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Abstract—We present a mechanized proof of security for an
efficient Searchable Symmetric Encryption (SSE) scheme com-
pleted in the Foundational Cryptography Framework (FCF). FCF
is a Coq library for reasoning about cryptographic schemes in
the computational model that features a small trusted computing
base and an extensible design. Through this effort, we provide the
first mechanized proof of security for an efficient SSE scheme,
and we demonstrate that FCF is well-suited to reasoning about
such complex protocols.

I. INTRODUCTION

Complex cryptographic systems are increasingly prevalent.
Within the last decade, existing technologies such as TLS have
become more important due to increased use, and a number
of new cryptographic schemes have emerged to support online
anonymity, secure financial transactions, anonymous curren-
cies, and outsourced storage and computation. The security of
such a system is traditionally ensured by the development of
a mathematical proof of security, or by widespread efforts to
find weaknesses in the system. The latter approach is probably
impractical for specialized systems, and the former approach
suffers from the issue that many of these proofs are not
carefully verified [20, 10].

The use of formal methods is a promising solution to this
problem, and several systems have been developed to formally
verify proofs of security for cryptographic schemes. FCF [23]
is a library for the general-purpose Coq proof assistant that can
be used to develop and verify such proofs of security in the
computational model. This framework supports the “sequence
of games” [10] style by design, and proofs provide concrete
bounds on probability values. FCF provides a language for
probabilistic programs, and a semantics that relates programs
to discrete probability distributions. The framework also pro-
vides a rich theory that is used to reason about programs, and a
library of tactics and definitions that are useful in proofs about
cryptography. The framework is designed to leverage fully the
existing theory and capabilities of the Coq proof assistant in
order to reduce the effort required to develop proofs.

This paper demonstrates the viability of using FCF to
construct formal proofs of security for complex cryptographic
schemes by proving the security of the efficient Searchable
Symmetric Encryption (SSE) scheme described in [15]. In such
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a scheme, a client can store a large database on an untrusted
server, and the server can query the database on behalf of
the client without learning the contents of the database or the
query. This scheme is accompanied by a proof of security on
paper, but we can gain greater assurance of the security of this
scheme by developing a mechanized proof of security in FCF.
Note that the scheme we verified in this effort is exactly the
Single-Keyword Search (SKS) scheme described in [15], and
our formal proof was inspired by the proof presented in the
paper.

Following the release of EasyCrypt [7], a team of cryp-
tographers and programming language experts attempted [21]
to prove the security of a Private Information Retrieval (PIR)
system [17] which can be viewed as a predecessor to the
SSE scheme of [15]. This effort did not produce a complete
proof because certain required facts could not be proven
in EasyCrypt. Specifically, it was impossible at the time to
prove particular equivalences involving loop fusion and order
permutation within a loop without modifying the EasyCrypt
code to accept these equivalences.

EasyCrypt has seen significant improvement since its re-
lease, and a proof of security for a greatly simplified form of
this PIR scheme [25] has been completed in EasyCrypt. In
parallel, FCF was developed in order to find a more general
solution to the problem of “missing” theory in cryptographic
frameworks such as EasyCrypt. Due to the foundational nature
of FCF, any required theorem can be formally derived from
the semantics without increasing the trusted computing base.
We rely on this trustworthy extensibility of FCF to develop
the additional theory required to complete the proof described
in this paper.

The novel contributions described in this paper are the
following: (1) We developed the first mechanized proof of
security for an efficient SSE scheme. This proof demonstrates
that it is possible to increase the trustworthiness of outsourced
searchable data storage through mechanized verification. (2)
The proof described in this paper is among the most complex
mechanized cryptographic proofs that has been completed to
date, and we demonstrate that FCF is capable of scaling to
such large proofs. Further we show how the higher-order
abstraction available in Coq helps FCF manage the complexity
of such proofs through decomposition. Table I (in Section VII)
summarizes the complexity of this proof, which comprises
several cryptographic reductions including over 14,000 lines
of Coq code and 58 intermediate games. This development
effort also produced a significant amount of FCF theory related
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to loop transformations, hybrid arguments, sampling without
replacement, and constructions involving repeated independent
trials. We added this theory to the standard library of FCF in
order to assist with future proof development efforts. (3) This
proof can serve as an example to help developers produce
similar proofs in FCF, EasyCrypt, or other systems.1

II. THE FOUNDATIONAL CRYPTOGRAPHY FRAMEWORK

This section provides a brief introduction to the Founda-
tional Cryptography Framework. FCF is explained by example,
and all of the examples in this section are elements of the SSE
proof described later in the paper. A more detailed description
of the theory of FCF is available in [23].

A. Probabilistic Programs

FCF provides a common probabilistic programming lan-
guage for describing all cryptographic constructions, secu-
rity definitions, and problems that are assumed to be hard.
Probabilistic programs are described using Gallina, the purely
functional programming language of Coq, extended with a
computational monad that adds sampling uniformly random
bit vectors. The type of probabilistic computations that return
values of type A is Comp A. The code uses {0,1}ˆn to
describe sampling a bit vector of length n. Arrows (e.g. <-$)
denote sequencing (i.e. bind) in the monad. Other notation
used in the listings will be described when its meaning is not
apparent.

Definition OTP c (x : Bvector c) : Comp (Bvector c)
:= p <-$ {0, 1}ˆc; ret (BVxor c p x)

Listing 1. Example Program: One-Time Pad

Listing 1 contains an example program implementing a
one-time pad on bit vectors of length c (for any natural number
c). The program produces a random bit vector and stores it
in p, then returns the xor (using the standard Coq function
BVxor) of p and the argument x.

B. Semantics and Probability Theory

The language of FCF has a denotational semantics in the
style of Nowak [22] that relates programs to discrete, finite
probability distributions. A distribution on type A is modeled
as a function in A → Q which should be interpreted as a
probability mass function. This semantics can be used to show
that the probabilities of two events are equal, related by an
inequality, or distant by at most some value. All of these claims
are necessary in order to complete proofs in the “sequence
of games” style, in which several games are provided, and
relations on adjacent pairs of games are proven. The semantics
can also be used to determine an exact value for the probability
of an event, which is necessary to provide concrete bounds in
security proofs.

FCF provides a theory of distributions that can be used to
complete proofs without appealing directly to the semantics.
FCF also provides a library of tactics that apply individual
theorems, sequences of theorems, or perform non-trivial com-
putations in order to discharge goals. The theory is all proven

1The Coq code is available at http://github.com/adampetcher/fcf

in Coq from the semantics, and the tactics only apply theorems,
so these objects are not in the trusted computing base of FCF.

Using the theory and tactics, we can complete proofs as
shown in Listing 2. In this proof, we show that a one-time
pad applied to an arbitrary value has the same distribution
as a random bit vector. In the statement of the theorem, D
represents the denotational semantics, which is used to obtain
the distribution corresponding to the program that follows
it. Because these distributions are represented as functions,
we compare them with respect to an arbitrary value in the
distribution y. We also use the notation Pr[c] to represent
the probability that Boolean computation c produces true.
The == represents equality for rational numbers.

The proof proceeds by using tactics to transform the goal
or hypotheses until we get a goal that is trivial and can be
automatically discharged. We use intuition to introduce
all variables, then we unfold the definition of OTP to replace
D(OTP x) with the body defined in Listing 1. r_ident_r
is an FCF tactic that uses Coq’s rewrite tactic along with
a monadic right identity theorem to replace D({0,1}ˆc)
with D(a <-$ {0,1}ˆc; ret a). This transformation
puts the goal into a form where we can apply the distribution
isomorphism theorem (Theorem 1) to complete the proof.
This theorem takes a bijection and its inverse, and we supply
the involution BVxor c x for both. When this theorem
is applied, several simpler goals are produced. These goals
are either trivial equalities or simple facts about the BVxor
function (e.g. commutativity, identity) which can be discharged
by the specialized xorTac tactic.

Theorem OTP_eq_Rnd:
forall (x y : Bvector c),
D (OTP x) y == D ({0, 1}ˆc) y.

intuition. unfold OTP.
r_ident_r.
eapply (dist_iso (BVxor c x) (BVxor c x));
intuition; xorTac.

Qed.

Listing 2. Example Proof: Equivalence of One-Time Pad

Theorem 1 (Distribution Isomorphism). For any bijection f in
supp(�c2�)→ supp(�c1�),

∀x ∈ supp(�c2�), �c1�(f x) = �c2�x

∧ ∀x ∈ supp(�c2�), �f1 (f x)� v1 = �f2 x�v2

⇒ �a
$← c1; f1 a� v1 = �a

$← c2; f2 a� v2

Once we have proven the theorem in Listing 2 we can
use this theorem to rewrite anything that unifies with either
expression. We can also use other theorems and tactics to focus
on some location in the program and perform this rewrite at
that location. The ability to perform such rewrites provides the
basis for completing proofs composed of sequences of games.

The language of FCF also includes a (Repeat c P)
statement that repeats computation c until a decidable predi-
cate P holds on the result. This is equivalent to conditioning
the distribution corresponding to c on the event P.

A simple program that uses Repeat to sample uniformly-
distributed natural numbers in [0, n) is shown in Listing 3.
RndNat_h is a helper function that samples a natural number
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with the appropriate number of bits. In this function, lognat
computes the base-2 logarithm (rounded up) of the argument
and bvToNat converts a bit vector to the corresponding
natural number. The RndNat procedure repeats RndNat_h
until the result is less than n, as determined by the function
ltNat. It is possible to show that this procedure corresponds
with a uniform distribution on numbers in the specified range,
and this theorem is present in the FCF library.

Definition RndNat_h(n : nat) :=
v <-$ {0,1} ˆ (lognat n); ret (bvToNat v).

Definition RndNat(n : nat) :=
(Repeat (RndNat_h n) (fun x => (ltNat x n))).

Listing 3. Example Program: Random Natural Numbers

C. Program Logic

Many proofs can be completed using the theory of dis-
tributions alone, but it can be difficult to complete a proof
involving state or looping behavior in this manner. To assist
with such proofs, FCF includes a program logic in the style of
EasyCrypt. The program logic allows relational judgments on
pairs of probabilistic programs. The syntax of a judgment is
comp_spec P c1 c2, indicating that relational predicate P
holds (probabilistically) on the values produced by programs
c1 and c2. A more detailed description of the program logic
is provided in [23].

Listing 4 illustrates the program logic using the compMap
construction, which maps a computation over a list. This
function uses Coq’s Fixpoint to destruct the list and apply
the computation to the first element, then recursively call
compMap on the remainder of the list. Later listings will use
a foreach notation to refer to compMap.

The compMap_rel theorem describes a relational pro-
gram logic judgment for this construction. This judgment
requires that some predicate P1 holds on all corresponding
pairs of values in lists lsa and lsb (defined using Coq’s
Forall2). Additionally, for any pair of values a and b on
which P1 holds, the relation P2 must hold on the outputs of
(c1 a) and (c2 b). Then the theorem states that P2 holds
on all corresponding pairs of values in the lists resulting from
the map operation.

The relational program logic is a powerful tool for com-
pleting proofs of security involving sequences of games. In
such a proof, it is necessary to prove that some relation holds
on each adjacent pair of games in the sequence. The program
logic provides a general mechanism for proving that arbitrary
relations hold on subprograms appearing within those games.
These judgments can be combined to prove judgments on the
entire games, including judgments that correspond to equality,
inequality, and closeness of probability distributions.

The compMap_fission theorem is another judgment
on compMap describing equivalence of loop fission. Various
forms of this theorem, along with similar theorems for prob-
abilistic fold operations, are used extensively in the proofs
related to SSE. This theorem can be proved by induction on
the list using existing program logic facts and tactics.

Fixpoint compMap(c : A -> Comp B)(ls : list A) :
Comp (list B) :=

match ls with
| nil => ret nil
| a :: lsa’ =>
b <-$ c a;
lsb’ <-$ compMap c lsa’;
ret (b :: lsb’)

end.

Theorem compMap_rel :
forall (P1 : A -> B -> Prop)(P2 : C -> D -> Prop)

(lsa : list A)(lsb : list B)
(c1 : A -> Comp C)(c2 : B -> Comp D),

Forall2 P1 lsa lsb ->
(forall a b, In a lsa -> In b lsb ->
P1 a b -> comp_spec P2 (c1 a) (c2 b)) ->

comp_spec (Forall2 P2)
(compMap c1 lsa)
(compMap c2 lsb).

Theorem compMap_fission :
forall (c1 : A -> Comp B)(c2 : B -> Comp C)
(ls : list A),
comp_spec eq
(compMap (fun a => b <-$ c1 a; c2 b) ls)
(ls’ <-$ compMap c1 ls; compMap c2 ls’).

Listing 4. Probabilistic Map

D. Additional Features

FCF includes a library of standard programming constructs
and associated theory. This library includes the compMap
operation seen in Listing 4 as well as other list operations such
as probabilistic fold and summation. The library also includes
additional constructed sampling routines such as sampling
from lists, groups, and arbitrary Bernoulli distributions with
rational success probability. FCF also includes a notion of
oracles and procedures that have access to oracles. This oracle
system is necessary for reasoning about an adversary that is
allowed to query a stateful oracle. FCF also provides a conven-
tional operational semantics for its language in order to allow
extraction of OCaml programs from FCF constructions. This
operational semantics is proven equivalent to the denotational
semantics used to reason about programs in security proofs.
More information about these additional features of FCF can
be found in [23].

III. CRYPTOGRAPHIC ARGUMENTS IN FCF

This section contains some examples to describe how
cryptographic arguments are completed in FCF. All of the
examples in this section are used in the main proof of this
paper.

Listing 5 contains the definition of a non-adaptively secure
pseudorandom function (PRF). In this definition, the adversary
defined by procedures A1 and A2 attempts to distinguish
two “worlds.” In both worlds, the adversary produces a list
of values (lsD) which are provided to some function, and
the corresponding list of outputs (lsR) is given back to the
adversary. The adversary may also share arbitrary state (s_A)
between these two procedures. In the first world, the outputs
are produced by some function f, whereas in the second world
these outputs are produced by a random function. This random
function is modeled as a stateful oracle called randomFunc
that keeps track of previous inputs and outputs using a list.
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The oracleMap function is used to map this oracle over
the list lsD, and nil is the initial state of the oracle. The
second adversary procedure takes the resulting list of function
outputs and the state, and produces a bit. This definition ends
by defining the advantage of the adversary as the distance
between the probability that the adversary produces true in
these two games. If f is a PRF, then this advantage should be
“small.”

Definition PRF_NA_G_A : Comp bool :=
[lsD, s_A] <-$2 A1;
lsR <-$ (k <-$ RndKey; ret (map (f k) lsD));
A2 s_A lsR.

Definition PRF_NA_G_B : Comp bool :=
[lsD, s_A] <-$2 A1;
[lsR, _] <-$2 oracleMap randomFunc nil lsD;
A2 s_A lsR.

Definition PRF_NA_Advantage :=
| Pr[PRF_NA_G_A] - Pr[PRF_NA_G_B] |.

Listing 5. Non-Adaptively Secure Pseudorandom Function

The security definition in Listing 5 can be used as either
the end goal of a proof (in order to show that some function
is a PRF) or an assumption (to assume that some function
is a PRF). When used as an assumption, we can unify some
game with PRF_NA_G_A and another with PRF_NA_G_B and
replace the distance between these two games with the corre-
sponding PRF_NA_Advantage. This technique effectively
allows us to rewrite one game with another while adding a
“small” value to the bounds produced by the proof.

Listing 6 contains the structure of a hybrid argument
[19, 18] that bounds the probability that an adversary can
distinguish two distributions when given a list of samples from
one of the distributions (ListHybrid_Adv). The resulting
bound is a function of the advantage of the adversary when
attempting to distinguish these two distributions given only
a single sample (DistSingle_Adv). If the adversary is
unlikely to distinguish these distributions when given a single
sample, then the adversary is still unlikely to distinguish
these distributions when given polynomially many samples.
To make this argument more general, the adversary is able
to influence the distribution by providing a value (in the
case of DistSingle_G) or a list of values (in the case of
ListHybrid_G).

In this listing, B1 and B2 (omitted) compose a nat-indexed
family of adversaries constructed from A1 and A2, where the
ith adversary attempts to distinguish the single sample implied
by the ith distribution in the appropriate hybrid distribution
family. In Single_impl_ListHybrid_sum, the bound is
given as a sum over the advantages of these adversaries, and
maxA is the maximum size of the list provided by A1. If we
include an assumption that a single value (maxAdvantage)
bounds the advantage of each of these adversaries, then we can
derive the simpler result of Single_impl_ListHybrid.

Note that PRF_NA_Advantage unifies with
DistSingle_Adv. So we if we assume that some
function is a PRF, then we can use the hybrid argument
above to conclude that the function is indistinguishable from
a random function even when the adversary provides a list of
lists of inputs, and receives the result of the PRF mapped over

Definition DistSingle_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ c a;
A2 s_A b.

Definition DistSingle_Adv :=
| Pr[DistSingle_G c1] - Pr[DistSingle_G c2] |.

Definition ListHybrid_G (c : A -> Comp B) :=
[lsA, s_A] <-$2 A1;
lsB <-$ foreach (x in lsA) (c x);
A2 s_A lsB.

Definition ListHybrid_Adv :=
| Pr[ListHybrid_G c1] - Pr[ListHybrid_G c2] |.

Theorem Single_impl_ListHybrid_sum :
ListHybrid_Adv <=
sumList (forNats maxA)
(fun i => DistSingle_Adv c1 c2 (B1 i) B2).

Hypothesis maxAdvantage_correct :
forall i,
DistSingle_Adv c1 c2 (B1 i) B2 <= maxAdvantage.

Theorem Single_impl_ListHybrid :
ListHybrid_Adv <= maxA * maxAdvantage.

Listing 6. A Hybrid Argument on Lists

each list (using a different key for each list). In this way, we
can obtain an iterated PRF which is useful in the SSE proof.

IV. SEARCHABLE SYMMETRIC ENCRYPTION

This section informally introduces Searchable Symmetric
Encryption and describes the strategy used in the proof of
security. An SSE scheme provides a mechanism to encrypt a
database and a list of queries. These encryptions are given to
an untrusted party who is able to produce encryptions of the
result of executing the queries on the database while learning
very little about the database or queries. We call the party that
knows the unencrypted database the client, and the untrusted
party that executes queries on the encrypted database is the
server. A database is simply a list of identifiers and a set of
keywords associated with each identifier. Each identifier can
be used to retrieve some other object in an encrypted database,
but this operation is beyond the scope of the SSE definitions.

The SSE scheme of [15] is constructed from an abstraction
called a Tuple Set (or T-Set) that behaves like a secure
associative array. In this paper, we limit ourselves to single-
keyword SSE (SKS-SSE), in which each query is a single
keyword. Roughly speaking, this scheme works by encrypting
each value using a key derived from the appropriate keyword,
and then storing the ciphertexts in a T-Set. The server can
perform a query by looking up the specified keyword in the
T-Set and giving the resulting ciphertexts to the client.

Figure IV describes the structure of the security proof. Each
node in the diagram is an object that is conjectured (in the
case of PRF) or proved to exist, and each arrow is a reduction
that proves the existence of some construction. Many of these
reductions are complex arguments involving a large sequence
of games. In particular, the T-Set construction and the proofs
related to this construction are quite complex, and the T-Set
abstraction hides the complexity of this construction in order
to make the SSE proof simpler. This is a standard technique
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in cryptography that is even more important when developing
mechanized proofs. The abstraction and modular construction
features of Coq, which are inherited by FCF, are very useful
for developing these sorts of proofs.

The left side of the diagrams shows the proof that the T-Set
construction in [15] is secure and correct, and the right side
is the proof of security of the SKS-SSE scheme. In the T-Set
proof, we begin by showing that if some function f is a PRF,
then is is an iterated PRF as described in Section III. From a
PRF and an iterated PRF, we show that a simplified “single-
trial” form of the T-Set construction is correct and secure.
Then we use some reusable arguments to obtain the correctness
and security of the “full” T-Set construction. More information
about the T-Set security and correctness proofs can be found
in Sections VI-A and VI-B, respectively

The proof of security for SKS-SSE, requires an IND-CPA
encryption scheme, which can be formally derived from a PRF
as shown in [23]. We then show that this encryption scheme
is an iterated encryption scheme in a manner similar to the
iterated PRF reduction. This fact also follows from the hybrid
argument described in Section III. Then we show that the SKS-
SSE scheme is secure as long as the T-Set is correct and secure,
the encryption scheme used is an iterated IND-CPA encryption
scheme, and the function used to derive encryption keys is a
PRF. We expand on this part of the proof in Section V.

Iterated
PRF

PRF Encryption

Single-Trial
T-Set

Iterated
Encryption

T-Set SKS-SSE

Fig. 1. SSE Security Proof Structure

V. SINGLE KEYWORD SEARCHABLE SYMMETRIC

ENCRYPTION FROM TUPLE SETS

In this section, we present the formal definitions related to
SSE and Tuple Sets, and prove the security of the SKS-SSE
scheme of [15]. An SSE scheme consists of an EDBSetup
function that takes a database and produces an encrypted
database and a key, and a SearchProtocol that uses a key
and a query known to the client and an encrypted database
known to the server to produce a list of identifiers and a
transcript.

A. Non-Adaptively Secure SSE

We use a non-adaptively secure definition for SSE (List-
ing 7), in which an adversary produces a database and the
entire list of queries up front. The definition is given as an
indistinguishability between a pair of games parameterized
by a leakage function L that describes the information that
is allowed to leak to the adversary. The real game uses the
actual EDBSetup and SearchProtocol while the ideal
game uses a simulator that is only given the result of the
leakage function applied to the unencrypted database and list

of queries. The SSE scheme is non-adaptively secure if the
distance between these two games, SSE_NA_Advantage, is
small.

In this definition, the adversary is divided into two separate
procedures, A1, and A2 which are allowed to share state. In the
equivalent definition in [15], the second adversary procedure
is also given the list of identifiers resulting from the queries in
order to model the assumption that the client will immediately
give the identifiers to the server to retrieve the required objects.
For simplicity, we remove this assumption and only give the
search transcript to the adversary.

Definition SSE_Sec_NA_Real :=
[db, q, s_A] <-$3 A1;
[k, edb] <-$2 EDBSetup db;
ls <-$ foreach (x in q) (SearchProtocol edb k x);
A2 s_A edb (snd (split ls)).

Definition SSE_Sec_NA_Ideal :=
[db, q, s_A] <-$3 A1;
leak <-$ L db q;
[edb, t] <-$2 Sim leak;
A2 s_A edb t.

Definition SSE_NA_Advantage :=
| Pr[SSE_Sec_NA_Real] - Pr[SSE_Sec_NA_Ideal] |.

Listing 7. SSE Non-Adaptive Security

B. T-Sets

A T-Set is a primitive that associates values with keywords,
and allows retrieval of all the values associated with some
keyword. A T-Set differs from a standard associative array in
that the T-Set scheme attempts to hide as much as possible
about the values in the T-Set and the relationship between
keywords and values. A server that possesses a T-Set structure
but not the key for that structure should learn very little about
the contents of the structure. The server can also query the
structure on behalf of a client that knows the T-Set key, and
in the process the server should learn very little other than the
set of values returned by the query.

A T-Set scheme is composed of three procedures:
TSetSetup, TSetGetTag, and TSetRetrieve.
TSetSetup takes a database and returns a T-Set and
a secret key. Database keywords are elements of {0, 1}∗ and
identifiers are elements of {0, 1}λ. TSetGetTag takes a
keyword and a secret key and outputs a tag. TSetRetrieve
takes a T-Set and a tag and returns a list of identifiers.

The security of the SSE scheme relies on both the security
and the correctness of the T-Set scheme. The formal correct-
ness definition (Listing 8) is computational and non-adaptive.
In this definition, the adversary chooses the database and list
of keywords, and the correct answers are compared to the
answers produced using the T-Set. If the T-Set is correct, then
the probability that these answers differ (AdvCor) is small.

The non-adaptive security of a T-Set scheme is defined
as a real/ideal indistinguishability parameterized by a leakage
function L as shown in Listing 9. If the T-Set is secure,
then TSetAdvantage should be small. Note that the correct
answers are given to the simulator in the ideal game, implying
that this information is allowed to leak to the adversary. The
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Definition AdvCor_G :=
[t, q] <-$2 A;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q) (TSetGetTag k_T x);
t_w <- foreach (x in tags) (TSetRetrieve tSet x);
t_w_correct <- foreach (x in q)
(arrayLookupList t x);

ret (t_w != t_w_correct).

Definition AdvCor := Pr[AdvCor_G].

Listing 8. T-Set Non-Adaptive Computational Correctness

T-Set only hides information about the queries and the non-
queried portions of the database.

Definition TSetReal :=
[t, q, s_A] <-$3 A1;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q) (TSetGetTag k_T x);
A2 s_A (tSet, tags).

Definition TSetIdeal :=
[t, q, s_A] <-$3 A1;
T_qs <- foreach (x in q) (lookupAnswers t x);
[tSet, tags] <-$2 Sim (L t q) T_qs;
A2 s_A (tSet, tags).

Definition TSetAdvantage :=
| Pr[TSetReal] - Pr[TSetIdeal] |.

Listing 9. T-Set Security Definition

C. IND-CPA Encryption and PRFs

The final elements required to construct the SSE scheme
are an IND-CPA encryption scheme and a pseudorandom
function. The T-Set is allowed to leak information about values
returned by queries, so the SSE scheme stores ciphertexts in
the T-Set instead of indices. Because the encryption is IND-
CPA, the only information leaked is the number of values
returned by each query. The encryption key is determined by
a pseudorandom function applied to the appropriate keyword.
We use adaptively-secure encryption and PRFs in this proof
merely for convenience, and it would be possible to complete
this proof using non-adaptive forms of these assumptions.
The adaptive security definitions use the OracleComp type
described in [23].

The particular IND-CPA definition that is used as an
assumption is shown in Listing 10. In this definition,
EncryptOracle is an oracle that returns an encryption
of any plaintext it receives, and EncryptNothingOracle
takes a plaintext and returns an encryption of some default
value (e.g. 0λ). The scheme encrypts each entry using a key
derived from the keyword, so we actually need an iterated
form of IND-CPA in which the adversary is allowed to interact
with several encryption oracles, each with a different key.
We can show that any IND-CPA encryption scheme is also
an iterated IND-CPA encryption scheme (security definition
omitted) using the hybrid argument described in Section III.

The SSE construction also requires a standard pseudoran-
dom function. The definition (omitted) is the adaptive form of
the PRF definition provided in Section III.

Definition IND_CPA_SK_O_G0 :=
key <-$ KeyGen;
[b, _] <-$2 A (EncryptOracle key) tt;
ret b.

Definition IND_CPA_SK_O_G1 :=
key <-$ KeyGen;
[b, _] <-$2 A (EncryptNothingOracle key) tt;
ret b.

Definition IND_CPA_SK_O_Advantage :=
| Pr[IND_CPA_SK_O_G0] - Pr[IND_CPA_SK_O_G1] |.

Listing 10. Iterated IND-CPA Encryption

D. SKS-SSE Construction

The formalization of the SKS-SSE construction is shown in
Figure 11. In this figure, Enc and Dec are the encryption and
decryption procedures for an IND-CPA encryption scheme,
and F is a PRF. The EDBSetup routine iterates over all
keywords in the database (obtained using the toW function)
and encrypts the indices associated with each keyword under
a key derived from that keyword. Then TSetSetup is used
to construct a T-Set from this encrypted database. In this
procedure, lookupInds returns all the indices associated
with a keyword. The search protocol uses TSetGetTag
and TSetRetrieve to get the encrypted indices, and then
decrypts them.

Definition SKS_EDBSetup_wLoop db k_S w :=
k_e <- F k_S w;
inds <- lookupInds db w;
t <-$ foreach (x in inds) (Enc k_e x);
ret (w, t).

Definition SKS_EDBSetup(db : DB) :=
k_S <-$ {0, 1}ˆlambda;
t <-$ foreach (x in (toW db))
(SKS_EDBSetup_wLoop db k_S x);

[tSet, k_T] <-$2 TSetSetup t;
ret ((k_S, k_T), tSet).

Definition SKS_Search tSet k w :=
[k_S, k_T] <-2 k;
(* client *) tag <-$ TSetGetTag k_T w;
(* server *) t <- TSetRetrieve tSet tag;
(* client *) inds <- map (Dec (F k_S w)) t;
ret (inds, (tag, t)).

Listing 11. SKS-SSE Construction

E. Proof of Security for SKS-SSE

Listing 12 contains the leakage function and simulator used
in the proof of security. Note that L_T is the leakage function
for the T-Set. Informally, this scheme leaks the number of
indices associated with each queried keyword, as well as the re-
sult of the T-Set leakage function applied to the structure of the
database (the number of indices associated with keyword) and
the list of queries. The simulator for this proof uses Sim_T,
which is the T-Set simulator. In this listing, zeroVector
lambda is a vector of length lambda containing all zeroes,
and combine is the Coq function that converts a pair of lists
to the corresponding list of pairs.

The security proof is completed using a sequence of
games (which is omitted for brevity). The exact security
result is provided in Listing 13. The result refers to proce-
dures TSetCor_A, TSetSec_A1, TSetSec_A2, PRF_A,
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Definition SKS_resultsStruct db w :=
k_e <-$ {0, 1}ˆlambda;
inds <- lookupInds db w;
foreach (_ in inds)
(Enc k_e (zeroVector lambda)).

Definition L (db : DB) (qs : list Query) :=
t_s<-$ foreach (x in (toW db))
(SKS_resultsStruct db x);

t <- combine (toW db) t_s;
leak_T <- L_T t qs;
ret (leak_T, map (arrayLookupList t) qs).

Definition SKS_Sim leak :=
[leak_T, struct] <-2 leak;
[tSet, tags] <-$2 Sim_T leak_T struct;
ret (tSet, (combine tags struct)).

Listing 12. Leakage Function and Simulator for SKS-SSE Proof

Enc_A1, and Enc_A2 (all omitted), which form the con-
structed adversaries against T-Set correctness and security,
the PRF, and the IND-CPA encryption scheme. Enc_A1
is a family of procedures, and the hypothesis states that
IND_CPA_Adv is an upper bound on the advantage of all
procedures in this family. The term maxKeywords represents
the maximum number of keywords that may be contained in
the database and queries produced by A1, and this term appears
in the bounds due to the application of the hybrid argument
as described in Section V-C.

Theorem SKS_Secure :
(forall i, IND_CPA_SK_O_Adv ({0, 1}ˆlambda) Enc
(Enc_A1 i) Enc_A2 <= IND_CPA_Adv) ->

SSE_NA_Advantage SKS_EDBSetup
SKS_Search A1 A2 L SKS_Sim <=

AdvCor TSetSetup TSetGetTag TSetRetrieve
TSetCor_A +

TSetAdvantage TSetSetup TSetGetTag L_T
TSetSec_A1 TSetSec_A2 Sim_T +

PRF_Advantage (Rnd lambda) (Rnd lambda) F PRF_A +
maxKeywords * IND_CPA_Adv.

Listing 13. Exact Security of SKS-SSE Scheme

VI. T-SET INSTANTIATION

This section describes the efficient T-Set instantiation de-
scribed in [15] as well as the formal proof of security and
correctness of this construction. We slightly simplify the model
of the T-Set construction because we only prove non-adaptive
security of the scheme. Instead of using two PRFs and a
random oracle, we model the scheme using only two PRFs,
since this is sufficient for non-adaptive security.

The T-Set is a hash table with B buckets, each with at
most S entries. The parameters B and S are selected based on
the size of the input structure T in a way that the probability
of constructing the T-Set without running out of space in any
bucket is non-negligible. A PRF F is used to determine the
bucket into which each value will be placed, as well as a label
that can be used to determine the keyword associated with the
value, and a key used to encrypt the value when it is placed
in the T-Set. Another PRF F̄ is used to map keywords to tags.
The security of the T-Set scheme is derived from the assumed
indistinguishability of F and F̄ from random functions.

In order to organize the presentation and proof, we separate
the TSetSetup routine into a number of subroutines. This
routine is composed of a nested loop, so we construct a
procedure for each loop body. Each loop body is a function that
takes an accumulator and the next input value and returns the
resulting value for the accumulator. The loop_over operator
is simply notation for folding the procedure over some input
list. The setup routine may fail if some bucket in the hash
table is filled, so the setup is repeated in independent trials
until a trial succeeds. In this listing, nth is a Coq function
that returns the value at a certain position in a list, remove
removes the first occurrence of some value in a list, replace
replaces the value in a list at a specified position with an-
other value, tSetUpdate sets the value in the T-Set at the
specified location to the provided value, lookupAnswers
returns the indices associated with some keyword in the T-Set,
allNatsLt returns all the natural numbers (in increasing
order) less than a specified number, and initFree initializes
a “free list” that is used to keep track of which locations in each
bucket are unoccupied. The ($ free_b) expression in the
TSetSetup_tLoop construction denotes sampling from the
distribution corresponding to the list free_b. This sampling
routine and notation are provided by the FCF standard library.
Because this sampling may fail if the list is empty, we perform
the sampling inside a Maybe monad as indicated by the arrow
<-?, and the TSetSetup_tLoop returns a value in an
option type.

Definition TSetSetup_tLoop stag length acc e :=
[tSet, free] <- acc;
[i, s_i] <- e; [b, L, K] <- F stag i;
free_b <- nth b free nil;
j <-? ($ free_b) ;
free <- replace free b (remove free_b j);
bet <- (S i) != length;
newRecord <- (L, (bet :: s_i) xor K);
tSet <- tSetUpdate tSet b j newRecord;
ret (tSet, free).

Definition TSetSetup_wLoop T k_T acc w :=
[tSet, free] <- acc;
stag <- F_bar k_T w;
t <- lookupAnswers T w;
ls <- combine (allNatsLt (length t)) t;
loop_over ((tSet, free), ls)
(TSetSetup_tLoop stag (length t)).

Definition TSetSetup_trial T :=
k_T <-$ {0, 1} ˆ lambda;
loopRes <-$ loop_over ((nil, initFree), (toW T))
(TSetSetup_wLoop T k_T) ;

ret (loopRes, k_T).

Definition TSetSetup t :=
[res, k_T] <-$ Repeat (TSetSetup_trial t)
(fun p => isSome (fst p));

ret (getTSet res, k_T).

Listing 14. T-Set Setup Routine

The TSetGetTag procedure (Listing 15) simply produces
a tag for a keyword using the F̄ PRF and the key for the T-Set.

Definition TSetGetTag (k_T : Bvector lambda) w :=
ret (F_bar k_T w).

Listing 15. T-Set Get Tag Routine
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The TSetRetrieve procedure (omitted) searches
through the T-Set to find all the entries matching a keyword.
Because Coq requires us to model this procedure as a total
function, we assume that there is a maximum number of entries
for any keyword, and we use this number as “fuel”. The loop
body searches for the ith value matching the tag, and returns an
optional value and an indication of whether there are additional
entries matching the tag. This loop body is iterated until it
indicates that there are no more values, or it runs out of fuel.

A. T-Set Security

The simulator used in the security proof is shown in Listing
16. The leakage function (not shown) returns the total size of
the database, and this value is given to the simulator as the
parameter leak.

Definition randomTSetEntry acc :=
label <-$ {0, 1} ˆ lambda;
value <-$ {0, 1} ˆ (S lambda);
[tSet, free] <- acc;
b <-$ [0 .. B);
free_b <- nth b free nil;
j <-? ($ free_b);
free <- replace free b (remove free_b j) nil;
tSet <- tSetUpdate tSet b j (label, value);
ret (tSet, free).

Definition TSetSetup_Sim_wLoop tSet_free e :=
[tSet, free] <- tSet_free;
[stag, t] <- e;
ls <- combine (allNatsLt (length t)) t;
loop_over ((tSet, free), ls)
(TSetSetup_tLoop stag (length t)).

Definition TSet_Sim_trial n ts :=
tags <-$ foreach (_ in ts) ({0, 1} ˆ lambda);
loopRes <-$ loop_over
((nil, initFree), (combine tags ts))
TSetSetup_Sim_wLoop;

loopRes <-$ loop_over
(loopRes, allNatsLt (n - length (flatten ts)))
(fun acc i => randomTSetEntry acc);

ret (loopRes, tags).

Definition TSet_Sim leak ls :=
[_, ts] <- split ls;
[trialRes, tags] <-$
Repeat (TSet_Sim_trial leak ts)
(fun p => isSome (fst p));

ret (getTSet trialRes, tags).

Listing 16. T-Set Simulator

This proof is complicated by the fact that the real setup
routine and the simulator perform multiple trials in an attempt
to create the T-Set. So we begin by proving the security of
a modified form of the scheme in which only one attempt
is made to construct the T-Set. Then we combine this result
with some additional arguments in order to obtain the proof
of security for the full T-Set scheme.

1) Single-Trial T-Set Security: The Single-Trial T-Set secu-
rity proof is a straightforward, though complicated, sequence
of games in which we replace PRFs with random values
and use the resulting randomness to show that the output is
independent from the input. The first complication relates to
applying the PRF definition to F in that some of the PRF
keys are the same as the tags that are given to the adversary at

the end of the computation. The PRF definition only applies
when the PRF key is not given to the adversary, so we must
split the T-Set initialization procedure into two parts: first
it adds entries related to the keywords that are queried by
the adversary, then it adds the rest of the entries. The first
part of this procedure already matches the ideal functionality,
and we only apply the PRF assumption to the entries created
during the second part of the procedure. Another complication
is that the initialization procedure places each record in a
random location in the correct bucket. So it is necessary
to perform game manipulations in the presence of sampling
without replacement, and the games must keep track of the
unused locations in each bucket.

The intermediate game code is omitted for brevity, but a
diagram of the sequence is provided in Figure 2. The box
around the top half marks a portion of the proof that is
reused as an argument in the correctness proof described in
Section VI-B1. Each equivalence in the diagram is labeled
to indicate the argument or assumption used. Equivalences
labeled S are simple transformations such as unfolding def-
initions, inlining statements, and removing unused values or
statements. F indicates a loop fission transformation such as
the one described in Section II-C. A describes an information
augmentation transformation in which additional information
is added to a data structure without changing the results of the
game. Such a transformation enables “ghost state” reasoning
in which this additional information can be used in program
logic judgments. For example, a list of ciphertexts could be
augmented with a list of plaintexts and keys used in the
encryption. Then a program logic judgment could state that
the plaintext is equal to the value obtained by decrypting the
ciphertext with the key. D is a dimension reduction where
a data structure of dimension n is represented using a data
structure of dimension n− 1. A dimension reduction may be
performed to replace a 2-dimensional data structure with a
list in order to apply a theorem related to list processing. O
is a non-trivial change to the order in which statements are
executed in the game. The T-Set construction stores entries
in a random location in each bucket, requiring sampling
without replacement to determine the location of each entry.
In some transformations, we change the order that entries are
added to the T-Set in the presence of this sampling without
replacement. R equivalences replace random function outputs
with independent random values by showing that there are no
duplicates in the input to the function. In L transformations,
we show that folding the function f over a list is equivalent to
folding f over the first n elements of the list, and then folding
f over the rest of the list. I equivalences show that certain
values are independent of each other by applying a one-time
pad argument as seen Section III.

The statement of security for single-trial T-Sets is shown
in Listing 17. In this listing, TSetSetup_once and
TSet_Sim_once are procedures that try to create a T-Set in
a single attempt using the corresponding trial routines. These
routines produce an empty T-Set if the trail fails. The pro-
cedures TSet_PRF_A1, TSet_PRF_A2, TSet_IPRF_A1,
and TSet_IPRF_A2, are efficient adversaries against the
PRFs constructed from A1 and A2. The proof uses an iterated
PRF as described in Section III, and TSet_IPRF_A1 and
TSet_IPRF_A2 form a family of adversaries constructed
using different distributions from the appropriate hybrid distri-
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Fig. 2. Single-Trial T-Set Security Games

bution family. This theorem assumes that F_Adv is an upper
bound on the advantage of all of these adversaries against
the PRF F. The theorem also assumes that F_bar_Adv is
an upper bound on the advantage of a particular constructed
adversary against the PRF F_bar. Similar to the proof in
Section V-E, the database and queries provided by the adver-
sary contain at most maxKeywords keywords, and this term
appears in the bounds due to the application of the hybrid
argument.

Theorem TSet_once_secure :
(forall i, PRF_NA_Advantage
({0,1}ˆlambda) (RndF_Range) F
(TSet_IPRF_A1 i) TSet_IPRF_A2 <= F_Adv) ->

PRF_NA_Advantage
({0,1}ˆlambda) ({0,1}ˆlambda) F_bar
TSet_PRF_A1 TSet_PRF_A2 <= F_bar_Adv ->

TSetAdvantage TSetSetup_once TSetGetTag
L_T TSet_Sim_once A1 A2 <=

<= F_bar_Adv + maxKeywords * F_Adv.

Listing 17. Single-Trial T-Set Security

2) The “One to Many” Argument: We employ a couple of
non-trivial reusable arguments in order to derive security of
the full T-Set scheme from the proof of security of the Single
Trial T-Set scheme. The first of these arguments is the “One to
Many” argument (Listing 18), which is a special case of the
hybrid argument described in Section III in which the same
argument is repeated a fixed number of times and the results
are collected in a list.

Definition DistMult_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ foreach (x in (forNats n)) ((c a);
A2 s_A b.

Definition DistMult_Adv :=
| Pr[DistMult_G c1] - Pr[DistMult_G c2] |.

Theorem DistSingle_impl_Mult :
DistMult_Adv c1 c2 A1 A2 n <=
n * (DistSingle_Adv c1 c2 B1 B2).

Listing 18. The One to Many Theoreom

3) The “Many to Core” Argument: The next argument
applies to any pair of probabilistic computations c1 and c2
that produce values of type B. There is also some predicate

P on values of type B that defines the “core” of the dis-
tributions corresponding to c1 and c2. This argument shows
that if any efficient adversary A can effectively distinguish
c1 from c2 when given a single value from c1 or c2 such
that P (b) = true, then there exists an efficient adversary
A′ that can effectively distinguish c1 from c2 when given
(polynomially) many samples from one of the distributions.
An additional condition required for this fact to hold is that
the total probability mass of the core is not too small. The
statement of this argument is shown in Listing 19, where k1
and k2 represent the probability mass of the core of c1 and
c2, respectively.

Definition RepeatCore_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ Repeat (c a) P;
A2 s_A b.

Definition RepeatCore_Adv :=
| Pr[RepeatCore_G c1] - Pr[RepeatCore_G c2] |.

Theorem DistMult_impl_RepeatCore :
RepeatCore_Adv P c1 c2 A1 A2 <=
DistMult_Adv c1 c2 A1 DM_RC_B2 n +
(1 - k1)ˆn + (1 - k2)ˆn.

Listing 19. The Many to Core Theoreom

Fig. 3. Illustration of “Many to
Core” Argument

The proof of this fact is intu-
itive, and is illustrated in Figure
3. If the core of the distribu-
tion is sufficiently large, and if
enough samples are taken from
the distribution, then it is likely
that at least one of these sam-
ples will fall within the core of
the distribution. The constructed
adversary A′ samples the dis-
tribution n times and gives the
first “hit” in the core of the
distribution to A which it uses
to determine the source of the
sample. When a hit is obtained, the distribution observed by
A is identical to the distribution in which only the core is sam-
pled. These distributions only differ when no hit is obtained
after n attempts, but this event has negligible probability in n.

4) Full T-Set Security: We obtain security of the full T-Set
scheme by combining the arguments in the previous sections.
In order to apply the “Many to Core” argument, it must be
shown that there is some positive k ∈ Q, and the probability
of successfully creating a T-Set from a database supplied by
the adversary is at least k. This argument also requires that
the simulator succeeds in one trial with probability at least k.
Because these facts depend on the choice of parameters B and
S, we leave them as assumptions in the proof.

By combining the Single-Trial T-Set security proof with
the assumptions related to k described in the previous para-
graph, and with the arguments presented in Sections VI-A2
and VI-A3, we get the final security result in Listing 20.
This theorem has the same assumptions as the “Single-Trial”
security theorem in Listing 17, and the bounds of that theorem
are present in this one.
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Theorem TSet_secure :
(forall i, PRF_NA_Advantage
({0,1}ˆlambda) (RndF_Range) F
(TSet_IPRF_A1 i) TSet_IPRF_A2 <= F_Adv) ->

PRF_NA_Advantage
({0,1}ˆlambda) ({0,1}ˆlambda) F_bar
TSet_PRF_A1 TSet_PRF_A2 <= F_bar_Adv ->

TSetAdvantage TSetSetup TSetGetTag
L_T TSet_Sim A1 A2

<= lambda * (F_bar_Adv + maxKeywords * F_Adv)
+ 2 * (1 - k)ˆlambda

Listing 20. T-Set Security

B. T-Set Correctness

The T-Set correctness proof has very similar structure to
the security proof. The primary difference is that the ultimate
goal is an inequality, rather than a proof that two values are
“close.” The proof uses slightly different forms of the “One
to Many” and “Many to Core” arguments, and there are some
interesting differences in the “single-trial” proof, which we
highlight in this section.

1) Single-Trial T-Set Correctness: The single-trial T-Set
security proof was simplified by the fact that security is
obvious when initialization fails. The empty T-Set resulting
from an initialization failure clearly has no information that the
adversary could use to distinguish it from the simulator. This
argument is not so simple in the case of correctness, because
an empty T-Set is obviously not correct. So we instead prove
that the single-trial construction is conditionally correct. That
is, a database and list of queries produced by the adversary is
highly unlikely to result in a T-Set on the first initialization
attempt that will produce an incorrect answer when queried.
In the formalization of this definition (Listing 21), good
is a predicate that indicates whether the TSetSetup routine
produced a valid T-Set.

Definition AdvCor_C_G :=
[t, q] <-$2 A;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q)(TSetGetTag k_T x);
t_w <- foreach (x in tags) (TSetRetrieve tSet x);
t_w_correct <- foreach (x in q)
(arrayLookupList _ t x);

ret (good tSet && (t_w != t_w_correct)).

Definition AdvCor_C := Pr[AdvCor_C_G].

Listing 21. T-Set Conditional Correctness

Notice that AdvCor C G unifies with the real game in
the T-Set security definition (Listing 9). Since this definition
is used in the single-trial T-Set security proof, we could use
the result of this proof in the correctness proof to replace
the game above with the ideal game from the security proof.
Unfortunately, the simulator in the security proof eliminates
some of the information required to show correctness. This
security proof is a sequence of games, however, and we
can use it to replace the game above with any game in
that sequence. There is a game about halfway through in
which many simplifications have been applied and the first
PRF outputs are replaced with random values. So we save a
significant amount of effort by reusing this result.

Next we perform a sequence of manipulations that simplify

the T-Set and make it look more like the input database. For
example, we put the values in the buckets in the same order
as the input list rather than in a random order, we store and
retrieve actual values instead of encryptions of values, and
we make the structure one-dimensional. Then we replace the
remaining PRF with a random function and replace the outputs
with random values. Finally, we show that the T-Set is correct
as long as there are no collisions in these random values, and
we derive an expression for the probability of such a collision.

The sequence of games is diagrammed in Figure 4. The
proof uses several of the same forms of equivalence from
the security proof, and only the new labels are described in
this paragraph. The equivalence labeled M uses the part of
the security proof surrounded by a box in Figure 2 as an
argument. In inequalities labeled C, we modify the game so
that the adversary can also win by finding a collision during
some operation. That is, the adversary can win by getting the
game to produce a collision, or by satisfying the original “win”
condition when there is no such collision. This allows a form of
“identical until bad” reasoning for inequalities in which we can
assume that there are no collisions going forward, and we will
calculate the probability of collision and add it to the bounds
in a later stage of the proof. E represents an equivalence by
functional injection, in which we replace some operation on
the outputs of an injective function with a related operation
on the inputs of the function. These equivalences may use
the assumptions provided by C steps, because if no collisions
are encountered while interacting with a function, then that
function behaves like an injection. In the final N equivalence
of the correctness proof, we convert a simple collision-finding
game into the corresponding probability expression B. The
expression B is negligible in λ, and the bound on the advantage
of the adversary in this theorem is the sum of B and the PRF
advantage terms introduced by the ≈ equivalences.

AdvCor C1 Real S9 C2

C3 C4 C5 C6 C7

C8 C9 C10 C11 C12

C13 C14 C15 C16 C17

C18 C19 B

=S =S ≈M =S

=A ≤C
=O =D

=E =S =E =E

=S =S ≈P =R

≤S
=N

=S

=C

=S

=A

Fig. 4. Single-Trial T-Set Correctness Games

The single-trial conditional correctness result is in Listing
22. In this listing, maxMatches is the maximum number
of records matching any query, and maxKeywords is the
maximum number of keywords in the database and queries
supplied by the adversary. This result is similar to the single-
trial security result because both proofs assume the functions
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F and F_bar are PRFs, and F is used as an iterated PRF
in both proofs. The first term in the bounds of this theorem
corresponds with B—the probability of a collision that would
cause the result to be incorrect.

Theorem TSet_Correct_once :
(forall i, PRF_NA_Advantage
({0,1}ˆlambda) RndF_R F
(PRFI_A1 i) (PRFI_A2) <= F_Adv) ->

PRF_NA_Advantage
({0,1}ˆlambda) ({0,1}ˆlambda) F_bar
PRF_A1 PRF_A2 <= F_bar_Adv ->

AdvCor_C TSetSetup_once TSetGetTag
TSetRetrieve A1 A2 <=

(maxKeywords * (S maxMatches))ˆ2 / 2 ˆ lambda
+ maxKeywords * F_Adv + F_bar_Adv.

Listing 22. Single-Trial T-Set Conditional Correctness

2) One to Many to Core Arguments: The “One to Many”
and “Many to Core” arguments are slightly different from the
ones used in the security proof. Rather than showing that
the distance between two events is small, we only need to
show that the probability of some event is small under the
assumption that the probability of some other event is small.
The required arguments are shown in Listing 23.

Definition TrueSingle_G :=
a <-$ A1; b <-$ c a; ret (Q b).

Definition TrueMult_G :=
a <-$ A1;
bs <-$ foreach (x in (forNats n)) (c a);
ret (fold_left (fun b x => b || (Q x)) bs false).

Definition TrueRepeat_G :=
a <-$ A1; b <-$ Repeat (c a) P; ret (Q b).

Theorem TrueSingle_impl_Mult :
Pr[TrueMult_G n] <= n * Pr[TrueSingle_G].

Theorem TrueMult_impl_Repeat :
Pr[TrueRepeat_G] <=
Pr[TrueMult_G n] + (k ˆ n).

Listing 23. One to Many to Core Inequality Arguments

C. Full T-Set Correctness

The full T-Set correctness theorem is shown in Listing 24.
This result is produced in a similar manner to the security
result—the single-trial result is combined with the “One to
Many” and “Many to Core” arguments along with some
additional assumptions, and the single-trial bounds appears in
the bound of the full T-Set result. This proof also assumes
a value k representing the probability that the TSetSetup
routine succeeds in any attempt.

Theorem TSet_Correct :
(forall i, PRF_NA_Advantage
({0,1}ˆlambda) RndF_R F
(PRFI_A1 i) (PRFI_A2) <= F_Adv) ->

PRF_NA_Advantage
({0,1}ˆlambda) ({0,1}ˆlambda) F_bar
PRF_A1 PRF_A2 <= F_bar_Adv ->

AdvCor TSetSetup TSetGetTag TSetRetrieve A1 A2 <=
(1 - k)ˆlambda + lambda *
((maxKeywords * (S maxMatches))ˆ2 / 2 ˆ lambda
+ maxKeywords * F_Adv + F_bar_Adv).

Listing 24. T-Set Correctness

VII. PROOF ENGINEERING

This proof was completed in approximately 6 months by
a person with expert-level knowledge of FCF and moderate
knowledge of the SSE scheme in question. Most of this time
was spent in the “single-trial” security and correctness proofs.
Table I provides the number of lines of Coq code and the
number of intermediate games for each proof. To determine the
number of intermediate games, we count only those games that
would be produced by a cryptographer when developing the
structure of the proof. In many cases, a high-level transforma-
tion is divided into several smaller transformations, each with
its own intermediate game. The games used in these smaller
transformations are not counted in the total number of games or
to the lines of definition, but they do contribute to the number
of lines of proof. The “Supporting Arguments” line measures
only the arguments described in Sections VI-A2, VI-A3, and
VI-B2. This proof relies on a large amount of existing theory
in the FCF library which comprises over 40,000 lines of
Coq code, and this effort resulted in several thousand lines
of additional reusable theory that was added to the standard
library of FCF.

TABLE I. PROOF COMPLEXITY

Proof Lines of Definition Lines of Proof Games

Single-Trial T-Set Security 447 3515 19

Single-Trial T-Set Correctness 611 5510 19

Supporting Arguments 48 1041 12

T-Set Security 0 1033 0

T-Set Correctness 0 998 0

SSE Scheme Security 257 920 8

Total 1363 13017 58

The table provides separate columns for definition (security
definitions, constructions, intermediate games, constructed ad-
versaries, and simulators) and proof (everything else including
proof scripts, program logic judgments, and minor intermedi-
ate games). This separation proposes a division between the
essential, cryptographic portion of the proof and the portion
required by the mechanization. The division suggests that
the mechanization increased the complexity of the proof by
(roughly) a factor of 10. This increase in effort is large, but it
should be considered reasonable when viewed in the context of
the larger engineering effort of developing an implementation
of this scheme. The proof is composed of several arguments,
and the more complex arguments are further decomposed into
a sequence of games. This decomposition provides ample
opportunity to divide the proof development effort among a
team of programmers.

An important engineering concern is the extent to which
artifacts developed for this proof could be reused in other
proofs. Notably, the T-Set that was proved secure and correct
in this proof is the same T-Set that is used in the more complex
SSE schemes in [15]. By reusing the T-Set and its theory, we
could greatly reduce the effort required to prove the security of
any scheme that requires a correct or secure T-Set. Of course,
the more general-purpose theory that was developed for this
SSE proof could be directly reused by any proof.

Another concern is the difficulty of changing the proof
artifact to respond to changes in the scheme itself. First
consider a minor change, such as a change to the representation
(but not the content) of the database. We could address this
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change by proving that some game using the new database
representation is equivalent to an existing game using the old
representation. This change adds a new intermediate game to
the sequence and increases the size of the proof. Another
solution is to use a reduction to prove the security of the
modified scheme assuming the security of the original scheme.
This is a very powerful and general approach, but it also
increases the size of the proof. A third option is to refactor the
proof and change the database into an abstraction that could
be instantiated with either representation. This solution may
require more effort to implement, but it does not increase the
size of the proof, and it results in a proof that is more tolerant
of these changes in the future.

For more significant changes, it may be very hard to modify
the proof. For example, if we wanted to prove adaptive security
of the SSE scheme, we would need to change the way the
scheme and the adversaries are modeled, add a random oracle,
and change many of the security definitions to the appropriate
adaptive security forms. This is a completely different proof,
and none of the artifacts from the non-adaptive proof would be
reused. However, much of the general-purpose theory in FCF
that was developed for the non-adaptive security proof would
still be applicable in the adaptive security proof.

VIII. RELATED WORK

There has been a large amount of work in the area of for-
malizing cryptographic proofs in the last decade, but much of
this work only involves simple examples used to demonstrate
a tool, framework, or proof technique. This section focuses
on mechanized proofs in the computational model related to
non-trivial or practical constructions.

Several complex proofs have been completed in EasyCrypt,
CertiCrypt, and CertiPriv [9], a related system for reasoning
about differential privacy. Stoughton [25] proved the security
of a simplified version of a private information retrieval
protocol. This is a fairly complex three-party protocol, but
the simplified scheme only allows a query to retrieve the
number of occurrences of a certain keyword in the database,
and not the values associated with that keyword. Barthe et
al. [4] demonstrate a formalization of differential privacy and
a verification of a non-trivial smart metering system as an
example. Almeida et al. [1] prove the security of a standardized
public key encryption scheme. Barthe et al. [8] proved security
of OAEP in CertiCrypt. Though this is a relatively simple
construction, the proof of security is quite complex, comprising
over 10,000 lines of Coq code. Barthe et al. [6] proved
using CertiCrypt that a hash function into elliptic curves is
indistinguishable from a random oracle. This is a non-trivial
proof that incorporates a significant amount of Coq theory
related to elliptic curves, and it uses an argument similar to
the “Many to Core” arguments of this paper.

Bhargavan et al. [11] verify an implementation of TLS
using the F7 refinement type system. This is a remarkably com-
plex proof, but several steps of the proof must be verified by
hand due to the fact that F7 does not support reasoning about
non-zero statistical distance between distributions. Barthe et
al. [5] show how a variant of F* (a successor to F7) can
be used to verify implementations of cryptographic schemes.
This work provides several non-trivial examples including a
certified privacy-preserving system for smart metering.

A certified proof of SSH [14] was completed in Cryp-
toVerif, though this proof is limited to the transport layer
protocol, and to the secrecy and authenticity of the session key
only. This security does not extend to the messages sent over
the channel due to a vulnerability in SSH. CryptoVerif was also
used to formally verify the Kerberos network authentication
system [13].

Roy et al. [24] use Protocol Composition Logic to ver-
ify the security of Diffie-Hellman key exchange as used in
Kerberos and IPSec key management. Both are standardized
protocols, and the models and formal proofs are quite complex.

IX. CONCLUSION AND FUTURE WORK

We have completed a mechanized proof of security for
a complex efficient searchable symmetric encryption scheme,
and shown that the effort required to complete such a proof
is not prohibitive. In doing so, we have shown that complex
proofs can be completed in FCF, and that the design of FCF
supports decomposition into multiple reductions and sequences
of games in order to manage the complexity of such proofs.

Future work includes the exploration of automation to
reduce the effort required to develop proofs. A direct and
powerful approach would be to use Ltac to develop custom
automated tactics as suggested by [16]. EasyCrypt demon-
strates the value of using SMT solvers to discharge low-level
goals, and the same approach is possible in FCF by calling
out to an SMT solver that produces proof witness [3]. Perhaps
automation in the style of CryptoVerif [12] could also be
used to replace entire equivalence proofs with a small amount
of code describing the high-level argument and additional
information such as loop invariants. An interesting challenge in
implementing this level of automation is specifying the context
where the argument should be applied, and automatically
proving that the argument is valid in that context.

It would also be valuable to explore different sorts of
cryptographic proofs and models in FCF. Because FCF is
built on Coq, it is likely expressive enough to check any
cryptographic proof, but perhaps certain elements of the proof
must be modeled in unpleasant ways that make proof de-
velopment difficult. For example, a non-black-box reduction
may require an adversary to be modeled as a circuit or some
other data structure. Another example is rewinding and coin-
fixing arguments, which are likely supported in FCF without
additional modeling due to the fact that adversary state is
explicit, and FCF provides an operational semantics that gives
control over coin flips.

Finally, FCF could be used to reason about the security of
an implementation of a cryptographic scheme. Because FCF
provides proofs in Coq, it can be combined with other Coq
libraries for reasoning about code. For example, we could
use FCF with the Verified Software Toolchain [2] to obtain a
complete proof of security for the machine code implementing
a cryptographic scheme.

REFERENCES
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