
Rational Protection Against Timing Attacks

Goran Doychev
IMDEA Software Institute

goran.doychev@imdea.org

Boris Köpf
IMDEA Software Institute

boris.koepf@imdea.org

Abstract—Timing attacks can effectively recover keys
from cryptosystems. While they can be defeated using
constant-time implementations, this defensive approach
comes at the price of a performance penalty. One is hence
faced with the problem of striking a balance between
performance and security against timing attacks.

In this paper, we propose a systematic approach for
determining the optimal protection against timing attacks, on
the example of cryptosystems based on discrete logarithms.
Our model includes a resource-bounded timing adversary
who strives to maximize the probability of key recovery, and
a defender who strives to reduce the cost while maintaining a
certain degree of security. We obtain the optimal protection
as an equilibrium in a game between the defender and the
adversary. At the heart of the equilibrium computation are
novel bounds for the probability of key recovery, which are
expressed as a function of the applied protection and the
attack strategy of a timing adversary.

We put our techniques to work in a case study in which
we identify optimal protections for libgcrypt’s ElGamal im-
plementation. We determine situations in which the optimal
choice is to use a defensive, constant-time implementation
and a small key, and situations in which the optimal choice
is a more aggressively tuned (but leaky) implementation with
a longer key.

I. Introduction

Side-channel attacks break the security of systems
by exploiting signals that are unwittingly emitted by
the implementation. Examples of such signals are the
consumption of power [21], memory [18], and execution
time [20]. Execution time is a particularly daunting signal
because it can be measured and exploited from a long
distance [11], which opens the door for a potentially large
number of attackers.

In theory, one can get rid of timing side channels
by avoiding the use of secret-dependent control flow
and of performance-enhancing features of the hardware
architecture, such as caches and branch prediction units.
However, this defensive approach comes at the price of a
performance penalty. In practice, one is hence faced with
the problem of striking a balance between performance
and security against timing attacks.

In this paper we present a game-theoretic approach for
solving this problem. The key novelty of our approach is a
simple and practical model of the side-channel adversary as
a player that can distribute the available resources between

timing measurements and offline search for the secret. Our
approach is focused in that we consider only cryptosystems
based on discrete logarithms and input blinding as a
countermeasure, yet it is comprehensive in that it goes all
the way from formal modeling to identifying the optimal
protection for a library implementation of ElGamal. A
highlight of our results is that we are the first to formally
justify the use of a fast but (slightly) leaky implementation
over a defensive constant-time implementation, for some
parameter ranges.

On a technical level, we identify the optimal coun-
termeasure configuration as an equilibrium of a two-
stage (Stackelberg) game between two rational players:
an adversary and a defender. The adversary strives to
maximize the probability of key recovery, by distributing
bounded resources between timing measurements and
computational search for the key. The defender strives
to minimize the cost of protection, while maintaining a
certain security level given in terms of an upper bound
on the probability of adversary success. The defender’s
means to achieve this are the choice of the key length and
the configuration of the countermeasure.

At the heart of the equilibrium computation are novel
bounds for the probability of key recovery in the presence
of side-channel information. We derive these bounds in
the generic group model and under the assumption that
the cryptosystem is based on discrete logarithms and
protected against timing attacks by an idealized form of
input blinding.

Our starting point is an existing upper bound for the
amount of information contained in n timing measurements,
when the execution time is discretized [23]. The technical
challenge we face is to turn this bound into a guarantee
against an adversary that can mount a combined timing/al-
gebraic attack. We identify unpredictability entropy [17] as
a suitable tool for this task. In particular, unpredictability
entropy satisfies a chain rule [25], which limits the extent
to which bounded leakage can decrease the hardness of
a computational problem. We then cast Shoup’s lower
bound for computing discrete logs in generic groups [32]
in terms of the unpredictability entropy w.r.t. an adversary
who can perform m group operations. Finally, we connect
the leakage bound with the bound for the discrete log
to obtain the desired bound (in terms of n and m) for
combined side channel/algebraic adversaries.

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Goran Doychev. Under license to IEEE.

DOI 10.1109/CSF.2015.39

526

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Goran Doychev. Under license to IEEE.

DOI 10.1109/CSF.2015.39

526

We put our approach to work in a case study where
we seek to optimally configure countermeasures against
timing attacks in libgcrypt’s ElGamal implementation.
Experimentally, we identify optimal choices of key lengths
and countermeasure configurations that guarantee the same
degree of security as a constant-time implementation using
a reference key length. We do this for realistic server
configurations, and target commonly used key lengths.
In the course of our experiments we observe that the
time of deployment of a key, or the number allowed
connections per second can influence which configuration
is optimal: the defensive, constant-time implementation
with a short key, or the more aggressively tuned and leaky
implementation with a longer key.

In summary, our contributions are conceptual and
practical. Conceptually, we combine game theory with
novel, quantitative security guarantees to tackle the problem
of systematically choosing the optimal balance between
security and performance. Practically, we perform a case-
study on a realistic ElGamal implementation, where we
illustrate how our techniques can be used to identify cost-
effective countermeasure configurations.

Organization: In Section II, we present the counter-
measure configuration game, based on parametric security
guarantees. We instantiate these guarantees in Section III,
before we discuss their application in Sections IV and V.
We present related work in Section VI, and conclude in
Section VII.

II. Choice of Optimal Protection

In this section we cast the optimal configuration of a
countermeasure as a game between the adversary and the
defender. We conclude the section with a discussion of
the effect of using safe approximations of the security of
a system (instead of exact values) for the solution of the
game.

A. Motivating Example

Input blinding is a widely deployed countermeasure
against timing attacks on cryptosystems based on modular
exponentiation. A formal security analysis of input blind-
ing [23] shows that the amount of information about the
key that is leaked by a blinded cryptosystem is bounded
from above by

(b − 1) log2(n + 1) (1)

bits, where b is the number of possible execution times,
and n is the number of side-channel measurements made.

For real systems, b can be as large as the difference
between the worst-case execution time and the best-case
execution time (e.g., in clock ticks), in which case (1)

does not imply meaningful guarantees. However, b can be
reduced by applying bucketing, which is the discretization
of system’s execution times into intervals (buckets) where,
for each execution time, one waits until the enclosing

bucket’s upper bound before returning the result of the
computation.

Choosing a smaller number of buckets b leads to better
security guarantees, but it also leads to a decrease in
performance. Likewise, picking a larger key size leads
to better security and a decrease in performance. The
techniques presented in this paper enable identifying the
sweet spot in the resulting parameter space.

B. Countermeasure Configuration as a Game

We formalize the configuration of a countermeasure
as a two-stage game between a defender (D) and an
adversary (A). Similar games are known in the literature
as Stackelberg games [14]. In the first stage, D chooses an
element d from a finite set D of defender actions, which
can be parameters of a protection mechanism. In the second
stage, having seen d, A responds by choosing an element
of a finite set A of adversary actions. We model this choice
as a function r : D → A, which captures that the adversary
knows and responds to d.

If a situation is preferred by a player, we say that
it has a higher utility. Utilities are captured in terms of
real-valued functions of both player’s actions:

uD, uA : D × A → R .
Putting together all ingredients, a two-stage game is the
tuple G = [(D,A), (D, A), (uD, uA)].

C. Utilities of the Players

Now we define the utilities that make up the counter-
measure configuration game. For this, we rely on (upper
bounds on) the probability of a breach (i.e. a successful
attack), which we model as functions

p : D × A → [0, 1] .

Throughout this section we leave p parametric; we show
how to instantiate it in Section III.

Defender’s utility: A natural notion for the de-
fender’s utility is to consider the loss l in case of a
successful breach together with the cost of the defense d,
i.e.,

−p(d, r(d)) · l − costD(d) . (2)

In practice, this definition suffers from two problems: First,
in advance it may be difficult to put a number l on the
loss in case of breach. Second, the definition may give
misleading results when working with bounds on p, as we
discuss in Section II-E.

To address those problems, we impose a hard upper
bound pmax on the probability of breach, which is common
practice, for example, in safety requirements [1]. We then
define the defender’s utility as the cost of defense under
this constraint.

527527

Definition 1: The defender’s utility uD is defined as

uD(d, r(d)) = −costD(d) ,

where we require p(d, r(d)) ≤ pmax.

Example 1: For the countermeasure described in Sec-
tion II-A, the defender’s action is to choose a key length
k and a number of buckets b, such that the adversary’s
chance of key recovery remains below pmax:

D = {(k, b) | p((k, b), r(k, b)) ≤ pmax} ,
where costD(k, b) is the average execution time of the
corresponding implementation. Here we instantiate p(·)
using the bounds in Section III. We rely on key length
recommendations [2] for protecting against traditional (non-
side channel) adversaries as a basis for instantiating pmax.
Specifically, the defender has to pick the key length k and
number of buckets b in such a way that the security level
with side channel matches that of a reference key length
kref without side channel.

Adversary’s utility: A natural notion for the adver-
sary’s utility is the adversary’s expected benefits in terms
of the gain g in case of a successful breach and the cost
of attack, i.e.,

p(d, r(d)) · g − costA(r(d)) .

In practice, however, it is more common to capture
adversaries in terms of assumptions on their resources and
capabilities [2]. We follow this approach and impose a
hard upper bound Δ on the attacker’s resources. We then
define the adversary’s utility as the probability of breach
under this constraint.

Definition 2: The adversary’s utility uA is defined as

uA(d, r(d)) = p(d, r(d)) ,

where we require costA(r(d)) ≤ Δ.

Example 2: In this paper we consider as resource Δ the
time available to the adversary for breaking the key (e.g.,
the key deployment time), which the adversary can spend
between sequentially making m side channel measurements
(each of which we assume take time τon) and n search
steps (each of which we assume take take time τoff). The
adversary’s actions are hence

A = {(m, n) | mτoff + nτon ≤ Δ} .
Note that this definition of A also caters for parallel attacks
by considering more general notions of cost and resources,
which we forgo for the sake of concreteness.

D. Solving the Game

We use the standard solution concept for multi-stage
games for characterizing optimal countermeasure configu-
rations. Namely, we use subgame perfect equilibrium (see
e.g. [14]), which is a combination of strategies (d∗, r∗) of
the two players such that none of the players can obtain a

higher payoff by deviating from the strategy, if the other
player sticks to their strategy.

Definition 3: A subgame perfect (Nash) equilibrium
(SPE) of a game G = [(D,A), (D, A), (uD, uA)] is a
defender’s action d∗ and an adversary’s response function
r∗, such that

(i) for all d ∈ D : uD(d, r∗(d)) ≤ uD(d∗, r∗(d∗)), and

(ii) for all r : uA(d∗, r(d∗)) ≤ uA(d∗, r∗(d∗)).

The SPEs of a game can be obtained by backward
induction, which consists of solving two optimization
problems: First, we find the adversary’s response function
that gives an optimal response to each of the defender’s
actions. Then, taking into account the optimal response
function, we find the optimal defense. The existence of an
equilibrium is guaranteed by the following theorem.

Theorem 1 ([12], [26], [35]): A finite game of per-
fect information has a pure-strategy SPE. This SPE can be
computed in time O(|D| · |A|), under the assumption that
uD and uA can be evaluated in time O(1).

Here, finite refers to the number of players’ actions and
number of stages in the game, perfect information refers to
the fact that the second player knows which action the first
player has done, and pure-strategy refers to the players’
strategies being deterministic.

E. Soundness of Solutions Based on Probability Bounds

The definition of the countermeasure configuration
game, and hence its solution, rely on the probability p of
a breach. When solving the game for practical systems,
we need to resort to approximations of p. Specifically, in
this paper we work with upper bounds p̂ on p which we
introduce in Section III.

However, using upper bounds may lead to unsound
decisions. For example, over-approximating p by p̂ = 1
in the utility function defined in (2) may suggest not to
deploy any countermeasures. That is, the solution of the
game based on p̂ will leave the system vulnerable, while
the solution based on p may command the deployment of
a countermeasure. We now show that the countermeasure
configuration game yields sound solutions when used with
bounds on the probability of breach, in the sense that one
errs on the secure side when solving the game using p̂
instead of p.

For this, consider countermeasure configuration games
G and Ĝ with uA(·) = p(·), ûA(·) = p̂(·), and uD = ûD,
such that Ĝ uses an over-approximation of the probability
of breach in the sense that p̂ ≥ p pointwise. The following
proposition shows that if a defender chooses an optimal
defense strategy with respect to Ĝ, and uses it to play G,
the probability of breach will still be upper bounded by
pmax.

528528

Proposition 1: Let d∗, r∗ be a SPE of Ĝ. Then, for
all r,

p(d∗, r(d∗)) ≤ pmax

Proof: For all adversary strategies r, we have

p(d∗, r(d∗))
(1)≤ p̂(d∗, r(d∗))

(2)≤ p̂(d∗, r∗(d∗)) ,

where (1) follows from p ≤ p̂; and (2) holds because
r∗ = arg maxr p̂(d, r(d)), i.e., for each r, d, p̂(d, r(d)) ≤
p̂(d, r∗(d)). As d∗ is the defender’s optimal action in Ĝ,
p̂(d∗, r(d∗)) ≤ pmax, from which the assertion follows.

Proposition 1 shows that the countermeasure configuration
game leads to sound solutions when used with bounds
on the probability of breach, whereas we have seen that
the utility defined by (2) does not. We leave a general
characterization of these two kinds of utilities to future
work.

III. Bounds on the Probability of
Key Recovery

A. Our Approach

In this section, we derive bounds for the probability
of recovering the secret key of a public-key cryptosystem
in a combined timing/algebraic attack. Our bounds are
practical enough to justify the choice of a leaky, non-
constant time implementation over a defensive constant-
time implementation for standard ElGamal in some settings,
see Section V. We derive our bounds in the generic group
model and under the assumption that the cryptosystem is
protected against timing attacks by an idealized form of
input blinding.

The starting point for our proof is the bound discussed
in Section II-A of the amount of information contained in n
execution time measurements of a blinded implementation
of modular exponentiation. The technical challenge we
face is to turn this bound into a guarantee against an ad-
versary that can mount a combined timing/algebraic attack:
Existing notions of leakage (e.g. [4], [33]) do not easily
combine with the adversary models used in cryptography,
and cryptographic notions of security (e.g. [19]) do not
cater for this weak yet realistic leakage model.

We identify unpredictability entropy [17] as a suitable
notion of entropy for extending leakage bounds to notions
of hardness w.r.t. computational adversaries. Unpredictabil-
ity entropy is versatile enough to accommodate for different
classes of adversaries and it satisfies a chain rule, which
provides an interface to the leakage bounds.

There are few facts known about the unpredictability
entropy of computational problems [3], nor are there
generally accepted hardness assumptions.1 To compensate
for this lack, we cast Shoup’s lower bound for computing

1It is known that RSA private keys have low unpredictability entropy
because they can be efficiently recovered if a small fraction of the key
bits are known [16].

discrete logs in generic groups in terms of the unpre-
dictability entropy w.r.t. an adversary who can perform m
group operations. This step requires a slight adaptation of
unpredictability entropy and the chain rule to the generic
group model. We then connect the leakage bounds with
the entropy bounds for the discrete log to obtain the
desired bound (in terms of n and m) for combined side
channel/algebraic adversaries.

B. Generic Algorithms for Computing Discrete Logarithms

A generic group algorithm is an algorithm that solves
problems over groups by only performing group operations
and equality tests. That is, it does not make any use of
the specific representation of group elements. Generic
algorithms are an attractive model of computation for
security because one can use them to establish lower
bounds for computational problems [32]; their disadvantage
is that they may underrate the power of real adversaries.

We next introduce the notion of generic algorithms for
computing discrete logarithms in cyclic groups of order
k, which are isomorphic to the additive group Zk. We use
the definition by Maurer [28].

Definition 4 (Generic algorithm in groups): A
generic algorithm Am

G(X)
over Zk is an algorithm which

can make m computation steps, each consisting of one
query to a group oracle G. The oracle has an internal state
v0, v1, v2, . . . , vm, where v0 = x is initialized with a secret
sampled from a random variable X with ran(X) = Zk. The
t-th query to the oracle consists of one of the following
two operations:

1) constant insertion: algorithm inputs c ∈ Zk,
oracle sets vt := c

2) variable addition: algorithm inputs i, j < t,
oracle sets vt := vi + v j (mod k)

The oracle then outputs the results of testing vt for equality
with all other elements in the internal state, i.e. (vt =
vi)i∈{0,..,t−1} .

In this model, each vi can be represented as a polyno-
mial vi = ax+b, where a and b are known to the adversary.
This is because each vi is derived from x and the inserted
constants by repeated addition. If vi = v j for vi = ax + b
and v j = a′x+b′ with (a, b) � (a′, b′), we say that there is a
collision between vi and v j. For the special case of a group
of prime order q, a collision can be used for recovering x,
because the equation (a − a′)x + (b − b′) = 0 has a unique
solution in Zq.

In m queries, an adversary can establish at most
(

m
2

)

equations of the form vi = v j, each of which has a unique
solution. The probability of hitting one of them when
sampling uniformly at random from Zk is upper-bounded by(

m
2

)
/q. Note that collisions are the only way for recovering x

in this model, i.e. the bound holds for any generic algorithm
for extracting x from the oracle.

529529

The bound extends to bounds for cyclic groups of
arbitrary order k via the Chinese remainder theorem.

Theorem 2 ([28], [32]): Let Am
G be a generic algo-

rithm over Zk, q the largest prime factor of k, andX
uniformly distributed. Then

P[Am
G(X) = X] ≤ m2

q
.

C. Unpredictability Entropy

Unpredictability entropy [17] is a notion of entropy
that generalizes conditional min-entropy to computational
settings. More specifically, it captures the probability of
a resource-bounded algorithm estimating the value of a
random variable from that of another. Unpredictability en-
tropy has been defined for different computational models,
such as circuits of bounded size [17] and polynomial time
algorithms [3]. Here we define unpredictability entropy
w.r.t. bounds on the number of accesses to an oracleO(X)
that receives as input the value of a random variableX.

Definition 5 (Unpredictability entropy): We say that
X has unpredictability entropy at least t bits for mcalls
to O, written Hm

O (X) ≥ t, if for all algorithms which can
make at most m queries to O(X),

P[Am
O(X) = X] ≤ 2−t .

Example 3: Let p be prime, g a generator of Z∗p, and q
the largest prime factor of p−1. The problem of computing
the discrete logarithm x of gx has unpredictability entropy
of least log2

q
m2 for m calls to G. This is because the

multiplicative group Z∗p is cyclic, and hence isomorphic to
the additive group Zp−1. Then Theorem 2 applies.

Example 4: For m = 0, the best algorithm for predict-
ing X is one that has the most likely value of X hardcoded,
i.e. unpredictability entropy and min-entropy coincide:

H0
O(X) = H∞(X) .

Next we define a conditional version of unpredictability
entropy. For this we consider an algorithm Am

O(X)
(Y) that

can observe the output of a random variable Ythat is
jointly distributed with the oracle input X.

Definition 6 (Conditional Unpredictability Entropy):
Let X, Y be random variables. We say that X has
unpredictability entropy at least t conditioned on Y

with respect to oracle O, written Hm
O (X|Y) ≥ t, if for all

algorithms that can take one sample from Y and can make
at most m queries to O(X),

P[Am
O(X)(Y) = X] ≤ 2−t .

The following chain rule [25] shows that unpredictability
entropy decreases gracefully when conditioned on addi-
tional information. Note that this is not necessarily true
for other notions of computational entropy, such as HILL
entropy [25].

Lemma 1 (Chain rule): For random variables X, Y
with log2 | ran(Y)| = �,

Hm
O (X) ≥ t ⇒ Hm

O (X|Y) ≥ t − � .

Proof: Assume that Hm
O (X|Y) < t−�. By the definition

of unpredictability entropy it follows that there exists an
algorithm Am

O such that P[Am
O(X)

(Y) = X] > 2−t+�. We
construct the algorithm Bm

O which takes no input, chooses
y′ ∈ ran(Y) u.a.r. (which we represent by the random
variable Y ′), and returns Am

O(X)
(y′). Then we obtain

P[Bm
O(X) = X] = P[Am

O(X)(Y
′) = X] (3)

= P[Am
O(X)(Y) = X ∧ Y = Y ′] (4)

= P[Am
O(X)(Y) = X] · P[Y = Y ′] (5)

= P[Am
O(X)(Y) = X] · 2−� (6)

> 2−t+� · 2−� = 2−t , (7)

where (5) follows because both events are independent, i.e.,
the fact that Y collides with a uniformly chosen element
does not affect the probability that the algorithm guesses
X correctly, and vice versa.

D. Blinded Side Channels

We briefly revisit the notion of leakage that captures
timing side channels of cryptographic algorithms with
input blinding and bucketing as a countermeasure, see
Section II-A. The assumption is that the execution time
depends only on the key (which remains fixed over multiple
executions) and the blinded message (which is chosen
randomly and independently in each execution). The
model abstracts from potential timing leaks through the
blinding/unblinding operations and system state such as
caches.

A blinded channel for X is a family of random variables
{Ox}x∈ran(X), one for every x, with shared range B = ran(Ox)
of bounded size b = |B|. For a fixed secret x, making n
timing measurements corresponds to taking n independent
samples from Ox. As the samples are independent, their
relative ordering does not contain information about x; the
information about x contained in these samples can hence
be represented by the type Yn of the sequence, i.e. the
vector of relative frequencies [23]. The number of such
vectors (and hence the information about X contained in
n timing measurements of a blinded channel) is bounded
as follows.

Theorem 3: | ran(Yn)| ≤ (n + 1)b−1

Theorem 3 yields an upper bound for the amount
of information contained in n timing measurements. It
can be improved slightly using a more careful counting
argument [24], and more significantly by using the fact
that timing observations are not uniformly distributed but
rather follow a multinomial distribution with b possible
outcomes. We opt for the simple bound of Theorem 3
because it is tight enough for our purposes and has the
advantage of a polynomial expression.

530530

E. Bounds for Combined Adversaries

We now leverage the results presented in this section
to derive bounds on the probability of key recovery by a
combined algebraic/side channel attack. In particular, we
use the chain rule (Lemma 1) to combine the lower bounds
for the unpredictability entropy (Theorem 2 and Example 3)
with the upper bounds on the leakage (Theorem 3) and
obtain the following result.

Theorem 4 (Generic algorithms with side channels):
Let Am

G be an algorithm that can make m calls to a group
oracle and n measurements of a blinded channel. Then

P[Am
G(X)(Yn) = X] ≤ m2(n + 1)b−1

q
,

where parameters b and q denote the range of the blinded
channel and the largest prime divisor of the group order,
respectively.

Our modeling captures the case in which the adversary
first performs n timing measurements and then performs
m calls to the group oracle. However, the bounds we
derive also hold for adversaries that can interleave timing
measurements and oracle queries. The reason for this is that
the adversary cannot influence the timing measurements,
which is why nothing is gained by postponing a timing
measurement until after an oracle query.

IV. Computing the Equilibrium

In this section we show how to solve the countermea-
sure configuration game for a discrete logarithm based
cryptosystem that is protected with blinding and bucketing.
As described in Section II-D, a pure-strategy equilibrium
of a generic two-stage game can be computed by backward
induction, that is, sequentially solving two optimization
problems. We describe both optimization problems below.

For this, we rely on notation introduced in Examples 1
and 2 and the bounds derived in Section III. For their
connection, consider a cyclic group Z∗p, where p is prime
and q is the largest prime factor of p− 1, as in Example 3.
We use the bit lengths (|p|, |q|) to instantiate the abstract
notion of key length k in Section II. In particular, we use
(|p|, |q|) to describe desired properties of the modulus, but
without referring to specific p and q.

A. Adversary’s Optimization Problem

The adversary’s optimization problem is to find a
response function r∗ that maps defender actions to an
adversary action that maximizes the utility uA = p(·).
That is, for a defender’s choice of key length k = (|p|, |q|)
and bucketing b, we need to compute the numbers m∗
and n∗ of offline and online steps, respectively, that
maximize p((k, b), (m, n)) subject to the resource constraint
mτoff + nτon ≤ Δ.

For the solution, first observe that the adversary’s utility
(the probability of breach) is maximized when all resources

Δ are invested in the attack; thus we treat the resource
constraint as an equality, and use it to express m in the
bound from Theorem 4:

p((k, b), (m, n)) ≤ 1

τ2
off

(Δ − nτon)2(n + 1)b−1

2|q|
. (8)

The case b = 1 corresponds to a constant-time
implementation, which is why the utility is maximized
when time is spent on offline guessing rather than on
online queries, i.e., n∗ = 0 and m∗ = Δ/τoff .

The case b ≥ 2 corresponds to an implementation
with timing leaks. We symbolically compute the maximum
utility by solving for n in ∂

∂n (·) = 0 applied to (8). This
yields the maximum utility at n∗ = (Δ(b − 1) − 2τon)/((b +
1) · τon) and the adversary response

r∗(k, b) = ((Δ − n∗τon)/τoff , n∗) .

B. Defender’s Optimization Problem

The defender’s optimization problem is to identify the
defense d∗ that maximizes the defender’s utility −costD(d∗),
where the adversary response r∗ is given. Technically,
solving this problem requires computing a bucketing b∗ and
a key length k∗ that minimize the average execution time
costD subject to the constraint p((k∗, b∗), r∗(k∗, b∗)) ≤ pmax.

Here we face the challenge that there are no analytical
models describing costD as a function of key length and
number of buckets. Instead, we instantiate each value
of costD by empirical analysis of the corresponding
implementation. We propose a simple heuristic to guide
the search and avoid the evaluation of costD on too many
parameters.

Restricting the search space: We instantiate pmax as
the probability of breach within time Δ of a key of reference
length kref by an adversary that has no access to timing
information. The rationale behind using such adversaries
as a baseline is that we can rely on standards such as key
length recommendations [2] for justified parameter values.

We then use (8) and the adversary’s response n∗ (as
a function of (k, b)) to restrict the parameter space to the
(k, b) that satisfy:

(Δ − n∗τon)2(n∗ + 1)b−1

τ2
off 2|q|

≤ Δ2

τ2
off 2|q|ref

= pmax (9)

Empirically finding the optimum: The empirical
evaluation of costD(k, b) of a real implementation is
expensive. To avoid evaluation on the entire parameter
space defined by (9) we use a simple heuristic based on a
weak assumption about the implementation, namely, that
the average execution time grows with the length of the
key.

531531

With this, we explore the search space as follows. For
pmax fixed and b = 1, 2, . . . we define kb to be the smallest
key that achieves security pmax, i.e.

kb = min{k | p((k, b), r∗(k, b)) ≤ pmax}
As the execution time grows with the key length we
do not need to consider keys beyond kb because they
will have less utility to the defender. For b = 1, 2, . . .
we empirically determine the distribution of execution
times of an implementation with keys of length kb,
compute the optimal bucket boundaries into b buckets
using dynamic programming [23], and define costD(kb, b)
as the corresponding average execution time.

In theory, the number of buckets that need to be
considered is upper bounded by the number of possible
execution times. In practice (see Section V), the shape
of costD(kb, b) becomes apparent after inspection of small
values, which allows identifying (k∗, b∗).

V. Case Study

In this section, we report on a case study where
we identify the optimal configuration of countermeasures
against timing attacks on ElGamal decryption, following
the approach developed in Sections II, III, and IV.

A. Experimental Setup

We analyze the ElGamal implementation of libgcrypt
1.6.1, compiled with GCC 4.8.2 on Ubuntu 14.04. We
measure execution time in terms of the number of executed
CPU instructions instead of real time, thereby abstracting
from the influence of the microarchitecture. We determine
the distribution of execution times corresponding to par-
ticular key lengths and countermeasure configurations by
sampling the time for decrypting 105 random ciphertexts
with different keys. As a benchmarking tool, we rely on

the PAPI library [30].

B. ElGamal Implementation in Libgcrypt

In libgcrypt, ElGamal is implemented over the multi-
plicative group Z∗p. For deriving bounds on the probability
of breach using Theorem 4, we need to know the size
of the largest prime factor q of p − 1. In libgcrypt, lower
bounds for q can be directly read off the source code: the
key-generation algorithm ensures that q has a bit-length of
at least qbits, which is chosen according to a pre-defined
table (see Figure 1). The secret exponent x is then taken
of size qbits plus a safety margin, which results in faster
decryption2.

ElGamal decryption in libgcrypt is performed in three
steps: modular exponentiation (we chose the square-and-
multiply option), inversion, and multiplication. Blinding is

2In libgcrypt’s source code, this is explained vividly: “I don’t see a
reason to have a x of about the same size as the p. It should be sufficient
to have one about the size of q or the later used k plus a large safety
margin. Decryption will be much faster with such an x.”

not readily available in libgcrypt; we implement it relying
on pre-computed randomness (see, e.g., [20]), which adds
the overhead of two multiplications to the decryption time.

|p| 1024 1536 2048 2560 3072
qbits 165 198 255 249 269

Fig. 1: Excerpt from “Wiener’s table”, used in libgcrypt for
determining the minimal bit-length qbits of p’s factors.

C. Constant-Time ElGamal

We modify the libgcrypt source code to estimate the
timing of a constant-time implementation of ElGamal.
The modifications include always performing multiplica-
tion in the square-and-multiply exponentiation (≈ 35%
overhead), forcing multi-precision integer comparison to
always iterate over the entire numbers (≈ 60% overhead),
as well as performing dummy operations to even out
the timing of conditional branches in the routines for
squaring, multiplication, and division (≈ 4% overhead).
Additionally, compiler optimizations were switched off
(≈ 10% overhead). In total, the overhead of the performed
changes is ≈ 125 to 155%, depending on the modulus size.

To eliminate timing variations in modular inversion, we
replace libgcrypt’s implementation with a straightforward
application of Fermat’s little theorem (a−1 = ap−2 mod p),
where we rely on the constant-time exponentiation. Because
the slowdown using this approach is significant compared
to state-of-the-art algorithms for modular inversion [10],
for fairness of our analysis we use the Fermat-based
inversion for both constant-time and non-constant-time
timing measurement.

D. Results

In our experiments we analyze the influence of the
following parameters on the optimal countermeasure con-
figuration: reference modulus size |p|ref as specified by kref ;
the key deployment time Δ; the key generation algorithm;
and the access rate ρacc = τ

−1
on . The latter parameter gives

the number of accesses the adversary can make to timing
observations per second, and can be influenced e.g. by
limiting the rate of server requests, or by using denial-
of-service preventions. In practice, the choice of a key
size affects decryption time, and thus also the timing of
an offline step τoff . We avoid explicit instantiation of τoff
in dependence of the key size by over-approximating the
adversary’s capabilities, setting the value of τoff with a
key of size k to be τoff with the corresponding kref , which
gives a sound solution according to Proposition 1.

1) Varying the Modulus Size: We first consider varying
the modulus size of keys generated with the libgcrypt
default key generation algorithm, for fixed Δ = 365
days and ρacc = 100 accesses per second. As depicted
in Figure 2, for modulus sizes |p|ref ∈ {1024, 1536}, the
optimal defense is to use a constant-time implementation,

532532

i.e., d∗ = (kref , 1). For bigger modulus sizes, we obtain
the optimum at a non-constant-time implementation with
b = 2 buckets; the corresponding optimal modulus sizes
are depicted in Figure 2b.

(a) Average cost (in number of CPU instructions).

b
1 |p|ref 1024 1536 2048 2560 3072
2 |p| 1478 2087 2683 3323 3898

(b) Modulus sizes |p| (in bits) providing the same protection with
2-bucketing as modulus sizes |p|ref with one bucket.

Fig. 2: Varying the modulus sizes for default libgcrypt
keys. The results are given for Δ = 365 days, ρacc = 100
accesses per second.

2) Varying the Access Rate ρacc: Increasing the ac-
cess rate ρacc gives the adversary more possibilities to
collect timing observations; thus, a defender deploying a
non-constant time implementation needs to increase the
modulus size to compensate for this information loss. In
Figure 3 we demonstrate that this can increase the cost
of the non-constant time implementation enough for the
optimum to shift from b = 2 to b = 1, i.e., the defender
will prefer a constant-time implementation.

Fig. 3: Average cost (in number of CPU instructions) for
varying access rate ρacc (in accesses per second). The
results are given for |p|ref = 3072 bit, Δ = 365 days.

3) Varying the Key Deployment Time: Varying the de-
ployment time has a similar effect as varying the access rate:
an adversary has more time to collect timing observations.
For example, if the deployment time is decreased, the
defender’s preference may shift from a constant to a non-
constant-time implementation, as depicted in Figure 4.

Fig. 4: Average cost (in number of CPU instructions) for
varying deployment time Δ (in days). The results are given
for |p|ref = 1024 bits, ρacc = 100 accesses per second.

4) Using a Safe Prime Modulus: An alternative ap-
proach for key generation makes sure that the group
modulus p is a safe prime, i.e., p = 2q + 1 for a prime
q. For example, the pycrypto library uses Algorithm 4.86
in [29] to generate p as a safe prime. As a result, q is
guaranteed to have a bit length of |p| − 1.

Figure 5 illustrates the effect of varying the bit-size
of the safe prime p, for fixed Δ = 365 days and
ρacc = 100 accesses per second. A comparison with
Figure 2 shows that the benefits of using a non-constant
time implementation are more substantial for safe primes
than for default libgcrypt keys. The reason is that, for
the same bit-length, safe primes provide more security
in terms of Theorem 2, which is why the information
loss from side-channel observations in a non-constant time
implementation can be compensated by adding fewer bits
to the key.

5) Varying the Number of Buckets: When increasing b,
the defender has to increase the corresponding modulus
size in order to ensure that the desired security level is met;
for this to be economically feasible, the overhead from
the bigger key needs to be compensated by savings from
the countermeasure. In all cases we consider, increasing
b above 2 did not fulfill this requirement, and thus all
obtained optima were for b = 1 or b = 2. This is the
case even in cases where an increase in b requires only
a small increase in |p|ref , as is the case with safe primes
(see Figure 6).

E. Use Cases

In the following we choose the parameters to reflect
two example use cases. We set the |p|ref = 2048, which is
the default GnuPG setting.

533533

(a) Average cost (in number of CPU instructions).

b
1 |p|ref 1024 1536 2048 2560 3072
2 |p| 1478 2087 2683 3323 3898

(b) Modulus sizes |p| (in bits) providing the same protection with
2-bucketing as modulus sizes |p|ref with one bucket.

Fig. 5: Varying the modulus sizes for safe primes. The
results are given for Δ = 365 days and ρacc = 100 accesses
per second.

(a) Average cost (in number of CPU instructions).

buckets 1 2 3 4 5 6
|p| 2048 2078 2109 2139 2170 2201

(b) Modulus sizes |p| (in bits) providing the same protection for
varying number of buckets.

Fig. 6: Varying the number of buckets, with safe prime
modulus of reference size |p|ref = 2048. The results are
given for ρacc = 100 accesses per second and time of
deployment Δ = 365 days.

As a first use case, we consider a proxy server that
decrypts incoming emails. In this scenario, the access
rate ρacc can be expected to be small (we set it to
ρacc = 10), while key deployment times can be expected
to be higher. Figure 7 depicts that in this scenario, even
for very long periods of time, we obtain the optimum

configuration with the non-constant-time implementation
(b = 2). Compared to the constant-time implementation,
the optimal configurations give savings between 23% and
30%.

Fig. 7: Average cost (in number of CPU instructions)
for varying deployment time Δ. The results are given for
|p|ref = 2048 bit, ρacc = 10 accesses per second.

As a second use case, we consider an Internet-facing
server which handles user requests. In this scenario,
keys may have a shorter life-time, which we set to
Δ = 90 days; however, a higher access rate translates
to a higher throughput, which may be a critical goal. For
this scenario, Figure 8 shows that the non-constant-time
implementation is the optimal solution even for large access
rates; the expected savings compared to the constant-time
implementation are between 10% and 28%.

Fig. 8: Average cost (in number of CPU instructions) for
varying access rate ρacc (in accesses per second). The
results are given for |p|ref = 2048 bit, Δ = 90 days.

VI. RelatedWork

Game theory and security trade-offs: A substantial
body of research uses game theory for reasoning about
trade-offs between security (or privacy) and conflicting
goals. Stackelberg games are particularly prevalent in the
literature, and the fact that the adversary reacts to the
defender’s commitment reflects Kerckhoff’s principle.

534534

For example, [34] uses Stackelberg games for comput-
ing the optimal placement of checkpoints and canine patrol
routes for achieving (physical) security, e.g., at airports. In
that setting, [6] considers a defender who aims to minimize
cost while maintaining a fixed level of protection, which
is similar in spirit to our definitions of security. In [7],
the authors use Stackelberg games to reason about the
configuration of audit mechanisms, where the trade-off
is between the cost of detecting or preventing incidents.
In [31] the authors use Stackelberg games to reason about
the configuration of location privacy mechanisms, where
the trade-off is between privacy and service quality.

All of the above approaches consider probabilistic (i.e.
mixed) strategies. In contrast, we consider deterministic
(i.e. pure) strategies, which is why the equilibrium can be
computed by enumeration [12]. However, we deviate from
this algorithm because the set of adversary’s actions is too
large and the defender’s utility is expensive to evaluate.

Work in rational cryptography (see [15] for a recent
overview) also considers adversaries as players aiming to
maximize their utilities. One advantage of this adversary
model is that one can circumvent impossibility results that
hold for stronger, worst-case adversaries. The countermea-
sure configuration game is atypical in the sense that it
captures worst-case adversaries who spend all resources
and relies on the utility function to describe their optimal
usage.

Quantitative information flow analysis: The bounds for
the countermeasure configuration game we presented rely
on quantitative information-flow analyses that account for
the aggregate information leaked in multiple executions.
In our case study, we relied on approaches that deal with
blinded inputs [9], [23]. Approaches that can deal with
adversarially chosen input input [8], [22] are currently
limited to systems with small state-spaces due to the lack
of efficient abstractions. With progress on such abstractions,
bounds such as the ones from Theorem 3 could be obtained
automatically from code and platform models [13].

g-vulnerability [4] is a notion of entropy that accounts
for general notions of adversary’s gain. While it is
possible to cast the generic discrete logarithm problem
in terms of a specific g-function (the adversary gains 1
with a collision and 0 otherwise), we chose to rely on
unpredictability entropy as a notion because it explicitly
models resource-bounded computation and hence provides
a natural connection to a variety of adversary models in
cryptography.

Mardziel et al. [27] consider information-flow in dy-
namic systems, where defender and adversary can interact.
Their focus is on secrets that are dynamically changing,
whereas our approach specifically considers the aggregation
of information about long-term secrets, such as secret keys.

Zhang et al. [36] study quantitative approaches for
mitigating timing leaks by adaptively delaying outgoing
messages. They consider a covert channel adversary, i.e.

one that aims to transmit information from within a system.
This adversary is stronger than, and the corresponding
notion of success (i.e. successful transmission) is different
from, the ones we consider in this paper. It would be
interesting to see how their approach can be cast into a
decision-theoretic context.

Leakage-resilient cryptography: Belaı̈d et al. [5] also
reason about trade-offs between security and performance
in side-channel attacks, where they focus on the decision
between the masking countermeasure and a leakage-
resilient primitive. As in our work, they investigate which
implementation offers the best performance for a fixed
level of security. They consider power analysis attacks
and use the best known attacks as a security benchmark,
whereas we consider timing attacks and use the best known
security guarantees as a benchmark. Our approach relies on
game theory for framing and solving the decision problem,
which offers the advantage of a clean interface between
the security guarantees and the algorithmic challenges.

Kiltz and Pietrzak [19] present a leakage-resilient
variant of ElGamal, based on multiplicative secret sharing.
They consider a more general leakage model and prove
indistinguishability under chosen cipher attack (also in the
generic group model), whereas we only prove security
against key recovery attacks. The advantage of aiming for
weaker guarantees is that they apply to standard ElGamal
and that their simplicity makes them easily applicable in
a game-theoretic context.

The connection of timing leakage of blinded implemen-
tations to cryptographic security has been studied in [24],
for asymptotic notions of security. In contrast, the bounds
we develop in this paper are concrete, which is required
for using them in the context of the countermeasure
configuration game.

VII. Conclusions and FutureWork

We have presented a systematic approach for determin-
ing the optimal protection against timing attacks, where
we make use of a number of simple but powerful tools
from game theory, information theory, and cryptography.
The results we obtain are rigorous but practical enough
to justify the use of a fast but leaky implementation of
ElGamal over a defensive constant-time implementation.

Acknowledgements: This work was partially funded
by Spanish Project TIN2012-39391-C04-01 StrongSoft and
Madrid Regional Project S2013/ICE-2731 N-GREENS.

References

[1] Functional safety of electrical, electronic and programmable
electronic safety related systems–IEC 61508. www.iec.ch/
functionalsafety/.

[2] ECRYPT II Yearly Report on Algorithms and Key Lengths (2011),
June 2011.

[3] D. Aggarwal and U. Maurer. The leakage-resilience limit of a
computational problem is equal to its unpredictability entropy. In
ASIACRYPT, pages 686–701. Springer, 2011.

535535

[4] M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith.
Measuring information leakage using generalized gain functions.
In CSF, pages 265–279. IEEE, 2012.

[5] S. Belaı̈d, V. Grosso, and F.-X. Standaert. Masking and leakage-
resilient primitives: One, the other(s) or both? IACR Cryptology
ePrint Archive, 2014:53, 2014.

[6] S. Bhattacharya, V. Conitzer, and K. Munagala. Approximation
algorithm for security games with costly resources. In Internet
and Network Economics, pages 13–24. Springer, 2011.

[7] J. Blocki, N. Christin, A. Datta, A. D. Procaccia, and A. Sinha.
Audit games. In IJCAI, pages 41–47. AAAI Press, 2013.

[8] M. Boreale and F. Pampaloni. Quantitative multirun security under
active adversaries. In QEST, pages 158–167. IEEE, 2012.

[9] M. Boreale, F. Pampaloni, and M. Paolini. Asymptotic information
leakage under one-try attacks. In Foundations of Software Science
and Computational Structures, pages 396–410. Springer, 2011.

[10] J. W. Bos. Constant time modular inversion. Journal of
Cryptographic Engineering, 4(4):275–281, 2014.

[11] D. Brumley and D. Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[12] V. Conitzer and T. Sandholm. Computing the optimal strategy to
commit to. In EC, pages 82–90. ACM, 2006.

[13] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke.
CacheAudit: A Tool for the Static Analysis of Cache Side Channels.
In USENIX Security Symposium. USENIX, 2013.

[14] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[15] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas.
Rational protocol design: Cryptography against incentive-driven
adversaries. In FOCS, pages 648–657, 2013.

[16] N. Heninger and H. Shacham. Reconstructing rsa private keys
from random key bits. In CRYPTO, pages 1–17. Springer, 2009.

[17] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational
entropy, or toward separating pseudoentropy from compressibility.
In EUROCRYPT, pages 169–186. Springer, 2007.

[18] S. Jana and V. Shmatikov. Memento: Learning secrets from process
footprints. In SSP, pages 143–157. IEEE, 2012.

[19] E. Kiltz and K. Pietrzak. Leakage resilient elgamal encryption. In
ASIACRYPT. Springer, 2010.

[20] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, pages 104–113.
Springer, 1996.

[21] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
CRYPTO, pages 388–397. Springer, 1999.

[22] B. Köpf and D. Basin. An Information-Theoretic Model for
Adaptive Side-Channel Attacks. In CCS, pages 286–296. ACM,
2007.

[23] B. Köpf and M. Dürmuth. A provably secure and efficient
countermeasure against timing attacks. In CSF, pages 324–335.
IEEE, 2009.

[24] B. Köpf and G. Smith. Vulnerability bounds and leakage resilience
of blinded cryptography under timing attacks. In CSF, pages 44–56.
IEEE, 2010.

[25] S. Krenn, K. Pietrzak, A. Campus, A. Wadia, and D. Wichs. A
counterexample to the chain rule for conditional hill entropy. 2014.

[26] H. W. Kuhn. Extensive games and the problem of information.
Contributions to the Theory of Games, 2(28):193–216, 1953.

[27] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R. Clarkson.
Quantifying information flow for dynamic secrets. In SSP, 2014.

[28] U. Maurer. Abstract models of computation in cryptography. In
Cryptography and Coding, pages 1–12. Springer, 2005.

[29] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook
of applied cryptography. CRC press, 1996.

[30] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable
interface to hardware performance counters. In DoD HPCMP
Users Group Conference, 1999.

[31] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and
J.-Y. Le Boudec. Protecting location privacy: optimal strategy
against localization attacks. In CCS, pages 617–627. ACM, 2012.

[32] V. Shoup. Lower bounds for discrete logarithms and related
problems. In EUROCRYPT, pages 256–266. Springer, 1997.

[33] G. Smith. On the foundations of quantitative information flow. In
FoSSaCS, pages 288–302. Springer, 2009.

[34] M. Tambe. Security and Game Theory: Algorithms, Deployed
Systems, Lessons Learned. Cambridge University Press, 2011.

[35] E. Zermelo. Über eine Anwendung der Mengenlehre auf die
Theorie des Schachspiels. In Proc. Fifth International Congress
of Mathematicians, volume 2, pages 501–504. II, Cambridge UP,
Cambridge, 1913.

[36] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of
timing channels in interactive systems. In CCS, pages 563–574.
ACM, 2011.

536536

