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Abstract—Communication protocols often rely on stateful
mechanisms to ensure certain security properties. For example,
counters and timestamps can be used to ensure authentication, or
the security of communication can depend on whether a particu-
lar key is registered to a server or it has been revoked. ProVerif,
like other state of the art tools for protocol analysis, achieves good
performance by converting a formal protocol specification into a
set of Horn clauses, that represent a monotonically growing set of
facts that a Dolev-Yao attacker can derive from the system. Since
this set of facts is not state-dependent, the category of protocols
of our interest cannot be precisely analysed by such tools, as they
would report false attacks due to the over-approximation.

In this paper we present Set-π, an extension of the Applied
π-calculus that includes primitives for handling databases of
objects, and propose a translation from Set-π into Horn clauses
that employs the set-membership abstraction to capture the non-
monotonicity of the state. Furthermore, we give a characterisa-
tion of authentication properties in terms of the set properties
in the language, and prove the correctness of our approach.
Finally we showcase our method with three examples, a simple
authentication protocol based on counters, a key registration
protocol, and a model of the Yubikey security device.

I. INTRODUCTION

The automated verification of security protocols has been

the subject of intensive study for about two decades now. This

has resulted in methods and tools that are feasible for finding

attacks or proving the absence of attacks for a large class

of protocols. One of the most successful approaches is static

analysis, as for instance used in the ProVerif tool [6], [8],

[24], [15], [10]. The key idea of this approach is to avoid the

exploration of the state space of a transition system, but rather

compute an over-approximation of the set of messages that the

intruder can ever learn. The abstraction is efficient because it

avoids the common state-explosion of model checking and it

does not require a limitation to finite state-spaces. While this

works fine for many protocols, we get trivial “attacks” if a

protocol relies on a notion of state that is not local to a single

session. A simple example is the protocol:

A → B : {Msg ,Counter}Key

where Key is a symmetric key known only to A and B, Msg
is some payload message and Counter is the current value

of a counter used for avoiding replay attacks: B accepts a

message only if Counter is strictly greater than in the last

accepted message from A. This protocol thus ensures injective
agreement [18] on Msg , since B can be sure that A has sent

Msg and it is not a replay, i.e., even if A chooses to transmit

several times the same Payload Msg , B will not accept it more

often than A sent it. There are of course several ways to model

such a counter in the applied π calculus, the input language

of ProVerif, however none is going to work in the abstraction

due to its monotonicity: roughly speaking, whatever B accepts

once, he will accept any number of times and we thus get

trivial attacks. In fact, verifying injective agreement properties

in ProVerif requires a dedicated mechanism [9].

The above message is taken from the CANAuth proto-

col [16] that is intended for the automotive industry and

needs to work under strong limitations on bandwidth and time.

Due to these constraints, standard mechanisms like challenge-

response (B first sends a nonce, then A includes it in the

message instead of the counter) are no option. But even

without such bounds there are practical real-world examples

that today’s abstraction approaches cannot support:

• Key update/revocation: after updating an old key with a

fresh one, one does not accept messages encrypted with

the old key anymore (at least after some grace period).

• Key tokens/hardware security modules: they maintain a

set of keys of different status and attribute, and can be

communicated with through an API. When changing the

status of a key, an operation may no longer be possible

with that key.

• Data bases: an online shop that maintains a database of

orders along with their current status; a customer may

cancel an order, but only as long as it has not entered the

status “shipped”.

More generally, systems that have a notion of state (that is not

local to a session) and that have a non-monotonic behavior—

i.e. an action is possible until a certain change of state and that

is disabled afterwards are incompatible with the abstraction of

tools like ProVerif.

Contributions. In this paper we formally define the novel

Set-π calculus that extends the popular applied π calculus [1]

by a notion of sets of messages. It allows us to declaratively

specify how processes can store, lookup and manipulate in-

formation like sets of keys, orders, or simply counters as

in the above example. (Note that this does not increase the

expressive power of applied π, since one could also simulate

sets using private channels.) The semantics gives rise to an

infinite-state transition system since we can model unbounded

processes that generate any number of fresh messages. We

can define state-based queries for Set-π, that ask for attacker-

derivable messages, their set membership status, and boolean

combinations thereof. A specification is secure iff no query is

satisfied in any reachable state. Note that we do not specify a

particular attacker, but more generally prove that the protocol

is secure in the presence of an arbitrary attacker A that can

be specified as a Set-π calculus (without access to restricted

names and sets).
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The second contribution is a stateful abstraction for Set-

π. The idea is that the abstraction of a message incorporates

the information to which sets it belongs, and we model how

this set membership can change. In doing so, we integrate

the essential part of the state information into an otherwise

stateless abstraction. This fine balance allows us to combine

the benefits of stateless abstraction—namely avoiding state

explosion and bounds to finite state spaces—and at the same

time support a large class of protocols that rely on some state

aspects.

Formally, this abstraction is a translation from a Set-π
protocol specification and a set of queries into a set of first-

order Horn clauses. Our third contribution is to prove a

soundness result for this abstraction: every reachable state is

abstractly represented by the Horn clauses. In particular, if the

Horn clauses have no model, then the given Set-π specification

is secure for the given queries and against an arbitrary Set-π-

attacker. For checking whether the Horn clauses have a model,

we can use various automated tools like ProVerif.

Finally, we demonstrate the practical feasibility of our

approach by two major case studies on the MaCAN and CA-

NAuth which are candidates for the next generation automotive

systems; we use in this paper only excerpts as illustrating

examples, the full analysis is found in [12].

a) Plan of the Paper: The rest of the paper proceeds

as follows: Section II introduces the language and presents,

as a running example, a simplified version of CANAuth—a

protocol for securing in-vehicle communication—a protocol

that can be more precisely analysed with Set-π. Section III

describes the type system. Section IV gives an instrumented

semantics for the language. Section V presents two definitions

for weak and strong authentication and provides a mechanised

way to encode such properties in Set-π. Section VI presents

our translation of Set-π into Horn clauses and Section VII

proves the correctness of this approach. In Section VIII we

present the key registration and the Yubikey examples along

with experimental results, and finally in Section IX we discuss

related work.

II. SET-PI

The calculus is presented in Figure 1. The syntactic cat-

egories are terms M,N , processes P,Q, set-membership

expressions b, set-membership transitions b+, and system

declarations Sys. Types in the language, denoted by T and

TSym, are introduced in the next section.

We mark with P the set of processes produced by the

syntactic category P and with M the set of terms produced

by M . To avoid ambiguity, we mark with S = {s1, . . . , sn}
the sets declared in a specific Set-π model, while we use

s, s′, s1, s2 and so on to denote any of the sets in S, and L
denotes a collection of locked sets.

Terms are either variables, names or constructor applica-

tions. Names are annotated with a sequence of terms that

record which copy of the process created them, by the use

of session identifiers, and input terms to keep track of data

dependencies. Constructors are generally accompanied by de-

structors defined as rewrite rules that describe cryptographic

M,N ::= x | al[M1, . . . ,Mn] | f (M1, . . . ,Mn)

P,Q ::= 0 | !k P | P1 |P2

| out(M,N); P | in(M,x : T ); P | newl x : a; P

| let x = g(M1, . . . ,Mn) inP else Q

| if b thenP else Q | update(b+); P
| lock(L); P | unlock(L); P

b ::= b1 ∧ b2 | b1 ∨ b2 | ¬b | M ∈ s

b+ ::= b+1 ; b
+
2 | M ∈ s | M /∈ s

Sys ::= new s : set T ; Sys

| reduc ∀ �x : �T . g(M1, . . . ,Mn) → M ; Sys |P

Fig. 1: The process calculus

primitives. For example:

reduc ∀xm : tm, xk : key . dec(enc(xm, xk), xk) → xm;

models symmetric key encryption: for every message xm, key

xk, if a process knows an encrypted message enc(xm, xk) and

the key xk then it can obtain the message xm. For any rewrite

rule of the form reduc ∀ �x : �T . g(M1, . . . ,Mn) → M ; we

require that fv(M) ⊆ fv(M1, . . . ,Mn) ⊆ {�x}.

Processes P,Q are: the stuck process 0, replication –

which is marked by a label k, parallel composition of two

processes, output, typed input, restriction – marked by a label

l – and destructor application. We require that processes are

closed and that they are properly alpha-renamed. Note that

the user does not specify annotated names and labels in the

initial process, hence the grey color. Names are introduced

by the semantic step for restriction, and unique labels are

automatically inserted by the parser.

The distinguishing feature of our calculus is the abil-

ity to track values in databases: the membership test

(if b thenP else Q) allows us to check a membership condition

b, while a set transition (update(b+); P ) inserts and removes

terms from sets, according to b+. Finally we use locks on sets

to ensure linearity of set transitions: the construct lock(L)
prevents all other processes to modify sets in L in the

continuation, while unlock(L) releases the locks on L.

A system Sys is the context in which the process operates.

A new set s containing elements of type T is declared with

new s : set T , and the reduc construct specifies a rewrite rule.

As syntactic sugar we add the following features to Set-π:

• n-tuples 〈M1, . . . ,Mn〉, which can be encoded with

a constructor mktpln(M1, . . . ,Mn) and n destructors

reduc ∀ �x : �T . proj in(mktpln(x1, . . . , xn)) → xi;

• pattern matching on tuples for let bindings and inputs,

which can be encoded using multiple let bindings with

the destructors proj in and equality tests;

• !{s1,...,sn}P means the replication of P that locks sets

s1, . . . , sn before its execution; the semantics releases the

locks when P reduces to 0;
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• let variable assignments when the right hand side is not

a defined destructor, denoting by M /∈ s the expression

¬(M ∈ s), and omitted else branches where not needed.

b) CANAuth example: As a running example we use

CANAuth, a protocol that runs on top of resource limited CAN

bus networks and—due to the real-time requirements of CAN

bus networks—uses one way communication from source

to destination, avoiding challenge-response patterns. The low

level mechanism that is used to ensure freshness properties

is the use of counters together with message authentication

codes. Comparing a counter with the highest value previously

received allows to ensure that a message cannot be replayed.

Here we model a simplified form of its message authen-

tication procedure, that assumes that the two communicating

parties, a sender Alice and a receiver Bob, have established a

session key k and are both keeping track of their own local

copy of a counter c.
In order for Alice to send a message m to Bob, she signs m

and her own counter c increased by one with the shared key

k. Here we denote with hmac(msg(c), k) such a signature.

Bob receives the message and checks whether the counter c
is already in the set received ; if not, it accepts the message.

A � new1 c : cnt;

let m = msg(c) in

event send(m);

out(ch, 〈m, hmac(m, k)〉); 0
B � in(ch, 〈xm, xs〉 : 〈msg(cnt), hmac(msg(cnt), key)〉);

let xc = getcnt(xm) in

let = checksign(xm, xs, k) in

if xc /∈ received then

update(xc ∈ received);

event accept(xm); 0

S � new received : set cnt;

reduc ∀x : cnt . getcnt(msg(x)) → x;

reduc ∀x : t, k : key . checksign(x, hmac(x, k), k) → x;

new2 k : key;

(!3 A | !4 {received}B)

In order to express authentication we insert two events: send
and accept. These are just syntactic sugar for set operations

and, as we show in Section V, they can be translated into set

operations.

III. TYPE SYSTEM

The type system presented in Figure 2 is constructed to

track the membership of values in sets. We denote by Sym
the set of symbols for terms, destructors and sets that occur

in a process; the category of types for Sym is T Sym .

Data types T are either type variables, name types or

constructors over types. Name types (a) are atomic types

like key or cnt, type variables (t) are used to make de-

structors polymorphic, and constructor types define the shape

T ::= t | a | f(T1, . . . , Tn) algebraic data types

TSym ::= T data types

| (T1, . . . , Tn)→ T destructor type

| set T set type

Fig. 2: Type system

of a constructor. For example the term pk(skeyl[]) has type

pkey � pk(skey), and a possible type for the constructor

enc(xm, xk) could be enc(pair(id, pkey), key), if we give

the type pair(id, pkey) to xm and key to xk.

Destructor types are of the form (T1, . . . , Tn) → T
where we require fv(T ) ⊆ fv(T1, . . . , Tn). A destruc-

tor can therefore be applied to different types of data in

the process, as long as the typing judgment instantiates a

ground type when it is applied. For example the destructor:

reduc ∀xm : t, xk : key . dec(enc(xm, xk), xk) → xm;
has type (enc(t, key), key) → t, while the instantiation

dec(enc(xm, xk), xk) has type (enc(pair(id, pkey), key)) →
pair(id, pkey) considering the previous type assignment.

Set types specify the type of terms contained in sets. For

example a set of type set pk(skey) contains public keys.

The typing rules (Figure 3) enforce the correct typing of

processes. Γ is the type environment, a map from identifiers

of terms, destructors and sets to their type.

The typing rules for terms check whether the environment

contains the right types for variables, and build types accord-

ingly for the constructors. The rules for systems create the type

environment required for typing destructors and set operations

in processes. The rule for destructors applies the substitution

σ = {Ti/xi} to the terms M1, . . . ,Mn,M in order to obtain

the type of the destructor, while the rule for sets simply adds

the type to the environment.

Processes are typed recursively on their syntactic form. The

rules for the stuck process, parallel, replication and output

simply try to type the continuation under the same Γ. The

rules for input and restriction add to Γ the type of the new

bound variables. The rules for if and update check that the

membership test or the set transitions are well-formed (i.e. M
is of type T when s is of type set T ) and that the interested sets

are locked. Finally the rule for let infers the type of the result

of the destructor application given the types of M1, . . . ,Mn,

by finding a type substitution that allows typing all arguments

of the destructor and by applying such substitution to the result

type.

We allow destructor definitions to contain type variables,

while we require processes and sets to have only terms

of ground types. In the Section IV we introduce a formal

semantics for the language, together with the necessary subject

reduction results for the type system.

IV. SEMANTICS

We define in Figure 4 an instrumented operational semantics

for the language. We have transitions of the form ρ, S,P →
ρ′, S′P ′ where:
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Terms:

Γ 
 x : T
Γ(x) = T

Γ 
 a[M1, . . . ,Mn] : a

Γ 
 M1 : T1 · · · Γ 
 Mn : Tn

Γ 
 f (M1, . . . ,Mn) : f (T1, . . . , Tn)

Conditions:

L,Γ 
 M : T

L,Γ 
 M ∈ s
Γ(s) = set T, s ∈ L

L,Γ 
 b1 L,Γ 
 b2
L,Γ 
 b1 ∧ b2

L,Γ 
 b1 L,Γ 
 b2
L,Γ 
 b1 ∨ b2

L,Γ 
 b+1 L,Γ 
 b+2

L,Γ 
 b+1 ; b
+
2

L,Γ 
 b

L,Γ 
 ¬b
Systems:

Γ[g �→ (σM1, . . . , σMn)→ σM ] 
 Sys

Γ 
 reduc ∀ �x : �T . g(M1, . . . ,Mn) → M ; Sys
σ = {Ti/xi} Γ[s �→ set T ] 
 Sys

Γ 
 new s : set T ; Sys

∅,Γ 
 P

Γ 
 P

Processes:

∅,Γ 
 0
∅,Γ 
 P1 ∅,Γ 
 P2

∅,Γ 
 P1 |P2

∅,Γ 
 P

∅,Γ 
!l P
L,Γ 
 P

L,Γ 
 out(M,N); P

L,Γ[x �→ T ] 
 P

L,Γ 
 in(M,x : T ); P

L,Γ[x �→ a] 
 P

L,Γ 
 newl x : a; P

L,Γ 
 b L,Γ 
 P L,Γ 
 Q

L,Γ 
 if b thenP else Q

L,Γ 
 b L,Γ 
 P

L,Γ 
 update(b+); P

L ∪ L′,Γ 
 P

L,Γ 
 lock(L′); P L′ ∩ L = ∅

Γ 
 Mi : σTi L,Γ[x �→ σT ] 
 P L,Γ 
 Q

L,Γ 
 let x = g(M1, . . . ,Mn) in P else Q
Γ(g) = (T1, . . . , Tn)→ T

L \ L′,Γ 
 P

L,Γ 
 unlock(L′); P
L′ ⊆ L

Fig. 3: Typing rules for terms, rewrite rules, processes and boolean expressions.

• ρ : Var → M, an environment mapping process variables

(x, y, . . . ) to name instances (al[. . . ]),
• S ⊆ S×M records the set-membership states,

• P ⊆ P × ℘(S) × ℘(M) is a multiset of concurrent

processes, which are represented as triplets (P,L, V )
where P is a process, L is the set of locks held by P ,

and V is a list of terms that influenced the process (either

session identifiers or inputs).

A configuration ρ,S,P represents the parallel execution of all

processes in P:

|(Pi,Li,Vi)∈Pρ(Pi)

In the semantic rules we assume Γ to contain the type

definitions for sets, constructors and destructors, and the initial

process to be well-typed according to Γ.

The concrete semantics presented here is a synchronous

semantics, which we choose for simplicity and in accordance

with the previous related work on ProVerif [9].

The rule NIL removes the process 0 when it holds no locks.

The rule COM matches an input and an output processes if

the output has the type required by the input; note that the set

V1 of influencing terms for the input process is increased with

the term N ′ constructed from type T using the function ptVx .

The purpose of ptVx is to substitute any type T with a term

N ′ that is homomorphic to T : that is, for every occurrence

of a name a in the type T it produces a variable xa,V that is

syntactically different from all other variable occurrences, and

every occurrence of a constructor type produces a constructor

term of the same form.

The rule PAR splits the process into two parallel processes.

Replication REPL is annotated with k ∈ N and produces a

fresh copy of P , adding xk to V and the substitution {k/xk}

to the environment ρ; the replication process is annotated with

the index k + 1 after the transition.

The rule for restriction NEW maps x to al[V ] in the

continuation of the process, where l is a unique label for the

process newl x : a; P . Here we extend the terms of Figure 1

to annotate names with a list of variables V under square

brackets.

The rules for let reduce the process to P1 where x is

substituted with the result of the rewrite rule in case of success,

and to P2 otherwise.

To that end, we define the relation →ρ as follows. Let s be

a term that has only variables of atomic types and such that

ρ(s) is ground. Then s →ρ t holds iff for some reduction rule

reduc ∀ �x : �T . l → r, there is a σ such that:

• σ is the most general unifier of l and s; w.l.o.g. we can

assume that fv(Img(σ)) ⊆ Dom(ρ);
• t = σ(r). (Note that ρ(t) is ground.)

Otherwise (if no such σ exists), we write s �→ρ.

The rules for if b thenP1 else P2 execute P1 in case

the set-membership state S satisfies the boolean formula b,
and P2 otherwise. The rule for update updates the current

state according to the expression b+. Finally, lock and unlock
respectively acquire and release the locks on the sets in L′ for

the current process.

Having presented the semantic for Set-π, we need to prove

that our typing judgments are preserved over the transition

relation. Hence we introduce Lemma 1 to then prove subject

reduction (Theorem 1).

We define the mapping âl[V ] = a that recovers the type

from an instrumented name, and its extension to environments

ρ̂(x) = ρ̂(x).
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ρ, S,P � {(0, ∅, V )} → ρ, S,P NIL

ρ, S,P � {(in(M,x : T ); P1, L1, V1), (out(M,N); P2, L2, V2)} → COM

mgu(N ′, N) ◦ ρ, S,P � {(P1{N ′/x}, L1, N
′ :: V1), (P2, L2, V2)} where Γ 
 N : T and N ′ = ptri(V1 )

x (T )

ρ, S,P � {(P1 |P2, ∅, V )} → ρ, S,P � {(P1, ∅, V ), (P2, ∅, V )} PAR

ρ, S,P � {(!k P, ∅, V )} → ρ{k/xk}, S,P � {(P, ∅, xk :: V ), (!
k+1 P, ∅, V )} REPL

ρ, S,P � {(newl x : a; P,L, V )} → ρ, S,P � {(P{al
[V ]/x}, L, V )} NEW

ρ, S,P � {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} → ρ, S,P � {(P1{M/x}, L, V )} if g(M1, . . . ,Mn)→ρ M LET1

ρ, S,P � {(let x = g(M1, . . . ,Mn) inP1 else P2, L, V )} → ρ, S,P � {(P2, L, V )} if g(M1, . . . ,Mn)�ρ LET2

ρ, S,P � {(if b thenP1 else P2, L, V )} → ρ, S,P � {(P1, L, V )} if ρ, S |= b IF1

ρ, S,P � {(if b thenP1 else P2, L, V )} → ρ, S,P � {(P2, L, V )} if ρ, S �|= b IF2

ρ, S,P � {(update(b+); P,L, V )} → ρ, update(S, ρ(b+)),P � {(P,L, V )} SET

ρ, S,P � {(lock(L′); P,L, V )} → ρ, S,P � {(P,L ∪ L′, V )} if ∀ (P ′′, L′′, V ′′) ∈ P . L′ ∩ L′′ = ∅ LCK

ρ, S,P � {(unlock(L′); P,L, V )} → ρ, S,P � {(P,L \ L′, V )} if L′ ⊆ L ULCK

ρ, S |= b1 ∧ b2 iff ρ, S |= b1 and ρ, S |= b2 update(S,M ∈ s) =S ∪ {(s,M)}
ρ, S |= b1 ∨ b2 iff ρ, S |= b1 or ρ, S |= b2 update(S,M /∈ s) =S \ {(s,M)}
ρ, S |= ¬b iff ρ, S �|= b update(S, b+1 ; b

+
2 ) =update(update(S, b

+
1 ), b

+
2 )

ρ, S |=M ∈ si iff ρ(M) ∈ S(si)

ptVx (a) = xa,V

ptVx (f(T1, . . . , Tn)) = f(pt1::Vx (T1), . . . , pt
n::V
x (Tn))

ri(V ) denotes the set of variables xk in V produced by replication.

Fig. 4: Semantics for the process algebra

Lemma 1 (Type substitution). Let P be a process, Γ and
Γ′ two type environments, M a term and T a type. If x /∈
Dom(Γ′) and L,Γ[x �→ T ]Γ′ 
 P and ΓΓ′ 
 M : T then
L,ΓΓ′ 
 P{M/x}.

Proof sketch. The proof is carried out by induction on the

shape of P , and its sub-terms and boolean conditions.

In particular, when x is encountered in P , we know that:

(Γ[x �→ T ]Γ′)(x) = T

Γ[x �→ T ]Γ′ 
 x : T

is applied for the proof of L,Γ[x �→ T ]Γ′ 
 P . Since

x{M/x} = M , our statement directly follows from the hy-

pothesis.

Lemma 2 (Environment extension). Let ρ and ρ′ be two
environments such that Dom(ρ) ⊆ Dom(ρ′) and for all x
in Dom(ρ) we have ρ(x) = ρ′(x), let P be a process, Γ a
type environment. If L,Γ[ρ̂] 
 P , then L,Γ[ρ̂′] 
 P .

Proof. By induction on the shape of P .

Theorem 1 (Subject reduction). Let Γ be a type environment,
ρ, S,P a configuration. If for all (P,L, V ) ∈ P we have
L,Γ[ρ̂] 
 P , and if ρ, S,P → ρ′, S′,P ′, then for all
(P ′, L′, V ′) ∈ P ′ we have L′,Γ[ρ̂′] 
 P ′.

Proof sketch. The statement can be proven by a case-by-case

analysis of the semantic step ρ, S,P → ρ′, S′,P ′.

Subject reduction enforces that well-typed processes remain

well-typed over transitions, and in particular that values of the

right type are inserted and removed from sets, and that if and

update only occur when the concerned sets are locked.

c) Attacker processes: Because sets represent private

information of the protocol, our attacker model does not have

access to sets. We define it as follows:

Definition 1 (Attacker process). An attacker process is a
well-typed process that shares a channel xch with the honest
protocol, and cannot perform set operations (if, update, lock
and unlock constructs are excluded).

V. AUTHENTICATION IN SET-π

A general definition of authentication goals for security

protocols that has become standard in formal verification are

Lowe’s notions of non-injective and injective agreement [18].

These notions are hard to combine with an abstract interpre-

tation approach as they inherently include a form of negation

that is incompatible with over-approximation. For this reason,

ProVerif has a special notion of events that are handled in a

special way by its resolution procedure. We now show that in

our Set-π calculus we can directly express both non-injective

and injective agreement using sets, and we can thus define

events practically as syntactic sugar.

The definition of authentication is based on events e1 (M)
and e2 (M) where message M typically contains the (claimed)
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sender and (intended) receiver name, as well as the data that

the participants want to agree on; the event e1 (M) is issued

by the sender typically at the beginning of the session and

e2 (M) by the receiver at the end of the session, but the precise

content and placement can be chosen by the modeler. One can

then define non-injective agreement as follows: whenever an

event e2 (M) happens for a message M , then previously the

event e1 (M) must have happened. Thus, it is an attack if

somebody accepts a message that has not been sent that way.

The injective agreement additionally requires that if e2 (M)
has occurred n times, then e1 (M) must have previously

occurred at least n times (i.e., there is an injective mapping

from e2 events to e1 events). Roughly speaking, it is an attack

if a message is accepted more often than it was actually sent.

It is hard to automatically verify injective agreement in this

formulation. To simplify matters, it is common to require that

the authenticated message M includes something fresh, i.e.,

a unique identifier that the sender chooses [23], [9]. Thanks

to this construction, the same e1 event cannot occur more

than once. Then, the injective agreement goal boils down to

checking that no e2 event occurs twice (and that non-injective

agreement holds).

Let us thus extend Set-π with event declarations:

Sys ::= . . . | new e : event(T ); Sys

and event processes:

P,Q ::= . . . | event e(M); P

and introduce the semantic rule (EVT):

ρ, S,P � {(event e(M); P,L, V )} e(M)→ ρ, S,P � {(P,L, V )}
With this extension of the language, we can reason about

non-injective and injective agreement properties according to

Lowe’s definitions. We then encode processes in the extended

calculus with events into processes in standard Set-π and show

how our encoding simulates the events.

Definition 2 (Non-injective agreement). There is a non-
injective agreement between event e1(M) and event e2(M)
if and only if, for every possible trace ρ, S0,P0 →
ρ, S1,P1 → · · · → ρ, Sn,Pn produced by the protocol, if
ρi, Si,Pi

e2 (M)→ ρi+1, Si+1,Pi+1 occurs in the trace, then also

ρj , Sj ,Pj
e1 (M)→ ρj+1, Sj+1,Pj+1 occurs, for j < i.

We construct a transformation from the extended language

with events into the language without events, then prove

the equivalence between Definition 2 in the original process

(extended with events) and a set-property of the transformed

process.

The transformation is as follows:

new e : event(T ); Sys → new e : set T ; Sys
event e(M); P → lock(e); update(M ∈ e);

unlock(e); P

Every event declaration becomes a set declaration in the

translated process (assuming that the names for sets and events

are disjoint). Whenever an event e(M); P occurs, where M
is of type T , we substitute it with the process that locks e,

inserts M in the set e, unlocks e and continues with P ; we also

add a set declaration for e in its scope. Furthermore, to gain

precision in the analysis we merge a set transition followed by

an event into a single operation. That is, if we have a process

update(b+); event e(M); P , we transform it into the process

lock(e); update(b+;M ∈ e); unlock(e); P .

Note that this transformation is sound, although two seman-

tic steps are merged into one: for the purpose of finding vio-

lations to an agreement property where e(M) should happen

before e′(M), if there is a trace where event e′(M) happens

between update(b+) and event e(M), then there is also a trace

where event e′(M) happens before the set operation. Given a

process P we denote its event-free encoding as agree(P ).

Theorem 2. Let P be an extended process with events. If there
is no reachable state S from P ′ = agree(P ) that satisfies the
expression M ∈ e2 ∧M /∈ e1, then there is an non-injective
agreement between e1 (M) and e2 (M) in P .

Proof sketch. To prove the correctness of our transformation

we construct a simulation relation between P and P ′, were the

semantic step of an event is simulated by our construction.

Definition 3 (Injective agreement). There is an injec-
tive agreement between event e1(M) and event e2(M)
if and only if, for every possible trace ρ, S0,P0 →
ρ, S1,P1 → · · · → ρ, Sn,Pn produced by the protocol, if
ρi, Si,Pi

e2 (M)→ ρi+1, Si+1,Pi+1 occurs in the trace, then

also ρj , Sj ,Pj
e1 (M)→ ρj+1, Sj+1,Pj+1 occurs, for some

j < i; furthermore, there does not exists k > i such that
ρk, Sk,Pk

e2 (M)→ ρk+1, Sk+1,Pk+1.

For proving injective agreement properties the transforma-

tion becomes:

new e : event(T ); Sys → new e : set T ;
new twice-e : set T ; Sys

event e(M); P → lock(e, twice-e);
if M /∈ e then
update(M ∈ e);
unlock(e, twice-e); P

else
update(M ∈ twice-e);
unlock(e, twice-e); P

Every event declaration becomes a pair of set declarations for e
and twice-e in the translated process (assuming that the names

for sets and events are disjoint). Whenever an event e(M); P
occurs, where M is of type T , we substitute it with the process

that locks e and twice-e, and performs update(M ∈ e); P
when M has not yet been inserted in e; when it is already

present in e it performs update(M ∈ twice-e); P , and in both

cases unlocks e and twice-e; finally we add set declarations for

e and twice-e in the scope. Similarly to the non-injective case,

we merge a set operation with the event that follows. Given a

process P we denote its event-free encoding as inj -agree(P ).

Theorem 3. Let P be an extended process with events. If
no reachable state S from P ′ = inj -agree(P ) satisfies the
expression (M ∈ e2 ∧ M /∈ e1) ∨ (M ∈ twice-e2), then the
injective agreement between e1 (M) and e2 (M) holds in P .
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Fig. 5: State transitions of messages in the CANAuth example

Proof sketch. To prove the correctness of our transformation

we construct a simulation relation between P and P ′, were the

semantic step of an event is simulated by our construction.

Relating back to our example, Figure 5 shows in green

the desired transitions and in red the undesired ones. Our

model satisfies non-injective agreement if no message is being

accepted without being previously sent by the honest principal.

It satisfies injective agreement if no message is accepted twice.

VI. TRANSLATION

The translation takes a process in Set-π and produces a set

of Horn clauses that are then solved by a saturation based

resolution engine, like ProVerif or SPASS.

At the end of the section we show how the translation is

carried out for our CANAuth example. We now present the

general concepts of the translation at an intuitive level, which

we then refine with details later in the section. The translation

produces clauses with predicates of the form msg(M,N) to

denote that the system has produced an output of N on channel

M , predicates of the form att(M) to denote that the attacker

process knows M , predicates of the form name(a) to denote

that a new name is produced by the protocol, and clauses that

conclude transfer(·, ·) to denote set-transitions.

The body of a Horn clause represents the inputs that are

required to reach a specific point in the process, while the

head of the clause represents the output that is generated. For

example:

in(ch, x : a); in(ch, y : b); out(ch, f (x, y))

produces the clause:

msg(ch, x) ∧msg(ch, y)⇒ msg(ch, f (x, y))

Names and variables in the predicates are annotated with a

special constructor val that defines their current membership

class. For example if we have three sets in our system

s1, s2, s3, the term val(a, 1, 0, xs3,a) represents a name a in

the process algebra in a state where a is in s1, it is not in

s2 and its membership to the set s3 is not constrained, as

denoted by the variable xs3,a. By doing so two clauses can be

unified only if the terms are in consistent states. For example

val(a, 1, 0, xs3,a) unifies with val(a, xs1,a, 0, 1) but not with

〈[H1 ∧ · · · ∧Hn ⇒ C]〉α = 〈[H1]〉α ∧ · · · ∧ 〈[Hn]〉α ⇒ 〈[C]〉α
〈[p(M1, . . . ,Mn)]〉α = p(〈[M1]〉α, . . . , 〈[Mn]〉α)
〈[f (M1, . . . ,Mn)]〉α = f (〈[M1]〉α, . . . , 〈[Mn]〉α)

〈[al[V ]]〉α =

⎧⎪⎨⎪⎩
val(al[V ], α(s1, a

l[V ]), . . . , α(sn, a
l[V ]))

if l ∈ labels(P0)

val(a�[], α(s1, al[V ]), . . . , α(sn, al[V ])) otrw

〈[x]〉α = val(x, α(s1, x), . . . , α(sn, x))

Fig. 6: Applying the set-abstraction

restrict(α,M ∈ s) = if α(s,M) �= 0 then {α′} else ∅

where α′(s′,M ′) =

{
1 if M ′ =M ∧ s′ = s

α(s′,M ′) otherwise

restrict(α,M /∈ s) = if α(s,M) �= 1 then {α′} else ∅

where α′(s′,M ′) =

{
0 if M ′ =M ∧ s′ = s

α(s′,M ′) otherwise

restrict(α, b1 ∧ b2) =
⋃

{restrict(α′, b2) |α′∈restrict(α, b1)}
restrict(α, b1 ∨ b2) = restrict(α, b1) ∪ restrict(α, b2)

restrict(α,¬(b1 ∧ b2)) = restrict(α, (¬b1) ∨ (¬b2))
restrict(α,¬(b1 ∨ b2)) = restrict(α, (¬b1) ∧ (¬b2))
restrict(α,¬¬b) = restrict(α, b)

zero(α, a) = α′

where α′(s,M) =

{
0 if a occurs in M

α(s,M) otherwise

relax (α,L) = α′

where α′(s,M) =

{
α(s,M) if s ∈ L

xs,M otherwise

Fig. 7: Functions for updating α

val(a, xs1,a, 1, 1), because the first term represents a name a
that is not in s2, while the third term represents a in a state

where it belongs to s2.

Now we look at how the translation is constructed. We use a

special function α, which we call the set-abstraction, to record

whether a particular term belongs to some sets or not, and

introduce the rules of Figure 6 to transform clauses, predicates

and terms into annotated ones. The set-abstraction is a function

of type:

α : (S×M)→ ({0, 1} ∪ {xs,M | s ∈ S,M ∈ M})
where we require:

α(s,M) /∈ {0, 1} =⇒ α(s,M) = xs,M

It takes a process set s and a term M , and returns either

the constant 1, to enforce that M is in s, the constant 0 ,
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to enforce that M is not in s, or the variable xs,M , to allow

one of the two choices to be picked consistently across the

hypotheses.

The function 〈[p]〉α of Figure 6 recursively applies the set-

abstraction to the clauses. When it encounters an annotated

name al[V ] in the protocol, it produces a constructor val(. . . )
where the first parameter is the name itself—with no annota-

tions in case of attacker names—and the remaining parameters

represent the membership of al[V ] to the sets s1, . . . , sn;

similar clauses are generated for occurring variables. For the

purpose of making the analysis feasible, as a well-formedness

condition we require set types (of the form set T ) to contain

only name types and monadic constructors over name types.

For example, set Seed, set pk(Seed) and set sk(Seed)
are acceptable set types, while key(Seed,Nonce) is not a

monadic constructor, hence set key(Seed,Nonce) is not an

acceptable set type.

The function [[P ]]HV Lα of Figure 8 takes a process P , a

set of hypothesis predicates H , that intuitively represent the

set of messages required to reach P , a list of influencing terms

for the process V , a set of locks L held by the process, and the

set-abstraction α, and produces a set of clauses representing

the protocol behaviour.

Lastly the set of functions restrict , zero and relax modify

the set-abstraction for various constructs of Set-π. The func-

tion restrict takes a set-abstraction α and a boolean formula b
and produces the set of all consistent abstractions that satisfy

b, while zero inserts the constant 0 for fresh names, and relax
introduces variables in the image of α for unlocked sets.

Having introduced the auxiliary functions for manipulating

the set-abstraction, we now come back to explaining the

translation process. The function relax (α,L) is applied at each

step of the translation, as it inserts variables in the image of

α for all sets that are not locked, as they may be changed by

other processes.

The translation for 0 produces an empty set of clauses.

Replication !l P translates P with the introduction of a new

session variable xl in the list of influencing variables V .

Parallel composition P1 |P2 is translated as the union of the

clauses generated by both processes.

Input in(M,x : T ) adds the predicate msg(M,N ′) as an

hypothesis in H , where N ′ is a copy of T where every

occurrence of a name type is replaced with a unique variable

using pt
ri(V )
x (T ); the substitution {N ′/x} is then applied on

the continuation. Output out(M,N) produces a clause with

head 〈[msg(M,N)]〉α and with hypotheses 〈[H]〉α. The rule for

newl x : a introduces a restricted name: the value class of

al[V ] is set to 0 for every set, the predicate name(al[V ]) is

introduced both in the hypotheses for analysing the continu-

ation and as a fact that follows the current set of hypotheses

H . This ensures that all the set-abstraction variables occurring

in the head of a clause are closed under the hypotheses.

The rule for let x = g(M1, . . . ,Mn) inP1 else P2 looks

for a substitution σ that successfully unifies a definition of

the rewrite rule for the destructor g with the actual parameters

M1, . . . ,Mn, and then finds a substitution θ that unifies the

terms in the set-abstraction α accordingly to the unification

on the process algebra terms; if both substitutions are found

then σ(P1) is analysed where x is substituted with the result

of the reduction. The rule also includes the clauses generated

for P2 on the updated state α′, with no restriction, which is a

standard over-approximation found in similar works, e.g. [7].

The rule for if b thenP1 else P2 translates P1 with all

the set-abstractions that satisfy the formula b, and P2 with

all the set-abstractions that satisfy the formula ¬b. The rule

for lock(s) translates the continuation by first introducing s
in the locked sets L, and applying relax to take into account

state changes from other processes before the lock takes place.

Similarly, the rule for unlock(s) translates the continuation

by removing s from the set L, and applying relax . The

rule for update(b+), for every name and variable occurring

in b+ that we denote by M , creates a clause of the form

〈[H]〉α′ ⇒ transfer(〈[M ]〉α′ , 〈[M ]〉α′∪{(s,M)}), in order to mark

that whenever M appears in a predicate on state α′, we will

also have the same predicate on state α′ ∪ {(s,M)}, then

proceeds to translate the continuation.

d) Clauses representing the attacker: We add the fol-

lowing set of clauses to represent a Dolev-Yao attacker. The

attacker can eavesdrop messages form known channels:

msg(xch, xmsg) ∧ att(xch)⇒ att(xmsg)

The attacker can insert known messages into channels:

att(xch) ∧ att(xmsg)⇒ msg(xch, xmsg)

For every n-ary constructor f occurring in the protocol we

produce a clause:

att(x1) ∧ · · · ∧ att(xn)⇒ att(f (x1, . . . , xn))

For all destructors of the form g(M1, . . . ,Mn) → M we

produce a clause:

att(M1) ∧ · · · ∧ att(Mn)⇒ att(M)

Finally, the attacker knows a name for each name type a in

the initial state S0:

⇒ 〈[att(a�[])]〉S0
; ⇒ 〈[name(a�[])]〉S0

as well as the public channel shared with the honest protocol:

⇒ 〈[att(chl0 [])]〉S0

e) Clauses representing the set-transitions: We now in-

troduce clauses that express the meaning of the transfer(·, ·)
predicate: roughly speaking, when the fixedpoint contains

transfer(M,M ′), then for every fact C[M ] also C[M ′] holds

(for any context C[·]). Since there are infinitely many contexts

C[·], we cannot directly write this as Horn clauses, but it

actually suffices to restrict ourselves to contexts that occur on

the right-hand side of a Horn clause. More precisely, let Cl
be the set of clauses produced by the translation [[P0]]∅∅∅α0.

Let Ma, M ′
a be two terms of type a, and consider every

clause H ⇒ C[Ma] ∈ Cl for some context C[·] that is not a

transfer predicate. Finally let α and α′ be two set-abstractions

such that H ′ ⇒ transfer(〈[M ′
a]〉α, 〈[M ′

a]〉α′) ∈ Cl , and let

σ = mgu(Ma,M
′
a). For each such case we add the following

Horn clause:

〈[C[M ′
a]]〉ασ ∧ transfer(〈[M ′

a]〉α, 〈[M ′
a]〉α′)σ ⇒ 〈[C[M ′

a]]〉α′ σ
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[[0]]HV Lα = ∅
[[!l P ]]HV ∅α = [[P ]]H(xl :: V )∅(relax (α, ∅))
[[P1 |P2]]HV ∅α = [[P1]]HV ∅(relax (α, ∅)) ∪ [[P2]]HV ∅(relax (α, ∅))
[[in(M,x : T ); P ]]HV Lα = [[P{N ′/x}]](H ∧msg(M,N ′))(N ′ :: V )Lα′

where α′ = relax (α,L), N ′ = ptri(V )
x (T )

[[out(M,N); P ]]HV Lα = [[P ]]HV L(relax (α,L)) ∪ {〈[H ⇒ msg(M,N)]〉α}
[[newl x : a; l P ]]HV Lα = [[P{al

[V ]/x}]](H ∧ name(al[V ]))V Lα′ ∪ {〈[H ⇒ name(al[V ])]〉α′}
where α′ = zero(α, al[V ])

[[let x = g(M1, . . . ,Mn) inP1 else P2]]HV Lα =

{[[σ(P1)]]σ(H)σ(V )Lα′′ | reduc ∀ �x′ : �T ′ . g(M ′
1, . . . ,M

′
n) → M ′; is in the scope of let,

σ is an m.g.u. that satisfies M1 � M ′
1 ∧ · · · ∧Mn � M ′

n ∧ x � M ′,
θ is an m.g.u. that satisfies ∀ s,N1, N2, σ(N1) = σ(N2)⇒ α′(s,N1) � α′(s,N2),

and α′′ satisfies ∀N .α′′(s, σ(N)) = θ(α′(s,N))}
∪ [[P2]]HV Lα′

where α′ = relax (α,L)

[[if b thenP1 else P2]]HV Lα = {[[P1]]HV Lα′ | α′ ∈ restrict(relax (α,L), b)} ∪
{[[P2]]HV Lα′ | α′ ∈ restrict(relax (α,L),¬b)}

[[lock(L′); P ]]HV Lα = [[P ]]HV (L ∪ L′)(relax (α,L))
[[unlock(L′); P ]]HV Lα = [[P ]]HV (L \ L′)(relax (α,L))
[[update(b+); P ]]HV Lα = {〈[H]〉α′ ⇒ transfer(〈[M ]〉α′ , 〈[M ]〉α′′) | M ∈ fv(b+) ∪ fn(b+)} ∪ [[P ]]HV Lα′′′

where α′ = relax (α,L) and α′′ = update(α, b+) and α′′′ = relax (α′′, L)

Fig. 8: Translation rules for processes into Horn clauses

This set of clauses transfers messages and attacker knowl-

edge between states. Hence if a predicate is derivable in the

saturation in state α and there is a transition from α to α′,
then the predicate will be derivable in state α′.

Intuitively this set of rules suffices for the translation

because only the honest protocol produces state transitions;

everything that the attacker can derive in a state, it can also

derive in the successor state. Therefore it is only necessary to

transfer the conclusions for the protocol. Lemma 5 establishes

the correctness of this approach.

f) Translation of CANAuth into Horn clauses: To show

how the translation is applied to produce Horn clauses from

the original description, we have taken an excerpt from our

running example, namely the receiving process, translated the

events into set transitions, and label each point of the program:

P1 � !l1 {r,a,at} l2 in(ch, 〈xm, xs〉 :
〈msg(cnt), hmac(msg(cnt), key)〉));l3

let = eq(xs, hmac(xm, k)) in l4

let xc = getcnt(xm) in
l5

if xc /∈ r then l6

if xm /∈ a then l7update(xc ∈ r;xm ∈ a); l8

else l9update(xc ∈ r;xm ∈ at); l10

Figure 9 shows the clauses that are generated, together

with the recursive calls of [[·]] that are required to produce

them. We use here the notation like (H1 = ∅) to indicate

the development of the parameters H , V , L and α over the

recursive calls of [[·]], and P l to denote the subprocess of P1

at label l.

VII. CORRECTNESS

In this section we want to establish the correctness of

our translation with respect to the semantics of Section IV.

We use the inference system of Figure 10 to express our

correctness results. Intuitively, this set of rules relates the

instrumented semantics to the Horn clauses generated by

the translation, namely that the fixed-point FP0 covers all

possible behaviours of a process, when started in the given

configuration (ρ, L, V, S) and in any environment that cannot

change sets in L.

Let S and S′ again be states of the sets (i.e., S(s) yields

the elements that are members of set s in state S); we can

view a state as a special case of an abstraction α that has

no variables (i.e., indetermined set memberships) and we can

thus can write 〈[·]〉S accordingly. We will now show: if the

semantic relation induces a reachable state S at which output

N on channel M is produced, then the Horn clauses generated

for the protocol entails the ground fact 〈[msg(M,N)]〉S . This

ensures that whatever behaviour is present in the semantics is

also captured by the translation.

We denote by CP0
the set of clauses produced by the

translation, including the fixed clauses, and by FP0
the set
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[[B]]∅[]∅α0 = [[P l1 ]](H1 = ∅)(V1 = [xl1 ])(L1 = ∅)(α1 = relax (α0, ∅))
= [[P l2 ]](H2 = ∅)(V2 = V1)(L2 = {r, a, at})(α2 = relax (α1, ∅))
= [[P l3 ]](H3 = {msg(ch[], T3 = 〈msg(xcnt,1), hmac(msg(xcnt,2), xkey,3)〉)})

(V3 = T3 :: V2)(L3 = L2)(α3 = relax (α2, L2))

= [[P l4 ]](H4 = {msg(ch[], T4 = 〈msg(xcnt,1), hmac(msg(xcnt,1), k[])〉)})
(V4 = T4 :: V2)(L4 = L3)(α4 = θ(relax (α3, L3)))

= [[P l5 ]](H5 = H4)(V5 = V4)(L5 = L4)(α5 = relax (α4, L4))

= [[P l6 ]](H6 = H5)(V6 = V5)(L6 = L5)(α6 = restrict(relax (α5, L5), xcnt,1 /∈ r))

= [[P l7 ]](H7 = H6)(V7 = V6)(L7 = L6)(α7 = restrict(relax (α6, L6),msg(xcnt,1) /∈ a))∪
[[P l10 ]](H10 = H6)(V10 = V6)(L10 = L6)(α10 = restrict(relax (α6, L6),msg(xcnt,1) ∈ a))

[[P l7 ]]H7V7L7α7 = {msg(msg(val(ch[])), 〈msg(val(x1, x1,s, 0, 0, x1,at)), hmac(msg(val(x1, x1,s, 0, 0, x1,at), val(k[])))〉)
⇒ transfer(val(x1, x1,s, 0, 0, x1,at), val(x1, x1,s, 1, 1, x1,at))}

[[P l10 ]]H10V10L10α10 = {msg(msg(val(ch[])), 〈msg(val(x1, x1,s, 0, 1, x1,at)), hmac(msg(val(x1, x1,s, 0, 1, x1,at), val(k[])))〉)
⇒ transfer(val(x1, x1,s, 0, 1, x1,at), val(x1, x1,s, 1, 1, 1))}

Fig. 9: Horn clauses generated by the translation

of ground facts derivable from CP0
. First we introduce the

order relation �L on the facts FP0 derivable from the initial

protocol.

Definition 4 (Order relation �L). The order relation S1 �L

S2 between states S1 and S2 holds iff:

(i) ∀sj ∈ L . S1(sj) = S2(sj);
(ii) ∀p(M1, . . . ,Mk) . 〈[p(M1, . . . ,Mk)]〉S1 ∈ FP0 ⇒

〈[p(M1, . . . ,Mk)]〉S2
∈ FP0

.

Intuitively the �L relation captures the causal relation of

the semantic rules, as condition (ii) requires all predicates of

the form msg, name and att to be transferred from state S1 to

state S2. Furthermore condition (i) imposes that the locked sets

L are not modified between the two states. The most general

of such relations is �∅, as it allows any set to be modified.

Next we formalise the definition for set-abstraction α that

was introduced in Section VI.

Definition 5 (Set-abstraction). The mapping α abstracts S
under the environment ρ iff for every set s, term M , either
α(s,M) = 1 and ρ(M) ∈ S(s), or α(s,M) = 0 and ρ(M) /∈
S(s), or α(s,M) = xs,M .

A set abstraction α abstracts a state S if every pair (s,M)
that maps to a variable in α is mapped to a variable that is

unique in the image (this is ensured syntactically by the use

of xs,M ), and whenever α(s,M) maps to the constants 1 and

0 then ρ(M) ∈ s and ρ(M) /∈ s, respectively, in the state S.

The following lemmata establish the relation between the

operations used in the translation and the order relation �L.

The interested reader can find the full proofs in the extended

version of this article .

Lemma 3 (relax preserves the set-abstraction over �L). Let
S, S′ be two states such that S �L S′, and assume α abstracts
S under ρ. Then α′ = relax (α,L) abstracts S′ under ρ.

Since relax inserts unique variables in α′ for all sets that

are not locked, and for all sets s that are locked α(s) = α′(s)
and S(s) = S′(s) holds by condition (i) of the order relation,

then α satisfies the properties of Definition 5.

Lemma 4 (restrict preserves the set-abstraction). Let α be
a set abstraction, ρ an environment, S a state and A =
restrict(α, b). If ρ, S |= b and α abstracts S, then there exists
an α′ ∈ A such that α′ abstracts S.

Restrict produces a set of set-abstractions each representing

a possible way of satisfying the formula b. Lemma 4 estab-

lishes that if α abstracts S then at least one of these restrictions

on α satisfies the abstraction of S.

Lemma 5 (transfer preserves S �L S′). Let S be a set-
membership state, and S′ = S ∪ {(s1,M1), . . . , (sj ,Mj)} \
{(sj+1,Mj+1), . . . , (sn,Mn)}. If for all M ∈ {M1, . . . ,Mn}
we have transfer(〈[M ]〉S , 〈[M ]〉S′) ∈ FP0

then for any set of
locks L such that {s1, . . . , sn} ∩ L = ∅ we have S �L S′.

Lemma 5 establishes that transfer predicates actually cap-

ture the state transitions, hence following the definition of the

order �L the set of predicates derivable in the updated state

is larger than that derivable in the original state.

Next we type the attacker process A and the honest protocol

P0, under the initial environment ρ0 = [xch �→ chl0 []].

Lemma 6 (Typability of A). Let A be an attacker process,
then ρ0, ∅, ∅, S0 � A.

Proof of sketch. Let B be a subprocess of A, ρ an environ-

ment, S a state, V a list of terms. We prove that if:

(i) ρ(B) is a closed process, ρ(V ) is ground,

(ii) S0 �∅ S, and

(iii) for every maximal subterm M of B closed under ρ, we

have 〈[ρ(att(M))]〉S ∈ FP0
,
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ρ, V, L, S � 0
T-NIL

∀S′ s.t.S �∅ S′ (ρ, V, ∅, S′ � Q1 ∧ ρ, V, ∅, S′ � Q2)

ρ, V, ∅, S � Q1 |Q2
T-PAR

∀S′ s.t.S �∅ S′ (ρ{l/xl}, (xl :: V ), ∅, S′ � Q)

ρ, V, ∅, S �!l Q l ∈ N T-REPL

∀S′ s.t.S �L S′ ∀N s.t.Γ 
 N : T

〈[ρ(msg(M,N))]〉S′ ∈ FP0
⇒ (mgu(N ′, N) ◦ ρ), (N ′ :: V ), L, S′ � Q{N ′/x}

ρ, V, L, S � in(M,x : T ); Q
N ′ = pt

ri(V )
x (T ) T-IN

〈[ρ(msg(M,N))]〉S ∈ FP0 ∧ ∀S′ s.t.S �L S′ (ρ, V, L, S′ � Q)

ρ, V, L, S � out(M,N); Q
T-OUT

〈[ρ(name(al[V ]))]〉S ∈ FP0
∧ ∀S′ s.t.S �L S′ ρ, V, L, S′ � Q{al[V ]/x}

ρ, V, L, S � newl x : a; Q
T-NEW

∀S′ s.t.S �L S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M ρ, V, L, S′ � Q1{M/x}) ∧ ρ, V, L, S′ � Q2

ρ, V, L, S � let x = g(M1, . . . ,Mn) inQ1 else Q2
T-LET

∀S′ s.t.S �L S′, (ρ, S′ |= b ⇒ ρ, V, L, S′ � Q1) ∧ (ρ, S′ |= ¬b ⇒ ρ, V, L, S′ � Q2)

ρ, V, L, S � if b thenQ1else Q2
T-IF

∀S′ s.t.S �L S′ ρ, V, (L ∪ L′), S′ � Q

ρ, V, L, S � lock(L′); Q
T-LOCK

∀S′ s.t.S �L S′ ρ, V, (L \ L′), S′ � Q

ρ, V, L, S � unlock(L′); Q
T-UNLOCK

∀S′ s.t.S �L S′, (∀ M ∈ fv(b+) ∪ fn(b+) transfer(〈[ρ(M)]〉S′ , 〈[ρ(M)]〉S′′) ∈ FP0
)∧

(∀S′′′ s.t.S′′ �L S′′′, ρ, V, L, S′′′ � Q)

ρ, V, L, S � update(b+); Q
S′′ = update(S′, ρ(b+)) T-SET

Fig. 10: Inference system for correctness

then:

ρ, V, ∅, S � B

Proof by induction over the depth of B.

In particular, we have that (i) fv(A) = xch, hence ρ0(A) is

closed; (ii) S0 �∅ S0 by reflexivity; and (iii) the only maximal

subterm of A that is bound by ρ0 is xch, and by construction

of the translation 〈[ρ0(att(xch))]〉S0
∈ FP0

. Hence the attacker

process types.

Lemma 7 (Typability of P0). ρ0, ∅, ∅, S0 � P0.

Proof sketch. Let Q be a process. We prove that, given a list

of terms V , a set of locks L, a state S, a set-abstraction α, an

environment ρ; if:

(i) ρ(Q) is a closed process, ρ(V ) and ρ(H) are ground,

(ii) α abstracts S under ρ,

(iii) CP0 ⊇ [[Q]]HV Lα,

(iv) for every predicate p in H , we have that 〈[ρ(p)]〉S ∈ FP0

Then ρ, V, L, S � Q.

The proof is carried out by induction on the structure of the

process Q.

In particular, (i) ρ0 closes P0 by construction, ρ0(∅) is

trivially ground, (ii) α0 abstracts S0 under ρ0 by construction,

(iii) CP0 ⊇ [[P0]]∅∅∅α0 by definition of the translation, (iv)

holds vacuously. Therefore the conditions (i–iv) are satisfied

and hence ρ0, ∅, ∅, S0 � P0.

Theorem 4 (Subject reduction). If ρ, S,P → ρ′, S′,P ′ and
for all (P,L, V ) ∈ P we have ρ, V, L, S � P then for all
(P ′, L′, V ′) ∈ P ′ we have ρ′, V ′, L′, S′ � P ′.

The proof is a case-by-case analysis on the semantic rules

for the language.

Theorem 5 (Correctness of the analysis). Let Sys[·] be the
system context, let P0 be the protocol, let T be the set of types
used by P0, let A be any attacker process using only types in
T , and ρ0 = [xch �→ chl0 []].

If the typing [] 
 Sys[newl0 xch : ch; P0 |A] holds, and
if ρ0, S0,P0 = {(P0 |A, ∅, ∅)} →∗ ρn, Sn,Pn = Pn′ �
{(out(M,N); P ′, L, V )}; then 〈[ρ(msg(M,N))]〉Sn

∈ FP0
.

Proof. By Lemma 7 we know that ρ0, ∅, ∅, S0 � P0; by

Lemma 6 we know that ρ0, ∅, ∅, S0 � A, hence all processes

in P0 type in the initial state S0.
Let ρ0, S0,P0 → ρ1, S1,P1 → · · · → ρn, Sn,Pn. By

inductively applying Theorem 4 on the length of the trace

n we can conclude that all processes in Pn type in the Sn.
In particular, the process out(M,N); P ′ types in state Sn

and hence 〈[ρn(msg(M,N))]〉Sn
∈ FP0

.

Theorem 5 establishes the final relation between the infer-

ence system of Figure 10 and the instrumented semantics. We

use this result to link the facts generated by the translation to

a query of interest.

Corollary 1 (Checking queries). If ρ0, S0,P0 =
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Example Average time Vulnerable

CANAuth 0.0174s no

MaCAN 0.0244s yes

Key registration 0.0254s no

Yubikey single 0.0194s no

Fig. 11: Experimental results

{(P0 |A, ∅, ∅)}→∗ ρj , Sj ,Pj = P ′
j�{(out(M,N);P ′, L, V )}

→∗ ρn, Sn,Pn and ρn, Sn |= b then there exists
an αb ∈ restrict(α0, b) where θ = mgu(Sn, αb) and
〈[ρn(msg(M,N))]〉θ◦αb

.

Proof. Follows from Theorem 5 and because Sj �∅ Sn.

Therefore we can express any query of the form:

msg(M,N) where b

where b is a boolean expression ranging over names and

monadic constructors in M and N . Queries of this form

are general enough to model secrecy from the attacker’s

perspective (assuming that the channel M is public), as well

as the authentication properties discussed in Section V.

VIII. EXPERIMENTAL EVALUATION

We implemented our analysis into a prototype tool written

in Haskell, that translates processes specified in Set-π and uses

ProVerif as a back-end resolution engine for Horn clauses. The

tool is available for download at [11].

Figure 11 shows the results for our examples: the running

example on CANAuth, a flawed version of MaCAN [12], a key

registration protocol, and an implementation of the Yubikey

protocol modeled after [17]. We recorded the running times

for our test suite on a 2,7 GHz Intel Core i7 with 8 GB of RAM

running OS X. They are comparable to similar ProVerif models

in applied-π, which shows that there is little overhead induced

by our specific translation. In the next two subsections we

present the key registration protocol and the Yubikey example.

A. Key Registration

Here we present a key-registration protocol where an honest

principal A registers its current pair of asymmetric keys

(pkA, skA) to the server S. An initial pair of keys is distributed

securely to A and S, where A knows both public and secret

keys while S only knows the public key.

Later in the protocol, before the current key expires, A
registers a new key to the server by sending the following

message:

A → S : senc(sk, (new, a, pk′))

which encodes the new public key pk′ with the old secret key

sk. S will be able to decrypt A’s message with the old public

key pk, move pk from the set of valid keys to the database of

revoked keys and send back an acknowledgment to A.

S → A : penc(pk′, (confirm))

In turn A will be able to decrypt this message with sk′ and

remove the old sk from its key-ring.

A �in(kdba, ska : SKey);

if ska ∈ ringa then

new s′a : Seed;
update(sk(s′a) ∈ ringa);

out(ch, senc(ska, (new key, a, pk(s′a))));
out(kdba, sk(s

′
a));

in(ch, xc : senc(PKey, xt));

let xr = pdec(sk(s′a), xc) in

if xr = confirm then

update(ska /∈ ringa);

out(ch, ska); 0

S �in(ch, xs : senc(SKey, (xt, xt′ , PKey)));

in(kdbs, pka : PKey);

let (= new,= a, pk′a) = pdec(pka, xs) in

if pka ∈ valida ∧ pk′a /∈ valida ∧ pk′a /∈ revokeda then

update(pka ∈ revokeda; pka /∈ valida; pk
′
a ∈ valida);

out(ch, penc(pk′a, confirm));
out(kdbs, pk

′
a); 0

Sys �reduc ∀x : Seed,m : t .

pdec(pk(x), senc(sk(x),m))→ m;

reduc ∀x : Seed,m : t .

sdec(sk(x), penc(pk(x),m))→ m;

reduc ∀x : Seed . keypair(sk(x), pk(x)) → true;

new ringa : set sk(Seed);

new valida : set pk(Seed);

new revokeda : set pk(Seed);

new kdba : SKey; new kdbs : SKey; new sa : Seed;

update(sk(sa) ∈ ringa; pk(sa) ∈ valida);

out(kdba, sk(sa));

out(kdbs, pk(sa));

(!{ringa} A | !{valida,revokeda} S)

Once a new key is established and the client receives

confirmation from the server that the secret key sk has been

revoked, sk can be revealed to the attacker. An attacker

succeeds in breaking the protocol when she discovers a secret

key that is still registered to the server.

B. Yubikey

Yubikey is a small USB token used to authenticate to

supported online services. It works by maintaining a pair of

a secret identity (shared with the server) and a public identity

(shared publicly), and by sending to the Yubikey server its own
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public identity, together with the one time password encrypted

with the current value of a counter using a shared key k.

Here we model a simplified version of the Yubikey protocol,

where we are interested in the injective agreement between

the client Yubikey (Y K) and the server (Srv). The process

BP represents the process activated by pressing they Yubikey

button, which authenticates the user to the server. We define

a public channel ch, and a private channel ch server that is

only used to securely exchange the secret identity and shared

key to the server.

The Yubikey process Y K creates a new fresh key k, its

own public and secret identities (xpid and xsid), stores them

securely to the server, then reveals its public identity and starts

the BP process.

The button press (BP ) process initiates the authentication

procedure, increasing the counter (this is encoded in our

calculus by the creation of a fresh value), producing the nonces

xnonce and xtpr, and sending the encrypted message. An event

yk press is inserted to denote that the button has been pressed.

The server on the other end receives the login request from

the Yubikey, retrieves its secret identity and key k from its own

channel, pattern matching on the Yubikey’s public identity to

find the right tuple, decrypts the message with the retrieved

key k, and finally if the counter has not been used, it issues a

yk login event to conclude the protocol.

Sys � new yk press : event(cnt);

new yk login : event(cnt);

new used : set cnt;

reduc ∀x : t, k : key . sdec(senc(x, k), k) → x;

new ch : channel;

new ch server : channel;

(! Y K | ! Srv)
BP � new xc : cnt;

new xnonce : nonce;

new xtpr : nonce;

event yk press(xc);

out(ch, 〈xpid, xnonce, senc(〈xsid, xc, xtpr〉, k)); 0
Y K � new k : key;

new xpid : pid;

new xsid : sid;

out(ch server, 〈xpid, xsid, k〉);
out(ch, xpid);

!BP

Srv � in(ch, 〈xpid, xnonce, xenc〉 :
〈pid, nonce, senc(〈sid, cnt, nonce〉, key)〉);

in(ch server, 〈= xpid, xsid, xk〉 : 〈pid, sid, key〉);
let 〈= xsid, xcnt, xtpr〉 = sdec(xenc, xk) in

lock(used);

if xcnt /∈ used then

update(xcnt ∈ used);

event yk login(xcnt);

unlock(used); 0

Here we find an injective agreement between the events

yk press and yk login. Although this example shows only one

Yubikey and Server pair, it can be extended by including mul-

tiple copies of the client and server processes, and copies of

the respective sets and events to prove the injective agreement

with a finite number of participants.

IX. CONCLUSIONS AND RELATED WORK

The Set-π calculus and its set-based abstraction method

provide an important step to overcome a serious limitation

in current automated protocol verification: the limited support

verifying protocols that use state. When a change in state can

lead to non-monotonicity (things that were possible before the

change are not possible after it) then the standard abstraction

and resolution approach leads to false positives. Our solution

is to enter just the “right amount” of state information into

the abstraction of messages: enough to represent the non-

monotonic aspects we want to model, but only so much that we

do not destroy the benefit of the stateless abstraction approach

in the first place. This work has been inspired by several works

that go in a similar direction and we discuss here how they

relate to us.

The closest works are two articles that similar to this work

add state information into abstraction-based approaches. The

AIF framework [20] first presented the idea of encoding set

memberships into the state abstraction. AIF is based on the

low-level AVISPA Intermediate Format [23] and thus does

not have the declarativity of a process calculus. For instance,

one has to explicitly specify the attacker and cannot derive it

from the calculus. Further, AIF uses the “raw” set membership

abstraction, while in our abstraction approach we do integrate

the context in which messages have been created which gives

a finer abstraction. Also Set-π uses locks on sets, while AIF

does not have this notion (and the lock exists only as per the

scope of each AIF transition rule).

The second similar stateful abstraction approach is

StatVerif [2] which also provides an extension of the applied π
calculus. While we use state information in the abstraction of

messages, StatVerif encodes state information as an additional

argument in the generated predicates of the Horn clauses.

The state transition that this approach supports are in some

sense like “breaking glass”: we can make at some point a

global change which cannot be reverted (to avoid cycles in

the state transition graph). We believe that Set-π and StatVerif

have some complementary strengths as there are examples

that cannot be directly expressed in the other. While StatVerif

can express that a set of messages makes a state transition

at the same time, our abstraction looses this relation between

messages. On the other hand, we can flexibily have messages

change their set membership independent of each other, and

they can return to any previous state. An argument for the

expressiveness of Set-π is that we have a systematic way to

formalize agreement properties using sets.
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There are several model-checking approaches that can deal

with stateful protocols, namely the AVISPA/AVANTSSAR

platform [3]. Note that here one needs to bound the number of

steps of honest agents which is often fine for finding attacks,

but gives limited guarantees for verification. In fact, [14] stud-

ies APIs of key tokens using SATMC [4] of AVISPA, and con-

siders abstractions of data similar to our set abstraction. This

can in some cases lead to finitely many reachable abstracted

states so the analysis despite depth bound is complete. The

AVANTSSAR platform also includes the novel specification

language ASLan that besides sets also supports the formulation

of Horn-clause policies that are freshly evaluated in every

state. For certain fragments we can obtain effective model-

checking approaches, but again at the price of bounding the

number of steps of honest agents [21].

Another verification approach that supports the verification

of stateful protocols is the Tamarin prover [19]. Instead of

abstraction techniques, it uses backward search and lemmata

that allow to cut of search to cope with the infinite state

spaces. Even for quite simple stateful protocols, such lemmata

have to be supplied by the user to achieve termination. This

is demonstrated by the work of [17] that presents another

extension of the applied π-calculus where processes can ma-

nipulate a global key map and defines a suitable encoding into

Tamarin rules. The benefit of Tamarin and related tools is a

great amount of flexibility in formalising relationships between

data that cannot be captured by a particular abstraction and

resolution approach. However it comes at the price of loosing

automation, i.e., that the user has to supply insight into the

problem by proving auxiliary lemmata.

Other works have proposed a type-based approach to the

verification of stateful protocols. Bugliesi et al. [13] propose

a type system with resource-aware authorisation policies based

on a variant of affine logic with replication. The type system

is constructed on a variant of the Applied π-calculus, and

can express access revocation to resources once they are

consumed. Swamy et al. [22] propose a variant of ML with

value-dependent types called F* for proving security properties

in stateful protocol implementations. It has been used to prove

the security of a full implementation of the TLS protocol [5],

and can encode the type system of [13]. Like in the case of

Tamarin, these approaches are very expressive but not fully

automated and often require the user to supply additional

lemmata. The most interesting current developments are thus

to identify fragments of the problem that can be covered for

instance using SMT solvers.

We believe that there is potential for further refining our

analysis, in particular it seems possible to integrate ideas from

the StatVerif approach, possibly even from the Tamarin-based

approach into the set-based abstraction to further enlarge the

class of protocols we can support.
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Mohammad Torabi Dashti, Mathieu Turuani, and Luca Viganò. The
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