
Flow-Limited Authorization
Owen Arden Jed Liu Andrew C. Myers

Department of Computer Science
Cornell University

{owen,liujed,andru}@cs.cornell.edu

Abstract—Because information flow control mechanisms often
rely on an underlying authorization mechanism, their security
guarantees can be subverted by weaknesses in authorization.
Conversely, the security of authorization can be subverted by
information flows that leak information or that influence how
authority is delegated between principals. We argue that interac-
tions between information flow and authorization create security
vulnerabilities that have not been fully identified or addressed
in prior work. We explore how the security of decentralized
information flow control (DIFC) is affected by three aspects
of its underlying authorization mechanism: first, delegation of
authority between principals; second, revocation of previously
delegated authority; third, information flows created by the
authorization mechanisms themselves. It is no surprise that
revocation poses challenges, but we show that even delegation is
problematic because it enables unauthorized downgrading. Our
solution is a new security model, the Flow-Limited Authorization
Model (FLAM), which offers a new, integrated approach to
authorization and information flow control. FLAM ensures robust
authorization, a novel security condition for authorization queries
that ensures attackers cannot influence authorization decisions or
learn confidential trust relationships. We discuss our prototype
implementation and its algorithm for proof search.

I. INTRODUCTION

Authorization mechanisms are essential to enforcing se-
curity. However, authorization alone is not enough. First,
authorization can be subverted and exploited by an adversary
that can influence the delegation of authority among principals.
Second, queries performed as part of an authorization check
can leak confidential information. These weaknesses are ex-
amples of insecure information flows.

Conversely, information flow control is an appealing ap-
proach to building secure systems. It enables the expression of
high-level information security policies describing the end-to-
end behavior of the system. These policies are inherently com-
positional. Further, they can be formally characterized in terms
of semantic security conditions such as noninterference [1],
permitting rigorous proofs that enforcement mechanisms en-
force policies as intended.

While control of information flow is crucial to security, it
too is not enough. In particular, real systems need to be able
to control the release of confidential information, but also to
release that information under suitable conditions. Controlled
release of information, such as through downgrading of infor-
mation flow labels, is a violation of noninterference.

Decentralized information flow control (DIFC) [2] intro-
duced the idea that information flow control mechanisms
could control the use of downgrading mechanisms through
an authorization mechanism. In a DIFC system, information

flow labels are therefore expressed using the vocabulary of the
authorization mechanism. For example, the original Decen-
tralized Label Model (DLM) [2] expresses labels in terms of
principals, and delegations between principals (expressing the
trust between those principals) affect which information flows
are permitted. Subsequent DIFC systems use labels expressed
in terms of tags combined with capabilities [3]–[6], or tags
combined with principals [7].

Building on an underlying authorization mechanism adds
power and expressiveness to DIFC. However, prior work has
not fully explored the interactions between information flow
and authorization, especially in systems in which trust can
change. We refer to the collection of all delegations among
principals as the system’s trust configuration. In real systems,
it is important that this trust configuration be able to change
by adding or removing delegations, but we show that these
changes can lead to security vulnerabilities:

• Delegations of authority can enable information relabel-
ing equivalent to unauthorized downgrading.

• Relabeling information limits a principal’s ability to re-
voke access to that information.

• Changes to the trust configuration may leak information
from the agent performing the change.

• Dynamic authorization queries may leak information
from the querying computation.

All but the most limited existing DIFC and decentralized
authorization models are susceptible to at least some of these
security vulnerabilities, including several systems [8]–[14]
designed to handle changes in trust securely. To address these
vulnerabilities, we introduce a new DIFC approach that we
call flow-limited authorization, embodied in the Flow-Limited
Authorization Model (FLAM).

Rather than taking the trust configuration as a constant,
FLAM explicitly models how information flows both through
updates to the trust configuration and through the authorization
mechanism itself. Our approach avoids previous restrictions
[12] on trust relationships and enables fully decentralized
trust in the sense that each principal’s view of the trust
configuration is represented and all principals’ policies are
enforced simultaneously.

This work makes several contributions:

• We identify new security vulnerabilities that arise from
the interactions of authorization and information flow,
and that are not handled satisfactorily by previous mech-
anisms and models. (Section II).

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Owen Arden. Under license to IEEE.

DOI 10.1109/CSF.2015.42

569

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Owen Arden. Under license to IEEE.

DOI 10.1109/CSF.2015.42

569

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Owen Arden. Under license to IEEE.

DOI 10.1109/CSF.2015.42

569



• We define a new principal algebra that unifies principals
with information flow labels, providing a clean, abstract
vocabulary for exploring interactions between authoriza-
tion and information flow. (Section III).

• We provide a novel logic for making both authorization
and information flow decisions securely while avoiding
the newly identified vulnerabilities (Section IV)

• To characterize the interaction of authorization and infor-
mation flow, we introduce robust authorization, a security
condition that applies when delegations and revocations
change the meaning of information flow policies (Sec-
tion V).

• We give a proof search algorithm for securely and
efficiently processing FLAM queries (Section VI) in
accordance with the logic.

Using Coq [15], we have also developed machine-checked
proofs that FLAM enforces robust authorization. Details about
these proofs are found in an accompanying technical re-
port [16]. We also show there that FLAM can be embedded in
a programming language that supports trust management and
can be used to implement existing expressive authorization
mechanisms with stronger security guarantees.

II. MOTIVATING EXAMPLES

Delegation and revocation of trust are important features of
DIFC, but previous approaches fall short with respect to both
their expressiveness and the security guarantees they offer. We
now demonstrate three classes of vulnerabilities that arise in
DIFC systems.

We motivate flow-limited authorization primarily in the
context of the DLM. However, the vulnerabilities discussed
in this section are generally applicable to other DIFC and
authorization models, as we discuss in Section VII.

A. Delegation loopholes

Delegation of trust allows principals in a system to specify
other principals that may act on their behalf. In addition to
representing trust between two entities, delegation may encode
membership in groups or roles represented by principals. Most
previous models treat delegations as universally agreed-upon,
but in a decentralized system, different principals can have dif-
ferent opinions about delegations. Most previous information
flow models, including the DLM, ignore the implications of
allowing the trust configuration to be controlled by partially
trusted principals. As we show, a partially trusted principal
can choose to delegate to an untrusted principal, and thereby
achieve the effect of downgrading information even when it
has not been granted the authority to downgrade. We call
this use of delegation to achieve downgrading the delegation
loophole. Some previous work [10], [12], [14] does observe
this connection between delegation and downgrading, but does
not eliminate the influence attackers may exert on which flows
are authorized.

To see how the delegation loophole works, consider the
following example of an insider attack. Bob, who works for
Acme, has been enticed to disclose valuable trade secrets

Bob

Emp

Rival

4

(a) Trust (<) in H

Acme→Bob

Acme→Emp

Acme→Rival

v

(b) Flow ordering (v) of policies in H

Fig. 1: Delegation loophole: By delegating to Rival, Bob effectively
declassifies a label owned by Acme. Dashed lines indicate relation-
ships influenced by Bob.

to Rival, one of Acme’s competitors. Acme’s policies1 are
written in terms of principals using the DLM [2]. In the DLM,
principals like Emp can express membership of a group by
delegating to other principals using the acts-for relation <,
where we read the expression p < q as “p acts for q”. Thus,
the DLM trust configuration consists of a set of delegations of
the form p < q, called the principal hierarchy. In several DIFC
systems [2], [7], [17], confidentiality and integrity policies
have an associated owner principal, expressing the authority
necessary to enforce or downgrade the label. In the DLM,
Acme’s trade secrets might be protected under the label
component Acme → Emp, which is owned by Acme. The
label ensures that trade secrets should be readable only by
employees of Acme, to whom the principal Emp delegates.
These would include Bob since Bob < Emp.

The idea of the DLM is that only Acme itself should be
able to release data labeled Acme → Emp, because Acme is
the owner of the policy. However, if an employee like Bob is
able to control his own delegations, he can effectively release
information to a third party. For instance, Figure 1 shows how
Bob might abuse his access to Acme’s trade secrets. Figure 1a
shows a trust configuration H comprising two delegations:
Bob < Emp, and Rival < Bob. An edge indicates that
the higher principal is trusted to act on behalf of the lower
principal; the dashed line indicates that Bob has delegated trust
to Rival.

Figure 1b shows the restrictiveness of information flow
policies in H. An edge indicates that the higher policy is
at least as restrictive as the lower policy, or in other words,
information with the lower policy may be relabeled to the
higher policy. Bob’s delegation causes Acme to believe it is
safe to relabel information from the policy Acme→ Emp to the
policy Acme→ Rival since Bob is trusted by Emp and Rival
is trusted by Bob. This influence of Bob causes Acme’s own
system to disclose sensitive data to Rival.

Although the DLM allows the trust configuration to evolve
by adding or removing delegations, it ignores the possibility
that changes to the trust configuration may create insecure
information flows, However, recent systems built on the DLM,
such as SIF [18] and Fabric [19], give principals the power
to control their delegations dynamically. These systems have

1We use the word “policy” here to mean a component of an information
flow label governing the use of the labeled data, rather than a global system
property such as noninterference.

570570570



Acme→Emp

Acme→Bob

client

poach
Assignment:

poach := client

Revocable by Emp
Not revocable by Emp

Fig. 2: Poaching attack: If information at Acme→Emp is relabeled to
a more restrictive policy, Emp can no longer revoke access.

therefore opened up the delegation loophole.
Surprisingly, though Bob uses delegation to cause the disclo-

sure, the real weakness lies in how information is relabeled.
Relabeling information upward in the lattice of information
flow labels has heretofore been considered a safe operation
requiring no privilege. This example shows that when such
relabeling is justified based on a principal hierarchy, it is ac-
tually a kind of downgrading operation that must be controlled.

B. Poaching attacks

The presence of revocation in a DIFC system raises two
challenging questions: when should revocation take effect, and
what are the consequences for information flow? Answers to
the first question are complicated in distributed environments
where revocation messages may not be immediately dissem-
inated. Programs with an inconsistent view of current trust
relationships may make insecure authorizations.

Existing DIFC systems have particularly unsatisfying se-
mantics with regard to the consequences of revocation. The
root of the problem is that current DIFC systems permit
information to flow between different policies without regard
to a principal’s ability to revoke access in the future. This
makes it difficult to reason about what information a principal
retains access to after a revocation.

Suppose Acme protects its client list with the policy
Acme → Emp so that only employees may read it. Figure 2
illustrates how Bob can use his access to Emp data to “poach”
Acme’s client list, storing it with a more restrictive policy,
to which he retains access in the event of a revocation. The
white region beneath Acme → Emp represents the part of the
lattice of information flow policies in which information can
be relabeled to Acme → Emp. The shaded region represents
information with policies that relabel to Acme→ Bob, but not
to Acme→ Emp. The assignment poach:=client assigns the
contents of variable client protected by a policy in the white
region to variable poach protected by a policy in the shaded
region. Since Emp delegates to Bob, policies in the white region
may be relabeled to Acme→ Bob.

However, relabeling information from Acme → Emp to
Acme → Bob has consequences. Whereas Emp may revoke
Bob’s access to information in the white region by revoking
its delegation to Bob, it cannot revoke Bob’s access to infor-
mation in the shaded region. Therefore, if Bob can influence
what information is relabeled, he can prevent Emp from ever

revoking access (for instance, if Bob is fired).
Like the delegation loophole, poaching attacks demonstrate

that relabeling is a kind of policy downgrade exploitable by
an insider. However, the two vulnerabilities differ. Delegation
enables future relabelings to occur; therefore, to eliminate
loopholes, relabelings must only be based on trusted delega-
tions. On the other hand, relabeling prevents future revocations
from occurring; therefore, to prevent poaching, the decision to
relabel a policy should be trusted by the policy owner.

C. Leaking information via authorization

DIFC uses authorization decisions to decide which informa-
tion flows are permitted. However, the authorization process
has the potential to leak confidential information in two
distinct ways.

The first source of leakage is a side channel in the autho-
rization process. No single entity in a distributed system has
a complete view of the current system state, which includes
the trust configuration. Consequently, to make authorization
decisions in a decentralized way, entities must query the
current trust configuration, leading to communication. This
communication may leak information to untrusted agents
about what the querying process is doing or about the data
it is using. For example, suppose a certain query is made only
if a secret value is true; in other words, it occurs in a secret
context. In this case, it would be insecure to query an entity
not trusted to learn the secret information.

This side channel is an instance of a read channel [20], in
which accesses to data leak information about the accessor.
Read channels arising from authorization queries have been
largely ignored in the DIFC literature, perhaps because the
implementation platform was originally assumed to be trusted.
In a fully distributed system, however, different parts of the
computing infrastructure, including the implementation of the
trust configuration, will in general be provided by differently
trusted principals. The Fabric system therefore adds access
labels [21] to control information flows via read channels.
However, Fabric does not consider read channels arising from
authorization requests.

The second source of information leakage via authorization
arises if a public decision is based on the result of an
authorization query whose answer depends on a secret trust
relationship. Several distributed authorization systems [8], [9],
[11], [13], [22]–[24] protect sensitive credentials with access
policies, but do not constrain how credentials are used after
granting access, resulting in possible leaks. These systems do
not guard against authorization side channels.

A central challenge of distributed, decentralized authoriza-
tion is that an entity’s limited view of the trust configura-
tion constrains its ability to securely process authorization
queries. Any general approach must provide a way to bootstrap
knowledge of the distributed trust configuration from local
knowledge while avoiding communication that could leak
information. To bootstrap this knowledge securely, we need
a tighter coupling between authorization and information flow
control than has been previously recognized.

571571571



D. Vulnerabilities in other DIFC systems

Almost all previous DIFC systems have some degree of
vulnerability to the attacks described, which abuse the way
authorization controls information flow. Clearly, systems based
on the DLM, such as Jif [25] and Fabric [19], have these weak-
nesses. Capability-based DIFC systems such as Asbestos [3],
Histar [4], Flume [5], and Laminar [6] also exhibit delegation
loopholes and poaching attacks since processes may transfer
capabilities and relabel information. Aeolus [7] has some
characteristics of capability-based systems, but maintains a
trust configuration like Fabric. It too is vulnerable to these
attacks.

III. UNIFYING PRINCIPALS AND POLICIES

Our goal is a simple model that supports reasoning about
authorization, about information flow, and about their interac-
tions, and that guides the construction of secure distributed
systems. Our model, which we call the Flow-Limited Au-
thorization Model (FLAM), addresses all the security issues
discussed in Section II. FLAM is both an authorization logic
and an information flow model. It is an authorization logic
(like [26]–[28]) since it derives judgments about trust. It is an
information flow model (like [2], [12], [29]) since it derives
judgments about secure information flow. FLAM integrates
reasoning about trust and reasoning about information flow;
this integration is central to preventing the security vulnera-
bilities identified in Section II. We are unaware of prior models
that support this kind of combined reasoning.

For simplicity, FLAM completely unifies principals, roles,
privileges, and information flow labels, a perhaps surprising
feature that distinguishes FLAM from previous models for
either authorization or information flow2. In FLAM, prin-
cipals are both authorization entities and information flow
policies enforcing confidentiality and integrity. In subsequent
discussion, we sometimes use label (or policy) to talk about
a principal used to specify permitted information flow, but
these concepts are interchangeable in FLAM. As we show,
unifying principals with information flow labels enables a
simpler, algebraic presentation of the relationships between
information flow policies and the principals they concern.

This section provides the formal basis for unifying authority
and decentralized information flow policies. Although the
algebraic definitions given in this section may appear complex
at first, we show in Section IV that they enable a concise logic,
collected in Figures 5 and 6. Authorization decisions derived
from this logic are protected from the problems discussed in
Section II.

A. Authority projections

All entities in a system are represented as principals that
may delegate to each other. FLAM provides a particularly rich
set of principals. We construct this set of principals by defining
operations on principals that combine or attenuate principals
in different ways.

2Some prior work has unified roles with information flow labels, while
distinguishing principals from roles [12], [14], [30].

Let N be the set of all primitive principals, which are essen-
tially uninterpreted names. Starting from primitive principals,
we can construct more complex compound principals. For any
two principals p and q, we represent the conjunction of their
authority, the authority of both p and q, as the compound
principal p ∧ q. Likewise, the authority of either p or q is
written p ∨ q. These conjunction and disjunction operators,
as in Boolean algebra, define a lattice3 over principals. If a
principal q trusts principal p, then we say p acts for q and write
p < q. If q represents the privilege or permission to perform an
action, the statement p < q means p has the right to perform
that action. Lattice properties imply p∧ q < p < p∨ q for any
p and q.

Conjunction and disjunction are already familiar from pre-
vious logics for authentication and authorization, and the acts-
for relation of FLAM is related to the speaks-for relation
of authentication logics [26], [28], but Section IV-D draws
a distinction between the speaks-for relation for FLAM and
the acts-for relation.

In many DIFC models, the flows-to ordering v between
information flow policies derives from an ordering on princi-
pals that is similar to <. Rather than defining a separate space
of information flow policies, we characterize confidentiality
and integrity as a limited form of authority. For a principal p,
let p→ represent its read authority, and p← represent its write
authority. Separating these components of p’s authority allows
us to think of information flow policies as delegations by one
or both of these attenuated principals. For instance, delegating
authority p→ to q grants q read-only access to p’s data.

FLAM generalizes this idea of attenuating a principal’s
authority by defining operations called authority projections,
which allow new attenuated principals to be constructed from
existing principals. In FLAM, we represent p’s read authority
(p→) and its write authority (p←) as projections.

Definition 1 (Authority projections). An authority projection,
π, is an operation on principals such that for any principal p,
pπ is a principal, and

1) p < pπ

2) p < q =⇒ pπ < qπ

3) pπ ∧ qπ = (p ∧ q)π
4) pπ ∨ qπ = (p ∨ q)π
5) (pπ)π = pπ

These five properties capture the essence of limited authority
derived from a principal’s general authority, without requiring
separate classes of entities such as roles [31], subprincipals,
or groups [27]. Naturally, the originating principal acts for the
derived authority (1), and projection preserves the properties
of the authorization lattice (2, 3, 4). Finally, projections are
idempotent (5).

3Authorization logics typically treat > as the least trusted principal and
use the symbol ∧ to represent conjunctive principals, which denote lattice
meets. DIFC models often use > to represent the most trusted principal, yet
retain the ∧ notation for conjunctive principals even though they correspond
to lattice joins. We find treating conjunctions of authority as “higher” to be
intuitive, and adopt the DIFC approach.

572572572



FLAM defines two classes of authority projections, basis
projections and ownership projections. Basis projections define
the different kinds of authority a principal may possess, i.e.,
confidentiality and integrity, whereas ownership projections
(discussed in Section III-C) attenuate a principal’s authority
relative to other principals.

For the purpose of this paper, all authority is representable
as a combination of confidentiality and integrity authority. In
other words, the conjunctive principal p→ ∧ p← has authority
equivalent to p, meaning that confidentiality and integrity
projections form a kind of basis for authority.

Definition 2 (Confidentiality and integrity basis). Let → and
← be authority projections such that, for all principals

1) p = p→ ∧ p←
2) (p←)

→
= (p→)

←
= ⊥

3) p→ ∨ q← = ⊥

We represent all authority as a combination of confiden-
tiality and integrity authority (1), so any principal that acts
for both projections of a principal also acts for the prin-
cipal. Additionally, composing (2) or taking the meet (3)
of confidentiality and integrity projections yields ⊥. In this
paper, we focus on information flow policies for confidentiality
and integrity, but we expect it is possible to extend FLAM
with additional projections that represent other aspects of
security. For instance, [32] adds availability policies, and [33]
includes reference authority and persistence policies. We leave
representing such policies as basis projections to future work.

Using the above operations, we can extend the set of
primitive principals to create a richer set of principals ordered
by <. Let P0 be the closure of N under the operations ∧
and ∨, and the projections ← and →. We can construct a
lattice from the preorder < in the usual way, by defining an
equivalence relation a ≡< b ⇐⇒ (a < b and b < a) and
grouping equivalent principals into a single lattice element
representing an equivalence class. Then P0 induces a lattice
(P0,<) where we define > and ⊥ as distinguished principals
with highest and lowest authority, respectively. Joins in P0 are
the conjunctions of principals (∧), and meets are disjunctions
(∨).

B. The information flow ordering

The value of authority projections is that they allow secure
information flow to be represented as authority relationships
in a simple and natural way. In fact, there is no explicit need
for a separate lattice of information flow policies; we could
express information flow entirely by authority relationships. It
is often convenient, however, to have notation for the authority
ordering on principals as well as the information flow ordering
on principals. Below, we define an information flow lattice
whose ordering and operations are syntactic sugar for authority
relationships and operations in the authority lattice.

For principals p and q, we say p flows to q, written p v q,
if p acts for q’s integrity (q trusts information from p) and q
acts for p’s confidentiality (p trusts q to protect p’s secrets).

Integrity

Con
fide

nti
ali

ty

p

p→p←

(p:q)
←
(p:q)

→

>

⊥

>← >→

p:q

In
cr

ea
si

ng
au

th
or

ity
(4
,∧
,∨

)

Secure information flow (v,t,u)

Fig. 3: The FLAM lattices for trust and information flow

In the definition below, these relationships are represented
simultaneously by conjunctions of authority projections.

Definition 3 (Secure information flow as authorization).

p v q 4⇐⇒ q→∧ p← < p→∧ q←

p t q 4⇐⇒ (p ∧ q)→ ∧ (p ∨ q)←

p u q 4⇐⇒ (p ∨ q)→ ∧ (p ∧ q)←

The flows-to relation v is a preorder, so we can lift it to
a partial order just as we did for acts-for, with equivalences
defined by a ≡v b ⇐⇒ (a v b and b v a). The relation
v induces an information flow lattice (P0,v). In this lattice,
we represent joins by t and meets by u. The top element of
(P0,v) is the policy that most restricts use of the information,
secret and untrusted: >→ ∧ ⊥←. The bottom element is the
least restrictive policy, public and trusted: ⊥→∧>←. We often
omit projections of the ⊥ principal to obtain the more concise
(but equivalent) principal representation; e.g., p→ instead of
p→ ∧ ⊥← and p← instead of ⊥→ ∧ p←.

By the definitions above, the equivalence classes of < and
v are identical, and there is a one-to-one correspondence
between the elements of (P0,<) and (P0,v), even though
the two orderings are “at right angles” to each other. Figure 3
illustrates this correspondence by aligning both lattices on
the same set of elements. Secure information flow is from
left to right, toward increasing confidentiality and decreasing
integrity. The trust ordering is bottom to top, toward increasing
authority. This correspondence allows us to easily translate
relationships from one ordering to another when convenient.

C. Owned principals

To give FLAM the expressive power of some previous
authorization systems, such as role-based access control
(RBAC) [31] and the DLM [2], we introduce another way to
construct principals. In RBAC, principals are assigned roles
which they may select when performing sensitive tasks, and
access control policies are specified in terms of roles that are

573573573



permitted access. It is tempting to use delegation to express
authorization concepts such as roles and groups [27]. However,
this approach fails to adequately control modification of role
membership. For instance, if Acme uses the principal Emp to
represent a role by delegating to all Acme employees, then
Bob can effectively add employees via delegation. What Acme
requires is a way to refer to principals like Bob while retaining
control over their trust relationships. Then a principal like Emp
can delegate to such a principal without risking subversion of
its authorization mechanism.

From the perspective of information flow control, the prin-
cipals from the set P0 can represent both authority and
information flow policies, but the information flow policies
expressible with these principals are rather limited—they are
not decentralized in the sense of the DLM [2]. The key aspect
of decentralized policies is that policy owners retain control
over decisions to release information.

In FLAM, we express ownership as a special class of
authority projections called ownership projections. The owned
principal Acme:Bob represents4 Bob as a principal whose trust
relationships Acme retains control of. Intuitively, Acme:Bob
delegates trust to the same principals as Bob, but only if Acme
allows the delegation. Acme may also create new delegations
of trust from Acme:Bob even though Acme doesn’t act for
Bob. Owned principals are similar in spirit to roles [31],
groups, and subprincipals [27], but are first-class principals
that may delegate and be delegated to.

Owned principals are useful for representing decentralized
information flow policies. For instance, the principal (p:q)

→

is a confidentiality projection of the ownership projection p:q.
This principal represents a confidentiality policy owned by p
that specifies q as a reader, and is similar to the DLM policy
p→ q. In the DLM, p→ q v r → s if and only if r < p and
s < q. FLAM permits finer-grained delegations of trust, so the
relationship (p:q)

→ v (r:s)
→ holds, for example, if r:s < p:q

but also if r < p and s→ < q→.
Definition 4 formalizes the properties of ownership that

unify decentralized policies with principal authority.

Definition 4 (Ownership projection). For each principal p let
:p be a distinguished authority projection, an ownership pro-
jection. We say p:q is an owned principal and p is the owner
of p:q. Owned principals satisfy the following properties:

1) p < r and q < s =⇒ p:q < r:s
2) p < r and q < r:s =⇒ p:q < r:s
3) p:p = p
4) p:⊥ = ⊥
5) p:r ∧ p:s = p:(r ∧ s)
6) p:r ∨ p:s = p:(r ∨ s)
7) p:qπ = (p:q)π for π ∈ {←,→}
8) pπ:q = (p:q)π for π ∈ {←,→}

The principal p:q is a principal that represents q but that
p, the owner, retains control over. Specifically, since :q is

4For better readability and to resemble DLM notation, we abuse the syntax
of authority projections and write p:q instead of p:q .

an authority projection, p acts for p:q. Principal p:q reflects
the delegations of both p and q, so owned principals are
similar to disjunctive principals, but are not commutative:
p:q 6= q:p. Property (1) permits a delegation between unowned
principals (q < s) to induce one between corresponding owned
principals (p:q < r:s), but only if the owners also have an
acts-for relationship (p < r). This condition on owners is
central to the idea of ownership since it prevents a delegation
to an owned principal p:q from implying a delegation to
the corresponding unowned principal q. Similarly, property
(2) ensures a delegation from an owned principal r:s to
an unowned principal q induces a similar delegation to a
corresponding owned principal p:q, but only if the owners have
an acts-for relationship (p < r).

An ownership projection :p is the identity when applied
to the principal p that defines it (3), and applying the bottom
ownership projection :⊥ always yields ⊥ (4). Finally, conjunc-
tion and disjunction distribute through ownership (5, 6), and
confidentiality and integrity projections are associative with
and commute with ownership projections (7, 8).

Using ownership projections, we can further extend our set
of principals. Let O = {:p | p ∈ P0} be a set of ownership
projections. Then let P be the closure of P0 under the
projections in O. Like P0, the equivalence classes of P form
lattices (P,<) and (P,v), whose elements have a one-to-one
correspondence. Figure 3 relates an owned principal, p:q and
its projections, to the other elements of these lattices. For the
remainder of this paper, principals are implicitly members of
the set P unless otherwise specified.

D. FLAM normal form

Constructing efficient algorithms for manipulating elements
of an algebraic system such as FLAM is much easier when
the elements have a normal form. A normal form for FLAM
principals can be obtained from the equational rules and
lattice properties already stated. Using these rules, any FLAM
principal can be factored into the join of a confidentiality
projection and an integrity projection p→ ∧ q←, where p and
q are each a join of meets of owned or primitive principals.

Definition 5. A FLAM principal p is in normal form if it is
accepted by the following grammar where n ∈ N .

p ::= J→ ∧ J←

J ::=M |M ∧ J
M ::=L | L ∨M
L ::=n | L:L

Our prototype implementation, discussed in Section VI,
includes an algorithm for converting FLAM principals to
normal form. This algorithm is relatively straightforward: it
applies lattice properties and equational rules of authority
projections as rewrite rules to reduce principals to normal
form. We have formalized and proved this algorithm correct
in Coq, but omit discussion of it here for the sake of brevity.

IV. SECURE REASONING WITH DYNAMIC TRUST

In this section, we present the FLAM system model and a
set of inference rules for deriving authorization decisions from
the distributed system state. Unlike most previous models,

574574574



FLAM does not presume universally agreed-upon trust rela-
tionships. Instead, principals may regard a trust relationship
(i.e., delegation) to be untrustworthy, or may wish to prevent
others from learning of its existence. Furthermore, principals
do not have a global view of the system state and must
communicate with other principals to discover new relation-
ships. These attributes make FLAM an appropriate model for
authorization in distributed systems.

A. System model and trust configuration

Our goal is to model the security of a distributed system
comprising various host nodes that keep track of different parts
of the system’s trust configuration. In FLAM, these nodes, like
all other entities in the system, are represented as principals.
Thus, a host node is a primitive principal in N ; we use n and c
to denote such principals. We treat the trust configuration H as
a distributed data structure, wherein each fragment H(n) is the
delegation set stored at node n. Each delegation (p<q, `) has
an associated delegation label ` expressing the confidentiality
and integrity of the delegation.

Definition 6 (FLAM trust configurations). A trust configura-
tion H is a map from principals n ∈ N to delegation sets. A
delegation set is a set of tuples of the form (p< q, `) where
p, q, ` are principals in P .

For example, a delegation (p < q, n←) might be hosted
by principal n; in other words, (p < q, n←) ∈ H(n). The
delegation label n← means that the delegation is public (since
(n←)

→
= ⊥) and has the integrity of n. We make no well-

formedness assumptions about H; for instance, a malicious
node n might store the delegation (n<>,>←).

This abstraction allows us to reason about information flow
in the trust configuration without exposing the details of
the underlying distributed data structure. For instance, H(n)
might represent a remote call interface for requesting derived
delegations from n, or it might represent delegations stored or
replicated at n that can be fetched on demand.

B. Flow-limited judgments

Authorization queries are submitted to principals that pro-
cess them by using local data, by obtaining remote data via
communication with other principals, or by a combination
of both. The answers to queries are used to determine the
relationships that currently exist between principals in the
given trust configuration H.

Queries take the form of judgments; positive query results
carry proofs (or derivations) of these judgments. Derivation
rules specify how to obtain proofs given a set of delegations.
One approach would be to represent judgments with the form
D ` p < q, meaning that the relationship p < q holds
assuming the delegations in D.

However, constructing a proof in a distributed system cre-
ates information flows. Consequently, this form of judgment
has two fundamental problems. First, it fails to characterize the
confidentiality and integrity of the conclusion p < q. Second,
the conclusion is the result of a distributed computation over

the hosts that collectively store the trust configuration H, so
communicating with these hosts to obtain the delegations in D
could leak confidential information about the query or permit
poaching attacks by the query’s issuer.

FLAM solves both problems by parameterizing authoriza-
tion queries with policies that restrict the flow of information
as the query is answered. The resulting flow-limited judgments
have the following form:

H; c; pc; ` ` p < q

Here, H is the trust configuration and c ∈ N is the current
host performing the derivation. The policy ` is the derivation
label, which is an upper bound in (P,v) for all delegation
labels of delegations used in the derivation. The label pc is
the query label, which is an upper bound in (P,v) on the
confidentiality and integrity of the query. For remotely issued
queries, the integrity of the originating host must flow to the
query label, and the query label must flow to the confidentiality
of any host that is contacted during the derivation.

Flow-limited judgments are constructed by inspecting the
delegations in H. Accesses to local delegations, i.e. H(c), are
not externally observable, but principals may also communi-
cate with any host n ∈ dom(H) to obtain judgments derived
from remote delegations. We abbreviate judgments that hold in
any trust configuration, or statically, as ` p < q. For instance,
` p ∧ q < q holds statically.

As with the trust configuration H, we make no well-
formedness assumptions about the query label or derivation
label specified in authorization queries. However, to protect
their own security, we assume that honest hosts specify a query
label for top-level queries that characterizes the confidentiality
and integrity of the issuing context; hence the name pc for the
program counter label, as in Jif [25]. Likewise, we assume
honest hosts will treat query results in accordance with the
derivation label. In our technical report [16], we describe
a programming language whose type system verifies these
assumptions.

C. Robust derivations

Tracking information flow through judgments is only the
first step—we still need to eliminate delegation loopholes and
poaching attacks.

Consider the example of Section II-A. We can model this
scenario with the delegation set shown in Figure 4. Acme
grants Bob read-only access with the delegation (Bob <
Acme:Emp→, Acme:Emp←). As before, Bob delegates to Acme’s
competitor Rival.

Delegation loopholes arise when attackers influence the
derivation of sensitive queries—when derivations are not ro-
bust. In the example, we can close the loophole by eliminating
the influence of attackers like Bob on the derivation of queries
about who acts for Acme’s principals. If Bob’s delegation can-
not be used in the proof of a query like Rival→ < Acme:Emp→,
then the proof is robust, and Bob cannot influence whether
Acme:Emp→ can flow to Rival→.

575575575



Client list
Acme:Emp→

Acme

Bob

Acme:Emp→

Rival

Acme:Emp←
>←

Bob←

H; c; Acme:Emp←; Acme:Emp← 1 Acme:Emp→ v Rival→

H; c; Bob←; Acme:Emp← 1 Acme:Emp→ v Bob→
(1)
(2)

Fig. 4: Section II attacks prevented. The boxed judgments do not
hold robustly with the illustrated delegations. Judgment (1) does
not hold since Bob’s delegation to Rival cannot be used to robustly
relabel Acme’s policies, closing the delegation loophole. In (2), the
query label Bob← has insufficient integrity to relabel Acme’s policies,
preventing Bob from poaching the client list.

FLAM’s derivation labels allow Acme to constrain Bob’s
influence on the derivation. Consider the following judgment,
which holds in our example trust configuration.

H; c; pc; Acme:Emp← ` Bob < Acme:Emp→

It has integrity Acme:Emp←, so any derivation of this judgment
can only depend on delegations that have Acme:Emp’s integrity
or greater in the authority ordering (<). In contrast, there is
no robust proof of the following judgment since using Bob’s
delegation would result in a proof with lower integrity than
Acme:Emp←.

H; c; pc; Acme:Emp← 0 Rival < Acme:Emp

Poaching attacks arise when attackers influence the decision
to relabel information—that is, when they influence the context
of a query. The query label represents the information flow
context of such a query, so by restricting this label, FLAM
prevents attackers from poaching information.

For instance, Figure 4 shows Acme’s client list labeled with
confidentiality Acme:Emp→. Suppose Bob wants to copy this
list to a file with confidentiality Bob→ so he can maintain
access if he is fired. To do so, Acme’s system requires that
the following judgment holds.

H; c; Acme:Emp←; Acme:Emp← ` Bob < Acme:Emp

This judgment is immune to poaching attacks since neither the
result nor the query itself is influenced by Bob. Bob cannot
independently issue such a query since his influence would
taint the query label, shown below.

H; c; Acme:Emp← ∨ Bob←; Acme:Emp← ` Bob < Acme:Emp

This query has insufficient authority to robustly relabel
Acme:Emp→ to Bob→. This prevents Bob from poaching
Acme’s client list, giving Acme control of what information
is released to Bob.

One might wonder why Acme requires Bob < Acme:Emp to
hold instead of Bob→ < Acme:Emp→. The answer illustrates a
fundamental difference between information flow control and
access control. Specifically, Acme wants to know whether it

is safe to enforce information labeled Acme:Emp→ with the
policy Bob→. This is a distinct goal from access control since
Acme not only cares about the access to the client list, but
also the propagation of that data. Even though Bob cannot
influence whether Acme:Emp→ v Bob→, he does control what
Bob→ flows to. Thus, Acme wants to ensure that Bob has
sufficient integrity to enforce the confidentiality of the client
list. Since he does not, Acme should deny any request to
relabel Acme:Emp→ to Bob→.

D. Speaking for other principals

Prior work on robust downgrading [19], [34], [35] of
information flow policies places constraints on the influence
an attacker may have on declassification and endorsement.
Specifically, a principal should not be able to leak information
by influencing downgrading decisions. Here, we seek similar
constraints, but on information flow authorizations in general,
whether they represent a downgrade or not.

In FLAM, the voice of a principal q, written ∇(q), defines
the minimum integrity required to influence the flow of
information labeled q.

Definition 7 (Principal voice). For a principal in normal form
p→ ∧ q←, the voice of p→ ∧ q← is defined as

∇(p→ ∧ q←) , p← ∧ q←

As its name suggests, the voice of a principal is related to
the speaks-for relation [26], [28] found in authorization logics.
In these models, if Bob speaks for Alice (sometimes written
Bob ⇒ Alice) and Bob says some proposition P is true, then
Alice also says P is true. Flow-limited judgments permit a
refinement of speaks-for since we can reason directly about the
influence of principals on authorization decisions. In FLAM, a
principal’s voice is the integrity needed to speak on its behalf,
so Bob speaks for Alice if Bob < ∇(Alice).

This version of speaks-for differs from that in other autho-
rization logics. First, it derives from the integrity of principals
and the acts-for relationships between them. Second, the
speaks-for relation is transitive, but not reflexive. Notice that
Acme→ does not speak for itself.

As in [28], FLAM’s speaks-for relation distinguishes the
concepts of speaking for and acting for a principal. Previous
DIFC models [2] have considered these concepts to be similar,
but they are distinct in FLAM to support reasoning separately
about the confidentiality and integrity of principals. For in-
stance, the principal Acme← speaks for both Acme and Acme→,
but acts for neither.

To provide end-to-end information flow security, FLAM
distinguishes robust judgments that hold with sufficient in-
tegrity to speak on behalf of the principals involved. Robust
judgments in FLAM are identified by the symbol 
. FLAM’s
inference rules, discussed below, use robust judgments to
ensure that all derivations exhibit robust information flow.

E. Rules for flow-limited reasoning

Figure 5 gives inference rules for deriving flow-limited
judgments. Most rules are straightforward, encoding properties

576576576



[BOT] C ` p < ⊥ [TOP] C ` > < p [REFL] C ` p < p

[PROJ]
C ` p < q

C ` pπ < qπ
[PROJR] C ` p < pπ

[OWN1]

C ` o < o′

C ` p < p′

C ` o:p < o′:p′
[OWN2]

C ` o < o′

C ` p < o′:p′

C ` o:p < o′:p′

[CONJL]

C ` pk < p
k ∈ {1, 2}

C ` p1 ∧ p2 < p
[CONJR]

C ` p < p1
C ` p < p2

C ` p < p1 ∧ p2

[DISJL]

C ` p1 < p
C ` p2 < p

C ` p1 ∨ p2 < p
[DISJR]

C ` p < pk
k ∈ {1, 2}

C ` p < p1 ∨ p2

[TRANS]
C `p<q C `q<r

C `p<r
[DEL]

(p<q, `) ∈ H(c)
H; c; pc; ` ` p < q

[FWD]

H; c; pc; ` 
 n < pc→ ∧ `
H;n; pc t ` t c←; ` u c→ ` p < q

H; c; pc; ` ` p < q

[WEAKEN]

H; c; pc′; `′ ` p < q
H; c; pc t `′; ` 
 pc v pc′

H; c; pc t `′; ` 
 `′ v `

H ∪H′; c; pc; ` ` p < q

Fig. 5: Inference rules for flow-limited judgments. For brevity, C
denotes the context H; c; pc; `. The union of trust configurations is
defined pointwise: (H ∪H′)(n) = H(n) ∪H′(n).

of conjunctions (rules CONJL, CONJR), disjunctions (rules
DISJL, DISJR), authority projections (rules PROJ and PROJR),
ownership projections (rules OWN1, OWN2), and lattices in
general (rules BOT, TOP, REFL, TRANS). The DEL rule allows
the use of a local delegation if its label matches the derivation
label of the context.

The WEAKEN rule allows judgment contexts to be weak-
ened. If p < q is derivable with trust configuration H and
bounds pc′; `′, then it is still derivable after adding delegations5

to H or increasing the restrictiveness of the bounds (pc v pc′

and `′ v `).
Like any other relabelings that use dynamic trust relation-

ships, attackers might try to abuse these relabelings of pc
and `′. For example, Bob could try use WEAKEN to hide
his influence on a judgment by boosting its derivation label
from Acme:Emp← t Bob← to Acme:Emp←, or he could try
to reduce a judgment’s confidentiality by downgrading its
derivation label from Acme:Emp→ t Bob→ to Bob→. The rule
prevents this by requiring the relabelings to be robust. Because
these robustness proofs are only attempted after the relabeled
judgment is proved, their query labels (pct`′) are tainted with

5The union of two trust configurations is defined to take their pointwise
union: (H∪H′)(n) = H(n) ∪H′(n)

[R-STATIC]
` p < q

C 
 p < q
[R-LIFT]

H; c; pc; ` ∧∇(q) ` p < q
H; c; pc; ` 
 ∇(p→) < ∇(q→)
H; c; pc; ` 
 pc < ∇(q)
H; c; pc; ` 
 p < q

[R-LIFTPC]
H; c; pc; ` ∧∇(q) ` pc < ∇(q)
H; c; pc; ` 
 pc < ∇(q)

[R-CONJR]

C 
 p < p1
C 
 p < p2

C 
 p < p1 ∧ p2
[R-DISJL]

C 
 p1 < p
C 
 p2 < p

C 
 p1 ∨ p2 < p

[R-TRANS]

H; c; pc; ` 
 p < q H; c; pc; ` 
 q < r
H; c; pc; ` 
 pc < ∇(r→)
H; c; pc; ` 
 p < r

[R-FWD]

H; c; pc; ` 
 n < pc→ ∧ ` ∧∇(q)
H;n; pc t ` t c←; ` u c→ 
 p < q

H; c; pc; ` 
 p < q

[R-WEAKEN]

H; c; pc′; `′ 
 p < q
H; c; pc t `′; ` 
 pc v pc′

H; c; pc t `′; ` 
 `′ v `

H ∪H′; c; pc; ` 
 p < q

Fig. 6: Inference rules for robust judgments.

the derivation label `′ of the relabeled judgment.
The FWD rule is used to derive acts-for judgments via

remote hosts. The first premise ensures that c can prove
the remote host n is trusted to protect both the query’s
confidentiality and its derivation label. In the second premise,
n derives the desired relationship with a query label that is
tainted both with c’s integrity and with the derivation label of
the first premise. To ensure c can see the result, the derivation
label is attenuated by c’s confidentiality. If these premises hold,
then n can release the result to c, and c can trust it at label `,
therefore c can conclude that the relationship holds.

The rules for reasoning about robust judgments are shown
in Figure 6. The first three rules specify how robust judgments
derive from non-robust judgments. Rule R-STATIC permits
static judgments to be treated as robust judgments in any
context, whereas rule R-LIFT derives robust judgments from
dynamic judgments. The first premise of R-LIFT ensures
the judgment holds with the voice ∇(q) of the delegating
principal. The second premise ensures that principals that
speak for p’s confidentiality also speak for q’s confidentiality6.
The third premise ensures that the query’s context is suffi-
ciently trusted to influence this authorization decision. Rule R-
LIFTPC handles judgments regarding the query label as a
special case. Rules R-CONJR, R-DISJL, R-WEAKEN, and R-
TRANS are similar to their non-robust counterparts but possess
robust premises. Rule R-TRANS adds a query label restriction
to TRANS to ensure that the query’s context speaks for r.

6The analogous premise for integrity is redundant since acting and speaking
for integrity are equivalent: ` p < ∇(q←) ⇐⇒ ` p < q←

577577577



Likewise, R-FWD adds the restriction that remote principals
must speak for the principal that the judgment concerns.

The need for both robust and non-robust inference rules
may not be immediately apparent. FLAM constrains the flow
of information during authorization by selectively prohibiting
derivations that would result in information leakage. However,
reasoning exclusively with robust judgments is too restrictive
since it would eliminate many valid trust configurations and
prevent many access control use-cases. For access control de-
cisions (made via non-robust queries), the robust judgments in
FWD and WEAKEN ensure the integrity and confidentiality of
authorization decisions. For information flow control decisions
(made via robust judgments), the non-robust judgments in
R-STATIC, R-LIFT, and R-LIFTPC provide a bootstrapping
mechanism for trust relationships that preserves information
security.

V. ROBUST AUTHORIZATION

To demonstrate that the inference rules presented in the
previous section prevent the various attacks described in
Section II, we show that the rules ensure a novel security
condition that we call robust authorization. This security
condition characterizes how both delegations and revocations
may affect authorization decisions in a particular information-
flow context.

Theorem 1 (Robust authorization). If H; c; pc; ` ` p < q, let
D ⊆ H be the delegations used in the derivation. For each
(p′ < q′, `′) ∈ D(n), define n0 . . . nk as the sequence of nodes
in the derivation between n and c, where n0 = n and nk = c,
and let N =

∨
i<k ni. Then the following statements hold:

H; c; pc; ` 
 `′ ∨N v ` (1)
H; c; pc; ` 
 N < pc→ ∧ `← (2)

k > 0⇒ H; c; pc; ` 
 c < (`′ ∨N)
→ (3)

The guarantees robust authorization bestows on authoriza-
tion queries are quite strong. Remote principals cannot exceed
their authority to influence the derivation, despite having the
power to create arbitrary delegations and participate in the
derivation itself. In particular, the authorization mechanism
preserves the end-to-end security of each delegation’s informa-
tion flow policy `′ (1) while preserving the confidentiality pc→

of the query and the integrity `← of the result (2), and without
leaking confidential information to c (3). Conclusion (3) only
applies to distributed derivations (where k > 0) since we
permit a node to use a local delegation without requiring proof
that it acts for the delegation label.

FLAM derivations therefore never require unsafe commu-
nication: every remote node that participates in a derivation
must robustly act for the confidentiality pc→ of the query and
integrity `← of the result. Results are received by c only if
c is permitted to learn (implicitly) that c acts for (`′ ∨N)

→.
Because FLAM makes no assumptions about the relationship
between n and `′, the disjunction N limits the authority of `′

to be no greater than the nodes in the derivation, ensuring that
malicious delegations do not influence the derivation beyond

the authority of these nodes. From the perspective of confiden-
tiality, the disjunction also ignores information flows in which
the claimed confidentiality of the delegation label exceeds the
confidentiality authority of nodes providing the delegation;
ignoring such flows makes sense because confidentiality is
enforced by the providers, not by the recipient c.

Robust authorization is a proof-theoretic property since it
defines security in terms of the relationship between FLAM
judgments and delegation labels. However, it bears some re-
semblance to semantic security properties like noninterference.
Adding or removing delegations with more confidentiality or
less integrity than ` cannot affect the output of queries bounded
by `. However, since the judgments derivable in a particular
context define which flows are interfering and which are not,
there is some subtlety in the statement that certain delegations
cannot affect these derivations. For example, the delegation
(Bob < Acme, Bob←) should be cause for concern: it asserts
that Acme delegates to Bob, but with the integrity of Bob.
Thus the delegation should not be sufficient to prove that
H; c; pc; Acme← ` Acme→ v Bob→. Theorem 1 states that
such delegations do not affect any judgments with the bound
pc; Acme←. In this paper, we do not make any formal connec-
tions between robust authorization and noninterference, but
characterizing semantic guarantees of FLAM is an interesting
future research direction.

FLAM ensures robust judgments cannot be leveraged to per-
form poaching attacks or other non-robust policy downgrades.
The following lemma states that if a query holds with robust
authority, then the query label speaks for any principal whose
dynamic delegations are used in the derivation.

Lemma 1 (Principal factorization). If H; c; pc; ` 
 p < q,
then there exist principals qs and qd where q ≡< qs ∧ qd such
that ` p < qs, H; c; pc; ` 
 p < qd, and

H; c; pc; ` 
 pc < ∇(qd)

In other words, queries with untrusted query labels can only
derive robust judgments that hold statically, preserving each
principal’s control over the revocability of its information flow
policies.

The fact that we can always split robust acts-for judgments
into static and dynamic components means that we can derive
a more traditional transitivity rule for robust judgments:

[R-TRANS*]

H; c; pc; ` 
 p < q
H; c; pc; ` 
 q < r
H; c; pc; ` 
 p < r

The main insight regarding the admissibility of R-TRANS*
involves principal factorization. By Lemma 1, for any robust
judgment H; c; pc; ` 
 q < r, we can factor r into rs ∧ rd
such that H; c; pc; ` 
 pc < ∇(rd). Therefore, any judgment
H; c; pc; ` 
 p < q in the same context can be used to derive
H; c; pc; ` 
 p < rd by R-TRANS. This relationship, combined
with an additional result regarding static judgments, gives us
the above rule.

578578578



Query: C ` p ∧ q < r ∨ s (C = H; c; pc; `)

Proof strategy 1:

C ` p < r

C ` p < r ∨ s
(DISJR)

C ` p ∧ q < r ∨ s
(CONJL)

Proof strategy 2:

C ` p < r

C ` p ∧ q < r
(CONJL)

C ` p ∧ q < r ∨ s
(DISJR)

Fig. 7: Redundant work in the basic search algorithm. If the query
is not provable, an exhaustive proof search must be made before a
negative result can be returned. Here, both CONJL and DISJR apply,
so the search will try both proof strategies shown. Without caching,
redundant proof searches would be made for the two identical
premises shown in red.

Theorem 1 and Lemma 1 prove that attackers cannot
use delegation and revocation to interfere with authorization
queries, eliminating the delegation loophole (Section II-A) and
poaching attacks (Section II-B). New delegations cannot cause
unsafe communication to occur or cause existing delegations
to be disclosed (Section II-C) unless the new delegations are
sufficiently trusted. Furthermore, this result serves as a useful
guide to developers of DIFC systems and languages: sup-
porting delegation and revocation while enforcing information
flow policies requires all relabeling of policies to be robust—
otherwise, changes in the trust configuration could be exploited
to create new flows.

We formalized FLAM principals and our inference rules
for deriving flow-limited judgments in Coq, and used this
formalization to prove Theorem 1 and Lemma 1. We make
one primary assumption, that principals that statically act for
each other are equivalent. We believe this assumption can be
avoided with some refactoring, which we leave as future work.

VI. FLAM PROTOTYPE

Secure authorization has been a relatively active area of
research for over a decade [8], [9], [11]–[14], [22]–[24], so it
might seem that the strong formal security guarantees offered
by FLAM would be difficult to achieve in practice.

We have demonstrated that FLAM can be used to provide
robust authorization in realistic authorization mechanisms by
developing a prototype implementation and using it to imple-
ment ARBAC97 [36], an expressive role-based access control
model. Our version of ARBAC97 uses owned principals to
represent roles and extends the strong security guarantees of
FLAM to role-based access control; for example, untrusted
users cannot use authorization queries to infer the secret
membership of roles. Our prototype currently only uses rules
R-LIFT and R-LIFTPC for reasoning about robust judgments,
but these were sufficient for our purposes. Further details of
the implementation can be found in our technical report [16].

A. Efficient flow-limited query processing

Our FLAM prototype answers acts-for queries through a
proof search; the relationship being queried is said to hold

query

pruned

(a) A pruned proof strategy

query

(b) A successful proof strategy

Fig. 8: Proof diagrams showing two strategies for proving a query.
Nodes represent premises. Edges represent proof dependencies; un-
explored edges are dotted. In strategy (a), the proof search for the
blue node is pruned because its proof depends on the red node, which
would introduce a cycle in the proof diagram. Strategy (b) results in
a successful proof: the proof forms a DAG, wherein all leaf nodes
are axioms.

exactly when a proof of the relationship can be found. For
simplicity, we assume that the trust configuration does not
change during the proof search; in practice, query isolation can
be provided by existing mechanisms for distributed transac-
tions (e.g., [19]). The basic proof-search algorithm is a simple
depth-first search with cycle detection. It returns two types of
results: PROVED (which comes with a proof) and FAILED.

This algorithm alone performs poorly, however, owing to
much duplicated work. Queries with FAILED results are par-
ticularly expensive, since they require a full exhaustive proof
search. For example, in Figure 7, if the query C ` p ∧ q <
r ∨ s is unprovable, the algorithm must explore all possible
proof strategies, including using CONJL and DISJR, as shown.
Both of these strategies have the unprovable subquery C ` p <
r, shown in red. Without caching, redundant proof searches
would be made for these identical subqueries. Furthermore,
caching only positive results would not significantly improve
the performance of unprovable queries.

Naively caching intermediate negative results can lead to
incompleteness due to searches that are pruned to avoid infinite
recursion and circular reasoning. Figure 8 illustrates this using
proof diagrams. Nodes represent premises to be proved, and
edges represent their dependencies. Unexplored edges are
dotted. In the first proof strategy (Figure 8a), the proof of the
blue node is pruned to avoid circular reasoning with the red
node. While it would be sound to cache a FAILED result for
the blue node, doing so would be incomplete. When the proof
search later attempts the second proof strategy (Figure 8b), it
finds a successful proof for the red node via the green node.
With a cached FAILED result for the blue node, the proof of
the white node would simply use the cached result, failing to
notice that because the circularity with the red node has been
resolved, the blue node can now be proved.

To prevent this incompleteness, our implementation of
FLAM uses an intermediate caching strategy for pruned re-
sults. Instead of caching FAILED for pruned subqueries, we
introduce an additional result type, PRUNED. When a cycle
is detected during proof search, the current subproof is aban-
doned and the subquery is added to a cache of pruned queries.
Each PRUNED cache entry contains a progress condition, a

579579579



1: function UPDATE(cache, query, type, data)
2: (proved, pruned, failed) ← cache
3: if type = PROVED then
4: proved ← proved[query 7→ data]
5: remove query from pruned
6: for [q 7→ Q] in pruned do
7: Q′ ← Q{query/True}
8: if Q′ |= True then
9: remove q from pruned

10: else
11: pruned ← pruned[q 7→ Q′]

12: else if type = PRUNED then
13: pruned ← pruned[query 7→ data]
14: for [q 7→ Q] in pruned do
15: pruned ← pruned[q 7→ Q{query/data}]
16: else if type = FAILED then
17: add q to failed
18: remove q from pruned
19: new ← ∅
20: for [q 7→ Q] in pruned do
21: Q′ ← Q{query/False}
22: if Q′ |= False then
23: add q to new
24: else
25: pruned ← pruned[q 7→ Q′]

26: cache ← (proved, pruned, failed)
27: for q in new do
28: cache ← UPDATE(cache, q, FAILED,⊥)
29: return cache
30: return (proved, pruned, failed)

Fig. 9: Algorithm for managing entries of the proof search cache. For
type equal to PROVED or PRUNED, data is either a proof of query
or a progress condition, respectively.

boolean formula that expresses the conditions under which
further progress can be made on the proof of the subquery.
In Figure 8, the first proof strategy would result in a PRUNED
cache entry for the blue subquery, with the progress condition
Q = , indicating that further progress can be made on
the proof of the blue node exactly when the red node can
be proved. Another progress condition might have the form
Q1 ∨ (Q2 ∧Q3), meaning that progress can be made if Q1 is
proved or if both Q2 and Q3 are proved.

This cache is used by the proof search to improve per-
formance when resolving shared subqueries. The cache has
three components: an acts-for cache for proofs of PROVED
subqueries, a failed cache for FAILED subqueries, and a
pruned-search cache for PRUNED subqueries and their progress
conditions. Figure 9 gives the algorithm for updating the
cache with a new result for a subquery query. At the core
of this algorithm is the rewriting of progress conditions in the
pruned-search cache. If the new result is PROVED, the progress
conditions are rewritten to substitute instances of query with
True (line 7), to indicate that the query condition is satisfied.
If this satisfies the progress condition of a pruned search q,
then q should be provable, and is removed from the cache
(lines 8–9); a PROVED entry is not added for q yet because
we do not yet have a proof. If the new result is PRUNED,
then instances of query are substituted with query’s progress

condition (line 15). Finally, if the new result is FAILED, then
instances of query are substituted with False (line 21), to
indicate that the query condition is not satisfiable. If the
progress condition of a pruned search q becomes unsatisfiable,
then q is also unprovable, and the cache is updated with a
FAILED result for q (lines 27–28).

Given a query, for each applicable FLAM inference rule,
the algorithm searches for a proof of each premise. If a proof
is found for all premises, then the search is successful, and
the proof is returned. If any of the premises’ proof searches
were pruned, then the query may or may not be provable, so
the query is added to the pruned cache with the conjunction
of the progress conditions of the pruned searches. Finally,
if any premise’s proof search fails, or if the conjunction of
the progress conditions is unsatisfiable, then the query is
unprovable via the chosen rule. If no other FLAM rules apply,
then the query is false. The complete search algorithm is found
in our technical report [16].

VII. RELATED WORK

The connection between delegation and policy downgrades,
here called the delegation loophole, is identified in [10] and
further developed in [12]. These papers also discuss secret trust
relationships, and thus have similar threat models to FLAM.
We are not aware of previous work addressing poaching
attacks.

Broberg et al. [37] identify classes of flows which specific
information flow models may consider secure or insecure.
Delegation loopholes are an example of a time-transitive flow
in their terminology. FLAM considers these flows insecure
since they permit attackers to influence how information is
relabeled. FLAM also considers poaching attacks to be unsafe
since attackers may obtain information not directly released to
them, which undermines the effectiveness of revocation. These
flows are not completely characterized by the classes presented
in [37], but share some characteristics with the direct-release
class of flows.

FLAM’s bounded derivation rules place information flow
constraints on which delegations may be used to derive
judgments. This differs from previous approaches (e.g., Rx
roles [12] and Flume capability groups [5]), which give a
single information flow bound for all trust relationships of
a principal. As recognized by Bandhakavi et al. [14], a single
bound is too restrictive since it must also protect delegations
made by other principals. So, when the bound of principal
p is more restrictive than the bound of principal q, either
q cannot delegate to p or p’s bound must be downgraded
(as in [12]), even though p might not trust q. RTI [14], like
FLAM, overcomes these restrictions by tracking information
flow at the level of delegations and ignoring relationships that
exceed information flow bounds. However, since relabeling
is not robust in RTI, it remains vulnerable to the delegation
loophole and poaching attacks. FLAM’s flows-to relation is
more consistent with decentralized information flow control
principles: the authorization of a flow depends only on those
principals who speak for the policies in question.

580580580



Label algebras [38] abstract the structure and semantics of
the security policies of several DIFC systems. It might appear
that a clever encoding of FLAM contexts (i.e., pc; `) as label
algebra authorities might serve to represent FLAM as a label
algebra. However, such an encoding would be too abstract to
represent conditions such as robust authority or even robust
downgrading, so delegation loopholes and poaching attacks
cannot be addressed within this framework. For instance, the
noninterference lemma given in [38] for an example language
admits non-robust declassification, even without changes to
the trust configuration.

Many models and mechanisms have been suggested for
expressive, decentralized authorization and trust manage-
ment [27], [39]–[46]. Few consider the information security
of the authorization policies or the authorization process.
For instance, Birgisson et al. [46] note that, under certain
conditions, an attacker could use malicious credentials to probe
for private information such as group membership. Such an
attack is possible in many frameworks. DCC [47] has been
used to model both information flow control and authorization
logic [28], but not both simultaneously.

Several authorization systems use access control policies
to protect sensitive credentials. In trust negotiation [8], [23],
[24], principals iteratively exchange credentials protected by
access control policies, withholding sensitive credentials until
sufficient trust has been established. Minami and Kotz [11],
[13] encrypt authorization proofs based on access control poli-
cies to protect the confidentiality and integrity of authorization
results, though they ignore side-channels. Because access
control policies are not compositional, they are insufficient for
controlling the propagation of sensitive credentials: the rules
for disclosure may vary arbitrarily between principals. FLAM
unifies principals and information flow control policies, which
are inherently compositional, and enforces end-to-end security
of trust relationships.

Garg and Pfenning [48] present a constructive authorization
logic that ensures assertions made by untrusted principals can-
not influence the truth of statements made by other principals,
similar to the way low-integrity delegations in FLAM cannot
lead to unsafe relabelings.

Becker [49] discusses probing attacks that reveal secret
portions of authorization policies to an attacker; Bryans et
al. [50] compare noninterference and opacity as security
conditions for confidential policies. FLAM ensures queries of
the trust configuration satisfy robust authorization, so probing
attacks cannot reveal confidential information. Opacity is a
possibilistic notion of security, meaning that an authorization
decision may depend on secret information, provided that the
same result could derive from public information. Possibilistic
security conditions are often inadequate in settings with attack-
ers that have (or can acquire) additional knowledge, perhaps
through additional queries.

Some type systems proposed for information flow control
encode authorized policy downgrades directly in data types
(e.g., [51], [52]) or with respect to privileges granted to code
(e.g. [53]). This removes some of the need for an underlying

authorization mechanism, permitting developers to model trust
relations using the type system or structure of the program.
Such type systems are in a sense too low-level to be directly
vulnerable to delegation loopholes or poaching attacks, but the
authorization mechanisms they encode may still be vulnerable.
FLAM can provide guidance for a way to obtain robust
authorization in these systems.

VIII. CONCLUSIONS

We have shown that in a decentralized, distributed setting,
mechanisms for both DIFC and authorization currently exhibit
security vulnerabilities. The core problem is that neither se-
curity mechanism tracks how information flows through the
authorization process itself. Consequently, both mechanisms
introduce side channels, and DIFC systems are subject to
newly identified delegation loopholes and poaching attacks.
When the trust configuration is dynamic and can be affected
by partially trusted principals, additional controls are needed
to make relabeling secure.

We introduced flow-limited authorization in FLAM as a
simple, coherent, and powerful way to address a set of
fundamental, interconnected security issues. FLAM unifies
principals with information flow policies through a novel
principal algebra. It supports integrated reasoning about both
authorization and information flow control so that delegations
are trusted only when appropriate and kept secret when
necessary; further, authorization side channels are explicitly
controlled. A key insight is that relabeling information flow
policies is really a downgrading operation that can be made
secure by preventing untrusted principals from influencing
relabeling decisions.

We have formalized FLAM in Coq and proved strong
results: FLAM provides robust authorization, a new security
condition that bounds an attacker’s influence on authorization
decisions and eliminates side-channels, even when the attacker
is able to modify the trust configuration and make arbitrary
queries. An accompanying technical report [16] presents ad-
ditional results and details, including a FLAM-based DIFC
language for trust management.

We have implemented the FLAM principal normalization
algorithm and system of inference rules (with the exception
of some robustness rules). Our prototype efficiently answers
FLAM queries using a specialized caching protocol.

FLAM not only prevents security vulnerabilities, but also
extends decentralized information flow control to trust man-
agement systems with expressive security models like role-
based access control. We expect many common access control
patterns have interesting new DIFC analogues when expressed
using FLAM.

ACKNOWLEDGMENTS

We thank Michael Clarkson, Fred Schneider, Ross Tate,
and especially Aslan Askarov and Mike George for helpful
discussions on a variety of topics spanning trust and informa-
tion flow, authorization logic, and proof search algorithms.
Abhishek Anand and Andrew Hirsch provided insight for

581581581



formalizing FLAM in Coq. For their insightful comments
on our submission, we thank Eleanor Birrell, Steve Chong,
Andrew Hirsch, Chin Isradisaikul, Elisavet Kozyri, Tom Ma-
grino, Laure Thompson, Bart van Delft, Danfeng Zhang,
Yizhou Zhang, and our anonymous reviewers. This work was
supported by an NDSEG Fellowship, by grant N00014-13-1-
0089 from the Office of Naval Resesearch, by MURI grant
FA9550-12-1-0400, and by a grant from the National Science
Foundation (CCF-0964409). This paper does not necessarily
reflect the views of any of these sponsors.

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. IEEE Symp. on Security and Privacy, Apr. 1982, pp. 11–20.

[2] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized
label model,” ACM Transactions on Software Engineering and
Methodology, vol. 9, no. 4, pp. 410–442, Oct. 2000.

[3] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and
event processes in the Asbestos operating system,” in Proc. 20th ACM
Symp. on Operating System Principles (SOSP), Oct. 2005.

[4] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in HiStar,” in Proc. 7th USENIX Symp. on
Operating Systems Design and Implementation (OSDI), 2006, pp.
263–278.

[5] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard OS abstractions,”
in Proc. 21st ACM Symp. on Operating System Principles (SOSP),
2007.

[6] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel, “Laminar: Practical fine-grained decentralized information
flow control,” in ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), 2009.

[7] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein,
J. Cowling, D. Curtis, L. Shrira, and B. Liskov, “Abstractions for usable
information flow control in Aeolus,” in Proc. 2012 USENIX Annual
Technical Conference, Jun. 2012.

[8] W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated
trust negotiation,” in DARPA Information Survivability Conference and
Exposition, 2000. DISCEX’00. Proceedings, vol. 1. IEEE, 2000, pp.
88–102.

[9] W. H. Winsborough and N. Li, “Safety in automated trust negotiation,”
in Proc. IEEE Symp. on Security and Privacy. IEEE, May 2004, pp.
147–160.

[10] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic, “Dynamic updating of
information-flow policies,” in Proc. Foundations of Computer Security
Workshop, 2005.

[11] K. Minami and D. Kotz, “Secure context-sensitive authorization,”
Journal of Pervasive and Mobile Computing, vol. 1, no. 1, pp. 123–156,
March 2005.

[12] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing policy
updates in security-typed languages,” in Proc. 19th IEEE Computer
Security Foundations Workshop, Jul. 2006, pp. 202–216.

[13] K. Minami and D. Kotz, “Scalability in a secure distributed proof
system,” in Proc. 4th International Conference on Pervasive Computing,
ser. Lecture Notes in Computer Science, vol. 3968. Dublin, Ireland:
Springer-Verlag, May 2006, pp. 220–237.

[14] S. Bandhakavi, W. Winsborough, and M. Winslett, “A trust management
approach for flexible policy management in security-typed languages,”
in Computer Security Foundations Symposium, 2008, 2008, pp. 33–47.

[15] The Coq development team, The Coq proof assistant reference manual,
LogiCal Project, 2004, version 8.0.

[16] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization:
Technical report,” May 2015.

[17] H. Chen and S. Chong, “Owned policies for information security,” in
Proc. 17th IEEE Computer Security Foundations Workshop, Jun. 2004.

[18] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing confidentiality
and integrity in web applications,” in Proc. 16th USENIX Security Symp.,
Aug. 2007.

[19] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: A platform for secure distributed computation and storage,” in
Proc. 22nd ACM Symp. on Operating System Principles (SOSP), Oct.
2009, pp. 321–334.

[20] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure
program partitioning,” ACM Trans. on Computer Systems, vol. 20,
no. 3, pp. 283–328, Aug. 2002.

[21] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C.
Myers, “Sharing mobile code securely with information flow control,”
in Proc. IEEE Symp. on Security and Privacy, May 2012, pp. 191–205.

[22] W. H. Winsborough and N. Li, “Towards practical automated trust
negotiation,” in Proc. 3rd Policies for Distributed Systems and Networks.
IEEE, 2002, pp. 92–103.

[23] M. Winslett, C. C. Zhang, and P. A. Bonatti, “Peeraccess: A logic for
distributed authorization,” in Proc. 19th ACM Conf. on Computer and
Communications Security (CCS). ACM, 2005, pp. 168–179.

[24] C. C. Zhang and M. Winslett, “Distributed authorization by multiparty
trust negotiation,” in ESORICS 2008. Springer, 2008, pp. 282–299.

[25] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in Proc. 26th ACM Symposium on Principles of Programming
Languages (POPL), Jan. 1999, pp. 228–241.

[26] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in
distributed systems: Theory and practice,” in Proc. 13th ACM Symp. on
Operating System Principles (SOSP), Oct. 1991, pp. 165–182, Operating
System Review, 253(5).

[27] F. B. Schneider, K. Walsh, and E. G. Sirer, “Nexus Authorization
Logic (NAL): Design rationale and applications,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, pp. 8:1–8:28, Jun. 2011.

[28] M. Abadi, “Access control in a core calculus of dependency,” in
Proc. 11th ACM SIGPLAN Int’l Conf. on Functional Programming.
New York, NY, USA: ACM, 2006, pp. 263–273.

[29] N. Broberg and D. Sands, “Flow locks: Towards a core calculus for
dynamic flow policies,” in Programming Languages and Systems, Mar.
2006, pp. 180–196.

[30] R. S. Sandhu, “Role hierarchies and constraints for lattice-based access
controls,” in Proc. 4th European Symp. on Research in Computer
Security (ESORICS), Sep. 1996.

[31] D. Ferraiolo and R. Kuhn, “Role-based access controls,” in 15th National
Computer Security Conference, 1992.

[32] L. Zheng and A. C. Myers, “End-to-end availability policies and
noninterference,” in Proc. 18th IEEE Computer Security Foundations
Workshop, Jun. 2005, pp. 272–286.

[33] J. Liu and A. C. Myers, “Defining and enforcing referential security,”
in Proc. 3rd Conf. on Principles of Security and Trust, Apr. 2014, pp.
199–219.

[34] S. Chong and A. C. Myers, “Decentralized robustness,” in Proc. 19th

IEEE Computer Security Foundations Workshop, Jul. 2006, pp. 242–253.
[35] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, “Jif

3.0: Java information flow,” Jul. 2006, software release, http://www.cs.
cornell.edu/jif.

[36] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model for
role-based administration of roles,” ACM Transactions on Information
and System Security (TISSEC), vol. 2, no. 1, pp. 105–135, 1999.

[37] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets of
dynamic policies,” in IEEE Symp. on Computer Security Foundations.
IEEE, 2015.

[38] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of information-flow
labels,” in Proc. 26th IEEE Symp. on Computer Security Foundations,
Jun. 2013, pp. 3–17.

[39] C. Ellison, “SPKI requirements,” Internet RFC-2692, Sep. 1999.
[40] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,

“SPKI certificate theory,” Internet RFC-2693, Sep. 1999.
[41] M. Y. Becker, C. Fournet, and A. D. Gordon, “Secpal: Design and se-

mantics of a decentralized authorization language,” Journal of Computer
Security, vol. 18, no. 4, pp. 619–665, 2010.

[42] Y. Gurevich and I. Neeman, “Dkal: Distributed-knowledge authorization
language,” in IEEE Symp. on Computer Security Foundations. IEEE,
2008, pp. 149–162.

[43] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin, “A calculus
for access control in distributed systems,” ACM Trans. on Programming
Languages and Systems, vol. 15, no. 4, pp. 706–734, 1993.

[44] N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic: A logic-
based approach to distributed authorization,” ACM Transactions on

582582582



Information and System Security (TISSEC), vol. 6, no. 1, pp. 128–171,
2003.

[45] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based
trust-management framework,” in Proc. IEEE Symp. on Security and
Privacy. IEEE, 2002, pp. 114–130.

[46] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium, 2014.

[47] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus of
dependency,” in Proc. 26th ACM Symposium on Principles of Program-
ming Languages (POPL), San Antonio, TX, Jan. 1999, pp. 147–160.

[48] D. Garg and F. Pfenning, “Non-interference in constructive authorization
logic,” in Proc. 19th IEEE Computer Security Foundations Workshop,
2006.

[49] M. Y. Becker, “Information flow in trust management systems,” Journal
of Computer Security, vol. 20, no. 6, pp. 677–708, 2012.

[50] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan, “Opacity
generalised to transition systems,” International Journal of Information
Security, vol. 7, no. 6, pp. 421–435, 2008.

[51] N. Broberg and D. Sands, “Paralocks—role-based information flow
control and beyond,” in Proc. 37th ACM Symposium on Principles of
Programming Languages (POPL), Jan. 2010.

[52] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information
flow and access control policies with dependent types,” in Proc. IEEE
Symp. on Security and Privacy. IEEE, 2011, pp. 165–179.

[53] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell, “Disjunction
category labels,” in Proceedings of the 16th Nordic conference on
Information Security Technology for Applications. Springer-Verlag,
2011, pp. 223–239.

583583583


