elo e | v Elo | Elo + e | v+Elo

| Elo − e | v−Elo | Elo ∧ e | v ∧Elo

| Elo ∨ e | v ∨Elo | zero?(Elo) | if Elo e e

Fig. 8. CapPCF with annotations: evaluation contexts

reflected in the first rule in Figure 7. The owner of the term

that resides in the component boundary is the component with

server label k. The rule also requires that the term inside the

component comes with an explicit k ownership annotation.

This enforces that ownership annotations and labels on com-

ponent boundaries are in agreement.

Second, the bodies of (recursive) function abstractions are

checked for well-formedness under an environment extended

with the bound variable of the abstraction. This is reflected

in the last two rules in Figure 7. In the new environment, the

owner of the variable is the owner of the abstraction, reflecting

that the context of the abstraction provides the argument

applied to it. That is, whoever has the function can decide

what arguments to provide to it.

Finally, the well-formedness rules forbid ownership anno-

tations in any place except directly inside boundary terms,

which tightens the correspondence between annotations and

components in source code.

The second step for turning ownership annotations into a

mechanism for reasoning about ownership is to modify the

reduction relation of CapPCF so that it propagates ownership

annotations. To achieve that, we must also annotate evaluation

contexts with the label of the owner of the hole, i.e., the server

label of the component boundary or the ownership annotation

label that is closest to the hole (Figure 8). We use label lo to

denote the owner of the whole program and Elo for evaluation

contexts without either a component boundary or an ownership

annotation along the path to the hole.

With the annotated evaluation contexts in hand, we define

the reduction relation of CapPCF with annotations in Figure 9.

We use notation ||e||l to indicate that e is wrapped with zero

or more ownership annotations, all with label l, and e itself

does not have an ownership annotation:

||e||l iff |...|e|l...|l and e �= |e′|k for any k.

We write l̄ to denote a set of labels. Note that the reduction

rules require that the redex have the same owner as the evalua-

tion context, either implicitly (through the lack of annotations)

〈U,El[· · · ]〉 → 〈U,El[· · · ]〉
||n1||l + ||n2||l . n where n1 + n2 = n
if ||tt||l e1 e2 . e1
||λx.e||l ||v||l . |{|v|l/x}e|l
μx.e . {|μx.e|l/x}e
Kl(k ||λx.e||p ) . λx.Kl(k ||λx.e||p Kk(lx))
Kl(k γ ) . Gl{k γ }
Kl(k ||b||p ) . b

〈U,El[new]〉 → 〈U,El[|c|l]〉 where c is fresh

〈U,El[use(||γ||l)]〉→ 〈U :: c, E [||γ||l]〉
where γ = Gln{kn ||...Gl1{k1 ||c||m1 }...||mn }

Fig. 9. CapPCF with annotations: reduction semantics

or explicitly (with an annotation). Thus, program states where

terms have more than one owner (i.e., ownership annotations

with different labels) may get stuck. The absence of such stuck

states during the evaluation of well-formed terms indicates that

the semantics of CapPCF respects a “single-owner policy”:

each term is owned by a single label.

The rules for primitive operators, conditionals, capability

creation and capability use are straightforward. One point

worth mentioning is that when these terms produce base

values, these values are without ownership annotations and

implicitly acquire the owner of their context, which coincides

with the implicit owner of the operator. Also, new abstract

capabilities are explicitly annotated with the label of their

creator so that we can easily track their origin.

The rules for function application and the fix-point operator

are the most involved. They are the only rules in our model

where a term e flows from one context (the evaluation context)

into another (the abstraction body). We make this flow explicit

by wrapping e with the owner of the evaluation context before

installing e in the abstraction body.

The rules for component boundaries around functions and

capabilities do not manipulate ownership annotations, because

these rules do not cause values to cross component bound-

aries. Since ownership annotations and labels on component

boundaries both express the notion of ownership, keeping one

separate from the other makes reasoning about ownership in

terms of ownership annotations independent of component

boundaries. Therefore ownership annotations become a spec-

ification against which we can validate the way component

boundaries mark code ownership.

In contrast to the other rules for component boundaries, the

rule for component boundaries around base values, Kl(k ||b||p ),
removes any ownership annotations around b and the sur-

rounding context implicitly adopts b. This is the only rule

that modifies the ownership of a term. Base values, unlike

functions or capabilities, do not encapsulate the right to use a

resource and thus the surrounding context can safely absorb

them.
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C. Properties of CapPCF

Using ownership annotations, we can define a security

property for CapPCF. CapPCF is capability safe if and only

if a component can directly cause a capability to be recorded

in the usage trace only if it owns the capability or a guard

for the capability. We define capability safety formally as a

property of the Cap languages family, which includes CapPCF

and extended versions defined in later sections.

Definition 1 (Capability Safety). A Cap language is capability

safe iff for all terms e0 such that ∅; lo � e0 and 〈∅, e0〉 ∗→
〈U :: c, e1〉, there exists v such that 〈∅, e0〉 ∗→ 〈U,El[use(v)]〉
∗→ 〈U :: c, e1〉, where v = ||Gln{kn ||...Gl1{k1 ||c||m1 }...||mn }||l

and ln = l (if it exists).

The definition states that whenever evaluation of a pro-

gram e0 reaches a state where it records the use of a capabil-

ity c, the previous state is a state 〈U, e〉 where a component

with label l uses capability c, either directly or through a

guard Gl{k γ }. If used directly, the component with label l
owns the capability; if used through a guard, the component

with label l owns the guard and the client label on the guard

is l.
An important prerequisite to showing that CapPCF satisfies

capability safety is the definition and proof of complete

mediation for CapPCF programs. In well-formed programs,

component boundaries are the only points where the owner

of an embedded term may differ from that of its containing

context. If the evaluation of a well-formed program does

not preserve this invariant, programs may get stuck. Thus

the absence of stuck states for all well-formed programs

establishes that component boundaries and guards separate

components throughout evaluation and completely mediate the

flow of values between components:

Definition 2 (Complete Mediation). A Cap language satisfies
complete mediation iff for all terms e0 such that ∅; lo � e0
either 1) 〈∅, e0〉 ∗→ 〈U, v〉 or, 2) for all terms e1 and usage
trace U1 such that 〈∅, e0〉 ∗→ 〈U1, e1〉, there exists term e2
and usage trace U2 such that 〈U1, e1〉 → 〈U2, e2〉.

We can now prove that well-formed CapPCF programs do

not reach stuck states:3

Theorem 3. CapPCF satisfies complete mediation.

Complete mediation is sufficient to derive that CapPCF

meets capability safety:

Theorem 4. CapPCF is capability safe.

III. CONTROLLING WHO CAN USE CAPABILITIES

In this section we extend the capability-safe language Cap-

PCF with declarative access control policies that restrict who

3The proof is a simplification of the progress-and-preservation complete
monitoring proof of Dimoulas et al. [19]. We omit the details for conciseness.
It is also easy to prove that ownership annotations do not change the
meaning of well-formed programs, and thus results proved for CapPCF with
annotations can be transferred to CapPCF.

can use a capability. Recall the web mashup example from

the Introduction, and consider the following CapPCF term

virtualStore, which is a model of a VirtualStore function

that intends to limit access to the local store.4

virtualStore ≡ let localStore= ...

in λx.if (test x) use(localStore) ...

In this term, variable localStore represents the local store, and

virtualStore is a function that checks test to restrict the use

of localStore. Unfortunately, even though this code looks like

a reasonable attempt to restrict access to the local store, it

allows localStore to escape to clients of virtualStore (such

as the ToDoList and DeadlineManager components). This

is because use(localStore) evaluates to localStore, and thus

function virtualStore returns the localStore capability. As a

result, toDoList can use localStore directly once it provides

an argument that satisfies test:

toDoList ≡use(KtoDoList(virtualStore virtualStore) 42)

As the example demonstrates, capability safety alone is not

sufficient to guarantee restrictions on who can use capabilities.

Suppose we extend CapPCF with access control policies on

capabilities, and write cq̄ for abstract capability c with access

control policy q̄: the set of labels of components that are

allowed to use the capability. Intuitively, enforcing access

control means that if c has access control policy q̄, then the

only components that use cq̄ or a guard for cq̄ are components

with labels in the whitelist q̄. Formally:

Definition 5 (Access Control). A Cap language enforces
access control iff for every term e such that ∅; lo � e, if

〈∅, e〉 ∗→ 〈U,El[use(v)]〉 → 〈U :: cq̄, E
l[v]〉

then v = ||Gln{ln−1 ...||Gl2{l1 ||cq̄||l1 }||l2 ...}||ln and l ∈ q̄.

CapPCF does not enforce access control. We extend Cap-

PCF to the language ac-CapPCF, which provides constructs to

attach and enforce access control policies on capabilities.

A. Semantics of ac-CapPCF

Figure 10 presents the source syntax of ac-CapPCF. We

replace CapPCF’s new construct with newq̄ that creates a new

capability with access control policy q̄. Term newq̄ evaluates

to an abstract capability cq̄ , i.e., an abstract capability with the

access control policy attached.

As we established in Section II, component boundaries are

sufficient to track the flow of capabilities (Definition 1 and

Theorem 4). Thus we use component boundaries, and the

complete mediation they provide, to enforce access control

policies in ac-CapPCF. In addition, each component boundary

Kl(k κ, e) is augmented with a contract κ. Contracts [20, 21]

are executable specifications that regulate the exchange of

values between components. In ac-CapPCF, contracts allow

components to specify additional access control policies on

capabilities they consume or return.

4The let x= e1 in e2 construct is syntactic sugar for (λx.e2) e1.
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Types τ = ... | con(τ)
Contracts κ = base | κ �→ κ | capp̄

base = int | bool

Terms e = ... | Kl(k κ, e) | newq̄

Fig. 10. ac-CapPCF: syntax

Terms e = ... | errorl

Capabilities γ = cq̄ | Gl{k γ, p̄}

Fig. 11. ac-CapPCF: intermediate syntax

There are three kinds of contracts. Contract κ1 �→ κ2 is

a contract for a function with contract κ1 for the argument

and contract κ2 for the result. Base contracts, ranging over

base, check base values. Capability contract capp̄ specifies an

access control policy on capabilities that flow through it.

With the exception of specifying capability policies, our

contracts are limited to type-like properties. It is straightfor-

ward to extend the contract language with arbitrary behavioral

contracts but we opt for a simple language to avoid clutter

from features that are orthogonal to our goals. An alert reader

may wonder why we choose a contract system instead of

an access control type system. As we show in Sections IV

and V, contracts offer advantages over type systems in our

setting: they allow the dynamic composition of components

that enforce different kinds of security policies on capabilities.

In addition, contracts require minimum modifications to source

code, i.e, annotations on new constructs, and otherwise treat

components as black boxes.

The intermediate syntax of ac-CapPCF is shown in Fig-

ure 11. As previously mentioned, abstract capabilities now

include an access control policy annotation: cq̄ . We also add

access control policies to guards: Gl{k γ, p̄}. If a contract fails

during execution, it evaluates to an error term errork, where

label k identifies the component that is responsible for the

contract breach in the blame assignment tradition of contract

systems [12].

Figures 12 and 13 show the changes to the evaluation

contexts and reduction rules of CapPCF that are necessary

to support access control policies and contract checking in ac-

CapPCF. The reduction rule for creating an abstract capability

now annotates the resulting capability with its access control

policy. Note that the policy annotation on an abstract capability

does not change after its creation.

Rules for component boundaries create new boundaries and

guards, as in CapPCF. A component boundary for a function,

Kl(k κ1 �→ κ2, v ) applies contracts κ1 and κ2 to the argument

and the result of a function, respectively. A capability contract

capp̄ on a component boundary evaluates to a guard Gl{k γ, p̄}
with access control policy p̄. This policy further restricts who

may use the enclosed capability γ to components in p̄.

When a capability wrapped in a stack of guards is used,

the reduction rule checks that the client ln is allowed to

use capability γ according to the policies p̄i on the guards

E = ... | Kl(k κ,E )

Fig. 12. ac-CapPCF: evaluation contexts

〈U,E [· · · ]〉 → 〈U,E [· · · ]〉
Kl(k κ1 �→ κ2, v ) . λx.Kl(k κ2, v Kk(lκ1, x))
Kl(k capp̄, v ) . Gl{k v, p̄}
Kl(k base, b) . b

〈U,E [newp̄]〉 → 〈U,E [cp̄]〉 where c is free

〈U,E [use(γ)]〉 → 〈U :: cp̄, E [γ]〉
where γ = Gln{kn ...Gl1{k1 cp̄, p̄1 }..., p̄n }
if for all 1 ≤ i ≤ n, ln ∈ p̄i and ln ∈ p̄

〈U,E [use(γ)]〉 → errorq

where γ = Gln{kn ...Gl1{k1 cp̄, p̄1 }..., p̄n } and

q = lj , if for all j < i ≤ n, ln ∈ p̄i and ln �∈ p̄j , or

q = k1, if for all 1 ≤ i ≤ n, ln ∈ p̄i and ln �∈ p̄

Fig. 13. ac-CapPCF: reduction semantics

and the policy p̄ on the enclosed abstract capability: ln must

appear in all of the policies. Put differently, the access control

policy for the capability at the bottom of a stack of guards is

the intersection of all the policies in the stack. If the check

fails, the contract system raises a contract error blaming either

the client li of the topmost guard whose policy p̄i does not

contain ln or the server k1 if ln appears in each p̄i but not

in p̄. In the remainder of this section, we explain and establish

the correctness of this blame assignment strategy as part of a

complete monitoring property for ac-CapPCF, which in turn

is sufficient to show that ac-CapPCF correctly enforces access

control.

B. Obligation annotations in ac-CapPCF

To prove that ac-CapPCF satisfies the access control prop-

erty, we develop a variant of ac-CapPCF with ownership

annotations, and establish a new complete mediation property.

The revised property also guarantees the correctness of blame

assignment [13]. For this, we borrow obligation annotations
from Dimoulas et al. [19] in addition to ownership anno-

tations. Obligation annotations 
capp̄�k decorate capability

contracts in the source code, and indicate that component

with label k is responsible for uses of the corresponding

capability according to policy p̄. When the semantics reduces

component boundaries for capabilities to guards, it propagates

the obligation annotation on the capability contract to the

policy of the guard:

El[Kl(k 
capp̄�q, v )] → El[Gl{k v, 
p̄�q }]

Since the creation site of a capability also imposes an access

control policy on the resulting capability, we decorate the

policy with an obligation annotation too. Similar to capability

contracts, the reduction rule for new propagates the obligation

9



l ∈ q̄

G; l � new�q̄�l
l; k � κ G; k � e k �= l

G; l � Kl(k κ, |e|k )
Fig. 14. ac-CapPCF with annotations: well-formed source terms

l; k � base l; k � 
capp̄�l
k; l � κ1 l; k � κ2

l; k � κ1 �→ κ2

Fig. 15. ac-CapPCF with annotations: well-formed contracts

annotation to the policy on the abstract capability:

El[new�p̄�k ] → El[c�p̄�k ]

We use obligation annotations to prove that in the event

of a contract breach, the correct component is blamed. In

order to program effectively with contracts, a programmer

must understand which contracts a component is responsible

for satisfying; obligation annotations are proof mechanisms

that express these responsibilities explicitly.

With the exception of obligation annotations, we can easily

adapt the well-formedness relation, evaluation contexts, and

reduction rules of CapPCF with annotations for ac-CapPCF

with annotations. We focus here only on the interesting parts of

the well-formedness relation that concern contracts, obligation

annotations and capability policies, and omit the other rules.

Figure 14 displays the new well-formedness rules for ca-

pability creation and component boundaries. The first rule

requires that the owner of a newp̄ construct is listed in the

access control policy, i.e., l ∈ newp̄. In addition, it expects

the owner of the creation site to appear as the obligation

annotation on the policy of new. This reflects that the creator

of a capability imposes the policy on it and must treat the

capability in a manner consistent with the policy. The second

rule, for component boundaries, is similar to the corresponding

rule in CapPCF with an additional requirement that contract κ
is well-formed: l; k � κ.

Figure 15 defines well-formedness for contracts l; k � κ.

Here, k is the label of the provider of the value that the

contract checks, and l is the label of the context that consumes

the value. Base contracts are trivially well-formed. Well-

formedness of capability contracts requires that the obligation

annotation must match the client l. This indicates that l
receives a capability under a particular policy and agrees to

treat it accordingly. Function contracts are well-formed when

their subcontracts are well-formed. Note that the rule for

function contract κ1 �→ κ2 flips the positions of k and l when

checking κ1. This switches responsibility between the client

and the server for the different subcontracts. This is consistent

with the label flipping that the reduction rule for function

component boundaries uses when constructing the component

boundary for the argument of the function.

C. Security of ac-CapPCF

We can now define and prove an extended complete medi-

ation property. The definition extends the complete mediation

property for CapPCF (Definition 2) with an additional case

that guarantees correct blame assignment for contract failures.

Namely, the contract system blames a component only for uses

of a capability that violate one of its obligations.

Definition 6 (Complete Mediation, revisited). A Cap language
satisfies complete mediation iff for all terms e0 such that
G; lo � e0 either

1) 〈∅, e0〉 ∗→ 〈U, v〉 or,
2) for all e1 and U1 such that 〈∅, e0〉 ∗→ 〈U1, e1〉, there

exists e2 and U2 such that 〈U1, e1〉 → 〈U2, e2〉 or,
3) 〈∅, e0〉 ∗→ 〈U1, E

kn+1 [use(||v||kn+1)]〉 → 〈U2, error
q〉

where v =

Gkn+1{kn ||...Gk2{k1 ||c�p̄�k1 ||k1 , 
p̄1�k2 }...||kn , 
p̄n�kn+1 },
n ≥ 1 and q = kj , 1 ≤ j ≤ n+ 1, if forall j < i ≤ n,
kn+1 ∈ p̄i and kn+1 �∈ p̄j or, q = k1, if forall 1 ≤ i ≤ n,
kn+1 ∈ p̄i and kn+1 �∈ p̄.

Notice that complete monitoring entails that the contract

system blames a component q in only two cases: 1) q uses

a capability via a guard while it agreed on a policy (that of

the guard) that does not include q or, 2) q obtains a capability

with a policy that does not include component m, passes it

to another component through a contract with a policy that

does include m and eventually, m uses this capability. The

latter also clarifies blame assignment when the policy on an

abstract capability, such as p̄ above, is violated: the creator

of the capability is blamed if they apply inconsistent policies

when creating and propagating the capability. Towards the end

of this section, we illustrate the blame behavior with concrete

examples.
The proof of complete mediation for ac-CapPCF is a

straight-forward application of the standard complete moni-

toring proof for contracts [19].

Theorem 7. ac-CapPCF satisfies complete mediation.

Using the complete mediation theorem, we establish that

ac-CapPCF is capability safe:

Theorem 8. ac-CapPCF is capability safe.

In addition, we define and prove for ac-CapPCF a revised

access control property for well-formed programs. The revised

version of access control (Definition 9) is stronger than the

initial one (Definition 5) and allows components to refine the

access control policies on capabilities: in addition to requiring

that the component l that uses a capability cp̄ appears in p̄, l
must also appear in each policy p̄i of the guards around c.

Definition 9 (Access Control, revisited). A Cap language
enforces access control iff for every term e such that ∅; lo � e,
if 〈∅, e〉 ∗→ 〈U,El[use(v)]〉 → 〈U :: c, El[v]〉 then v =
||Gkn+1{kn ||...Gk2{k1 ||c�p̄�k1 ||l1 , 
p̄1�k2 }...||kn , 
p̄n�kn }||kn+1 ,
l ∈ p̄, and for all 1 ≤ i ≤ n, we have l ∈ p̄i.

Theorem 10. ac-CapPCF enforces access control.

Revisiting the example from the beginning of this Section,

recall that function virtualStore uses capability localStore, but
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incorrectly propagates it to clients. Assume that capability

localStore has access control policy {virtualStore} on it (i.e.,

only component virtualStore, the component that function

virtualStore belongs to, can access the capability). Consider

the following term, which shows component toDoList us-

ing the capability it extracts from the insecure virtualStore
function. Note that there is a component boundary between

components virtualStore and toDoList, i.e., the example term

belongs to toDoList.

use((KtoDoList(virtualStore int �→ cap{virtualStore},

virtualStore)) 42)

Under ac-CapPCF semantics, this term raises a contract vi-

olation errortoDoList, because when component virtualStore
passes the localStore capability to component toDoList, it im-

poses the access control policy {virtualStore}, which forbids

toDoList to use the localStore capability.

The following term also evaluates to a contract violation.

use((KtoDoList(virtualStore int �→ cap{virtualStore,toDoList},

virtualStore)) 42)

This term is the same as the previous one, except that the

access control policy on the capability contract for the value

returned by virtualStore is {virtualStore, toDoList} instead

of {virtualStore}. This time the capability contract fails and

blames virtualStore because virtualStore mislead toDoList
into violating the original policy on the capability by providing

it under a more permissive contract.

As a final remark in this section, notice that the blame

strategy of ac-CapPCF is not the only correct option. For

instance, instead of blaming the last component that disagrees

on the access control policy, a different semantics could blame

the first or all such components. We can easily modify the

reduction rule for use and the definition of complete moni-

toring to establish the correctness of the alternative semantics.

These changes do not affect the access control property. The

decision of which strategy is the most preferable is an issue of

design, rather than correctness, to be settled with programming

experience. In addition, it is worth mentioning that capability

contracts can accommodate different interpretations of the

access control policy than the one we adopt. For example,

we can obtain an interpretation reminiscent of history-based

access control [22] by requiring, upon the use of a capability

through a stack of guards, that not only the owner of the

use appears in all related policies but also the owners of the

guards. Similarly, imposing an inconsistent access control pol-

icy could cause a contract failure at the component boundary.

This gives rise to a less permissive interpretation of access

control but detects failures more quickly. Finally, by having

the component boundary for a capability check whether its

client label appears in the policy of the capability, capability

contracts can enforce the confidentiality of capabilities, i.e,

serve as a dynamic monitor for (explicit) information flow for

capabilities.

IV. CONTROLLING WHO INFLUENCES CAPABILITIES

Access control restricts which components may use a given

capability. However, even if a component is not allowed

to use a capability directly, it can still influence its use.

Recall the web mashup example from Section I, and that

DeadlineManager needed both to communicate with the

untrusted AdService and to use the local persistent store via

the VirtualStore component. Security of this web mashup

relied on AdService being unable to influence what key-value

pairs were stored, which intuitively requires restricting the flow

of information from AdService to the local store.

The following terms model DeadlineManager’s interac-

tion with both AdService and VirtualStore. First, we

redefine virtualStore so that it does not violate the access

control policy that localStore is not used outside virtualStore:

virtualStore ≡ let localStore= ...

in λx.if (test x) (use(localStore); tt) ...

The deadline manager term deadlineManager composes

virtualStore and an adService plugin:

deadlineManager ≡
(KdeadlineManager(virtualStore bool �→ bool, virtualStore))
KdeadlineManager(adService bool, adService)

We assume that the code that defines abstract capability

localStore gives it an access control policy of {virtualStore},

which prevents adService from using it directly. However,

assuming that the evaluation of test depends on x, a boolean

value supplied by adService influences whether virtualStore
uses abstract capability localStore. Even though the access

control policy is not violated, we do not achieve the desired

security goal: ensuring the integrity of the uses of localStore.

In this section we present i-CapPCF, which extends ac-

CapPCF with integrity policies that restrict which components

may influence the use of a capability and uses an information-

flow type system [14, 15] to enforce these integrity policies.

An integrity policy q̄ is a whitelist of labels of components

that are allowed to influence the use of a capability. We extend

the new construct with integrity policy annotations: term

newp̄,q̄ creates a capability with access control policy p̄ and

integrity policy q̄. The i-CapPCF type system uses integrity

policy annotations to reject programs which use capabilities

inconsistently with respect to the associated integrity policies.

A. Integrity for capabilities

We formalize integrity for capabilities as an instance of

termination-insensitive noninterference [23]. Before diving in

to the formal definitions, we examine the intuition behind

integrity policies.

Given capability c with integrity policy q̄, we refer to the

components that are allowed to influence the use of c (i.e.,

components with labels q̄) as trusted, and refer to all other

components as untrusted. Given a collection of capabilities

c1 . . . cn, the trusted components are the union of the trusted
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components of all the capabilities (i.e., a component is un-

trusted only if it is untrusted by all the capabilities).

Suppose we have a collection of capabilities c1 . . . cn and

two programs that differ only in the behavior of the untrusted

components. If both programs enforce integrity policies, and

both programs terminate, then their usage of capabilities

c1 . . . cn should be identical. This is because only trusted

components should influence the use of capabilities, and the

trusted components of both programs behave identically.

To formalize the notion of two programs being equivalent

in the behavior of trusted components, we first define term

equivalence up to a set of labels l̄.

Definition 11 (Term Equivalence up to l̄). Term equivalence

up to l̄ is the least congruence relation on terms l̄∼ such that
e1

l̄∼ e2 if e1 = Kp(k e′1 ) and e2 = Kp(k e′2 ) and k ∈ l̄.

That is, the term equivalence relation relates two terms if

they are different implementations of an untrusted component

(Kp(k e′1 )
l̄∼ Kp(k e′2 ) where k ∈ l̄), and is otherwise a homomor-

phism on term constructors (e.g., e1 + e2
l̄∼ e′1 + e′2 if e1

l̄∼ e′1
and e2

l̄∼ e′2 ).

Recall that a usage trace records the use of abstract capabili-

ties during program execution. Two usage traces are equivalent

up to a set of labels of untrusted components l̄ if the two traces

are equal after removing use of capabilities that are allowed

to be influenced by l̄.

Definition 12 (Usage Trace Equivalence up to l̄). Consider
usage traces U such that recorded capabilities are of the form
cp̄,q̄ where p̄ is the access control policy and q̄ the integrity
policy associated with the capability. Let �U�l̄ be the filter
that removes from U all capabilities cp̄,q̄ such that q̄ ⊆ l̄. Two
traces are equivalent up to l̄, denoted U1

l̄∼U2, iff �U1�
l̄ =

�U2�
l̄.

Using these definitions, we can now formally specify our

non-interference security property, that if two programs differ

only in the behavior of untrusted components, then their usage

of the trusted components’ capabilities should be identical.

Definition 13 (Integrity for Capabilities). Term e1 satisfies
integrity for capabilities if for all sets of component labels l̄
and for all terms e2 such that e1

l̄∼ e2, if 〈∅, e1〉 ∗→ 〈U1, v1〉
and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.

A term e1 satisfies integrity for capabilities if for all sets of

labels of untrusted components l̄ and pairs of terms e1 and e2
that are equivalent up to l̄, e1 and e2 behave equivalently with

respect to the use of capabilities that do not trust l̄.

The deadlineManager example from the beginning of this

section does not satisfy Definition 13. Consider another ex-

pression that replaces the code of component adService such

that test returns ff. The two expressions are equivalent up to

{adService}, and both terminate. However, the original term

produces a trace that records the use of localStore, whereas

the modified term does not.

Types τ = σl̄

σ = Int | Bool | τ1 p̄→ τ2 | Capq̄

Fig. 16. i-CapPCF: types

B. Type-based enforcement

Language i-CapPCF extends ac-CapPCF with integrity poli-

cies, which are enforced with a standard type-and-effect

information flow type system [24, 25, 26]. The syntax and

semantics of i-CapPCF are essentially the same as ac-CapPCF,

though functions λ[p̄]x:τ.e come with an extra annotation p̄
and newp̄,q̄ terms specify both an access control policy p̄
and an integrity policy q̄. Similarly, a capability value cp̄,q̄ is

annotated with both the access control policy p̄ and integrity

policy q̄ from the term newp̄,q̄ that created it. Integrity policy

annotations are necessary only for type checking, do not affect

computation, and can be erased before evaluation. In fact, the

annotations on capabilities are necessary only for proving that

the type system correctly enforces the policies.

Note that integrity policies and access control policies are

distinct, as are their enforcement mechanisms. Using contracts

together with security types allows us to use a precise dynamic

enforcement mechanism with accurate blame assignment for

access control together with a precise static enforcement

mechanism for information flow control.

The type system is based on an integrity security lattice

(L,⊆) with sets of program component labels as the elements,

set union as the join and set intersection as the meet. The top

element � is the set of all component labels in a program; the

bottom element ⊥ is the empty set.

The syntax for types in i-CapPCF is shown in Figure 16.

Base types σ include integers, booleans, function types, and

capability types Capq̄ , where q̄ lists the component labels that

are allowed to influence the use of capabilities of this type.

Function types, τ1
p̄→ τ2 also have an extra annotation p̄ that

is a lower bound on the policies of any capabilities used by

the function body. The type-checker can extract p̄ from the

source code of functions λ[p̄]x:τ.e. Types τ in i-CapPCF are

annotated base types σl̄, where superscript l̄ is an upper bound

on the components that have influenced the values of this type.

The typing judgment has the form Γ, l̄ � e : τ . Here, Γ is

a typing environment and l̄ is the program counter level: an

upper bound on the labels on components that influence the de-

cision to evaluate e. The typing rules are mostly standard [26].

Figure 17 presents the most interesting rules of our type system

and we discuss four of them here: the rules for type checking

capabilities and their creation and use, and the rules for type

checking component boundaries and guards.

The rule for using a capability, use(e), requires that any

component that could have influenced either the decision to

use the capability or which capability to use is allowed to do

so. That is, both the program counter level and the upper bound

on components that influence the result of e must be a subset

of integrity policy p̄. This prevents untrusted components from

using capabilities that originate from trusted contexts as well

12



Γ, l̄ � e1 : (τa
p̄→ σr̄)q̄

Γ, l̄ � e2 : τa
l̄ ∪ q̄ ⊆ p̄

Γ, l̄ � e1 e2 : σr̄∪q̄

Γ, l̄ � e : Capp̄q̄
p̄ ∪ l̄ ⊆ q̄

Γ, l̄ � use(e) : Capp̄q̄

Γ 	 {x : τa}, p̄ � e:τr

Γ, l̄ � λ[p̄]x:τa.e : (τa
p̄→ τr)

l̄

l̄ ⊆ q̄

Γ, l̄ � newp̄,q̄ : Capl̄q̄

Γ, l̄ ∪ {k} � e : τ � κ : τ ′ � τ ≤ τ ′

Γ, l̄ � Kl(k κ, e) : τ

l̄ ⊆ q̄

Γ, l̄ � cp̄,q̄ : Capl̄q̄

Γ, l̄ ∪ {k} � e : Capq̄p̄

Γ, l̄ � Gl{k e, l̄′ } : Capq̄p̄

Fig. 17. i-CapPCF: selected type-checking rules for terms

� int : Int� � int : Bool� � capl̄ : Cap
�
⊥

�− capl̄ : Cap
⊥
� �− int : Int⊥ �− int : Bool⊥

�− κ1 : τ1 � κ2 : τ2

� κ1 �→ κ2 : (τ1
⊥→ τ2)

�
� κ1 : τ1 �− κ2 : τ2

�− κ1 �→ κ2 : (τ1
�→ τ2)

⊥

Fig. 18. i-CapPCF: contracts type-checking rules

as preventing the use of trusted capabilities in ways that are

influenced by untrusted values.

A new capability, newp̄,q̄ , has type Capl̄q̄ , where q̄ is the

specified integrity policy, and l̄ is the program counter level.

This captures the intuition that a component k that influences

the decision to create a capability (i.e., k is in the program

counter level l̄) influences the use of that capability. Moreover,

we require that l̄ is a subset of q̄, enforcing that the integrity

policy is an upper bound on which components may influence

the use of a capability. Similarly, the rule for an abstract

capability value cp̄,q̄ gives it type Capl̄q̄ and requires that l̄
is a subset of q̄.

Typing a component boundary Kl(k κ, e) requires typing the

body e. Server label k is added to the program counter level

used to type e, reflecting that the code of e is determined

by component k. The contract κ is given a type via relation

� κ : τ , which assigns to κ the most permissive type that is

consistent with the structure of κ. Figure 18 presents this

relation; it uses a helper relation �− κ : τ to type contracts

in negative positions of function contracts. The type of the

component body e must be a subtype of the type of contract κ,

indicated by the relation � τ ≤ τ ′. The rule for guards is

a specialized version of the rule for component boundaries

that takes into account the capability type of the guarded

term. Notice that the access control policy does not affect the

typing judgment in accordance with our decision to separate

enforcement of access control and integrity policies.

Subtyping in our type system is mostly standard. Figure 19

presents the only non-standard rule in our system: subtyping

for capability types. The interesting part is the contravariance

of integrity policies: Capp̄q̄ is a subtype of Capp̄
′

q̄′ if integrity

q̄′ ⊆ q̄ p̄ ⊆ p̄′

� Capp̄q̄ ≤ Capp̄
′

q̄′

Fig. 19. i-CapPCF: subtyping rules

policy q̄′ is at least as restrictive as q̄, i.e., if q̄′ ⊆ q̄. Intuitively,

this means that if a capability’s integrity policy allows only

components q̄ to influence its use, it is sound to allow only

a subset of those components to influence its use. As a

consequence, Cap⊥� is the most permissive capability type,

and Cap�⊥ is the most restrictive (but uninhabited) type.

C. Security of i-CapPCF

As for ac-CapPCF, we prove that i-CapPCF is capability

safe and enforces access control:

Theorem 14. i-CapPCF is capability safe.

Theorem 15. i-CapPCF enforces access control.

Moreover, the type system of i-CapPCF enforces the in-

tegrity property for well-typed programs:

Theorem 16 (Integrity for Capabilities). If ∅, {lo} � e1 : τ ,
for all terms e2 such that ∅, {lo} � e2 : τ , and e1

l̄∼ e2, if
〈∅, e1〉 ∗→ 〈U1, v1〉 and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.

Note that we consider only well-typed terms, since ill-typed

terms will not be executed. We prove this theorem using

a straightforward adaptation of Pottier and Simonet’s [25]

noninterference proof technique.

Revisiting the example from the beginning of the section

(now decorated with types), we can see that it does not

type check if localStore is annotated with the integrity policy

{virtualStore, deadlineManager}:

virtualStore ≡
let localStore:Cap

{virtualStore,deadlineManager}
{virtualStore,deadlineManager} = ...

in λ[{virtualStore,deadlineManager}]x:Bool
{deadlineManager}.

if (test x) (use(localStore); tt) ...

deadlineManager ≡
(KdeadlineManager(virtualStore bool �→ bool, virtualStore))
KdeadlineManager(adService bool, adService)

The culprit is the result of adService, which has type

Booll̄, where adService ∈ l̄. This type is incompatible with

the type of variable x, which may only be influenced by

deadlineManager.

V. COMBINING LANGUAGES

The languages of the previous three sections enforce in-

creasingly stronger policies about the use of capabilities:

CapPCF provides capability safety; ac-CapPCF adds access

control policies, dynamically enforced using contracts; and i-

CapPCF adds integrity policies, statically enforced using an

information-flow type system. However, a programmer must

apply significant effort to transform a CapPCF program into an

13



� cap? : Cap
�
⊥ �− cap? : Cap

⊥
�

〈U,E [· · · ]〉 → 〈U,E [· · · ]〉
Kl(k cap?, cp̄, ) . Gl{k cp̄,, p̄}
Kl(k cap?, G

l′{k′ γ, p̄}) . Gl{k Gl′{k′ γ, p̄}, p̄}

Fig. 20. mix-CapPCF: the wild-card capability contract

i-CapPCF program that enforces access control and integrity

policies. In particular for integrity, this typically requires

prolific security annotations and an all-or-nothing trial and

error process until the type system admits the program [27]. As

a middle ground, the contracts of ac-CapPCF offer a smoother

transition: the programmer immediately obtains a working

ac-CapPCF program by adding contracts only on component

boundaries.

This section shows how the transition from CapPCF to

ac-CapPCF and i-CapPCF can be done gradually on a per

component basis: we demonstrate how components written

in any of the three languages can be composed to form a

complete system without violating the security policies of the

individual components.

First observe that we can rewrite any CapPCF component as

an ac-CapPCF component with the same behavior. Recall that

ac-CapPCF extends CapPCF with access control policy anno-

tations on capabilities and contracts on component boundaries.

We consider a CapPCF capability c to have access control

policy �, the set of labels of all components in a program. That

is, the default access control policy for a CapPCF capability

allows any component to use it. We can construct a contract for

every CapPCF component from its type. The only interesting

piece of this construction is the choice of white-list policies on

capability contracts. We handle this corner case by adding a

wild-card policy ? to ac-CapPCF that never leads to a contract

violation.

Let mix-CapPCF be a language that allows us to mix

components of ac-CapPCF and i-CapPCF. Except for type an-

notations and integrity policies on capabilities, ac-CapPCF and

i-CapPCF share the same syntax, and thus the two languages

share the same reduction relation after type erasure. Therefore

a mix-CapPCF program has a well defined meaning. We do

need to extend the reduction rules for component boundaries

with wild-card capability contracts, as shown in Figure 20, in

addition to typing rules for wild-card capabilities.

A. Typing component mixes

To ensure that mix-CapPCF satisfies integrity we must ex-

tend the i-CapPCF type system to handle mixed components.

Figure 21 displays new typing rules that allow secure mixing

of components. These rules describe how to type component

boundaries Kl(k κ, e) where the client label l indicates an i-

CapPCF component and the server label k indicates an ac-

CapPCF component. An ac-CapPCF component k embedded

in an i-CapPCF context l is well-typed as long as its i-CapPCF

l ∈ i-CapPCF k ∈ ac-CapPCF Γ � e

Γ, l̄ � Kl(k κ, e) : T�κ�

l ∈ ac-CapPCF k ∈ i-CapPCF Γ,� � e : T�κ�

Γ � Kl(k κ, e)

l ∈ ac-CapPCF k ∈ ac-CapPCF Γ � e

Γ � Kl(k κ, e)

Fig. 21. mix-CapPCF: type-checking rules for mixed components

T�int� = Int� T�bool� = Bool�

T�capl̄� = Cap�� T�cap?� = Cap��

T�κ1 �→ κ2� = (T�κ1�
�→ T�κ2�)

�

Fig. 22. mix-CapPCF: contracts to types translation

sub-components are well-typed. The judgment Γ � e holds

for an ac-CapPCF term e if all i-CapPCF sub-components are

well-typed. The type of an ac-CapPCF component embedded

in an i-CapPCF context is obtained using the contract-to-

type translation operator T�κ� that is presented in Figure 22.

This translation operator conservatively maps contracts to

types in a way that prevents capabilities with non-trivial

integrity policies propagating from i-CapPCF components to

ac-CapPCF components. Specifically, the translation operator

ensures that only capabilities with an integrity policy of �
(i.e., all components may influence the use of the capability)

may propagate across the component boundary. For functions,

it ensures that only capabilities with an integrity policy of �
may be used in the function body.

All ac-CapPCF terms are well-typed according to Γ � e so

long as their subterms are well-typed, with the exception of

component boundaries where the component is an i-CapPCF

component. In that case, the i-CapPCF component e must

be well-typed according to judgment Γ,� � e : T�κ�. The

program counter level for the i-CapPCF component is �,

indicating that the decision to execute e may be influenced

by any and all components, since the ac-CapPCF component

does not track integrity. Note that the type of e uses the

contract-to-type translation operator T�κ�, again ensuring that

only capabilities with an integrity policy of � may propagate

across the component boundary.

B. Security of mix-CapPCF

The language mix-CapPCF inherits capability safety and

access control enforcement from ac-CapPCF and i-CapPCF:

Theorem 17. mix-CapPCF is authority safe.

Theorem 18. mix-CapPCF enforces access control.

Based on the extended type-system, we can also show that

mix-CapPCF satisfies integrity for capabilities:

Theorem 19 (Integrity for Capabilities). If ∅, {lo} � e1 : τ ,
for all terms e2 such that ∅, {lo} � e2 : τ , and e1

l̄∼ e2, if
〈∅, e1〉 ∗→ 〈U1, v1〉 and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.
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In summary, CapPCF components can be easily converted

to ac-CapPCF components, and ac-CapPCF and i-CapPCF

components can be easily composed to conservatively enforce

both access control and integrity policies. This enables the

gradual addition of policies to a program.

VI. CAPABILITY CONTROL IN REAL LANGUAGES

We have shown how to extend capability safe languages

with declarative policies to restrict the use of capabilities. We

have done so in the context of a series of simple calculi:

CapPCF, ac-CapPCF, i-CapPCF, and mix-CapPCF. In this sec-

tion we discuss the connection between CapPCF and existing

capability-safe languages, and describe how standard, practical

language techniques can be used to extend these existing

capability-safe languages with access control and integrity

policies.

A. CapPCF as a model for capability-safe languages

Existing capability-safe languages, such as Caja, E, and

Joe-E, are object-oriented and capabilities are object refer-

ences. In contrast to traditional protection systems where

the subjects and objects of access are distinct [28], in these

object-capability languages the entities that use capabilities

and the targets of such uses are all objects. Objects play three

distinct roles in object-capability languages. First, they provide

services via their methods. Second, they act as consumers of

services. Third, they implement application-specific security

abstractions, which can be viewed as specialized consumers

that aggregate capabilities and expose restricted facets of their

services. Note that an object may perform all three roles.

Capability-safety gives some minimal security guarantees

for objects as services: invoking a service requires a reference

to the object and references propagate in the program only

via message passing or object initialization. Objects as security

abstractions provide additional guarantees by further mediating

accesses to services.

CapPCF concisely captures the salient details of capability-

safe languages even though we use a lambda-calculus based

model without objects. We don’t account for objects with

internal state, behavioral subtyping, or object extension, but

these features are orthogonal to our goals. To emphasize

the distinction between critical services of interest and other

services, security abstractions, and clients, CapPCF represents

the former as capabilities γ invoked with use(γ), and the latter

by lambda abstractions. This reduces clutter and allows us to

focus on these critical services. We can easily remove this

simplification by treating lambda abstractions as capabilities.

CapPCF and our security policies assume that programs

are composed of components with associated principals (the

component labels). In a capability-safe language, we can view

collections of objects as components associated with principals

or domains that indicate their origin. For example, in Caja

principals might denote source URLs, whereas in E or Joe-E

principals might denote packages or source files. Capability-

safe languages already provide mechanisms (such as loaders)

to create component boundaries and to attach principals to

components [29], and thus our technique of using syntactic

elements Kl(k e) to explicitly mark component boundaries is a

reasonable model of real languages.

Although our Cap family of calculi captures intuitive ideas

(components with boundaries between them, capabilities, ac-

cess control, integrity), a significant amount of technical

machinery is required to model them. We believe that this

is not an artifact of our formalism, but is innate to precisely

modeling these concepts: we use standard modeling techniques

from higher-order contracts and our formalism is of simi-

lar complexity to previous formal models of language-based

capabilities (e.g., [30]). Indeed, we believe that the use of

standard language techniques for modeling and enforcement

of novel security guarantees is a benefit of our approach, and

speaks to the practicality of both the security guarantees and

enforcement mechanisms.

B. Implementing capability control

Well-known programming language constructs and tech-

niques can be used to extend existing capability-safe languages

with access control policies and integrity policies.

Interposition for Access Control. Enforcing access control

policies in ac-CapPCF requires contracts that completely me-

diate access to a component. Object-capability-safe languages

typically already have constructs that achieve complete and

transparent mediation and interposition, e.g., membranes [10]

in E and Caja. Recent research [7] explores the addition of

such a feature to existing languages, and contract systems have

been implemented using membrane-like constructs [19, 31].

In addition, membranes have been used to equip Javascript

objects with contracts for path-based access control for method

invocation [32].

Enforcing Information Flow. Enforcement of integrity poli-

cies in i-CapPCF relies on an information-flow type system.

The addition of information-flow type systems to existing pro-

gramming languages is well studied (e.g., [33, 34]). Extensions

to information-flow type systems to improve practicality (such

as endorsement [35] and flow-sensitivity [36]) can be easily

incorporated into the type system of i-CapPCF. For dynamic

languages such as Javascript and Caja, run-time enforcement

mechanisms for information-flow control (e.g., [37, 38, 39])

offer an alternative enforcement mechanism for integrity poli-

cies.

VII. RELATED WORK

Capability-based security. Capabilities have been widely

used in operating systems to provide confinement and isola-

tion (e.g., [40, 2, 3]). Capability-safe languages and their de-

sign patterns can enforce a variety of security properties [10].

A number of capability-based languages and mechanisms

have been proposed to increase the security of browsers and

web applications. For example, early proposals for securing

mashups required third party code to conform to secure subsets

of JavaScript, such as Google’s Caja [1] and Yahoo’s AD-

safe [41] languages. More recently, Agten et al. [6] introduce
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JSand, which sandboxes third-party scripts via client-side

enforcement of object-capability principles.

Other web application security tools rely on browser prim-

itives such as the same origin policy and iframes to provide

isolation [42, 43, 44, 45]. The use of browser mechanisms

for isolation is complementary to the use of capability-based

patterns for building fine-grained security abstractions. For ex-

ample, Meyerovich et al. [46] use iframes to provide isolation

between components, but introduce object views to enable

fine-grained sharing between components.

Correctness of capability-based security. Preventing se-

curity abstractions from leaking sensitive capabilities is a

recognized challenge for capability-based security. In early

capability-based operating systems [47], the confinement prob-

lem [48] led to the combination of capabilities and access

control policies. The ICAP system [49] uses access control

policies on capabilities to limit their propagation in distributed

systems. Our work is inspired by these early results, but

focuses on capability-safe languages.

Maffeis et al. [30] show that capability-safe languages such

as Caja are suitable for enforcing isolation properties as long as

components do not share capabilities. Others have studied how

to verify the security of capability-based abstractions where

components must communicate. For instance, Politz et al.

[50] use a type system to verify the confinement guarantees

provided by ADsafe. Our work also considers the security of

communicating components, but does so via declarative poli-

cies for the use of capabilities rather than excluding language

features. In contrast to our language-based approach, Murray

et al. [51, 52] and Spiessens [53] apply formal methods to

verify the security of specific object-capability design patterns.

Closer to our work, Taly et al. [54] develop a static analysis

for checking whether capability-based sandboxes properly

confine access to sensitive resources. However, their analysis

for access control depends on availability of the source code

and does not consider integrity requirements on the use of

capabilities. In a similar spirit, Barth et al. [55] and Finifter

et al. [56] add restricted access control checks to JavaScript

objects, but only for enforcing the same origin policy.

VIII. CONCLUSION

Capability-safe languages are a powerful tool for managing

resources. However, reasoning about the correctness of appli-

cations built using these languages requires reasoning about

implicit policies concerning the use of capabilities.

We extend capability-safe languages with declarative poli-

cies to simplify reasoning about the correct use of capabilities.

Access control policies restrict which components may use a

given capability. Integrity policies restrict which components

may influence the use of a capability. We demonstrate that

standard language-based techniques can soundly enforce these

policies (contracts and a security type system respectively).

Moreover, these enforcement mechanisms can be easily com-

posed, allowing the gradual incorporation of capability poli-

cies. Thus, this work provides firm theoretical foundations for

practical security extensions to capability-safe languages.
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