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Fakultät für Informatik

TU München

Munich, Germany

Email: {muellchr,kovacsm,seidl}@in.tum.de

Abstract—We introduce a novel way of proving information
flow properties of a program based on its self-composition.
Similarly to the universal information flow type system of Hunt
and Sands, our analysis explicitly computes the dependencies of
variables in the final state on variables in the initial state. Accord-
ingly, the analysis result is independent of specific information
flow lattices, and allows to derive information flow w.r.t. any
of these. While our analysis runs in polynomial time, we prove
that it never loses precision against the type system of Hunt
and Sands, and may gain extra precision by taking similarities
between different branches of conditionals into account. Also, we
indicate how it can be smoothly generalized to an interprocedural
analysis.

Index Terms—information flow control; hypersafety property;
noninterference; weakest precondition; interprocedural analysis

I. INTRODUCTION

In order to enforce confidentiality in application systems

which are accessed by multiple principals, it does not suffice

to distinguish two security levels only. Therefore, Denning and

Denning provide the concept of information flow lattices and

provide an algorithm to certify the conformance of structured

programs with a given information flow policy [9], [10]. This

algorithm later has been formalized as a type system and

proven correct w.r.t. the operational semantics [20]. Subse-

quently, a series of papers has extended this type system to

cope, e.g., with object oriented programming languages [16],

with multi-threaded programs [22], and also to enable richer

policy specification languages [21], [15].

While the original certification by Denning and Denning

was flow-insensitive, later analyses provide methods for taking

the flow of control within programs into account. In particular,

this is the case by the JOANA system, [18], which is based on

program dependence graphs [19]. Interestingly, it turns out

that the same program need not be re-evaluated if several

information flow lattices are of concern. Hunt and Sands

observe that there is a universal information flow lattice from

which all other information flow properties can be inferred

[11]. This lattice is given by the powerset of the set of

variables occurring in the program, where a flow-sensitive

interprocedural information flow analysis for this lattice is

provided in [13].

In order to deal with implicit information flows, the analysis,

e.g., of Hunt and Sands assigns security levels to reached

program points which in turn may affect the security levels

of variables modified at these program points. In some cases,

though, this approach may lead to unnecessary loss in preci-

sion.

Example 1. Consider the following program:

y ← 0 ;
if (secret = 0) {

x ← 0 ;
y ← y + 1 ;

} else {
x ← 0 ;

}
This program consists of a branching construct, where the
branching condition depends on the secret. Flow-sensitive type
systems such as [13] as well as methods based on program
dependence graphs, would conclude that the final value of the
variable x may also depend on the initial value of the variable
secret , since it is assigned to inside the branching construct.
A more detailed analysis, however, may take into account that
both branches affect the variable x in the same way (even
though they behave differently w.r.t. to y), and therefore omit
the dependency of x on the variable secret .

This example may seem contrived, as it could be handled by
existing methods if only the duplicated assignment x← 0 had
been moved behind the conditional before-hand. This prepro-
cessing may, however, not always be as easily possible, e.g.,
when the matching program parts are more subtly intertwined
or wrapped into distinct procedure calls (see Example 8).

The loss in precision thus can already be observed for two

security levels only, namely, high and low. The property that

publicly available data produced by the program may not

depend on secret input, has also been called noninterference
[25]. For proving noninterference of imperative deterministic

programs, recently alternative methods have been proposed,

which are more directly based on a formulation of noninter-

ference as a hypersafety property [1], [5], [7]. Conceptually,

proving noninterference compares any pair of executions of the

given program which differ only in secret values for certain

variables in the initial state. Noninterference for a variable x at

program exit is guaranteed if the values for x provided by both

executions are always equal. In [5], a calculus of Hoare-like

rules for pairs of programs is provided. A similar approach
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[y ← y + 1, y ← y + 1];
if (secret = 0, secret = 0) {

[x ← 0 , x ← 0 ];
[y ← y + 1 , y ← y + 1 ];

} else {
if (¬secret = 0, secret = 0) {

[x ← 0 , x ← 0 ];
[skip, y ← y + 1 ];

} else {
if (secret = 0,¬secret = 0) {

[x ← 0 , x ← 0 ];
[y ← y + 1 , skip];

} else {
[x ← 0 , x ← 0 ];

}
}
}

Fig. 1. Example Self-composition

is followed by Nanevski et al. [1] who provide a relational

Hoare type theory inside Coq for an interactive verification

of this property. The fully automated approach of [7], [24],

on the other hand, proceeds in two separate phases. In the

first phase, a self-composition of the program is constructed,

which represents all pairs of executions of the original program

on distinct copies of the program state. In the second phase,

this program is then analyzed for equality of corresponding

variables by means of relational abstract interpretation.

Example 2. Consider again the program from Example 1. A
possible corresponding self-composition is shown in Figure 1.

Operations which are aligned by the self-composition are
put into square brackets. The same holds true for conditions
where both conditions in a pair must evaluate to tt for the
corresponding branch of the if statement to be taken. Since
in all branches of the self-composed program, the variable x
is assigned the same value, they must be necessarily equal at
program exit — no matter which values for secret have been
chosen.

Self-compositions which attempt to align similar program

parts can, e.g., be computed efficiently by means of syntactic

matching of syntax trees [7]. So far, the analyses based on self-

composition have only dealt with two security levels, namely,

secret and public (i.e., high and low), whereas the type-

based approaches naturally can also deal with more refined

security lattices in the sense of [9] which allow for more

refined confidentiality policies. Here, we show that a universal
information flow analysis can also be constructed via self-

composition. For that, we provide a formulation of universal

information flow based on a calculus of preconditions for a

suitable self-composition of the program. As demonstrated

by Example 2, the result is sometimes more precise than the

result computed by the methods for universal information flow

analysis in [11], [13]. For a comparison, we prove that it is

always at least as precise and so yields strictly better or equal

results.

The immediate formulation of our calculus relies on

Boolean combinations of equality assertions — implying that

the resulting algorithm runs in exponential time. Subsequently,

we provide a non-trivial reformulation of the calculus which

requires to track conjunctions of assertions of equalities be-

tween program variables only — implying that the resulting

algorithm runs in polynomial time. Finally, we indicate how

our methods can be extended to deal with possibly recursive

procedures as well.

The paper is organized as follows. In Section II, we intro-

duce our basic notion of programs and self-compositions of

programs. In Section III, we present a weakest precondition

formulation for inferring equalities of two copies of the same

variable w.r.t. pairs of programs. In Section IV, we show

that conjunctions of variable equalities are sufficient to realize

this analysis. In Section V, we indicate in which sense our

calculus realizes an analysis of universal information flow. In

Section VI, our calculus is then compared to the type-based

analysis of flow-sensitive universal information flow according

to [14], [11], [13] and shown to be at least as precise. In

Section VII, the calculus is generalized to an interprocedural

analysis of flow-sensitive universal information flow. Finally,

we compare our results to the work of other authors in

Section VIII.

II. SELF-COMPOSITIONS OF PROGRAMS

In this paper we consider programs p given by the following

grammar:

(program) p ::= def 1 . . . def k
(procedures) def ::= f(){stmts}
(statements) stmts ::= s1 . . . sn
(statement) s ::= x← e; | f(); | skip; |

if (c) {stmts} else {stmts} |
while (c) {stmts}

A program p consists of a sequence of procedure definitions

where program execution starts with the call to a dedicated

procedure main . A procedure definition def consists of a

name and a body, which is a list of statements. A statement is

either an assignment (x ← e), a conditional if, or a while-

loop. The symbols e and c denote expressions which are

built up from variables and operators. For simplicity, explicit

declarations of variables have been omitted. Instead, programs

operate on a finite set G of global variables.

For programs, we consider a big-step operational semantics

along the lines of [23]. For a program fragment p, and variable

assignments σ, σ′, the triple p : σ � σ′ denotes that the

execution of program p on the initial state σ terminates with

the final state σ′. The rules for defining this relation for our

minimalist language are shown in Figure 2, where σ[e] denotes

the value returned by the evaluation of the expression e w.r.t.

the variable assignment σ.
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skip : σ � σ

x← e : σ � σ[x �→ σ[e]]

st : σ � σ′ p : σ′ � τ
st; p : σ � τ

p1 : σ � τ
if σ |= c

if (c) {p1} else {p2} : σ � τ

p2 : σ � τ
if σ |= ¬c

if (c) {p1} else {p2} : σ � τ

p : σ � σ′ while (c) {p} : σ′ � τ
if σ |= c

while (c) {p} : σ � τ

tt
if σ |= ¬c

while (c) {p} : σ � τ

p : σ � τ
if p is the body of f

f() : σ � τ

Fig. 2. Big-step Operational Semantics

In [7], [24], a composition operation [·, ·] of programming

constructs is presented resulting in a 2-program. Intuitively,

a 2-program pp operates on pairs of states as considered by

an ordinary program p. Instead of assignments of program

variables, a 2-program has pairs of aligned assignments as

basic operations each referring to the corresponding compo-

nent. Thus, the aligned assignment [x ← x + 1, x ← x + 1]
simultaneously increments the variable x in both components

of the current state. Assignments of the form x ← x do not

modify the corresponding component and therefore are also

denoted by skip. Likewise, 2-programs use aligned control

structures such as aligned conditionals and aligned loops. The

conditions of these control-structures consist of pairs (c1, c2)
of ordinary conditions c1, c2 where c1 and c2 refer only to

variables of the first or second component, respectively. The

understanding is that the pair [c1, c2] evaluates to tt iff both

c1 and c2 evaluate to tt for their respective component of the

state. 2-programs may also contain aligned procedure calls

[f1(), f2()] where again fi operates on the i-th component

of the program state only. The semantics of a 2-program can

be described by a relation pp : (σ1, σ2)� (τ1, τ2), where for

the 2-program pp resulting from the self-composition [p, p] we

have:

(S) pp : (σ, τ)� (σ′, τ ′) iff p : σ � τ and p : τ � τ ′.
Here, we will not repeat the technical details of the specific

composition [·, ·] of [7], [24]. Rather, we present reasonable

requirements, met by the construction there, for an operation

[·, ·] so that the 2-program resulting from [p, p] satisfies (S).
These requirements are:

Composition with skip. For any statement s, the composi-

tions [s, skip] and [skip, s] modify one state according to

s and leave the other intact. Accordingly, we have:

[s1 . . . sk, skip] = [s1, skip] . . . [sk, skip]

[if (b) {p1} else {p2}, skip] = if (b,tt) {
[p1, skip]

} else {
[p2, skip]

}

[while (b) {p}, skip] = while (b,tt) {[p, skip]}

[f(), skip] = [p, skip]

Here we assume that procedure f has body p. The rules

for compositions [skip, s] are analogous.

Identical sequences. For a sequence of statements s1 . . . sn
we have:

[s1 . . . sn, s1 . . . sn] = [s1, s1] . . . [sn, sn]

Non-identical sequences. If the sequences s1 . . . sm and

s′1 . . . s
′
n are not identical, then

[s1 . . . sm, s
′
1 . . . s

′
n] = [t1, t

′
1] . . . [tr, t

′
r]

where the sequences s1 . . . sm and t1 . . . tr as well as the

sequences s′1 . . . s
′
m and t′1 . . . t

′
r coincide — up to inser-

tions of skip instructions into the sequence. Moreover, for

every i = 1, . . . , r, the pair ti, t
′
i is composable. Here, we

call two statements t, t′ composable if at least one of them

equals skip, or one of the following properties holds:

• t, t′ are syntactically identical assignments;

• both are procedure calls;

• both are if-statements with identical conditions; or

• both are while-statements with identical conditions.

These assumptions can be met by multiple realizations

of the composition operation, which may differ in the

strategy how the statements in sequences are aligned.

Possible heuristics for constructing decent alignments

can, e.g., be found in [7], [24]. One trivial possibility

is to compose all statements in the two sequences with

skip and then to concatenate the respective results as in:

[s1 . . . sm, s
′
1 . . . s

′
n] = [s1 . . . sm, skip] [skip, s′1 . . . s

′
n]

In this case however, the potential similarities between

the two sequences cannot be taken advantage of.

Procedure calls. Consider two procedure calls f() and g()
with bodies p and q respectively. Then:

[f(), g()] = [p, q]
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WP#�x← e, x← e�ϕ = ϕ[
∧
vars(e)/x]

WP#�skip, t�ϕ = WP#�t, skip�ϕ = ϕ[ff/x | x ∈ mod(t)]
WP#�s1 . . . sm, s

′
1 . . . s

′
n�ϕ = WP#�t1, t

′
1�(. . . (WP

#�tk, t
′
k�ϕ) . . .)

given that [s1 . . . sm, s
′
1 . . . s

′
n] = [t1, t

′
1] . . . [tk, t

′
k]

WP#
�

if (c) {p} else {q},
if (c) {p′} else {q′}

�

ϕ = WP#�p, p′�ϕ ∧ WP#�q, q′�ϕ∧
(
∧
vars(c) ∨ (WP#�p, q′�ϕ ∧ WP#�q, p′�ϕ))

WP#
�

while (c) {p},
while (c) {p′}

�

ϕ = (WP#�p, p′�)∗(ϕ ∧∧
vars(c))

∨ ϕ[ff/(mod(p) ∪mod(p′))]

Fig. 3. Definition of WP#.

Conditional branching. Consider two conditional statements

if (c) {p} else {q} and if (c) {p′} else {q′} that agree on

their conditional expressions. Then:

[
if (c) {p} else {q},
if (c) {p′} else {q′}

]
= if (b, b) {

[p, p′] ;
} else if (¬b,¬b) {

[q, q′] ;
} else {

[if (c) {p} else {q}, skip] ;
[skip, if (c) {p′} else {q′}] ;

}

If the condition is evaluated equally in both branches, the

composition should align the corresponding branches.

Iterative statements. Consider two while-loops

while (c) {p}, while (c) {p′} that again agree on

their conditional expressions. Then their composition is

given by:

[
while (c) {p},
while (c) {p′}

]
= while (c, c) {[p, p′]};

while (¬c, c) {[skip, p′] ; };
while (c,¬c) {[p, skip] ; };

It is possible that the loop in one component terminates,

while the corresponding loop for the other component

continues to run. Therefore, in the self-composition we

need three loops, each representing a combination of

possible evaluations of the pair of conditions.

These requirements are enough to show the comparison result

to type system-based approaches in Section VI. However,

we can improve upon our results by relying on a more

elaborate requirement for conditional branching also met by

the construction in [7], [24].

Conditional branching. Consider two conditional statements

if (c) {p} else {q} and if (c) {p′} else {q′} that agree on

their conditional expressions. Then:[
if (c) {p} else {q},
if (c) {p′} else {q′}

]
= if (b, b) {

[p, p′] ;
} else if (¬b, b) {

[q, p′] ;
} else if (b,¬b) {

[p, q′] ;
} else {

[q, q′] ;
}

Here, the composition of the two conditionals distin-

guishes four possible cases according to all possible

combinations of values of the condition c when evaluated

on the first and second component of the program state.

This allows us to align similar behavior in the two

branches and increase the precision of our analysis. In

the following, we will assume that the self-composition

operation satisfies this stronger requirement.

III. VARIABLE DEPENDENCIES BY PRECONDITION

COMPUTATION

Assume that we are given a program variable x. Our goal

in this section is to determine a safe superset Y of program

variables whose values at program start may influence the

value of x at program exit. Formally, we are interested in

a set of variables Y ⊆ G, such that final states σ′, τ ′ with

p : σ � σ′ and p : τ � τ ′ agree on the values of x whenever

the initial states σ, τ before execution of p agree on all values

of variables in Y .

Our goal is to compute such a set Y by means of an abstract
weakest precondition calculus on the self-composition of p.

Assertions ϕ are positive Boolean combinations of atomic as-
sertions. An atomic assertion asserts that the two components

of a pair of states agree on the value of a given program

variable y. For brevity, this statement is denoted by y itself.

Accordingly, (σ, τ) |= y iff σ(y) = τ(y). As usual, we extend

the satisfaction relation |= from atomic assertions to arbitrary

positive Boolean combinations ϕ of atomic assertions.

We now introduce an abstract weakest precondition calculus

WP# to compute for each assertion ϕ, a precondition w.r.t. two
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given programs p and p′. This precondition of ϕ, as calculated

by our calculus, is denoted by WP#�p, p′�ϕ.

Example 3. Consider a program p with variables x, y, z, and
assume that

WP#�p, p�(x) = y ∧ z
In this case the values of x after two executions of p agree
whenever the initial states before the execution have agreed
on the values of program variables y and z.

The definition of WP# is presented in Figure 3. For the

moment, we consider programs without procedures only. Later

in Section VII we will show how our methods can be extended

to procedures as well. Consider a pair of identical assignments

x ← e. In this case, the values of x in the two components

coincide whenever the values of all variables occurring in e
have coincided before the assignment. Therefore, the precon-

dition is obtained from ϕ by substituting the variable x in ϕ
with the conjunction of the set vars(e) of atomic assertions

corresponding to the variables occurring in e. Consider a pair

of any program fragment t and skip. Then the values of a

variable x possibly modified by t may differ. Accordingly,

every x ∈ mod(t) occurring in the post-condition ϕ is replaced

with ff. The definition of the set mod(t) of possibly modified

mod(skip) = ∅
mod(x← e) = {x}
mod(t1 . . . tk) = mod(t1) ∪ . . . ∪mod(tk)
mod(if (c) {p} else {q}) = mod(p) ∪mod(q)
mod(while (c) {p}) = mod(p)

Fig. 4. Definition of mod(t).

variables is presented in Figure 4.

Now consider the WP# transformation of the composition

of a pair of conditional statements if (c) {b1} else {b2} and

if (c) {b′1} else {b′2}. According to the composition operator,

the composition of the two statements results in a case

distinction on the respective outcomes of the condition c for

the two components of the state. This case distinction is

reflected in the definition of WP#. The conjunction
∧
vars(c)

guarantees that the evaluation of c returns the same result

for both components. In this case, the first two conjuncts

in the precondition provide sufficient conditions for ϕ to

hold. Otherwise, i.e., if c may possibly evaluate to different

values for the two components, then any composition of the

alternatives provided by the two conditionals may occur. This

is taken care of by the extra preconditions introduced in the

second disjunct.

Example 4. Consider p used in Example 1 with [p, p] from
Example 2. Then

WP#�p, p�x = WP#�y ← y + 1, y ← y + 1�(WP#�p′, p′�x)

where p′ abbreviates the conditional statement of the program,
i.e. equals

if (secret = 0) {
x← 0;
y ← y + 1;

} else {
y ← y + 1;

}
The formula WP#�p′, p′�(x) can be calculated as shown in
Figure 5. As a result, we obtain that WP#�p′, p′�(x) = tt and
hence,

WP#�p, p�(x) = WP#�y ← y + 1, y ← y + 1�(tt)
= tt

This means that on every possible run of p, x will end up

WP#�p′, p′�(x)
= WP#�x← 0, x← 0�(

WP#�y ← y + 1, y ← y + 1�(x)
) ∧
WP#�x← 0, x← 0�(x) ∧ (∧

vars(secret = 0 )∨
WP#�x← 0, x← 0�(

WP#�y ← y + 1, skip�(x)
) ∧
WP#�x← 0, x← 0�(

WP#�skip, y ← y + 1�(x)
)

)
= tt∧

tt ∧ (
secret ∨ tt ∧ tt

)
= tt

Fig. 5. WP# computation for a conditional

with the same value.

Finally, consider the WP# transformation of the composi-

tion of a pair of iterative statements t = while (c) {p} and

t′ = while (c) {p′}. In this case, the WP# transformation is

defined by means of the closure operator ( )∗ applied to the

precondition transformation corresponding to the bodies p, p′

of the loops. For an arbitrary monotonic transformation T , the

operator ( )∗ is defined by:

T ∗ϕ =
∧
i≥0

T iϕ

Note that the reflexive and transitive closure operator ( )∗ can

equivalently be expressed as the greatest solution (w.r.t. the

implication ordering) of the fixpoint equation:

Xϕ = ϕ ∧ T (Xϕ)
where X is a monotonic transformation of positive Boolean

combinations. This recursive definition corresponds to a tail-

recursive representation of the loop. The case where all

iterations of the two loops are executed in sync, is taken
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care of by the first disjunct of the definition. It consists

of (WP#�p, p�)∗ applied to ϕ ∧ ∧
vars(c). This means that

the precondition transformer of the loop body is repeatedly

applied to the postcondition as well as to
∧
vars(c). The

latter enforces that throughout the iteration, the values of all

variables occurring in the condition will not differ in the two

executions — implying that the two executions stay in sync.

The second disjunct accounts for the case where the loop is

not known to be executed in sync. In this case, all variables

which are possibly modified may differ in their values. This

is taken care of by substituting ff for every variable in ϕ
which is possibly modified in one of the bodies p, p′. This set

of variables is given by mod(p) ∪mod(p′).
The set of assertions possibly occurring during the eval-

uation of the WP# transformation is finite, since monotonic

Boolean combinations of variables are closed under substitu-

tion, disjunction and conjunction. Moreover, since each case

in the definition of WP# is monotonic (w.r.t. implication),

the effect of the application of the operator ( )∗ can be

effectively computed as a greatest fixpoint, starting with the

transformation that maps each postcondition to tt.

Example 5. Consider the composition [t, t] where t is given
by the loop

while (x > 0) {
x ← y − 1;
y ← z − 1;

}
Starting with the initial value tt for the precondition of x and
z, we successively obtain the approximations to, for example,
the preconditions WP#�t, t�x and WP#�t, t�z as shown in
Figure 6. In this example, z is not modified in the loop, so
as expected, the fixpoint iteration terminates quickly and find
that z does not depend on any of the variables in the loop. For
x, the fixpoint is reached after four iterations and depends on
x, y, z. The dependency on y is from the assignment, which in
turn is dependent on z. To ensure that the body of the loop
is executed synchronously in both executions, all variables of
the condition (in this case x) also have to be equal in both
executions.

Note that the definition of WP# makes explicit use of disjunc-

tions. Since the precondition computation need not commute

with disjunctions, the obvious implementation from the defini-

tion in Figure 3 may have to compute arbitrary conjunctions of

disjunctions and therefore may take exponential time. Before

we provide a reformulation which results in a more efficient

algorithm, we convince ourselves that the WP# transformation

is correct and thus allows to infer a sound approximation of

the information flow in the program p.

Theorem 1. Assume that WP#�p, p′�ϕ = ψ where p : σ � σ′

and p′ : τ � τ ′. Then (σ′, τ ′) |= ϕ whenever (σ, τ) |= ψ.

Proof sketch. The proof consists of the following steps. First,

we relate WP# to proofs in a relational Hoare calculus for p and

p′ derived from the Hoare proof rules for singular programs.

For each pair of program executions of p and p′, trans-

forming initial states σ, τ into final states σ′, τ ′, respectively,

the assertion of the theorem follows from the correctness

of the Hoare proof rules for p and p′. The soundness of

WP# does not depend on the requirements for the specific

program composition operator, but only on the property (S)
that the resulting self-composition encodes any possible pair

of executions.

The proof system for relational Hoare logic is presented in

Figure 7 and allows to infer properties of pairs of programs

thus operating on pairs of states. The rules are essentially

obtained from the original Hoare logic [36] and and follow

the spirit of the proof method in [6].

Assertions A,B,C, I mentioned in the proof rules may refer

to values of variables in either of the two states. In order to

provide an explicit notation for that in assertions, we refer to

the value of a variable x in the first and second component of

the state by x1 and x2, respectively. Likewise for an expression

e, we denote the expression e where every variable is replaced

by its indexed version, with [e]1 and [e]2. The same convention

also applies to program states σ, τ . Accordingly, an atomic

assertion x in a Boolean combination ϕ, which we use in our

specification of the transformation WP#, is now considered as

a shortcut for the assertion x1 = x2 — indicating that the

values of x in both components are equal.

Moreover, we add the derived rule:

{A} p | p′ {C} {B} p | p′ {C}
{A ∨B} p | p′ {C}

The rules ending in “Left” or “Right” are derived from

the original Hoare calculus. Rules ending in “Align” can

be derived by replacing the aligned statement [st, st′]
by [st, skip]; [skip, st′] and using the “Left” and “Right”

rules.

IV. CONJUNCTIVE REFORMULATION OF WP#

The definition in Figure 3 requires the use of disjunctions

for specifying the preconditions of conditional and iterative

statements. In this section, we prove that conjunctions of

atomic assertions are sufficient for computing WP# for atomic

postconditions. This result will allow us to improve signifi-

cantly upon the algorithm given in Section III and arrive at a

polynomial time algorithm. We introduce a new transformation

WP#
′

which refers exclusively to conjunctions. Its definition

is shown in Figure 8.

Since all right-hand sides distribute over conjunctions, it

suffices to specify the precondition transformation for atomic

assertions only (instead of conjunctions of these). The pre-

condition WP#
′
�p, q�ϕ for a conjunction ϕ =

∧
y∈Y y is then

obtained by
∧

y∈Y WP#
′
�p, q�y. In this definition, the operator

( )∗ is applied to a transformation of conjunctions ϕ and thus

also returns a conjunction.

Subsequently, we prove that the two definitions, WP# and

WP#
′
, are actually equivalent. We state the following two

lemmas.
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Iteration Approximation for WP#�t, t�x
0 tt
1 tt ∧ (x ∧ x ∨ ff) = x
2 x ∧ (x ∧ y ∨ ff) = x ∧ y
3 (x ∧ y) ∧ (y ∧ z ∨ ff) = x ∧ y ∧ z
4 (x ∧ y ∧ z) ∧ (y ∧ z ∨ ff) = x ∧ y ∧ z

Iteration Approximation for WP#�t, t�z
0 tt
1 tt ∧ (x ∧ z ∨ z) = z
2 z ∧ (z ∨ z) = z

Fig. 6. Approximations encountered in the fixpoint computation for Example 5

Skip {ϕ} skip | skip {ϕ}
AssignLeft {ϕ[[e]1/x1} x← e | skip {ϕ}

AssignRight {ϕ[[e]2/x2]} skip | x← e {ϕ}
AssignAlign {ϕ[[e]1/x1, [e]2/x2]} x← e | x← e {ϕ}

{ψ} st | skip {I} {I} p | st′; p′ {ϕ}
ConcatLeft {ψ} st; p | st′; p′ {ϕ}

{ψ} skip | st′ {I} {I} st; p | p′ {ϕ}
ConcatRight {ψ} st; p | st′; p′ {ϕ}

{ψ} st | st′ {I} {I} p | p′ {ϕ}
ConcatAlign {ψ} st; p | st′; p′ {ϕ}
{ψ ∧ [c]1} p | skip {ϕ} {ψ ∧ ¬[c]1} q | skip {ϕ}

IfLeft {ψ} if (c) {p} else {q} | skip {ϕ}
{ψ ∧ [c]2} skip | p {ϕ} {ψ ∧ ¬[c]2} skip | q {ϕ}

IfRight {ψ} skip | if (c) {p} else {q} {ϕ}
{ψ ∧ ([c]1 ∧ [c′]2)}p | p′{ϕ},
{ψ ∧ ([c]1 ∧ ¬[c′]2)}p | q′{ϕ},
{ψ ∧ (¬[c]1 ∧ [c′]2)}q | p′{ϕ},
{ψ ∧ (¬[c]1 ∧ ¬[c′]2)} q | q′ {ϕ}IfAlign {ψ} if (c) {p} else {q} | if (c′) {p′} else {q′} {ϕ}

ψ ⇒ I ,

{I ∧ [c]1} p | skip {I},
I ∧ ¬[c]1 ⇒ ϕ

WhileLeft {ψ} while (c) {p} | skip {ϕ}
ψ ⇒ I ,

{I ∧ [c]2} skip | p {I},
I ∧ ¬[c]2 ⇒ ϕ

WhileRight {ψ} skip | while (c) {p} {ϕ}
ψ ⇒ I,

{I ∧ ([c]1 ∧ [c]2)}p | p′{I},
I ∧ ([c]1 ∧ ¬[c]2)⇒ J,

{J ∧ ([c]1 ∧ ¬[c]2)}p | skip{J},
I ∧ (¬[c]1 ∧ [c]2)⇒ J ′,

{J ′ ∧ (¬[c]1 ∧ [c]2)}skip | p′{J ′},
(J ∨ J ′) ∧ ¬[c]1 ∧ ¬[c]2 ⇒ ϕ

WhileAlign {ψ} while (c) {p} | while (c′) {p′} {ϕ}

Fig. 7. A proof system for relational Hoare logic.

Lemma 1. For two programs p,q, if WP#�p, q�x �= ff, then

WP#�p, q�x ≡ WP#�p, p�x ≡ WP#�q, q�x

The proof is by induction on the structure of p and q.

Lemma 2. Let p and q be program fragments, and ϕ a
postcondition for the set of variables X . If X ∩ (mod(p) ∪
mod(q)) = ∅, then

WP#
′
�p, q�ϕ = ϕ

The proof is again by induction on the structure of p and q.

Now we prove our main theorem, which states the equivalence

of WP# and WP#
′
.

Theorem 2. Assume that p and q are program fragments
without procedure calls. Then

WP#�p, q�x ≡ WP#
′
�p, q�x

for every program variable x.

Proof. We proceed by induction on the structure of programs.

For the base cases skip and assignments, the definitions of

WP# and WP#
′

are syntactically equal. Therefore, the statement

of the theorem trivially holds. Since for concatenation, the

definitions also agree, the statement there follows by inductive

hypothesis. Therefore, it remains to consider the definitions for

if and while.

If. t, t′ are conditional statements given by if (c) {p} else {q}
and if (c) {p′} else {q′}, respectively.
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WP#
′
�y ← e, y ← e�x =

{
x if x �= y∧

vars(e) otherwise

WP#
′
�skip, st�x = WP#

′
�st, skip�x =

{
ff x ∈ mod(st)

x otherwise

WP#
′
�s1 . . . sm, s

′
1 . . . s

′
n�x = WP#

′
�t1, t

′
1�(. . . (WP

#′
�tk, t

′
k�x) . . .)

where [s1 . . . sm, s
′
1 . . . s

′
n] = [t1, t

′
1] . . . [tk, t

′
k]

WP#
′
�

if (c) {p} else {q},
if (c) {p’} else {q’}

�

x =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

WP#
′
�p, p′�x ∧ WP#′

�q, q′�x ∧∧
vars(c)

if one of WP#
′
�p, p′�x, WP#′

�q, q′�x,
WP#

′
�p, q′�x, WP#′

�q, p′�x equals ff

WP#
′
�p, q′�x ∧ WP#′

�q, p′�x
otherwise

WP#
′
�while (c) {p},while (c) {p′}�x =

{
x if x �∈ mod(p) ∪mod(p′)
WP#

′
�p, p′�∗(

∧
vars(c) ∧ x) otherwise

Fig. 8. Conjunctive definition of WP#
′
.

Case 1. One of WP#�p, p′�x, WP#�q, q′�x, WP#�p, q′�x
or WP#�q, p′�x equals ff. By inductive hypothesis, we

have

WP#�p, p′�x ≡ WP#
′
�p, p′�x

and

WP#�q, q′�x ≡ WP#
′
�q, q′�x

If either WP#�p, q′�x or WP#�q, p′�x ≡ ff, then

WP#�t, t′�x
= WP#�p, p′�x ∧ WP#�q, q′�x∧

(
∧
vars(c) ∨ WP#�p, q′�x ∧ WP#�q, p′�x)

= WP#�p, p′�x ∧ WP#�q, q′�x ∧ (
∧
vars(c) ∨ ff)

≡ WP#
′
�p, p′�x ∧ WP#′

�q, q′�x ∧∧
vars(c)

= WP#
′
�t, t′�x

Otherwise, WP#�t, t′�x = ff = WP#
′
�t, t′�x.

Case 2. None of WP#�p, p′�x, WP#�q, q′�x, WP#�p, q′�x
and WP#�q, p′�x equals ff. Then from Lemma 1, it

follows that:

WP#�p, p′�x ≡ WP#�p, p�x
WP#�p, q′�x ≡ WP#�p, p�x
WP#�q, q′�x ≡ WP#�q, q�x
WP#�q, p′�x ≡ WP#�q, q�x

WP#�p, p′�x∧
WP#�q, q′�x ≡ WP#�p, q′�x∧

WP#�q, p′�x

We conclude:

WP#�t, t′�x
= WP#�p, p′�x ∧ WP#�q, q′�x∧

(
∧
vars(c) ∨ WP#�p, q′�x ∧ WP#�q, p′�x)

≡ WP#�p, q′�x ∧ WP#�p′, q�x∧
(
∧
vars(c) ∨ WP#�p, q′�x ∧ WP#�q, p′�x)

≡ WP#�p, q′�x ∧ WP#�q, p′�x
≡ WP#

′
�p, q′�x ∧ WP#′

�q, p′�x
= WP#

′
�t, t′�x

and equivalence follows.

While. t, t′ are iterative statements given by while (c) {p} and

while(c) {p′}, respectively. We distinguish two cases.

Case 1. x �∈ mod(p) ∪ mod(p′). Then for the postcon-

dition x,

WP#�t, t′�x = x = WP#
′
�t, t′�x

by Lemma 2, and equivalence follows.

Case 2. x ∈ mod(p) ∪mod(p′). Then

WP#�t, t′�x = (WP#�p, p′�)∗(
∧
vars(c) ∧ x)∨

x[ff/(mod(p) ∪mod(p′))]
= (WP#�p, p′�)∗(

∧
vars(c) ∧ x) ∨ ff

≡ (WP#
′
�p, p′�)∗(

∧
vars(c) ∧ x)

= WP#
′
�t, t′�x

holds by inductive hypothesis for p, p′, and equivalence

follows.

By Theorem 2, the transformations as defined in Figures 3

and 8, respectively, are equivalent for postconditions x ∈ G.

In the sequel, we therefore no longer distinguish between

the two transformations and denote the purely conjunctive

transformation by WP# as well.

Theorem 3. For every pair of program fragments t, t′ and
every program variable x, WP#�t, t′�x can be computed in
polynomial time.

Proof. First, we observe that mod(t) can be determined

in polynomial time for all program fragments t. Therefore,

WP#�t, t′�x can be determined in polynomial time whenever

either t or t′ equals skip. For arbitrary program fragments t, t′,
assume that we are given a corresponding alignment into a 2-

program [t, t′]. Such an alignment can be found in polynomial

time and results in a 2-program of size at most quadratic in the

the sizes of t, t′ [7]. While maintaining a conjunction of atomic
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assertions, the algorithm proceeds by implicitly traversing the

structure of the 2-program [t, t′]. Let n denote the number

of program variables. In order to tabulate the full transformer

WP#�t, t′�, we tabulate the corresponding transformer for each

occurring 2-sub-program in a bottom-up way. Note that the

composition of two tabulated transformers can be computed

in polynomial time. By case distinction, we then convince

ourselves that only polynomial extra effort is required to

infer the transformer for the larger 2-subprogram from the

transformers for its constituents. The only interesting case are

aligned while loops. In this case, the transitive closure of the

transformer for the aligned loop bodies must be determined

— which is again is possible in polynomial time.

V. USING WP# TO CAPTURE UNIVERSAL INFORMATION

FLOW

Let us briefly explain how our analysis is related to the

notions of noninterference and (universal) information flow.

In the following, we assume that the program operates on

possibly classified values which are stored in the variables

of the program. Each variable x is assigned a security level
indicating the secrecy of the value of x at program start. The

set D of all security levels is assumed to form a complete

lattice (ordered by �). For each observation of the program

behavior possibly made by a principal, we may ask whether

or not this observation reveals information beyond a given

security level. The only observations we consider here, are

the values of program variables at program exit.

A. Noninterference

Noninterference [25] is the instance of the given problem

where only two security levels are considered, namely H
(high/secret) and L (low/public). Noninterference holds for a

program p w.r.t. a given variable x if the value of x at program

exit only depends on the initial values of variables marked as

L.

Assume that we have proven for program p that

WP#�p, p�x = ϕ. According to Theorem 1, this means that

two terminating executions of p result in the same value for

x given the initial states of the two executions satisfy the

conjunction ϕ =
∧
Y for some set Y ⊆ G. Now consider

two initial variable assignments σ, σ′. By the correctness of

WP#, we deduce that x holds at program exit whenever σ, σ′

satisfy the assertion ϕ, or equivalently, σ(y) = σ′(y) for all

y ∈ Y , while the values for the remaining variables may be

chosen arbitrarily. Therefore if all variables in Y are marked

as L, the values of variables marked with H are irrelevant for

the value of x at program exit, and noninterference follows.

If on the other hand, one of the variables in Y is marked as

H , we cannot exclude that the final value of x may depend

on secret values at program start. In this sense, our analysis

allows to prove noninterference w.r.t. a given variable x at

program exit.

Example 6. As an example, consider the program p given by:

x ← a;
x ← y;

from [14] where it serves as the motivation why flow-sensitivity
matters for the analysis of information flow. We have that

[p, p] = [x← a, x← a]; [x← y, x← y]

and accordingly,

WP#�p, p�x =WP#�x← a, x← a�(

WP#�x← y, x← y�(x)

)

=WP#�x← a, x← a�(y)

=y

Now assume that at program start a is secret, while x, y are
public. Since WP#�p, p�x = y and y is public, the value of
x at program exit does not reveal any information about the
secret. Thus, noninterference holds w.r.t. the variable x.

B. Universal Information Flow

In general, an information flow analysis may distinguish

more than just two security levels. Instead, an assignment

of variables to security levels from some more complicated

security lattice D is considered. Assume that π : G → D
assigns security levels to the program variables in the initial

state. The program is considered as secure w.r.t. the variable

x up to level d, if the value of x at program exit only

depends on input variables of security levels at most d. As

observed in [11], the analysis result for any specific lattice

D can be retrieved from a single universal information flow

analysis. This analysis uses the powerset of G (the set of

program variables, ordered by subset inclusion) as information

flow lattice with the initial assignment π with π(x) = {x}.
Universal information flow analysis thus determines for each

variable x at program exit a safe superset Y of all variables

whose values at program start may influence the value of x
at program exit. The least security level for any other initial

assignment π′ up to which the program is secure w.r.t. to the

variable x then is obtained as
⊔{π′(y) | y ∈ Y }.

In the case of the flow-sensitive type system of [11], the

universal flow information is provided by means of a prin-
cipal typing. By Theorem 1, computing WP#�p, p�x for every

program variable x realizes another universal information flow

analysis, as it also provides us with a safe superset of variable

dependencies. As we will see in the next section, the sets

provided by our analysis, though, are subsets of the sets

provided by [11], sometimes even strict subsets. Still, by

Theorem 3, our analysis runs in polynomial time.

VI. COMPARISON WITH THE TYPE SYSTEM OF HUNT AND

SANDS

A first flow-sensitive analysis of universal information flow

is provided in [11]. This type-based analysis was shown to be

equivalent to Hoare-like proof rules for information flow in

[14]. Only later, it was shown that the given analysis can be

realized in polynomial time [13]. As we have already seen in

Example 1, our approach may improve upon the results of this
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analysis even on very small examples. Here, we show that our

analysis by means of WP# is always at least as precise as the

analysis in [13].

The typing rules from [13] that can be used to infer the

principal typing (i.e., the analysis result for program exit) are

shown in Figure 9. The semantics is given in the form of

judgments � p : Δ where Δ maps variables to elements of

2G∪{pc}. It is a forward-semantic computing Δ, the principal

typing of p, where a fresh variable pc represents the program

counter. Furthermore, Δ;Δ′ means relational composition of

typings, i.e. (x ∈ Δ;Δ′(y)) iff ∃z.x ∈ Δ(z)∧ z ∈ Δ′(y) and

η denotes the identity mapping, i.e. η(x) = {x}. Whenever

a variable is assigned, its new value depends on the variables

on the right-hand-side and also on the control flow to that

particular assignment. To be able to track the dependencies

generated by the control flow, the rules for conditionals and

loops compose the typing computed for their respective bodies

with η[pc += vars(c)]. Here pc is mapped to the variables of

the branching expression. This way, the resulting typing con-

tains the variables occurring in the condition for all variables

assigned inside the bodies.

Here, we prove:

Theorem 4. For every program fragment p without procedure
calls where we have � p : Δ, and for every variable x the
following holds:

1) pc ∈ Δ(x) iff x ∈ mod(p);
2) The conjunction

∧
(Δ(x) \ {pc}) implies WP#�p, p�x.

As the results provided by the type system in general are

less precise than the results computed by means of WP#, the

implication in the second statement cannot be replaced by an

equivalence.

Example 7. Consider the program used in Examples 1 and 4
with H = {secret , y} and L = {x}. The type-system would
return a typing � p : Δ where

Δ(x) = {secret , pc}
This implies that x is possibly modified by p (i.e., x ∈ mod(p))
and, moreover, that its final value may depend on the initial
value of secret . On the other hand, as established in Ex-
ample 4, WP#�p, p�x = tt. Accordingly, x is proven to be
independent of all variables at program start.

Intuitively, more precision can be gained by WP# at con-

ditionals where both branches modify a variable in the same

way. As shown in Section VII, this advantage also holds in

the presence of function calls.

Proof. We only prove the second assertion of Theorem 4. To

be able to relate the semantics given in [13] with the semantics

of WP# given in Section III, we reformulate the type system

� p : Δ as a backward operator �p�T as shown in Figure 10.

This allows to omit an explicit treatment of the variable pc.

Instead, the sets of possibly modified variables as defined in

Figure 4, are referred to.

The definition of �p�T is recursive on the structure of p. We

have:

Lemma 3. Consider a program fragment p with � p : Δ.
Then for every program variable x we have:∧

(Δ(x) \ {pc}) = �p�Tx

The proof is by induction on the structure of the program

where the typing rules are in one-to-one correspondence to

the definition of the transformation � �T. In particular, the

reflexive and transitive closure of the variable assignment

Δ; η[pc += vars(c)] is in one-to-one correspondence to the

transformation (�p�T)∗ for the body p of the loop.

As a next step, in Lemma 4 we show that the precondition

computed by �p�T is stronger than the precondition computed

by WP# for the self-composition of p. Note that stronger is here

meant in the logical sense, i.e., �p�T may include additional

preconditions on equalities of variables which are revealed as

unnecessary by WP#.

Lemma 4. For every program fragment p and every program
variable x,

�p�Tx⇒ WP#�p, p�x

Proof. The proof again proceeds by induction on the structure

of p. We prove according to the definition of WP# presented

in Figure 3.

Inductive Hypothesis 1. �p�Tx⇒ WP#�p, p�x

Skip.
�skip�Tx = x = WP#�skip, skip�x

Assign.

�x← e�Tx =
∧
vars(e) = WP#�x← e, x← e�x

�y ← e�Tx = x = WP#�y ← e, y ← e�x
if x �= y

If. Assume that x �∈ mod(p) ∪mod(q). Then

�if (c) {p} else {q}�Tx = x =
WP#�if (c) {p} else {q}, if (c) {p} else {q}�x

Otherwise, we have:

�if (c) {p} else {q}�Tx
=

∧
vars(c) ∧ �p�Tx ∧ �q�Tx

⇒ ∧
vars(c) ∧ WP#�p, p�x ∧ WP#�q, q�x

⇒ WP#�p, p�x ∧ WP#�q, q�x ∧
(
∧
vars(c) ∨ (WP#�p, q�x ∧ WP#�q, p�x)

= WP#�if (c) {p} else {q}, if (c) {p} else {q}�x
While. Assume that x �∈ mod(p). Then

�while (c) {p}�Tx = x =
WP#�while (c) {p},while (c) {p}�x
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Skip � skip : η

Assign � x := e : η[x �→ {pc} ∪ vars(e)]

� p : Δ2 � st : Δ1
Seq � st; p : Δ2; Δ1

� p : Δ1 � q : Δ2 Δ′
i = Δi; η[pc += vars(e)] (i = 1, 2)

If � if (c) {p} else {q} : (Δ′
1 �Δ′

2[pc �→ {pc}])
� p : Δ Δf = (Δ; η[pc += vars(c)])∗

While � while (c) {p} : (Δf [pc �→ {pc}])
Fig. 9. Rules used to compute � p : Δ.

�skip�Tx = x

�x← e�Tz =

{∧
vars(e) if x = z

z otherwise

�st; p′�Tx = �st�T(�p′�Tx)

�if (c) {p} else {q}�Tx =

{
x if x �∈ (mod(p) ∪mod(q))∧
vars(c) ∧ �p�Tx ∧ �q�Tx otherwise

�while (c) {p}�Tx =

{
x if x �∈ mod(p)

(�p�T)∗(vars(c) ∧ x) otherwise

Fig. 10. Backwards computation of Δ(x) for � p : Δ.

Otherwise, we have:

�while (c) {p}�Tx
= (�p�T)∗(

∧
vars(c) ∧ x)

⇒ (WP#�p, p�)∗(
∧
vars(c) ∧ x)

⇒ (WP#�p, p�)∗(
∧
vars(c) ∧ x)∨

ϕ[ff/(mod(p) ∪mod(p′))]
= WP#�while (c) {b},while (c) {b}�x

Here, the implication follows since the operation ( )∗ on

monotonic transformations of conjunctions is monotonic.

From Lemmas 3 and 4 we conclude that the information flow

analysis by means of WP# is always at least as precise as

the information flow analysis by means of the type system of

Figure 9.

VII. EXTENSION TO PROGRAMS WITH PROCEDURES

In this section, we extend the information flow analysis to

programs consisting of multiple procedures which are possibly

recursive. Assume that the procedures with identifiers f and

g are defined by f(){p} and g(){q}. First, let us extend

the notion of the set of modified variables from Figure 4 to

program fragments t possibly containing procedure calls. For

that we add the following rule for procedure calls:

mod(f()) = mod(p)

Also, the definition of mod now has become recursive due

to possibly recursive procedure calls. Here, we are interested

in the least sets mod(t), where t is a program fragment,

satisfying the definition.

Now we extend the definition of WP# as provided in Figure 8

with the following rules for procedure calls:

WP#�f(), g()�x = WP#�p, q�x
WP#�f(), skip�x = WP#�p, skip�x
WP#�skip, f()�x = WP#�skip, p�x

This definition is also recursive. The transformation which we

are interested in is the greatest solution (w.r.t. the implica-

tion ordering) of the defining equations. The proof of the

correctness of WP# as provided for Theorem 1 can be nat-

urally extended to a correctness proof of WP# with procedure

definitions. Also, Theorem 4 remains true in the presence of

procedure calls using the extension of the type system from

Figure 9 with the procedure typing rule in [13]. Likewise, the

complexity result from Theorem 3 extends to the procedural

case. We have:

Lemma 5. Assume that we are given two programs p, p′ and
a variable x. Then all transformations WP#�f, g�x for proce-
dures f, g can jointly be computed in polynomial time.

For non-recursive procedures, this follows directly from

the definition of WP# and Theorem 3. In order to deal with
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main() {
seed ← 1;
a ← secret base;
if (secret config) {

b ← secret number;
hash();

} else {
constant hash();

}
}

hash() {
// Complicated Hash computation

// based on the seed, a and b

r ← seed ∗ a ∗ b;
seed ← 1 + seed;

}
constant hash() {

// Complicated Hash computation

// based only on the seed and a

r ← seed ∗ a ∗ 42;
seed ← 1 + seed;

}
Fig. 11. Example code with function calls

possibly recursive procedure definitions, we perform a greatest

fixpoint iteration. Since strictly decreasing chains of precon-

dition transformers have length at most n2 (n the number of

program variables), a polynomial number of iterations suffices

until the greatest fixpoint is reached. By Lemma 5, we can

extend the result of Theorem 3 to programs with possibly

recursive procedures:

Theorem 5. For every pair of program fragments t, t′, and
every program variable x, WP#�t, t′�x can be computed in
polynomial time even in the presence of function calls.

The proof follows directly from Lemma 5.

Example 8. Consider the piece of code shown in Figure 11.
In the procedure main, procedure hash or procedure

constant hash are called, depending on the secret variable
secret config. Both procedures produce a result in the
variable r. For that, they access a global variable seed,
together with further parameters (a or a, b, respectively).
Finally, the value of seed is incremented. We claim that the
value of seed at program exit is independent of the values
of secret base, secret number, secret config at program
start. This property cannot be proven by means of the inter-
procedural universal information flow of [13]. Even though
the conditional depends on secret input and both branches
change the seed variable, our method may align the calls
hash() and constant hash(). When aligning the bodies of
the two procedures, our analysis realizes that

WP#�hash(), constant hash()�(seed) = seed

Since both branches affect the variable seed in the same way,
we conclude that

WP#�main(),main()�(seed) = tt

Therefore, the value of seed at program exit does not depend
on secret variables at program start.

VIII. RELATED WORK

Based on type systems, a polynomial algorithm for ana-

lyzing universal information flow is presented in [11], [13].

An equi-expressive logic has already been presented in [14]

without, however, discussing the complexity of the related

algorithm. Our weakest precondition calculus based on self-

composition of programs, improves on the precision of the

type system in [13], while retaining polynomial complexity.

An approach how to lift type systems to be able to handle con-

ditional statements branching on secret-dependent variables is

presented in [3]. However, no complexity for the approach is

given.

The concept of information flow in programs has already

been related to a relational Hoare logic and weakest pre-

condition calculus, for example in [29], [2], [4]. Also [30]

presents several proof systems based on Hoare logic to prove

information flow properties of programs without, however,

applying self-composition to programs. These systems do not

provide explicit support for verifying programs where vari-

ables are manipulated inside branches having secret-dependent

conditions.

Technically, our paper is based on a formalization of in-

formation flow as a hypersafety property [26] and relies on

a self-composition of the program to align pairs of program

executions. Self-composition of programs has been introduced

in [12] and mentioned e.g. in [32]. The proof techniques there,

however, generally do not take advantage of the similarities of

different parts of the program. In [17] a type-directed method

is presented to construct self-compositions of programs. In

case of conditionals depending on the secret, the branching

construct is doubled and composed sequentially, which ex-

plicitly rules out our optimizations. A similar approach can

also be found in [27].

Proof techniques, on the other hand, which exploit similari-

ties between different parts of the program include [6], [5], [1],

[7], [34]. The authors of [6], [5], [1] present solutions relying

on theorem proving. Similarly to our work, these approaches

are based on a relational Hoare logic to prove properties of

pairs of executions of the programs. In contrast to these, we

have provided an abstract weakest precondition calculus to

allow the automatic analysis of information flow.

In [34] it is shown how self-compositions can be applied

to prove the differential privacy of probabilistic programs.

In [7] an approach is presented, where relational abstract

interpretation is applied to self-compositions in order to in-

fer non-interference for tree-manipulating programs. These

techniques, however, are not directly applicable to general

security lattices. Our present approach on the other hand,

overapproximates the set of variables in the initial state for
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each individual variable that can influence its final value. Since

the weakest precondition operator distributes over conjunction,

the conformance of the program to arbitrary information flow

policies can be verified based on the results of a single

analysis.

IX. CONCLUSION

We have presented a universal information flow analysis

based on an abstract weakest precondition computation on

self-compositions of programs. We compared this formulation

to the analysis of universal information flow based on type

systems as presented in [11], [13]. We showed that our algo-

rithm is always at least as precise as these type systems, and

sometimes may even gain precision over them. We showed that

our analysis still runs in polynomial time — even if procedures

are allowed. In this paper, for the sake of simplicity we

considered programs having global variables only. However,

our methods can be naturally enhanced to deal with local

variables as well.

As future work, we plan to further enhance the precision

of our analysis by combining it with additional relational

analyses of the program state. Also, we would like to extend

our approach to programs with objects and classes in order to

deal with real-world object-oriented languages such as JAVA

or C#.
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