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Abstract—Web-based single sign-on (SSQO) services such as
Google Sign-In and Log In with Paypal are based on the OpenID
Connect protocol. This protocol enables so-called relying parties
to delegate user authentication to so-called identity providers.
OpenID Connect is one of the newest and most widely deployed
single sign-on protocols on the web. Despite its importance, it has
not received much attention from security researchers so far, and
in particular, has not undergone any rigorous security analysis.

In this paper, we carry out the first in-depth security analysis
of OpenID Connect. To this end, we use a comprehensive generic
model of the web to develop a detailed formal model of OpenID
Connect. Based on this model, we then precisely formalize and
prove central security properties for OpenID Connect, including
authentication, authorization, and session integrity properties.

In our modeling of OpenID Connect, we employ security
measures in order to avoid attacks on OpenID Connect that
have been discovered previously and new attack variants that we
document for the first time in this paper. Based on these security
measures, we propose security guidelines for implementors of
OpenID Connect. Our formal analysis demonstrates that these
guidelines are in fact effective and sufficient.

I. INTRODUCTION

OpenlD Connect is a protocol for delegated authentication
in the web: A user can log into a relying party (RP) by
authenticating herself at a so-called identity provider (IdP).
For example, a user may sign into the website tripadvisor.com
using her Google account.

Although the names might suggest otherwise, OpenlD
Connect (or OIDC for short) is not based on the older OpenlD
protocol. Instead, it builds upon the OAuth 2.0 framework,
which defines a protocol for delegated authorization (e.g., a
user may grant a third party website access to her resources
at Facebook). While OAuth 2.0 was not designed to provide
authentication, it has often been used for this purpose as well,
leading to several severe security flaws in the past [12], [45].

OIDC was created not only to retrofit authentication into
OAuth 2.0 by using cryptographically secured tokens and a
precisely defined method for user authentication, but also to
enable additional important features. For example, using the
Discovery extension, RPs can automatically identify the I1dP
that is responsible for a given identity. With the Dynamic
Client Registration extension, RPs do not need a manual set-
up process to work with a specific IdP, but can instead register
themselves at the IdP on the fly.

Created by the OpenID Foundation and standardized only
in November 2014, OIDC is already very widely used. Among
others, it is used and supported by Google, Amazon, Paypal,
Salesforce, Oracle, Microsoft, Symantec, Verizon, Deutsche
Telekom, Pingldentity, RSA Security, VMWare, and IBM.
Many corporate and end-user single sign-on solutions are based
on OIDC, for example, well-known services such as Google
Sign-In and Log In with Paypal.

Despite its wide use, OpenID Connect has not received
much attention from security researchers so far (in contrast
to OpenlID and OAuth 2.0). In particular, there have been no
formal analysis efforts for OpenID Connect until now. In fact,
the only previous works on the security of OpenID Connect are
a large-scale study of deployments of Google’s implementation
of OIDC performed by Li and Mitchell [36] and an informal
evaluation by Mainka et al. [38].

In this work, we aim to fill the gap and formally verify the
security of OpenlD Connect.

Contributions of this Paper. We provide the first in-depth
formal security analysis of OpenlD Connect. Based on a
comprehensive formal web model and strong attacker models,
we analyze the security of all flows available in the OIDC
standard, including many of the optional features of OIDC
and the important Discovery and Dynamic Client Registration
extensions. More specifically, our contributions are as follows.

Attacks on OIDC and Security Guidelines. We first compile
an overview of attacks on OIDC, common pitfalls, and their
respective mitigations. Most of these attacks were documented
before, but we point out new attack variants and aspects.
Starting from these attacks and pitfalls, we then derive
security guidelines for implementors of OIDC. Our guidelines
are backed-up by our formal security analysis, showing that the
mitigations that we propose are in fact effective and sufficient.

Formal model of OIDC. Our formal analysis of OIDC is
based on the expressive Dolev-Yao style model of the web
infrastructure (FKS model) proposed by Fett, Kiisters, and
Schmitz [19]. This web model is designed independently of
a specific web application and closely mimics published (de-
facto) standards and specifications for the web, for instance,
the HTTP/1.1 and HTMLS5 standards and associated (proposed)
standards. It is the most comprehensive web model to date.
Among others, HTTP(S) requests and responses, including



several headers, such as cookie, location, referer, authorization,
strict transport security (STS), and origin headers, are modeled.
The model of web browsers captures the concepts of windows,
documents, and iframes, including the complex navigation
rules, as well as modern technologies, such as web storage, web
messaging (via postMessage), and referrer policies. JavaScript
is modeled in an abstract way by so-called scripts which can
be sent around and, among others, can create iframes, access
other windows, and initiate XMLHttpRequests. Browsers may
be corrupted dynamically by the adversary.

The FKS model has already been used to analyze the security
of the BrowserID single sign-on system [19], [21], the security
and privacy of the SPRESSO SSO system [22], and the security
of OAuth 2.0 [23], each time uncovering new and severe
attacks that have been missed by previous analysis attempts.

Using the generic FKS model, we build a formal model of
OIDC, closely following the standard. We employ the defenses
and mitigations discussed earlier in order to create a model with
state-of-the-art security features in place. Our model includes
RPs and IdPs that (simultaneously) support all modes of OIDC
and can be dynamically corrupted by the adversary.

Formalization of security properties. Based on this model of
OIDC, we formalize four main security properties of OIDC:
authentication, authorization, session integrity for authentica-
tion, and session integrity for authorization. We also formalize
further OIDC specific properties.

Proof of Security for OpenID Connect. Using the model and
the formalized security properties, we then show, by a manual
yet detailed proof, that OIDC in fact satisfies the security
properties. This is the first proof of security of OIDC. Being
based on an expressive and comprehensive formal model of
the web, including a strong attacker model, as well as on
a modeling of OpenID Connect which closely follows the
standard, our security analysis covers a wide range of attacks.

Structure of this Paper. We provide an informal description
of OIDC in Section II. Attacks and security guidelines are
discussed in Section III. In Section IV, we briefly recall
the FKS model. The model and analysis of OIDC are then
presented in Section V. Related work is discussed in Section VI.
We conclude in Section VII. All details of our work, including
the proofs, are provided in the appendix.

II. OPENID CONNECT

The OpenlID Connect protocol allows users to authenticate
to RPs using their existing account at an IdP." (Typically, this
is an email account at the IdP.) OIDC was defined by the
OpenlD Foundation in a Core document [42] and in extension
documents (e.g., [41], [43]). Supporting technologies were
standardized at the IETF, e.g., [32], [33]. (Recall that OpenID
Connect is not to be confused with the older OpenlD standards,
which are very different to OpenID Connect.)

Note that the OIDC standard also uses the terms client for RP and OpenID
provider (OP) for the IdP. We here use the more common terms RP and IdP.

start login
E discovery
registration
authentication
id token
session cookie
[rowser] (7] 0

Figure 1. OpenID Connect — high level overview.

Central to OIDC is a cryptographically signed document,
the id token. It is created by the user’s IdP and serves as a
one-time proof of the user’s identity to the RP.

A high-level overview of OIDC is given in Figure 1.
First, the user requests to be logged in at some RP and
provides her email address [4o]. RP now retrieves operational
information (e.g., some URLSs) for the remaining protocol flow
(discovery, [B]) and registers itself at the IdP [c]. The user is
then redirected to the IdP, where she authenticates herself [D]
(e.g., using a password). The IdP issues an id token to RP [E],
which RP can then verify to ensure itself of the user’s identity.
(The way of how the IdP sends the id token to the RP is subject
to the different modes of OIDC, which are described in detail
later in this section. In short, the id token is either relayed
via the user’s browser or it is fetched by the RP from the IdP
directly.) The id token includes an identifier for the IdP (the
issuer),> a user identifier (unique at the respective IdP), and
is signed by the IdP. The RP uses the issuer identifier and the
user identifier to determine the user’s identity. Finally, the RP
may set a session cookie in the user’s browser which allows
the user to access the services of RP [E].

Before we explain the modes of operation of OIDC, we first
present some basic concepts used in OIDC. At the end of this
section, we discuss the relationship of OIDC to OAuth 2.0.

A. Basic Concepts

We have seen above that id tokens are essential to OIDC.
Also, to allow users to use any IdP to authenticate to any
RP, the RP needs to discover some information about the IdP.
Additionally, the IdP and the RP need to establish some sort
of relationship between each other. The process to establish
such a relationship is called registration. Both, discovery and
registration, can be either a manual task or a fully automatic
process. Further, OIDC allows users to authorize an RP to
access user’s data at IdP on the user’s behalf. All of these
concepts are described in the following.

Authentication and ID Tokens. The goal of OIDC is to
authenticate a user to an RP, i.e., the RP gets assured of the
identity of the user interacting with the RP. This assurance is
based on id tokens. As briefly mentioned before, an id token
is a document signed by the IdP. It contains several claims,

The issuer identifier of an IdP is an HTTPS URL without any query or
fragment components.



i.e., information about the user and further meta data. More
precisely, an id token contains a user identifier (unique at
the respective 1dP) and the issuer identifier of the IdP. Both
identifiers in combination serve as a global user identifier for
authentication. Also, every id token contains an identifier for
the RP at the IdP, which is assigned during registration (see
below). The id token may also contain a nonce chosen by
the RP during the authentication flow as well as an expiration
timestamp and a timestamp of the user’s authentication at the
IdP to prevent replay attacks. Further, an id token may contain
information about the particular method of authentication and
other claims, such as data about the user and a hash of some
data sent outside of the id token.

When an RP validates an id token, it checks in particular
whether the signature of the token is correct (we will explain
below how RP obtains the public key of the IdP), the issuer
identifier is the one of the currently used IdP, the id token is
issued for this RP, the nonce is the one RP has chosen during
this login flow, and the token has not expired yet. If the id
token is valid, the RP trusts the claims contained in the id
token and is confident in the user’s identity.

Discovery and Registration. The OIDC protocol is heavily
based on redirection of the user’s browser: An RP redirects
the user’s browser to some IdP and vice-versa. Hence, both
parties, the RP and the IdP, need some information about
the respective URLs (so-called endpoints) pointing to each
other. Also, the RP needs a public key of the IdP to verify
the signature of id tokens. Further, an RP can contact the IdP
directly to exchange protocol information. This exchange may
include authentication of the RP at the IdP.

More specifically, an RP and an IdP need to exchange
the following information: (1) a URL where the user can
authenticate to the IdP (authorization endpoint), (2) one or
more URLs at RP where the user’s browser can be redirected
to by the IdP after authentication (redirection endpoint), (3) a
URL where the RP can contact the IdP in order to retrieve an
id token (token endpoint), (4) the issuer identifier of the IdP,
(5) the public key of the IdP to verify the id token’s signature,
(6) an identifier of the RP at IdP (client id), and optionally (7)
a secret used by RP to authenticate itself to the token endpoint
(client secret). (Recall that client is another term for RP, and
in particular does not refer to the browser.)

This information can be exchanged manually by the adminis-
trator of the RP and the administrator of the IdP, but OIDC also
allows one to completely automate the discovery of IdPs [43]
and dynamically register RPs at an IdP [41].

During the automated discovery, the RP first determines
which IdP is responsible for the email address provided by the
user who wants to log in using the WebFinger protocol [33].
As a result, the RP learns the issuer identifier of the IdP and
can retrieve the URLs of the authorization endpoint and the
token endpoint from the IdP. Furthermore, the RP receives a
URL where it can retrieve the public key to verify the signature
of the id token (JWKS URI), and a URL where the RP can
register itself at the IdP (client registration endpoint).

If the RP has not registered itself at this IdP before, it starts
the registration ad-hoc at the client registration endpoint: The
RP sends its redirection endpoint URLSs to the IdP and receives
a new client id and (optionally) a client secret in return.

Authorization and Access Tokens. OIDC allows users to
authorize RPs to access the user’s data stored at IdPs or act on
the user’s behalf at IdPs. For example, a photo printing service
(the RP) might access or manage the user’s photos on Google
Drive (the IdP). For authorization, the RP receives a so-called
access token (besides the id token). Access tokens follow the
concept of so-called bearer tokens, i.e., they are used as the
only authentication component in requests from an RP to an
IdP. In our example, the photo printing service would have to
add the access token to each HTTP request to Google Drive.

B. Modes

OIDC defines three modes: the authorization code mode, the
implicit mode, and the hybrid mode. While in the authorization
code mode, the id token is retrieved by an RP from an IdP
in direct server-to-server communication (back channel), in
the implicit mode, the id token is relayed from an IdP to an
RP via the user’s browser (front channel). The hybrid mode
is a combination of both modes and allows id tokens to be
exchanged via the front and the back channel at the same time.

We now provide a detailed description of all three modes.

Authorization Code Mode. In this mode, an RP redirects the
user’s browser to an IdP. At the IdP, the user authenticates and
then the IdP issues a so-called authorization code to the RP.
The RP now uses this code to obtain an id token from the IdP.

Step-by-Step Protocol Flow. The protocol flow is depicted in
Figure 2. First, the user starts the login process by entering
her email address’ in her browser (at some web page of an
RP), which sends the email address to the RP in [1].

Now, the RP uses the OIDC discovery extension [43] to
gather information about the IdP: As the first step (in this
extension), the RP uses the WebFinger mechanism [33] to
discover information about which IdP is responsible for this
email address. For this discovery, the RP contacts the server
of the email domain in [2] (in the figure, the server of the
user’s email domain is depicted as the same party as the
IdP). The result of the WebFinger request in [3] contains the
issuer identifier of the IdP (which is also a URL). With this
information, the RP can continue the discovery by requesting
the OIDC configuration from the IdP in and [5]. This
configuration contains meta data about the IdP, including all
endpoints at the IdP and a URL where the RP can retrieve
the public key of the IdP (used to later verify the id token’s
signature). If the RP does not know this public key yet, the RP
retrieves the key (Steps [¢] and [7]). This concludes the OIDC
discovery in this login flow.

Next, if the RP is not registered at the IdP yet, the RP
starts the OIDC dynamic client registration extension [41]: In
Step [8] the RP contacts the IdP and provides its redirect URISs.

3Note that OIDC also allows other types of user ids, such as personal URLs.
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Figure 2. OpenID Connect authorization code mode. Note that data
depicted below the arrows is either transferred in URI parameters,
HTTP headers, or POST bodies.

In return, the IdP issues a client id and (optionally) a client
secret to the RP in Step [9]. This concludes the registration.

Now, the core part of the OIDC protocol starts: the RP
redirects the user’s browser to the IdP in [10]. This redirect
contains the information that the authorization code mode
is used. Also, this redirect contains the client id of the RP,
a redirect URI, and a state value, which serves as a Cross-
Site Request Forgery (CSRF) token when the browser is later
redirected back to the RP. The redirect may also optionally
include a nonce, which will be included in the id token issued
later in this flow. This data is sent to the IdP by the browser [11].
The user authenticates to the IdP [12], [13], and the IdP redirects
the user’s browser back to the RP in and (using the
redirect URI from the request in [11]). This redirect contains an

authorization code, the state value as received in [10], and the
issuer identifier.* If the state value and the issuer identifier are
correct, the RP contacts the IdP in [16] at the token endpoint with
the received authorization code, its client id, its client secret
(if any), and the redirect URI used to obtain the authorization
code. If these values are correct, the IdP responds with a fresh
access token and an id token to the RP in [17]. If the id token
is valid, then the RP considers the user to be logged in (under
the identifier composed from the user id in the id token and
the issuer identifier). Hence, the RP may set a session cookie
at the user’s browser in [18].

Implicit Mode. The implicit mode (depicted in Figure 3 in
Appendix A) is similar to the authorization code mode, but
instead of providing an authorization code, the IdP issues an
id token right away to the RP (via the user’s browser) when
the user authenticates to the IdP. Hence, the Steps of the
authorization code mode (Figure 2) are the same. After these
steps, the IdP redirects the user’s browser to the redirection
endpoint at the RP, providing an id token, (optionally) an
access token, the state value, and the issuer identifier. These
values are not provided as a URL parameter but in the URL
fragment instead. Hence, the browser does not send them to
the RP at first. Instead, the RP has to provide a JavaScript that
retrieves these values from the fragment and sends them to
the RP. If the id token is valid, the issuer is correct, and the
state matches the one previously chosen by the RP, the RP
considers the user to be logged in and issues a session cookie.

Hybrid Mode. The hybrid mode (depicted in Figure 4 in
Appendix A) is a combination of the authorization code mode
and the implicit mode: First, this mode works like the implicit
mode, but when IdP redirects the browser back to RP, the
IdP issues an authorization code, and either an id token or an
access token or both.> The RP then retrieves these values as
in the implicit mode (as they are sent in the fragment like in
the implicit mode) and uses the authorization code to obtain a
(potentially second) id token and a (potentially second) access
token from IdP.

C. Relationship to OAuth 2.0

Technically, OIDC is derived from OAuth 2.0. It goes,
however, far beyond what was specified in OAuth 2.0 and
introduces many new concepts: OIDC defines a method for
authentication (while retaining the option for authorization)
using a new type of tokens, the id token. Some messages and
tokens in OIDC can be cryptographically signed or encrypted
while OAuth 2.0 does neither use signing nor encryption. The
new hybrid flow combines features of the implicit mode and the
authorization code mode. Importantly, with ad-hoc discovery
and dynamic registration, OIDC standardizes and automates a
process that is completely out of the scope of OAuth 2.0.

“The issuer identifier will be included in this message in an upcoming
revision of OIDC to mitigate the IdP Mix-Up attack, see Section III-A.

5The choice of the IdP to issue either an id token or an access token or
both depends on the IdP’s configuration and the request in Step [3] in Figure 4.



These new features and their interplay potentially introduce
new security flaws. It is therefore not sufficient to analyze
the security of OAuth 2.0 to derive any guarantees for OIDC.
OIDC rather requires a new security analysis. (See Section V
for a more detailed discussion. In Section III we describe
attacks that cannot be applied to OAuth 2.0.)

III. ATTACKS AND SECURITY GUIDELINES

In this section, we present a concise overview of known
attacks on OIDC and present additions that have not been
documented so far. We also summarize mitigations and im-
plementation guidelines that have to be implemented to avoid
these attacks.

The main focus of this work is to prove central security
properties of OIDC, by which these mitigations and implemen-
tation guidelines are backed up. Moreover, further (potentially
unknown types of) attacks on OIDC that can be captured by
our security analysis are ruled out as well.

The rest of the section is structured as follows: we first
present the attacks, mitigations and guidelines, then point out
differences to OAuth 2.0, and finally conclude with a brief
discussion.

A. Attacks, Mitigations, and Guidelines

(Mitigations and guidelines are presented along with every
class of attack.)

IdP Mix-Up Attacks. In two previously reported attacks [23],
[38], the aim was to confuse the RP about the identity of the
IdP. In both attacks, the user was tricked into using an honest
IdP to authenticate to an honest RP, while the RP is made
to believe that the user authenticated to the attacker. The RP
therefore, after successful user authentication, tries to use the
authorization code or access token at the attacker, which then
can impersonate the user or access the user’s data at the IdP.
We present a detailed description of an application of the IdP
Mix-Up attack to OpenID Connect in Appendix A.

The IETF OAuth Working Group drafted a proposal for a
mitigation technique [31] that is based on a proposal in [23]
and that also applies to OpenID Connect. The proposal is that
the IdP puts its identity into the response from the authorization
endpoint. (This is already included in our description of OIDC
above, see the issuer in Step in Figure 2.) The RP can then
check that the user authenticated to the expected IdP.

Attacks on the State Parameter. The state parameter is used
in OIDC to protect against attacks on session integrity, i.e.,
attacks in which an attacker forces a user to be logged in at
some RP (under the attacker’s account). Such attacks can arise
from session swapping or CSRF vulnerabilities.

OIDC recommends the use of the state parameter. It should
contain a nonce that is bound to the user’s session. Attacks
that can result from omitting or incorrectly using state were
described in the context of OAuth 2.0 in [8], [35], [37], [44].

The nonce for the state value should be chosen freshly
for each login attempt to prevent an attack described in [23]

(Section 5.1) where the same state value is used first in a user-
initiated login flow with a malicious IdP and then in a login
flow with an honest IdP (forcefully initiated by the attacker
with the attacker’s account and the user’s browser).

Code/Token/State Leakage. Care should be taken that a value
of state or an authorization code is not inadvertently sent to an
untrusted third party through the Referer header. The state and
the authorization code parameters are part of the redirection
endpoint URI (at the RP), the state parameter is also part of
the authorization endpoint URI (at the IdP). If, on either of
these two pages, a user clicks on a link to an external page,
or if one of these pages embeds external resources (images,
scripts, etc.), then the third party will receive the full URI of
the endpoint, including these parameters, in the Referer header
that is automatically sent by the browser.

Documents delivered at the respective endpoints should
therefore be vetted carefully for links to external pages and
resources. In modern browsers, referrer policies [18] can be
used to suppress the Referer header. As a second line of
defense, both parameters should be made single-use, i.e., state
should expire after it has been used at the redirection endpoint
and authorization code after it has been redeemed at IdP.

In a related attack, an attacker that has access to logfiles or
browsing histories (e.g., through malicious browser extensions)
can steal authentication codes, access tokens, id tokens, or
state values and re-use these to impersonate a user or to break
session integrity. A subset of these attacks was dubbed Cut-
and-Paste Attacks by the IETF OAuth working group [31].

There are drafts for RFCs that tackle specific aspects of
these leakage attacks, e.g., [13] which discusses binding the
state parameter to the browser instance, and [30] which
discusses binding the access token to a TLS session. Since
these mitigations are still very early IETF drafts, subject to
change, and not easy to implement in the majority of the
existing OIDC implementations, we did not model them.

In our analysis, we assume that implementations keep
logfiles and browsing histories (of honest browsers) secret and
employ referrer policies as described above.

Naive RP Session Integrity Attack. So far, we have assumed
that after Step (Figure 2), the RP remembers the user’s
choice (which IdP is used) in a session; more precisely, the
user’s choice is stored in RP’s session data. This way, in
Step [15], the RP looks up the user’s selected IdP in the session
data. In [23], this is called explicit user intention tracking.

There is, however, an alternative to storing the IdP in the
session. As pointed out by [23], some implementations put
the identity of the IdP into the redirect_uri (cf. Step [10)), e.g.,
by appending it as the last part of the path or in a parameter.
Then, in Step [15], the RP can retrieve this information from
the URI. This is called naive user intention tracking.

RPs that use naive user intention tracking are susceptible
to the naive RP session integrity attack described in [23]: An
attacker obtains an authorization code, id token, or access token
for his own account at an honest IdP (HIdP). He then waits
for a user that wants to log in at some RP using the attacker’s



IdP (AIdP) such that AIdP obtains a valid state for this RP.
AIdP then redirects the user to the redirection endpoint URI
of RP using the identity of HIdP plus the obtained state value
and code or (id) token. Since the RP cannot see that the user
originally wanted to log in using AIdP instead of HIdP, the
user will now be logged in under the attacker’s identity.
Therefore, an RP should always use sessions to store the
user’s chosen IdP (explicit user intention tracking), which, as
mentioned, is also what we do in our formal OIDC model.

307 Redirect Attack. Although OIDC explicitly allows for any
redirection method to be used for the redirection in Step
of Figure 2, IdPs should not use an HTTP 307 status code
for redirection. Otherwise, credentials entered by the user at
an IdP will be repeated by the browser in the request to RP
(Step of Figure 2), and hence, malicious RPs would learn
these credentials and could impersonate the user at the IdP. This
attack was presented in [23]. In our model, we exclusively use
the 303 status code, which prevents re-sending of form data.

Injection Attacks. It is well known that Cross-Site Scripting
(XSS) and SQL Injection attacks on RPs or IdPs can lead to
theft of access tokens, id tokens, and authorization codes (see,
for example, [8], [27], [37], [38], [44]). XSS attacks can, for
example, give an attacker access to session ids. Besides using
proper escaping (and Content Security Policies [46] as a second
line of defense), OIDC endpoints should therefore be put on
domains separate from other, potentially more vulnerable, web
pages on IdPs and RPs.® (See Third-Party Resources below
for another motivation for this separation.)

In OIDC implementations, data that can come from untrusted
sources (e.g., client ids, user attributes, state and nonce values,
redirection URIs) must be treated as such: For example, a
malicious IdP might try to inject user attributes containing
malicious JavaScript to the RP. If the RP displays this data
without applying proper escaping, the JavaScript is executed.

We emphasize that in a similar manner, attackers can try to
inject additional parameters into URIs by appending them to
existing parameter values, e.g., the state. Since data is often
passed around in OIDC, proper escaping of such parameters
can be overlooked easily.

As a result of such parameter injection attacks or inde-
pendently, parameter pollution attacks can be a threat for
OIDC implementations. In these attacks, an attacker introduces
duplicate parameters into URLs (see, e.g., [6]). For example, a
simple parameter pollution attack could be launched as follows:
A malicious RP could redirect a user to an honest IdP, using a
client id of some honest RP but appending two redirection URI
parameters, one pointing to the honest RP and one pointing to
the attacker’s RP. Now, if the IdP checks the first redirection
URI parameter, but afterwards redirects to the URI in the
second parameter, the attacker learns authentication data that
belongs to the honest RP and can impersonate the user.

6Since scripts on one origin can often access documents on the same origin,
origins of the OIDC endpoints should be free from untrusted scripts.

Mitigations against all these kinds of injection attacks
are well known: implementations have to vet incoming data
carefully, and properly escape any output data. In our model,
we assume that these mitigations are implemented.

CSRF Attacks and Third-Party Login Initiation. Some
endpoints need protection against CSRF in addition to the
protection that the state parameter provides, e.g., by checking
the origin header. Our analysis shows that the RP only needs to
protect the URI on which the login flow is started (otherwise,
an attacker could start a login flow using his own identity in
a user’s browser) and for the IdP to protect the URI where
the user submits her credentials (otherwise, an attacker could
submit his credentials instead).

In the OIDC Core standard [42], a so-called login initiation
endpoint is described which allows a third party to start a login
flow by redirecting a user to this endpoint, passing the identity
of an IdP in the request. The RP will then start a login flow
at the given IdP. Members of the OIDC foundation confirmed
to us that this endpoint is essentially an intentional CSRF
protection bypass. We therefore recommend login initiation
endpoints not to be implemented (they are not a mandatory
feature), or to require explicit confirmation by the user.

Server-Side Request Forgery (SSRF). SSRF attacks can arise
when an attacker can instruct a server to send HTTP(S) requests
to other hosts, causing unwanted side-effects or revealing
information [40]. For example, if an attacker can instruct a
server behind a firewall to send requests to other hosts behind
this firewall, the attacker might be able to call services or to
scan the internal network (using timing attacks). He might also
instruct the server to retrieve very large documents from other
sources, thereby creating Denial of Service attacks.

SSRF attacks on OIDC were described for the first time
in [38], in the context of the OIDC Discovery extension: An
attacker could set up a malicious discovery service that, when
queried by an RP, answers with links to arbitrary, network-
internal or external servers (in Step [5] of Figure 2).

We here, for the first time, point out that not only RPs
can be vulnerable to SSRF, but also IdPs. OIDC defines a
way to indirectly pass parameters for the authorization request
(cf. Step in Figure 2). To this end, the IdP accepts a
new parameter, request_uri in the authorization request. This
parameter contains a URI from which the IdP retrieves the
additional parameters (e.g., redirect_uri). The attacker can use
this feature to easily mount an SSRF attack against the IdP
even without any OIDC extensions: He can put an arbitrary
URI in an authorization request causing the IdP to contact this
URL

This new attack vector shows that not only RPs but also IdPs
have to protect themselves against SSRF by using appropriate
filtering and limiting mechanisms to restrict unwanted requests
that originate from a web server (cf. [40]).

SSRF attacks typically depend on an application specific
context, such as the structure of and (vulnerable) services
in an internal network. In our model, attackers can trigger
SSRF requests, but the model does not contain vulnerable



applications/services aside from OIDC. (Our analysis focuses
on the security of the OIDC standard itself, rather than on
specific applications and services.) Timing and performance
properties, while sometimes relevant for SSRF attacks, are also
outside of our analysis.

Third-Party Resources. RPs and IdPs that include third-party
resources, e.g., tracking or advertisement scripts, subject their
users to token theft and other attacks by these third parties. If
possible, RPs and IdPs should therefore avoid including third-
party resources on any web resources delivered from the same
origins® as the OIDC endpoints (see also Section V-F). For
newer browsers, subresource integrity [2] can help to reduce the
risks associated with embedding third-party resources. With
subresource integrity, websites can instruct supporting web
browsers to reject third-party content if this content does not
match a specific hash. In our model, we assume that websites
do not include untrusted third-party resources.

Transport Layer Security. The security of OIDC depends
on the confidentiality and integrity of the transport layer. In
other words, RPs and IdPs should use HTTPS. Endpoint URIs
that are provided for the end user and that are communicated,
e.g., in the discovery phase of the protocol, should only use
the https:// scheme. HTTPS Strict Transport Security and
Public Key Pinning can be used to further strengthen the
security of the OIDC endpoints. (In our model, we assume that
users enter their passwords only over HTTPS web sites because
otherwise, any authentication could be broken trivially.)

Session Handling. Sessions are typically identified by a nonce
that is stored in the user’s browser as a cookie. It is a well
known best practice that cookies should make use of the
secure attribute (i.e., the cookie is only ever used over HTTPS
connections) and the HitpOnly flag (i.e., the cookie is not
accessible by JavaScript). Additionally, after the login, the RP
should replace the session id of the user by a freshly chosen
nonce in order to prevent session fixation attacks: Otherwise, a
network attacker could set a login session cookie that is bound
to a known state value into the user’s browser (see [48]), lure
the user into logging in at the corresponding RP, and then
use the session cookie to access the user’s data at the RP
(session fixation, see [39]). In our model, RPs use two kinds
of sessions: Login sessions (which are valid until just before
a user is authenticated at the RP) and service sessions (which
signify that a user is already signed in to the RP). For both
sessions, the secure and HttpOnly flags are used.

B. Relationship to OAuth 2.0

Many, but not all of the attacks described above can also
be applied to OAuth 2.0. The following attacks in particular
are only applicable to OIDC: (1) Server-side request forgery
attacks are facilitated by the ad-hoc discovery and dynamic
registration features. (2) The same features enable new ways
to carry out injection attacks. (3) The new OIDC feature third-
party login initiation enables new CSRF attacks. (4) Attacks

on the id token only apply to OIDC, since there is no such
token in OAuth 2.0.

It is interesting to note that on the other hand, some attacks
on OAuth 2.0 cannot be applied to OIDC (see [23], [37] for
further discussions on these attacks): (1) OIDC setups are less
prone to open redirector attacks since placeholders are not
allowed in redirection URIs. (2) TLS is mandatory for some
messages in OIDC, while it is optional in OAuth 2.0. (3) The
nonce value can prevent some replay attacks when the state
value is not used or leaks to an attacker.

C. Discussion

In this section, our focus was to provide a concise overview
of known attacks on OIDC and present some additions, namely
SSRF at IdPs and third-party login initiation, along with
mitigations and implementation guidelines. Our formal analysis
of OIDC, which is the main focus of our work and is
presented in the next sections, shows that the mitigations and
implementation guidelines presented above are effective and
that we can exclude other, potentially unknown types of attacks.

IV. THE FKS WEB MODEL

Our formal security analysis of OIDC is based on the FKS
model, a generic Dolev-Yao style web model proposed by
Fett et al. in [19]. Here, we only briefly recall this model
following the description in [23] (see Appendices B ff. for a
full description, and [19], [21], [22] for comparison with other
models and discussion of its scope and limitations).

The FKS model is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTMLS standards and associated (proposed) standards. The
FKS model defines a general communication model, and, based
on it, web systems consisting of web browsers, DNS servers,
and web servers as well as web and network attackers.

Communication Model. The main entities in the model are
(atomic) processes, which are used to model browsers, servers,
and attackers. Each process listens to one or more (IP)
addresses. Processes communicate via events, which consist of
a message as well as a receiver and a sender address. In every
step of a run, one event is chosen non-deterministically from a
“pool” of waiting events and is delivered to one of the processes
that listens to the event’s receiver address. The process can
then handle the event and output new events, which are added
to the pool of events, and so on.

As usual in Dolev-Yao models (see, e.g., [1]), messages are
expressed as formal terms over a signature X. The signature
contains constants (for (IP) addresses, strings, nonces) as well
as sequence, projection, and function symbols (e.g., for encryp-
tion/decryption and signatures). For example, in the web model,
an HTTP request is represented as a term » containing a nonce,
an HTTP method, a domain name, a path, URI parameters,
request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented
as r:= (HTTPReq, n;,GET, ex.com, /show, ((p, 1)}, (), ()) where
the body and the list of request headers is empty. An HTTPS


http://ex.com/show?p=1

request for r is of the form enc,((r,k’), pub(kex.com)), Where
k' is a fresh symmetric key (a nonce) generated by the sender
of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

The equational theory associated with X is defined as
usual in Dolev-Yao models. The theory induces a congru-
ence relation = on terms, capturing the meaning of the
function symbols in X. For instance, the equation in the
equational theory which captures asymmetric decryption is
dec,(enca(x, pub(y)),y) = x. With this, we have that, for
example, dec,(enc,({r,k’), pub(kex.com))skex.com) = (k') i.e.,
these two terms are equivalent w.r.t. the equational theory.

A (Dolev-Yao) process consists of a set of addresses the
process listens to, a set of states (terms), an initial state, and
a relation that takes an event and a state as input and (non-
deterministically) returns a new state and a sequence of events.
The relation models a computation step of the process. It is
required that the output can be computed (formally, derived in
the usual Dolev-Yao style) from the input event and the state.

The so-called attacker process is a Dolev-Yao process which
records all messages it receives and outputs all events it can
possibly derive from its recorded messages. Hence, an attacker
process carries out all attacks any Dolev-Yao process could
possibly perform. Attackers can corrupt other parties.

A script models JavaScript running in a browser. Scripts
are defined similarly to Dolev-Yao processes. When triggered
by a browser, a script is provided with state information. The
script then outputs a term representing a new internal state
and a command to be interpreted by the browser (see also
the specification of browsers below). We give an annotated
example for a script in Algorithm 22 in the appendix. Similarly
to an attacker process, the so-called attacker script outputs
everything that is derivable from the input.

A system is a set of processes. A configuration of this system
consists of the states of all processes in the system, the pool
of waiting events, and a sequence of unused nonces. Systems
induce runs, i.e., sequences of configurations, where each con-
figuration is obtained by delivering one of the waiting events of
the preceding configuration to a process, which then performs
a computation step. The transition from one configuration to
the next configuration in a run is called a processing step. We
write, for example, O = (S,E,N) — (§',E’,N') to denote the
transition from the configuration (S,E,N) to the configuration
(S',E',N"), where S and S’ are the states of the processes in
the system, E and E’ are pools of waiting events, and N and
N’ are sequences of unused nonces.

A web system formalizes the web infrastructure and web
applications. It contains a system consisting of honest and
attacker processes. Honest processes can be web browsers, web
servers, or DNS servers. Attackers can be either web attackers
(who can listen to and send messages from their own addresses
only) or network attackers (who may listen to and spoof all
addresses and therefore are the most powerful attackers). A
web system further contains a set of scripts (comprising honest
scripts and the attacker script).

In our analysis of OIDC, we consider either one network

attacker or a set of web attackers (see Section V). In our
OIDC model, we need to specify only the behavior of servers
and scripts. These are not defined by the FKS model since
they depend on the specific application, unless they become
corrupted, in which case they behave like attacker processes
and attacker scripts; browsers are specified by the FKS model
(see below). The modeling of OIDC servers and scripts
is outlined in Section V and with full details provided in
Appendices F and G.

Web Browsers. An honest browser is thought to be used by
one honest user, who is modeled as part of the browser.
User actions, such as following a link, are modeled as non-
deterministic actions of the web browser. User credentials are
stored in the initial state of the browser and are given to
selected web pages when needed. Besides user credentials,
the state of a web browser contains (among others) a tree
of windows and documents, cookies, and web storage data
(localStorage and sessionStorage).

A window inside a browser contains a set of documents (one
being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web
page and contains (among others) a script and a list of
subwindows (modeling iframes). The script, when triggered
by the browser, is provided with all data it has access to,
such as a (limited) view on other documents and windows,
certain cookies, and web storage data. Scripts then output a
command and a new state. This way, scripts can navigate or
create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and
create iframes. Navigation and security rules ensure that scripts
can manipulate only specific aspects of the browser’s state,
according to the relevant web standards.

A browser can output messages on the network of different
types, namely DNS and HTTP(S) (including XMLHttpRe-
quests), and it processes the responses. Several HTTP(S)
headers are modeled, including, for example, cookie, location,
strict transport security (STS), and origin headers. A browser,
at any time, can also receive a so-called trigger message upon
which the browser non-deterministically choses an action, for
instance, to trigger a script in some document. The script
now outputs a command, as described above, which is then
further processed by the browser. Browsers can also become
corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

V. ANALYSIS

We now present our security analysis of OIDC, including a
formal model of OIDC, the specifications of central security
properties, and our theorem which establishes the security of
OIDC in our model.

More precisely, our formal model of OIDC uses the FKS
model as a foundation and is derived by closely following the
OIDC standards Core, Discovery, and Dynamic Client Regis-
tration [41]-[43]. (As mentioned above, the goal in this work
is to analyze OIDC itself instead of concrete implementations.)
We then formalize the main security properties for OIDC,



namely authentication, authorization, session integrity for
authentication, and session integrity for authorization. We also
formalize secondary security properties that capture important
aspects of the security of OIDC, for example, regarding the
outcome of the dynamic client registration. We then state and
prove our main theorem. Finally, we discuss the relationship
of our work to the analysis of OAuth 2.0 presented in [23]
and conclude with a discussion of the results.

We refer the reader to Appendices F-I for full details,
including definitions, specifications, and proofs. To provide an
intuition of the abstraction level, syntax, and concepts that we
use for the modeling without reading all details, we extensively
annotated Algorithms 17, 20, and 22 in Appendix F.

A. Model

Our model of OIDC includes all features that are commonly
found in real-world implementations, for example, all three
modes, a detailed model of the Discovery mechanism [43]
(including the WebFinger protocol [33]), and Dynamic Client
Registration [41] (including dynamic exchange of signing
keys). RPs, 1dPs, and, as usual in the FKS model, browsers
can be corrupted by the adversary dynamically.

We do not model less used features, in particular OIDC
logout, self-issued OIDC providers (“personal, self-hosted
OPs that issue self-signed ID Tokens”, [42]), and ACR/AMR
(Authentication Class/Methods Reference) values that can be
used to indicate the level of trust in the authentication of the
user to the IdP.

Since the FKS model has no notion of time, we overapprox-
imate by never letting tokens, e.g., id tokens, expire. Moreover,
we subsume user claims (information about the user that can
be retrieved from IdPs) by user identifiers, and hence, in our
model users have identities, but no other properties.

We have two versions of our OIDC model, one with a
network attacker and one with an unbounded number of web
attackers, as explained next. The reason for having two versions
is that while the authentication and authorization properties can
be proven assuming a network attacker, such an attacker could
easily break session integrity. Hence, for session integrity we
need to assume web attackers (see the explanations for session
integrity in Section V-B).

OIDC Web System with a Network Attacker. We model
OIDC as a class of web systems (in the sense of Section 1V)
which can contain an unbounded finite number of RPs, IdPs,
browsers, and one network attacker.

More formally, an OIDC web system with a network attacker
(OIDC™) consists of a network attacker, a finite set of web
browsers, a finite set of web servers for the RPs, and a finite
set of web servers for the IdPs. Recall that in OIDC”, since
we have a network attacker, we do not need to consider web
attackers (as the network attacker subsumes all web attackers).
All non-attacker parties are initially honest, but can become
corrupted dynamically upon receiving a special message and
then behave just like a web attacker process.

As already mentioned in Section IV, to model OIDC based
on the FKS model, we have to specify the protocol specific

behavior only, i.e., the servers for RPs and IdPs as well as the
scripts that they use. We start with a description of the servers.

Web Servers. Since RPs and IdPs both are web servers,
we developed a generic model for HTTPS server processes
for the FKS model. We call these processes HTTPS server
base processes. Their definition covers decrypting received
HTTPS messages and handling HTTP(S) requests to external
webservers, including DNS resolution.

RPs and IdPs are derived from this HTTPS server base
process. Their models follow the OIDC standard closely and
include the mitigations discussed in Section III.

An RP waits for users to start a login flow and then non-
deterministically decides which mode to use. If needed, it starts
the discovery and dynamic registration phase of the protocol,
and finally redirects the user to the IdP for user authentication.
Afterwards, it processes the received tokens and uses them
according to their type (e.g., with an access token, the RP
would retrieve an id token from the IdP). If an id token is
received that passes all checks, the user will be logged in. As
mentioned briefly in Section III, RPs manage two kinds of
sessions: The login sessions, which are used only during the
user login phase, and service sessions.

The IdP provides several endpoints according to its role in
the login process, including its OIDC configuration endpoint
and endpoints for receiving authentication and token requests.

Scripts. Three scripts (altogether 30 lines of code) can be
sent from honest IdPs and RPs to web browsers. The script
script_rp_index is sent by an RP when the user visits
the RP’s web site. It starts the login process. The script
script_rp_get_fragment is sent by an RP during an implicit or
hybrid mode flow to retrieve the data from the URI fragment.
It extracts the access token, authorization code, and state from
the fragment part of its own URI and sends this information
in the body of a POST request back to the RP. IdP sends the
script script_idp_form for user authentication at the IdP.

OIDC Web System with Web Attackers. We also consider
a class of web systems where the network attacker is replaced
by an unbounded finite set of web attackers and a DNS server
is introduced. We denote such a system by OI'DC" and call it
an OIDC web system with web attackers. Such web systems
are used to analyze session integrity, see below.

B. Main Security Properties

Our primary security properties capture authentication, au-
thorization and session integrity for authentication and au-
thorization. We will present these security properties in the
following, with full details in Appendix H.

Authentication Property. The most important property for
OIDC is the authentication property. In short, it captures that
a network attacker (and therefore also web attackers) should
be unable to log in as an honest user at an honest RP using
an honest IdP.

Before we define this property in more detail, recall that
in our modeling, an RP uses two kinds of sessions: login
sessions, which are only used for the login flow, and service



sessions, which are used after a user/browser was logged in (see
Section III-A for details). When a login session has finished
successfully (i.e., the RP received a valid id token), the RP
uses a fresh nonce as the service session id, stores this id in
the session data of the login session, and sends the service
session id as a cookie to the browser. In the same step, the RP
also stores the issuer, say d, that was used in the login flow
and the identity (email address) of the user, say id, as a pair
(d,id), referred to as a global user identifier in Section II-A.

Now, our authentication property defines that a network
attacker should be unable to get hold of a service session id
by which the attacker would be considered to be logged in at
an honest RP under an identity governed by an honest IdP for
an honest user/browser.

In order to define the authentication property formally, we
first need to define the precise notion of a service session. In
the following, as introduced in Section IV, (S,E,N) denotes a
configuration in the run p with its components S, a mapping
from processes to states of these processes, E, a set of events
in the network that are waiting to be delivered to some party,
and N, a set of nonces that have not been used yet. By
governor(id) we denote the IdP that is responsible for a given
user identity (email address) id, and by dom(governor(id)),
we denote the set of domains that are owned by this IdP. By
S(r).sessions|lsid] we denote a data structure in the state of
r that contains information about the login session identified
by Isid. This data structure contains, for example, the identity
for which the login session with the id Isid was started and
the service session id that was issued after the login session.

We can now define that there is a service session identified
by a nonce n for an identity id at some RP r iff there exists a
login session (identified by some nonce Isid) such that n is the
service session associated with this login session, and r has
stored that the service session is logged in for the id id using
an issuer d (which is some domain of the governor of id).

Definition 1 (Service Sessions). We say that there is a ser-
vice session identified by a nonce n for an identity id
at some RP r in a configuration (S,E,N) of a run
p of an OIDC web system iff there exists some lo-
gin session id Isid and a domain d € dom(governor(id))
such that S(r).sessionsllsid][loggedInAs] = (d,id) and
S(r).sessions|lsid][serviceSessionId] =n.

By dyp(S(attacker)) we denote all terms that can be com-
puted (derived in the usual Dolev-Yao style, see Section IV)
from the attacker’s knowledge in the state S. We can now
define that an OIDC web system with a network attacker is
secure w.r.t. authentication iff the attacker can never get hold
of a service session id (n) that was issued by an honest RP r
for an identity id of an honest user (browser) at some honest
IdP (governor of id).

Definition 2 (Authentication Property). Let OIDC" be an
OIDC web system with a network attacker. We say that OIDC"
is secure w.r.t. authentication iff for every run p of OIDC",
every configuration (S,E,N) in p, every r € RP that is honest

in S, every browser b that is honest in S, every identity
id € ID with governor(id) being an honest IdP, every service
session identified by some nonce n for id at r, we have that
n is not derivable from the attackers knowledge in § (i.e.,
n & dp(S(attacker))).

Authorization Property. Intuitively, authorization for OIDC
means that a network attacker should not be able to obtain
or use a protected resource available to some honest RP at
an IdP for some user unless certain parties involved in the
authorization process are corrupted. As the access control
for such protected resources relies only on access tokens, we
require that an attacker does not learn access tokens that would
allow him to gain unauthorized access to these resources.

To define the authorization property formally, we need to
reason about the state of an honest IdP, say i. In this state, i
creates records containing data about successful authentications
of users at i. Such records are stored in S(i).records. One
such record, say x, contains the authenticated user’s identity
in x[subject], two’ access tokens in x[access_tokens]|, and
the client id of the RP in x[client_id].

We can now define the authorization property. It defines
that an OIDC web system with a network attacker is secure
w.r.t. authorization iff the attacker cannot get hold of an access
token that is stored in one of i’s records for an identity of an
honest user/browser b and an honest RP r.

Definition 3 (Authorization Property). Let OIDC" be an
OIDC web system with a network attacker. We say that
OIDC" is secure w.r.t. authorization iff for every run p of
OIDC", every configuration (S,E,N) in p, every r € RP that
is honest in S, every i € IdP that is honest in S, every browser
b that is honest in S, every identity id € ID owned by b and
governor(id) = i, every nonce n, every term x € S(i).records
with x[subject] = id, n € x[access_tokens], and the client
id x[client_id] having been issued by i to r.® we have that
n is not derivable from the attackers knowledge in S (i.e.,
n & dy(S(attacker))).

Session Integrity for Authentication. The two session integrity
properties capture that an attacker should be unable to force-
fully log a user/browser in at some RP. This includes attacks
such as CSRF and session swapping. Note that we define these
properties over OIDCY, i.e., we consider web attackers instead
of a network attacker. The reason is that OIDC deployments
typically use cookies to track the login sessions of users.
Since a network attacker can put cookies into browsers over
unencrypted connections and these cookies are then also used
for encrypted connections, cookies have no integrity in the
presence of a network attacker (see also [48]). In particular,
a network attacker could easily break the session integrity of
typical OIDC deployments.

For session integrity for authentication we say that a
user/browser that is logged in at some RP must have expressed

"In the hybrid mode, IdPs can issue two access tokens, cf. Section II-B.
8See Definition 54 in Appendix H-B.



her wish to be logged in to that RP in the beginning of the
login flow. Note that not even a malicious IdP should be able to
forcefully log in its users (more precisely, its user’s browsers)
at an honest RP. If the IdP is honest, then the user must
additionally have authenticated herself at the IdP with the same
user account that RP uses for her identification. This excludes,
for example, cases where (1) the user is forcefully logged in
to an RP by an attacker that plays the role of an IdP, and (2)
where an attacker can force an honest user to be logged in at
some RP under a false identity issued by an honest IdP.

In our formal definition of session integrity for authen-
tication (below), Ioggedlng(b,nu,hlsid) denotes that in the
processing step Q (see below), the browser b was authenticated
(logged in) to an RP r using the IdP i and the identity u
in an RP login session with the session id Isid. (Here, the
processing step Q corresponds to Step in Figure 2.) The
user authentication in the processing step Q is characterized
by the browser b receiving the service session id cookie that
results from the login session Isid.

By startedg (b, r,1sid) we denote that the browser b, in the
processing step Q' triggered the script script_rp_index to start
a login session which has the session id Isid at the RP r.
(Compare Section IV on how browsers handle scripts.) Here,
Q' corresponds to Step [1] in Figure 2.

By authenticatedg// (b,r,u,i,lsid) we denote that in the
processing step Q”, the user/browser b authenticated to the
IdP i. In this case, authentication means that the user filled out
the login form (in script_idp_form) at the IdP i and, by this,
consented to be logged in at r (as in Step [13] in Figure 2).

Using these notations, we can now define security w.r.t. ses-
sion integrity for authentication of an OIDC web system with
web attackers in a straightforward way:

Definition 4 (Session Integr. for Authentication). Let OIDCY
be an OIDC web system with web attackers. We say that
OIDC" is secure w.r.t. session integrity for authentication iff
for every run p of OIDC", every processing step Q in p
with O = (S,E,N) — (§',E’,N’) (for some S, §', E, E, N,
N'), every browser b that is honest in S, every i € IdP, every
identity u that is owned by b, every r € RP that is honest
in S, every nonce Isid, with Ioggedlng(b,r,u,i,lsid), we have
that (1) there exists a processing step Q' in p (before Q)
such that startedg/(b,r, Isid), and (2) if i is honest in S, then
there exists a processing step Q" in p (before Q) such that
authenticated? (b, r,u, i, Isid).

Session Integrity for Authorization. For session integrity for
authorization we say that if an RP uses some access token at
some IdP in a session with a user, then that user expressed her
wish to authorize the RP to interact with some IdP. Note that
one cannot guarantee that the IdP with which RP interacts is
the one the user authorized the RP to interact with. This is
because the IdP might be malicious. In this case, for example
in the discovery phase, the malicious IdP might just claim (in
Step [3] in Figure 2) that some other IdP is responsible for
the authentication of the user. If, however, the IdP the user is

logged in with is honest, then it should be guaranteed that the
user authenticated to that IdP and that the IdP the RP interacts
with on behalf of the user is the one intended by the user.

For the formal definition, we use two additional predi-
cates: usedAuthorizationg(b,r, i,lsid) means that the RP r,
in a login session (session id Isid) with the browser b
used some access token to access services at the IdP i. By
actsOnUsersBehalfg(bJ, u,i,lsid) we denote that the RP r not
only used some access token, but used one that is bound to
the user’s identity at the IdP i.

Again, starting from our informal definition above, we define
security w.r.t. session integrity for authorization of an OIDC
web system with web attackers in a straightforward way (and
similarly to session integrity for authentication):

Definition 5 (Session Integr. for Authorization). Let  OIDCY
be an OIDC web system with web attackers. We say that
OIDCY is secure w.rt. session integrity for authentication
iff for every run p of OIDC", every processing step Q
in p with Q = (S,E,N) — (S',E’,N’) (for some S, §', E,
E', N, N'), every browser b that is honest in S, every
i € IdP, every identity u that is owned by b, every r € RP
that is honest in S, every nonce Isid, we have that (1) if
usedAuthorizationg(b, r,i,lsid), then there exists a processing
step Q' in p (before Q) such that startedg(b, r,Isid), and (2)
if i is honest in S and actsOnUsersBehaIfg(b,r,u,i,lsid), then
there exists a Rrocessing step Q" in p (before Q) such that
authenticatedg (b,r,u,i,lsid).

C. Secondary Security Properties

We define the following secondary security properties that
capture specific aspects of OIDC. We use these secondary
security properties during our proof of the above main security
properties. Nonetheless, these secondary security properties are
important and interesting in their own right.

We define and prove the following properties (see the
corresponding lemmas in Appendices I-C and I-E for details):
Integrity of Issuer Cache: If a relying party requests the
issuer identifier from an identity provider (cf. Steps in
Figure 2), then the RP will only receive an origin that belongs
to this IdP in the response. In other words, honest IdPs do not
use attacker-controlled domains as issuer identifiers, and the
attacker is unable to alter this information on the way to the
RP or in the issuer cache at the RP.

Integrity of OIDC Configuration Cache: (1) Honest IdPs
only use endpoints under their control in their OIDC config-
uration document (cf. Steps in Figure 2) and (2) this
information (which is stored at the RP in the so-called OIDC
configuration cache) cannot be altered by an attacker.
Integrity of JWKS Cache: RPs receive only “correct” signing
keys from honest IdPs, i.e., keys that belong to the respective
IdP (cf. Steps in Figure 2).

Integrity of Client Registration: Honest RPs register only
redirection URIs that point to themselves and that these URIs
always use HTTPS. Recall that when an RP registers at an



IdP, the IdP issues a freshly chosen client id to the RP and
then stores RP’s redirection URIs.

Third Parties Do Not Learn Passwords: Attackers can-
not learn user passwords. More precisely, we define that
secretOfID(id), which denotes the password for a given
identity id, is not known to any party except for the browser
b owning the id and the identity provider i governing the id
(as long as b and i are honest).

Attacker Does Not Learn ID Tokens: Attackers cannot learn
id tokens that were issued by honest IdPs for honest RPs and
identities of honest browsers.

Third Parties Do Not Learn State: If an honest browser
logs in at an honest RP using an honest IdP, then the attacker
cannot learn the state value used in this login flow.

D. Theorem

The following theorem states that OIDC is secure w.r.t. au-
thentication and authorization in presence of the network
attacker, and that OIDC is secure w.r.t. session integrity for
authentication and authorization in presence of web attackers.
For the proof we refer the reader to Appendix L.

Theorem 1. Let OIDC" be an OIDC web system with a
network attacker. Then, OIDC" is secure w.r.t. authentication
and authorization. Let OIDC" be an OIDC web system with
web attackers. Then, OI'DC" is secure w.r.t. session integrity
for authentication and authorization.

E. Comparison to OAuth 2.0

As described in Section II-C, OIDC is based on OAuth 2.0.
Since a formal proof for the security of OAuth 2.0 was
conducted in [23], one might be tempted to think that a proof
for the security of OIDC requires little more than an extension
of the proof in [23]. The specific set of features of OIDC
introduces, however, important differences that call for new
formulations of security properties and require new proofs:
Dynamic Discovery and Registration: Due to the dynamic
discovery and registration, RPs can directly influence and
manipulate the configuration data that is stored in IdPs. In
OAuth, this configuration data is fixed and assumed to be
“correct”, greatly limiting the options of the attacker. See, for
example, the variant [38] of the IdP Mix-up attack that only
works in OIDC (mentioned in Section III-A).

Different set of modes: Compared to OAuth, OIDC introduces
the hybrid mode, but does not use the resource owner password
credentials mode and the client credentials mode.

New endpoints, messages, and parameters: With additional
endpoints (and associated HTTPS messages), the attack surface
of OIDC is, also for this reason, larger than that of OAuth.
The registration endpoints, for example, could be used in ways
that break the security of the protocol, which is not possible
in OAuth where these endpoints do not exist. In a similar vein,
new parameters like nonce, request_uri, and the id token, are
contained in several messages (some of which are also present
in the original OAuth flow) and potentially change the security
requirements for these messages.

Authentication mechanism: The authentication mechanisms
employed by OIDC and OAuth are quite different. This
shows, in particular, in the fact that OIDC uses the id token
mechanism for authentication, while OAuth uses a different,
non-standardized mechanism. Additionally, unlike in OAuth,
authentication can happen multiple times during one OIDC
flow (see the description of the hybrid mode in Section II-B).
This greatly influences (the formulation of) security properties,
and hence, also the security proofs.

In summary, taking all these differences into account, our
security proofs had to be carried out from scratch. At the
same time, our proof is more modular than the one in [23] due
to the secondary security properties we identified. Moreover,
our security properties are similar to the ones by Fett et
al. in [23] only on a high level. The underlying definitions
in many aspects differ from the ones used for OAuth.’

F. Discussion

Using our detailed formal model, we have shown that
OIDC enjoys a high level of security regarding authentication,
authorization, and session integrity. To achieve this security, it
is essential that implementors follow the security guidelines
that we stated in Section III. Clearly, in practice, this is not
always feasible—for example, many RPs want to include third-
party resources for advertisement or user tracking on their
origins. As pointed out, however, not following the security
guidelines we outline can lead to severe attacks.

We have shown the security of OIDC in the most compre-
hensive model of the web infrastructure to date. Being a model,
however, some features of the web are not included in the FKS
model, for example browser plugins. Such technologies can
under certain circumstances also undermine the security of
OIDC in a manner that is not reflected in our model. Also,
user-centric attacks such as phishing or clickjacking attacks
are also not covered in the model.

Nonetheless, our formal analysis and the guidelines (along
with the attacks when these guidelines are not followed)
provide a clear picture of the security provided by OIDC for
a large class of adversaries.

VI. RELATED WORK

As already mentioned in the introduction, the only previous
works on the security of OIDC are [36], [38]. None of these
works establish security guarantees for the OIDC standard:
In [36], the authors find implementation errors in deployments
of Google Sign-In (which, as mentioned before, is based on
OIDC). In [38], the authors describe a variant of the IdP Mix-
Up attack (see Section III), highlight the possibility of SSRF
attacks at RPs, and show some implementation-specific flaws.

9As an example, in [23], the definitions rely on a notion of OAuth sessions
which are defined by connected HTTP(S) messages, i.e., messages that are
created by a browser or server in response to another message. In our model,
the attacker is involved in each flow of the protocol (for providing the client
id, without receiving any prior message), making it hard to apply the notion
of OAuth sessions. We instead define the properties using the existing session
identifiers. (See Definitions 54, 52, 56-60 in Appendix H for details.)



In our work, however, we aim at establishing and proving
security properties for OIDC.

In general, there have been only few formal analysis efforts
for web applications, standards, and browsers so far. Most of
the existing efforts are based on formal representations of (parts
of) web browsers or very limited models of web mechanisms
and applications [3]-[5], [9]-[11], [14]-[17], [25], [26], [28],
[34], [47].

Only [7], [8] and [19], [21]-[23] were based on a generic
formal model of the web infrastructure. In [8], Bansal, Bhar-
gavan, Delignat-Lavaud, and Maffeis analyze the security of
OAuth 2.0 with the tool ProVerif in the applied pi-calculus and
the WebSpi library. They identify previously unknown attacks
on the OAuth 2.0 implementations of Facebook, Yahoo, Twitter,
and many other websites. They do not, however, establish
security guarantees for OAuth 2.0 and their model is much
less expressive than the FKS model.

The relationship of our work to [19], [21]-[23] has been
discussed in detail throughout the paper.

VII. CONCLUSION

Despite being the foundation for many popular and critical
login services, OpenID Connect had not been subjected to a
detailed security analysis, let alone a formal analysis, before.
In this work, we filled this gap.

We developed a detailed and comprehensive formal model
of OIDC based on the FKS model, a generic and expressive
formal model of the web infrastructure. Using this model, we
stated central security properties of OIDC regarding authenti-
cation, authorization, and session integrity, and were able to
show that OIDC fulfills these properties in our model. By this,
we could, for the first time, provide solid security guarantees
for one of the most widely deployed single sign-on systems.

To avoid previously known and newly described attacks, we
analyzed OIDC with a set of practical and reasonable security
measures and best practices in place. We documented these
security measures so that they can now serve as guidelines for
secure implementations of OIDC.
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APPENDIX A
THE IDP M1x-UP ATTACK

As described in Section III-A above, in the IdP Mix-Up attack, an honest RP gets confused about which IdP is used in a
login flow. The honest RP assumes that the login uses the attacker’s IdP and interacts with this IdP, while the user’s browser
interacts with an honest IdP and relays the data acquired at this IdP to the RP. As a result, the attacker learns information
such as authorization codes and access tokens he is not supposed to know and that allow him to break the authentication and
authorization properties.

There exist several variants of this attack [23], [38]. Here, we describe two variants of this attack using the hybrid mode
of OIDC. The normal flow of the hybrid mode is depicted in Figure 4, the attack is depicted in Figures 5 and 6 (without the
mitigation against the Mix-Up attack presented in Section III-A).

To start the login flow, the user selects an IdP at RP (by entering her email address) in Step [1]. This step is the only difference
between the two variants that we describe: In Variant 1, the user selects a malicious IdP, say AIdP. In Variant 2, the user selects
an honest IdP, but the request is intercepted by the attacker and altered such that the attacker replaces the honest IdP by AIdP
(email is replaced by email' in Steps [1] and [2] in Figure 5).!°

Now, RP starts with the discovery phase of the protocol. As RP thinks that the user wants to login with AIdP, it retrieves
the OIDC configuration from AIdP (Steps [5] and [6)). In this configuration, the attacker does not let all endpoint URLSs point to
himself, as would be usual for OIDC, but instead sets the authorization endpoint to be the one of HIdP. Next, the RP registers
itself at AIdP (Steps [9] and [10]). In this step, AIdP issues the same client id to RP which RP is registered with at HIdP (client
id are always public). This is important as HIdP will later redirect the user’s browser back to RP and checks the redirect URI
based on the client id.

Next, RP redirects the user’s browser to HIdP (Variant 1) or AIdP (Variant 2) in Step [11]. In Variant 1 of the attack, a vigilant
user might now be able to detect that she tried to log in using AIdP but instead is redirected to HIdP. This does not happen in
Variant 2, but here the attacker needs to replace the redirection to AIdP by a redirection to HIdP (which should not be any
problem if he succeeded in altering the first step of the protocol).

The user then authenticates at HIdP and is redirected back to RP along with an authorization code and an access token
(depending on the sub-mode of the hybrid flow, IdPs do not send id tokens in this step). Now, RP retrieves the authorization
code and the access token from the user’s browser and continues the login flow. As RP still assumes that AIdP is used in this
case, it tries to redeem the authorization code for an id token (and a second access token) at AIdP in Step [19].

10This initial request is often unencrypted in practice, see [23].
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As the authorization code has not been redeemed at HIdP yet, the code is still valid and the attacker may start a second
login flow (pretending to be the user) at RP (Steps [20]ff.). The attacker skips the authentication at HIdP and returns to RP with
the authorization code he has learned before. RP now redeems this code at HIdP and receives an id token issued for the honest
user and consequently assumes that the attacker has the identity of the user and logs the attacker in.

In another variation of the attack, if HIdP does not issue client secrets to RPs, the attacker can also redeem the authorization
code by himself (Steps [26]f.). In this case, the attacker receives an access token valid for the user’s account. With this access
token, he can retrieve data of the user or act on the user’s behalf at HIdP. (As he redeems the authorization code, he cannot
use it to log himself into the RP in this case.)

In any case, the attacker can also respond to the authorization code sent to his token endpoint in Step [24] with a mock access
token and a mock id token (which will not be used in the following). In the next step, the RP might then use the access token
learned from the honest IdP in Step to retrieve data of the user from AIdP (Steps ff.).11 Then the attacker learns also
this access token, which (as described in the paragraph above) grants him unauthorized access to the user’s account at HIdP.

This shows that, using the IdP Mix-Up attack, an attacker can successfully impersonate users at RPs and access their data
at honest IdPs. The mitigation presented in Section III-A would have prevented the attack in Step [16ff.

"Depending on the RP implementation, the RP might choose to use the mock access token or the one learned from the honest IdP in this step. In the
real-world implementation mod_auth_openidc, the access token from the honest IdP was used.
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dec,(enc,(x, pub(y)),y) = x (1)
decs(encs(x,y),y) =x (2)
checksig(sig(x,y),pub(y)) =T 3)
extractmsg(sig(x,y)) = x “4)
(X1, x)) =x if 1<i<n 5)
Ti((x1,...,x0)) =< if j&{1,...,n} (6)

Figure 7. Equational theory for X.

APPENDIX B
THE FKS WEB MODEL

In this and the following two sections, we present the FKS model for the web infrastructure as proposed in [19], [20],
and [24], along with the addition of a generic model for HTTPS web servers that harmonizes the behavior of such servers and
facilitates easier proofs.

A. Communication Model

We here present details and definitions on the basic concepts of the communication model.

Terms, Messages and Events. The signature X for the terms and messages considered in this work is the union of the following
pairwise disjoint sets of function symbols:

« constants C =IPsUSU{T, L, O} where the three sets are pairwise disjoint, S is interpreted to be the set of ASCII strings
(including the empty string €), and IPs is interpreted to be a set of (IP) addresses,
« function symbols for public keys, (a)symmetric encryption/decryption, and signatures: pub(-), enc,(+,-), deca(:,-), encs(,-),
decs(+,-), sig(+,), checksig(-,-,-), and extractmsg(-),
« n-ary sequences (), (-),{-,-),(-,-,-), etc., and
« projection symbols 7;(-) for all i € N.
For strings (elements in S), we use a specific font. For example, HTTPReq and HTTPResp are strings. We denote by Doms C S
the set of domains, e.g., example.com € Doms. We denote by Methods C S the set of methods used in HTTP requests, e.g.,
GET, POST € Methods.
The equational theory associated with the signature ¥ is given in Figure 7.

Definition 6 (Nonces and Terms). By X = {xp,x1,...} we denote a set of variables and by A’ we denote an infinite set of
constants (nonces) such that X, X, and A are pairwise disjoint. For N C A, we define the set Zy(X) of terms over LUNUX
inductively as usual: (1) If t € NUX, then ¢ is a term. (2) If f € ¥ is an n-ary function symbol in X for some n >0 and ¢4, ...,t,
are terms, then f(z1,...,1,) is a term.

By = we denote the congruence relation on 7y (X) induced by the theory associated with X. For example, we have that
7 (deca(ency({a,b), pub(k)),k)) = a.

Definition 7 (Ground Terms, Messages, Placeholders, Protomessages). By Iy = Iy(0), we denote the set of all terms over
YUN without variables, called ground terms. The set M of messages (over ) is defined to be the set of ground terms Zy.

We define the set Vprocess = {V1,V2,... } of variables (called placeholders). The set MY := Ty (Vprocess) is called the set of
protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k € A’ and pub(k) are messages, where k typically models a private key and pub(k) the corresponding
public key. For constants a, b, ¢ and the nonce k € A(, the message enc,({a,b,c),pub(k)) is interpreted to be the message
(a,b,c) (the sequence of constants a, b, ¢) encrypted by the public key pub(k).

Definition 8 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the function symbols from left to
right as far as possible using the equational theory shown in Figure 7. For a term ¢, we denote its normal form as 7.

Definition 9 (Pattern Matching). Let pattern € Ty ({*}) be a term containing the wildcard (variable *). We say that a term
t matches pattern iff t can be acquired from pattern by replacing each occurrence of the wildcard with an arbitrary term
(which may be different for each instance of the wildcard). We write ¢ ~ pattern. For a sequence of patterns patterns we write
t~patterns to denote that r matches at least one pattern in patterns.



For a term ¢ we write ¢'| pattern to denote the term that is acquired from ¢ by removing all immediate subterms of ¢’ that
do not match pattern.

Example 2. For example, for a pattern p = (T,*) we have that (T,42) ~ p, (1,42} + p, and
(L, T)(T,23), (2, 0), (T, L)) p = ((T,23) (T, L)) .

Definition 10 (Variable Replacement). Let N C N[, T € Iy({x1,...,%,}), and t,...,1, € Iy.
By t[ti/x1,...,t,/xs] we denote the (ground) term obtained from 7 by replacing all occurrences of x; in T by #;, for all
ie{l,...,n}.

Definition 11 (Events and Protoevents). An event (over |Ps and M) is a term of the form (a, f,m), for a, f € IPs and m € M,
where a is interpreted to be the receiver address and f is the sender address. We denote by E the set of all events. Events over
IPs and M are called protoevents and are denoted EV. By 2%0 (or 2E0, respectively) we denote the set of all sequences of
(proto)events, including the empty sequence (e.g., (), ({a, f,m),{d, f,m'),...), etc.).

Notations.

Definition 12 (Sequence Notations). For a sequence t = (t1,...,t,) and a set s we use ¢ cVsto say that 7q,...,t, € s. We define
xel s < 3i: 1 =x. For a term y we write t+<>y to denote the sequence (f1,...,%,,y). For a sequence r = (ry,...,r,) we
write t Ur to denote the sequence (t1,...,t,,71,...,7,). For a finite set M with M = {my,...,m,} we use (M) to denote the
term of the form (mj,...,m,). (The order of the elements does not matter; one is chosen arbitrarily.)

Definition 13. A dictionary over X and Y is a term of the form

((kl,v1>,...,<kn,vn>>

where ki,...,k, € X, vi,...,v, €Y. We call every term (k;,v;), i € {1,...,n}, an element of the dictionary with key k; and
value v;. We often write [k; : vi,...,k; 1 vi,... ky : vy,] instead of ((ki,v1),..., (kn,vn)). We denote the set of all dictionaries over
X and Y by [X xY].

We note that the empty dictionary is equivalent to the empty sequence, i.e., [| = (). Figure 8 shows the short notation for
dictionary operations. For a dictionary z = [k} : vi,kp : va,...,ky, : v,] we write k € z to say that there exists i such that k = k;.
We write z[k;] to refer to the value v;. (Note that if a dictionary contains two elements (k,v) and (k,V'), then the notations and
operations for dictionaries apply non-deterministically to one of both elements.) If k ¢ z, we set z[k] := ().

ki viy .o ki iy ks va] ki) = v @)
k1 ovis ki svic ki tviskipn tvign .k tvp) — ki =
ki cvi, ko s vie g kier 2Vt - kg 1) 3

Figure 8. Dictionary operators with 1 <i<n.

Given a term ¢ = (t,...,t,), we can refer to any subterm using a sequence of integers. The subterm is determined by repeated
application of the projection m; for the integers i in the sequence. We call such a sequence a pointer:

Definition 14. A pointer is a sequence of non-negative integers. We write 7.p for the application of the pointer p to the term
7. This operator is applied from left to right. For pointers consisting of a single integer, we may omit the sequence braces for
brevity.

Example 3. For the term T = (a,b,(c,d, (e, f))) and the pointer p = (3, 1), the subterm of 7 at the position p is ¢ = m; (m3(7)).
Also, 7.3.3,1) =135 =133.1 =e.

To improve readability, we try to avoid writing, e.g., 0.2 or m(0) in this document. Instead, we will use the names of the
components of a sequence that is of a defined form as pointers that point to the corresponding subterms. E.g., if an Origin
term is defined as (host,protocol) and o is an Origin term, then we can write o.protocol instead of m,(0) or 0.2. See also
Example 4.

Atomic Processes, Systems and Runs. An atomic process takes its current state and an event as input, and then (non-
deterministically) outputs a new state and a set of events.



Definition 15 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple
p=("Z" R’ s()

where 17 C IPs, ZP € T is a set of states, R” C (‘£ x ZP) x (%0 x T (Vprocess)) (input event and old state map to sequence of
output events and new state), and sg € ZP is the initial state of p. For any new state s and any sequence of nonces (1;,12,...)
we demand that s[n;/vi,M2/V2,...] € ZP. A system P is a (possibly infinite) set of atomic processes.

Definition 16 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state of the system S maps every
atomic process p € P to its current state S(p) € ZP, the sequence of waiting events E is an infinite sequence!? (ey,ez,...) of
events waiting to be delivered, and N is an infinite sequence of nonces (ny,n,...).

Definition 17 (Concatenating terms and sequences). For a term a = (ay,...,a;) and a sequence b = (by,b,,...), we define the
concatenation as a-b:= (ay,...,a;,b1,by,...).

Definition 18 (Subtracting from Sequences). For a sequence X and a set or sequence ¥ we define X \ Y to be the sequence X
where for each element in Y, a non-deterministically chosen occurence of that element in X is removed.

Definition 19 (Processing Steps). A processing step of the system P is of the form

(S.E.N) "L (8 E',N')
P—Eout
where
1) (S,E,N) and (S',E’,N’) are configurations of P,
2) ein = {a, f,m) € E is an event,
3) p € P is a process,
4) Eoy 1s a sequence (term) of events
such that there exists
1) a sequence (term) Ey, C 220 of protoevents,
2) aterm sV € TN(Vprocess)’
3) a sequence (vq,Va,...,v;) of all placeholders appearing in EY, (ordered lexicographically),
4) a sequence NV = (1n1,M2,...,1n;) of the first i elements in N

with
D) ((ein:S(p)), (Egus")) ERP and a € I7,
2) Eout = Egm[ml/vl,. .. ,mi/v,-]
3) §'(p) =s¥[mi/v1,...,mi/vi] and §'(p") = S(p') for all p’ # p
4) E' = Eout - (E \ {ein})
5) N' = N\NV

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in 2, and call it with one of the events in the list of waiting
events E. In its output (new state and output events), we replace any occurences of placeholders v, by “fresh” nonces from
N (which we then remove from N). The output events are then prepended to the list of waiting events, and the state of the
process is reflected in the new configuration.

Definition 20 (Runs). Let P be a system, E° be sequence of events, and N° be a sequence of nonces. A run p of a system P
initiated by E° with nonces N° is a finite sequence of configurations ((S°,E9 N?),..., (S",E",N")) or an infinite sequence of
configurations ((S°,E®,N?),...) such that S°(p) =} for all p € P and (S',E',N') — (S™!,E"F1 N'*1) for all 0 <i < n (finite
run) or for all i > 0 (infinite run).

We denote the state S”(p) of a process p at the end of a run p by p(p).

Usually, we will initiate runs with a set E® containing infinite trigger events of the form (a,a, TRIGGER) for each a € IPs,
interleaved by address.

Atomic Dolev-Yao Processes. We next define atomic Dolev-Yao processes, for which we require that the messages and states
that they output can be computed (more formally, derived) from the current input event and state. For this purpose, we first
define what it means to derive a message from given messages.

12Here: Not in the sense of terms as defined earlier.



Definition 21 (Deriving Terms). Let M be a set of ground terms. We say that a term m can be derived from M with placeholders
V if there exist n >0, my,...,m, € M, and 7 € Tp({x1,...,x,} UV) such that m = t[m; /xi,...,m,/x,]. We denote by dy (M)
the set of all messages that can be derived from M with variables V.

For example, a € dy) ({enca((a,b,c),pub(k)),k}).

Definition 22 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY process) is a tuple p = (IP,ZP,
RP,sf) such that (17,ZP,RP,s{)) is an atomic process and (1) ZP C T, (and hence, sj € Ty ), and (2) for all events e € £,
sequences of protoevents E, s € Ty, 5" € Toy(Vprocess), With ((e,s), (E,s")) € RP it holds true that E, s € dy,..., ({€,5})-

Definition 23 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses A C IPs is an atomic
DY process p = (I,Z,R,s0) such that for all events e, and s € T we have that ((e,s),(E,s")) € R iff s = (¢,E,s) and
E = ((a1, fi,m1),...,(@n, fu,mn)) With n €N, ay,...,a, €IPs, fo,...,fu €A, my,...,my € dv,, .. ({e,5}).

B. Scripts

We define scripts, which model client-side scripting technologies, such as JavaScript. Scripts are defined similarly to DY
processes.

Definition 24 (Placeholders for Scripts). By Viript = {21,...} we denote an infinite set of variables used in scripts.

Definition 25 (Scripts). A script is a relation R C Ty X Do (Vicript) such that for all s € Ty, 5" € Ty (Vseripe) With (s,s") € R it
follows that s’ € dy, ;. (s).

A script is called by the browser which provides it with state information (such as the script’s last state and limited information
about the browser’s state) s. The script then outputs a term s’, which represents the new internal state and some command
which is interpreted by the browser. The term s’ may contain variables A;,... which the browser will replace by (otherwise
unused) placeholders vq,... which will be replaced by nonces once the browser DY process finishes (effectively providing the
script with a way to get “fresh” nonces).

Similarly to an attacker process, we define the attacker script R*:

Definition 26 (Attacker Script). The attacker script R™" outputs everything that is derivable from the input, i.e., R = {(s,s’) |
s€ TN’S/ € dvscript (S)}

C. Web System

The web infrastructure and web applications are formalized by what is called a web system. A web system contains, among
others, a (possibly infinite) set of DY processes, modeling web browsers, web servers, DNS servers, and attackers (which may
corrupt other entities, such as browsers).

Definition 27. A web system WS = (W,S,script,E?) is a tuple with its components defined as follows:

The first component, W, denotes a system (a set of DY processes) and is partitioned into the sets Hon, Web, and Net of
honest, web attacker, and network attacker processes, respectively.

Every p € WebUNet is an attacker process for some set of sender addresses A C IPs. For a web attacker p € Web, we require
its set of addresses /7 to be disjoint from the set of addresses of all other web attackers and honest processes, i.e., I” nir' =0
for all p’ € HonUWeb. Hence, a web attacker cannot listen to traffic intended for other processes. Also, we require that A = 17,
i.e., a web attacker can only use sender addresses it owns. Conversely, a network attacker may listen to all addresses (i.e., no
restrictions on /”) and may spoof all addresses (i.e., the set A may be IPs).

Every p € Hon is a DY process which models either a web server, a web browser, or a DNS server, as further described
in the following subsections. Just as for web attackers, we require that p does not spoof sender addresses and that its set of
addresses I? is disjoint from those of other honest processes and the web attackers.

The second component, S, is a finite set of scripts such that R*' € S. The third component, script, is an injective mapping
from S to S, i.e., by script every s € S is assigned its string representation script(s).

Finally, EC is an (infinite) sequence of events, containing an infinite number of events of the form (a,a, TRIGGER) for every
ac UpE WI ]7.

A run of W5 is a run of W initiated by E°.



APPENDIX C
MESSAGE AND DATA FORMATS

We now provide some more details about data and message formats that are needed for the formal treatment of the web
model and the analysis presented in the following.

A. URLs
Definition 28. A URL is a term of the form

(URL, protocol, host, path, parameters, fragment)

with protocol € {P,S} (for plain (HTTP) and secure (HTTPS)), host € Doms, path € S, parameters € [S X ‘Z}d , and fragment €
Ty The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to be L.

Example 4. For the URL u = (URL,a,b,c,d), u.protocol = a. If, in the algorithm described later, we say u.path := e then
u = (URL,a,b,c,e) afterwards.

B. Origins

Definition 29. An origin is a term of the form (host,protocol) with host € Doms and protocol € {P,S}. We write Origins for
the set of all origins.

Example 5. For example, (F00,S) is the HTTPS origin for the domain F00, while (BAR,P) is the HTTP origin for the domain
BAR.

C. Cookies

Definition 30. A cookie is a term of the form (name,content) where name € TN, and content is a term of the form
(value, secure, session, httpOnly) where value € Ty, secure, session, httpOnly € {T, L}. We write Cookies for the set of all
cookies and Cookies” for the set of all cookies where names and values are defined over Ty (V).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted HTTP connections. If
the session flag is set, this cookie will be deleted as soon as the browser is closed. The h#tpOnly attribute controls whether
JavaScript has access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S) requests. In responses, only the components
name and value are transferred as a pairing of the form (name,value).

D. HTTP Messages
Definition 31. An HTTP request is a term of the form shown in (9). An HTTP response is a term of the form shown in (10).

(HTTPReq, nonce, method, host, path, parameters, headers, body) )
(HTTPResp, nonce, status, headers, body) (10)

The components are defined as follows:

o nonce € N\ serves to map each response to the corresponding request

o method € Methods is one of the HTTP methods.

e host € Doms is the host name in the HOST header of HTTP/1.1.

e path €S is a string indicating the requested resource at the server side

o status € S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP standard)

e parameters € [S X TN] contains URL parameters

e headers € [S X TN]’ containing request/response headers. The dictionary elements are terms of one of the following forms:

— (Origin,o) where o is an origin,

(Set-Cookie,c) where c is a sequence of cookies,
(Cookie,c) where ¢ €, [S X TN] (note that in this header, only names and values of cookies are transferred),
(Location,/) where [ € URLs,

- (Referer,r) where r € URLs,
(
(
(

Strict-Transport-Security, T),
Authorization, (username,password)) where username, password € S,
ReferrerPolicy,p) where p € {noreferrer,origin}

o body € Ty in requests and responses.



We write HT TPRequests/HT TPResponses for the set of all HTTP requests or responses, respectively.
Example 6 (HTTP Request and Response).

r :=(HTTPReq,n;,POST, example.com, /show, ((index, 1)),
[Origin: (example.com,S)], (foo,bar)) (11)
s :=(HTTPResp,nj, 200, ((Set-Cookie, ((SID, (nz, L, L, T))))), (somescript,x)) (12)

An HTTP GET request for the URL http://example.com/show?index=1 is shown in (11), with an Origin header and a body that
contains (foo,bar). A possible response is shown in (12), which contains an httpOnly cookie with name SID and value n; as
well as the string representation somescript of the script script_l(somescript) (which should be an element of .§) and its
initial state x.

Encrypted HTTP Messages. For HTTPS, requests are encrypted using the public key of the server. Such a request contains
an (ephemeral) symmetric key chosen by the client that issued the request. The server is supported to encrypt the response
using the symmetric key.

Definition 32. An encrypted HTTP request is of the form enc,({m,k’),k), where k € terms, k' € N[, and m € HTTPRequests.
The corresponding encrypted HTTP response would be of the form encg(m’, k"), where m’ € HTTPResponses. We call the sets
of all encrypted HTTP requests and responses HT TPSRequests or HT TPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms contain the same nonce.

Example 7.

enc, ((r, k,>, pUb(kexample.com)) (13)
encs(s, k) (14)

The term (13) shows an encrypted request (with r as in (11)). It is encrypted using the public key pub(kexample‘com). The term
(14) is a response (with s as in (12)). It is encrypted symmetrically using the (symmetric) key k' that was sent in the request
(13).

E. DNS Messages

Definition 33. A DNS request is a term of the form (DNSResolve,domain,n) where domain € Doms, n € A[. We call the set
of all DNS requests DNSRequests.

Definition 34. A DNS response is a term of the form (DNSResolved,domain,result,n) with domain € Doms, result € IPs,
n € A_. We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS response that they send back so
that the party which issued the request can match it with the request.

F. DNS Servers

Here, we consider a flat DNS model in which DNS queries are answered directly by one DNS server and always with the
same address for a domain. A full (hierarchical) DNS system with recursive DNS resolution, DNS caches, etc. could also be
modeled to cover certain attacks on the DNS system itself.

Definition 35. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an atomic DY process
(1, {sg},Rd ,s‘é ). It has a finite set of addresses /¢ and its initial (and only) state sg encodes a mapping from domain names to
addresses of the form

sd = ((domainy,a;), (domainy,ay),...) .

DNS queries are answered according to this table (otherwise ignored).


http://example.com/show?index=1

APPENDIX D
DETAILED DESCRIPTION OF THE BROWSER MODEL

Following the informal description of the browser model in Section IV, we now present a formal model. We start by
introducing some notation and terminology.

A. Notation and Terminology (Web Browser State)

Before we can define the state of a web browser, we first have to define windows and documents.

Definition 36. A window is a term of the form w = (nonce,documents,opener) with nonce € N, documents ! Documents
(defined below), opener € ALU{L} where d.active = T for exactly one d €0 documents if documents is not empty (we then
call d the active document of w). We write Windows for the set of all windows. We write w.activedocument to denote the
active document inside window w if it exists and () else.

We will refer to the window nonce as (window) reference.

The documents contained in a window term to the left of the active document are the previously viewed documents (available
to the user via the “back” button) and the documents in the window term to the right of the currently active document are
documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a document term). In
this case, the opener part of the term b is the nonce of q, i.e., b.opener = a.nonce.

Definition 37. A document d is a term of the form
(nonce, location, headers, referrer, script, scriptstate, scriptinputs, subwindows, active)

where nonce € N, location € URLs, headers € [S X Tﬂ\[]’ referrer € URLsU{ L}, script € Tﬁ\[’ scriptstate € TN’ scriptinputs €
Ty> subwindows ! Windows, active € {T,L}. A limited document is a term of the form (nonce,subwindows) with
nonce, subwindows as above. A window w €' subwindows is called a subwindow (of d). We write Documents for the
set of all documents. For a document term d we write d.origin to denote the origin of the document, i.e., the term
(d.location.host,d.location.protocol) € Origins.

We will refer to the document nonce as (document) reference.

.. . . hildof . . . .
Definition 38. For two window terms w and w we write w SN W if w €0 w.activedocument.subwindows. We write

childof* ..
——— for the transitive closure.

B. Web Browser State

We can now define the set of states of web browsers. Note that we use the dictionary notation that we introduced in
Definition 13.

Definition 39. The set of states Zyepprowser Of @ web browser atomic Dolev-Yao process consists of the terms of the form

(windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping,

sts, DNSaddress,pendingDNS, pendingRequests, isCorrupted)

where

o windows Windows,

o ids C<> T 5

o secrets EQTOrigins X Tpe

e cookies is a dictionary over Doms and sequences of Cookies,
o localStorage € [Origins X TN] ,

o sessionStorage € [OR x Ty| for OR := {(o,r)|o € Origins, r € N},
o keyMapping € [Doms X Ta |

o sts CU Doms,

e DNSaddress € |Ps,

o pendingDNS € [N x Ty,

o pendingRequests € Ty,

o and isCorrupted € { L ,FULLCORRUPT, CLOSECORRUPT}.




C. Description of the Web Browser Relation

We will now define the relation Ryepbrowser Of @ standard HTTP browser. We first introduce some notations and then describe
the functions that are used for defining the browser main algorithm. We then define the browser relation.

Helper Functions. In the following description of the web browser relation Ryepbrowser W€ Use the helper functions Subwindows,
Docs, Clean, CookieMerge and AddCookie.

Subwindows. Given a browser state s, Subwindows(s) denotes the set of all pointers13 to windows in the window list s.windows,
their active documents, and (recursively) the subwindows of these documents. We exclude subwindows of inactive documents
and their subwindows. With Docs(s) we denote the set of pointers to all active documents in the set of windows referenced by
Subwindows(s).

Definition 40. For a browser state s we denote by Subwindows(s) the minimal set of pointers that satisfies the following
conditions: (1) For all windows w € s.windows there is a 7 € Subwindows(s) such that 5.5 = w. (2) For all 7 € Subwindows(s),
the active document d of the window s.p and every subwindow w of d there is a pointer p’ € Subwindows(s) such that s.p’ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such that for every p €
Subwindows(s), there is a pointer p’ € Docs(s) with 5.p’ = s.p.activedocument.

By Subwindows™ (s) and Docs™(s) we denote the respective sets that also include the inactive documents and their
subwindows.

Clean. The function Clean will be used to determine which information about windows and documents the script running in
the document d has access to.

Definition 41. Let s be a browser state and d a document. By Clean(s,d) we denote the term that equals s.windows but with (1)
all inactive documents removed (including their subwindows etc.), (2) all subterms that represent non-same-origin documents
w.r.t. d replaced by a limited document &’ with the same nonce and the same subwindow list, and (3) the values of the subterms
headers for all documents set to (). (Note that non-same-origin documents on all levels are replaced by their corresponding
limited document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When used in the browser, oldcookies is
the sequence of existing cookies for some origin, newcookies is a sequence of new cookies that was output by some script. The
sequences are merged into a set of cookies using an algorithm that is based on the Storage Mechanism algorithm described in
RFC6265.

Definition 42. For a sequence of cookies (with pairwise different names) oldcookies and a sequence of cookies newcookies,
the set CookieMerge(oldcookies,newcookies) is defined by the following algorithm: From newcookies remove all cookies ¢
that have c.content.httpOnly = T. For any c, ¢ €{) newcookies, c.name = ¢’ name, remove the cookie that appears left of
the other in newcookies. Let m be the set of cookies that have a name that either appears in oldcookies or in newcookies, but
not in both. For all pairs of cookies (coid,Cnew) With cog eV oldcookies, Chew €0 newcookies, Cold-Name = Cpew.name, add cpew
to m if colg.content.httpOnly = L and add coiq to m otherwise. The result of CookieMerge(oldcookies,newcookies) is m.

AddCookie. The function AddCookie adds a cookie ¢ received in an HTTP response to the sequence of cookies contained in
the sequence oldcookies. It is again based on the algorithm described in RFC6265 but simplified for the use in the browser
model.

Definition 43. For a sequence of cookies (with pairwise different names) oldcookies and a cookie ¢, the sequence
AddCookie(oldcookies,c) is defined by the following algorithm: Let m := oldcookies. Remove any ¢’ from m that has
c.name = ¢’.name. Append ¢ to m and return m.

NavigableWindows. The function NavigableWindows returns a set of windows that a document is allowed to navigate. We
closely follow [29], Section 5.1.4 for this definition.

Definition 44. The set NavigableWindows(w,s’) is the set W C Subwindows(s") of pointers to windows that the active document
in w is allowed to navigate. The set W is defined to be the minimal set such that for every w’ € Subwindows(s’) the following
is true:
o If s.W.activedocument.origin = s'.W.activedocument.origin (i.e., the active documents in W and w’ are same-
origin), then w' € W, and
o If o35 ST, 05 A B € Subwindows(s') with s ST, ¢ 77 (W is a top-level window and W is an ancestor
window of w’), then w' € W, and

3Recall the definition of a pointer in Definition 14.



ddof
« If 3p € Subwindows(s") such that s'.w' childof?, s'p

A s'.p.activedocument.origin = s’.w.activedocument.origin (W’ is not a top-level window but there is an ancestor
window p of w’ with an active document that has the same origin as the active document in w), then w' e W, and

« If 3p € Subwindows(s’) such that s’.w/.opener = s'.p.nonce A p € W (W is a top-level window—it has an opener—and
w is allowed to navigate the opener window of w’, 7), then w' € W.

Notations for Functions and Algorithms. We use the following notations to describe the browser algorithms:

Non-deterministic chosing and iteration. The notation let n <— N is used to describe that n is chosen non-deterministically from
the set N. We write for each s € M do to denote that the following commands (until end for) are repeated for every element in
M, where the variable s is the current element. The order in which the elements are processed is chosen non-deterministically.
We write, for example,

let x,y such that (Constant,x,y) =t if possible; otherwise doSomethingElse

for some variables x,y, a string Constant, and some term ¢ to express that x := m (), and y := m3(¢) if Constant = m; () and
if |(Constant,x,y)| = |¢|, and that otherwise x and y are not set and doSomethingElse is executed.

Stop without output. We write stop (without further parameters) to denote that there is no output and no change in the state.

Placeholders. In several places throughout the algorithms presented next we use placeholders to generate “fresh” nonces as
described in our communication model (see Definition 6). Figure 9 shows a list of all placeholders used.

Functions. In the description of the following functions, we use a, f, m, and s as read-only global input variables. All other
variables are local variables or arguments.

o The function GETNAVIGABLEWINDOW (Algorithm 1) is called by the browser to determine the window that is actually
navigated when a script in the window s’.w provides a window reference for navigation (e.g., for opening a link). When
it is given a window reference (nonce) window, this function returns a pointer to a selected window term in s':

— If window is the string _BLANK, a new window is created and a pointer to that window is returned.

— If window is a nonce (reference) and there is a window term with a reference of that value in the windows in s’, a
pointer w’ to that window term is returned, as long as the window is navigable by the current window’s document
(as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

o The function GETWINDOW (Algorithm 2) takes a window reference as input and returns a pointer to a window as above,
but it checks only that the active documents in both windows are same-origin. It creates no new windows.

o The function CANCELNAV (Algorithm 3) is used to stop any pending requests for a specific window. From the pending
requests and pending DNS requests it removes any requests with the given window reference n.

o The function HTTP_SEND (Algorithm 4) takes an HTTP request message as input, adds cookie and origin headers to
the message, creates a DNS request for the hostname given in the request and stores the request in s’.pendingDNS until
the DNS resolution finishes. For normal HTTP requests, reference is a window reference. For XHRs, reference is a value
of the form (document,nonce) where document is a document reference and nonce is some nonce that was chosen by the
script that initiated the request. url contains the full URL of the request (this is mainly used to retrieve the protocol that
should be used for this message, and to store the fragment identifier for use after the document was loaded). origin is the
origin header value that is to be added to the HTTP request.

Placeholder Usage

Vi Algorithm 9, new window nonces

%) Algorithm 9, new HTTP request nonce

V3 Algorithm 9, lookup key for pending HTTP requests entry
V4 Algorithm 7, new HTTP request nonce (multiple lines)

Vs Algorithm 7, new subwindow nonce

Ve Algorithm 8, new HTTP request nonce

V7 Algorithm 8, new document nonce

Vg Algorithm 4, lookup key for pending DNS entry

Vo Algorithm 1, new window nonce

V10 - - - Algorithm 7, replacement for placeholders in script output

Figure 9. List of placeholders used in browser algorithms.



Algorithm 1 Web Browser Model: Determine window for navigation.

1: function GETNAVIGABLEWINDOW®w, window, noreferrer, s')
2 if window = _BLANK then = — Open a new window when _BLANK is used
3 if noreferrer = T then
4: let w' := (v, (), L)
5: else
6 let w' := (vy,(),s .W.nonce)
7 let s’ windows := s'.windows +0 w/

< and let W be a pointer to this new element in s’
return W'

9:  let W <« NavigableWindows(w,s') such that s'.W .nonce = window

— if possible; otherwise return w

10: return w’

®

Algorithm 2 Web Browser Model: Determine same-origin window.

1: function GETWINDOW (w, window, s')

2:  let W <« Subwindows(s’) such that s'.W .nonce = window
< if possible; otherwise return w
3: if s'.W.activedocument.origin = s .W.activedocument.origin then
4: return W
5: return w

Algorithm 3 Web Browser Model: Cancel pending requests for given window.

1: function CANCELNAV (1, 5")

2: remove all (n,req,key,f) from s .pendingRequests for any req, key, f
3: remove all (x, (n,message,url)) from s'.pendingDNS

< for any x, message, url
4: return s’

Algorithm 4 Web Browser Model: Prepare headers, do DNS resolution, save message.

1: function HTTP_SEND(reference, message, url, origin, referrer, referrerPolicy, s')

2 if messagehost €0 §'.sts then

3: let url.protocol := S

4 let cookies := ({(c.name,c.content.value)|c €V s'.cookies [message host]
<+ Af(c.content.secure = (url.protocol = 8))})

5: let message. headers[Cookie| := cookies

6: if origin # L then

7: let message headers[Origin| := origin

8: if referrerPolicy = noreferrer then

9: let referrer := L

10: if referrer = 1 then

11: if referrerPolicy = origin then

12: let referrer :== (URL, referrer.protocol, referrer.host,/,(), 1) — Referrer stripped down to origin.
13: let referrer.fragment := 1  — Browsers do not send fragment identifiers in the Referer header.
14: let message headers[Referer| := referrer

15: let s’.pendingDNS|vg] := (reference,message,url)

16:  stop ({s'.DNSaddress,a, (DNSResolve, message.host, Vg))), s’

Algorithm 5 Web Browser Model: Navigate a window backward.

1: function NAVBACK(@w, 5') o

2 if 3j €N,j > 1 such that 5'.w.documents.j.active = T then
3: let s'.w'.documents.j.active := L

4 let s'.w'.documents.(j—1).active := T

5 let s := CANCELNAV(s'.w .nonce,s’)




Algorithm 6 Web Browser Model: Navigate a window forward.

1: function NAVFORWARD(w, s)

2:

aw

if 3/ € N such that s'.w/.documents.j.active =T
A s'.w'.documents.(j+ 1) € Documents then
let s/.l.documents.j.active =1
let s'.w'.documents.(j+1).active := T
let s := CANCELNAV(s'.W .nonce,s’)

o The functions NAVBACK (Algorithm 5) and NAVFORWARD (Algorithm 6), navigate a window forward or backward.

More precisely, they deactivate one document and activate that document’s succeeding document or preceding document,
respectively. If no such successor/predecessor exists, the functions do not change the state.

The function RUNSCRIPT (Algorithm 7) performs a script execution step of the script in the document s'.d (which is
part of the window s".w). A new script and document state is chosen according to the relation defined by the script and
the new script and document state is saved. Afterwards, the command that the script issued is interpreted.

The function PROCESSRESPONSE (Algorithm 8) is responsible for processing an HTTP response (response) that was
received as the response to a request (request) that was sent earlier. In reference, either a window or a document reference
is given (see explanation for Algorithm 4 above). requestUrl contains the URL used when retrieving the document.

The function first saves any cookies that were contained in the response to the browser state, then checks whether a
redirection is requested (Location header). If that is not the case, the function creates a new document (for normal requests)
or delivers the contents of the response to the respective receiver (for XHR responses).

Definition. We can now define the relation R,,cpprowser Of @ web browser atomic process as follows:

Definition 45. The pair (({{a, f,m)),s),(M,s’)) belongs t0 Ryepbrowser iff the non-deterministic Algorithm 9 (or any of the
functions called therein), when given ({(a, f,m),s) as input, terminates with stop M, s, i.e., with output M and s'.

Recall that (a, f,m) is an (input) event and s is a (browser) state, M is a sequence of (output) protoevents, and s" is a new

(browser) state (potentially with placeholders for nonces).

D. Definition of Web Browsers

Finally, we define web browser atomic Dolev-Yao processes as follows:

Definition 46 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao process is an atomic Dolev-Yao
process of the form p = (17, Zyebbrowsers Rwebbrowser; So”’ ) for a set IP of addresses, Zyebbrowser and Ryebbrowser as defined above,
and an initial state so” € Zyebbrowser-



Algorithm 7 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, §)

2:
3:

R A
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12:

13:
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16:
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22:
23:

24:
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32:

33:

34:
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44
45:
46:
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48:
49:
50:

let tree ;= Clean(s',s'.d)
let cookies := ({(c.name, c.content.value)|c €' s'.cookies [§'.d.originhost]
<> Ac.content.httpOnly = L
<+ A (c.content.secure => (s'.d.origin.protocol =§))})
let tiw < s'.windows such that flw is the top-level window containing d
let sessionStorage := s'.sessionStorage [(s’.g.origin,tlw.nonce)]
let [ocalStorage := s’ .localStorage [s'.d.origin
let secrets := s'.secrets [s/.a.origin]
let R « script~!(s'.d.script)
let in := (tree, s'.d.nonce,s'.d.scriptstate, s'.d.scriptinputs, cookies,
— localStorage, sessionStorage, s'.ids, secrets)
let state’ T (V),
< cookies' < Cookies",
< localStorage’ Ty (V),
—  sessionStorage’ < Ty (V),
> command + Ty (V),
< our* = (state' ,cookies' ,localStorage’, sessionStorage' ,command)
< such that (in,our*) € R
let our := out’l [V]O/Al s V]l/kz, .. ]
let s'.cookies [s/.g.origin.host

~+ := (CookieMerge(s'.cookies [s'.d.originhost]|, cookies'))
let s'.1ocalStorage [s'.d.origin| := localStorage'
let 5'.sessionStorage [(s'.d.origin, tlw.nonce)| := sessionStorage'

let s'.d.scriptstate := state’
switch command do
case (HREF,url, hrefwindow,noreferrer)
let W := GETNAVIGABLEWINDOW(w, hrefwindow, noreferrer, s')
let req := (HTTPReq, V4,GET,url.host, url.path, (),url.parameters,())
if noreferrer =T then
let referrerPolicy := noreferrer
else B
let referrerPolicy := s'.d headers|ReferrerPolicy]
let s := CANCELNAV(s'.w .nonce,s’)
call HTTP_SEND(s'.w .nonce, req, url, L, referrer, referrerPolicy, s')
case (IFRAME,url, window)
let W' := GETWINDOW (w, window, s’)
let req := (HTTPReq, V4,GET, url.host,url.path, (), url.parameters, ())
let referrer := s'.w'.activedocument.location
let referrerPolicy := s'.d headers[ReferrerPolicy]
let w' := (vs,(), 1)
let s'.W .activedocument.subwindows
« = §.W.activedocument.subwindows —|—<> w'

call HTTP_SEND(vs, req, url, L, referrer, referrerPolicy, s')

case (FORM, url,method,data, hrefwindow)
if method ¢ {GET,POST} then '4
stop
let W := GETNAVIGABLEWINDOW(w, hrefwindow, L, s)
if method = GET then
let body := ()
let parameters := data
let origin := L
else
let body := data
let parameters := url.parameters
let origin := s'.d.origin
let req := (HTTPReq, V4,method,url.-host,url.path, (), parameters, body)
let referrer := s’.g.locgtion
let referrerPolicy := s'.d headers[ReferrerPolicy]
let s := CANCELNAV(s'.w .nonce,s’)

call HTTP_SEND(s'.w'.nonce, req, url, origin, referrer, referrerPolicy, s')
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87:

88:

89:

90:
91:

case (SETSCRIPT,window,script)
let W' := GETWINDOW (w,window,s’)
let s'.W .activedocument.script := script
stop (), s’
case (SETSCRIPTSTATE, window, scriptstate)
let W' := GETWINDOW (w, window, s)
let s'.W.activedocument.scriptstate := scriptstate
stop (), s’
case (XMLHTTPREQUEST, url,method,data,xhrreference)
if method € {CONNECT, TRACE, TRACK } A xhrreference & {N\, L} then
stop

if urlhost # s'.d.origin host
<~ V url#s'.d.origin.protocol then

stop

if method € {GET,HEAD} then
let data = ()
let origin := L

else

let origin := s'.d.origin
let req := (HTTPReq, V4,method,url.host,url.path, ,url.parameters,data)
let referrer := s'.d.location
let referrerPolicy := s'.d headers[ReferrerPolicy]
call HTTP_SEND((s'.d.nonce, xhrreference), req, url, origin, referrer, referrerPolicy, s')
case (BACK,window) 1
let W := GETNAVIGABLEWINDOW((w, window, 1, s)
NAVBACK®w, 5')
stop (), s’
case (FORWARD, window)
let W := GETNAVIGABLEWINDOW(w, window, L, s)
NAVFORWARD(w, ')
stop (), s’
case (CLOSE, window)
let W' := GETNAVIGABLEWINDOW(w, window, L, s")
remove s'.w' from the sequence containing it
stop (), s’
case (POSTMESSAGE, window, message,origin)
let W' < Subwindows(s’) such that s'.W .nonce = window
if 3j € N such that s'.w/.documents.j.active=T
< A(origin# L = s'.w.documents.j.origin = origin) then
let s'.w/.documents.j.scriptinputs

— = s/.W.documents.j.scriptinpilts
<+ 40 (POSTMESSAGE,s .W.nonce,s'.d.origin, message)
stop (), s’

case else
stop




Algorithm 8 Web Browser Model: Process an HTTP response.

1:
2

3:
4:
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45:

function PROCESSRESPONSE (response, reference, request, requestUrl, s)

if Set-Cookie € response.headers then
for each ¢ €{ response headers [Set-Cookie], ¢ € Cookies do
let s'.cookies [request.host]
< := AddCookie(s'.cookies [request.host],c)
if Strict-Transport-Security € response.headers A requestUrl.protocol =S then
let §'.sts := 5'.sts +{ request.host
if Referer € request headers then
let referrer := request.headers[Referer]
else
let referrer :== 1
if Location € response.headers A response.status € {303,307} then
let url := response. headers [Location]
if url.fragment = | then
let url.fragment := requestUrl.fragment
let method' = request. method
let body' := request.body
if Origin € request headers then
let origin := (request headers[Origin], (request.host,url.protocol))
else
let origin := L
if response.status = 303 A request.method ¢ {GET,HEAD} then
let method’ := GET
let body' := ()
if 3w € Subwindows(s’) such that s'.w.nonce = reference then — Do not redirect XHRs.
let req := (HTTPReq, Vg, method' ,urlhost,url.path, (),url.parameters,body’)
let referrerPolicy := response headers[ReferrerPolicy]|
call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, s )
if 3w € Subwindows(s’) such that s'.w.nonce = reference then ~ — normal response
if response.body 4 (x,*) then
stop {}, s
let script := 7 (response.body)
let scriptstate := m (response.body)
let referrer := request.headers[Referer]
let d := (v;,requestUrl, response. headers, referrer, script, scriptstate, (), (), T)
if s’.W.documents = () then

let s’.w.documents := (d)

else
let i < N such that s’.w.documents.i.active=T
let s’.W.documents.i.active := L

remove s'.w.documents.(i+ 1) and all following documents
< from s'.w.documents
let s'.w.documents := s'.w.documents +' d
stop {}, s’ B B
else if 3w € Subwindows(s’), d such that s'.d.nonce = m; (reference)
<+ A s'.d=s"w.activedocument then — process XHR response
let headers := response. headers — Set-Cookie
let s'.d.scriptinputs := s'.d.scriptinputs +!
(XMLHTTPREQUEST, headers, response.body, T (reference))




Algorithm 9 Web Browser Model: Main Algorithm

Input: {(a,f,m),s

1: lets ;=5

2: if s.isCorrupted # L then

3: let s’.pendingRequests := (m,s.pendingRequests) — Collect incoming messages
4: let m' « dy(s')

5: let ' < IPs

6: stop ({(d’,a,m')), s’

7. if m = TRIGGER then — A special trigger message.

8: let switch < {script,urlbar,reload,forward, back}

9:  let w + Subwindows(s’) such that s'.w.documents # ()

_— if possible; otherwise stop — Pointer to some window.
10:  let tlw < N such that s'.t/w.documents # ()
— if possible; otherwise stop — Pointer to some top-level window.

11: if switch = script thenm — Run some script.

12: let d == w+ >activegocment

13: call RUNSCRIPT(w, d, )

14: else if switch =urlbar then — Create some new request.

15: let newwindow < {T,L1}

16: if newwindow =T then — Create a new window.

17: let windownonce = v;

18: let w' := (windownonce, (), 1)

19: let s'.windows := s'.windows +<> w

20: else — Use existing top-level window.

21: let windownonce := s’ .tlw.nonce

22: let protocol + {P,S}

23: let host < Doms

24: let path < S

25: let fragment < S

26: let parameters + [S x S]

27: let url := (URL, protocol, host,path, parameters, fragment)

28: let req := (HTTPReq, V»,GET, host,path, (), parameters, ())

29: call HTTP_SEND (windownonce, req, url, 1, 1, 1, s)

30: else if switch = reload then — Reload some document.

31 let w < Subwindows(s’) such that s'.w.documents # ()
< if possible; otherwise stop

32: let url := s’ .w.activedocument.location

33: let req := (HTTPReq, V5,GET, url.host,url.path, (), url.parameters, ())

34: let referrer := s’ w.activedocument.referrer

35: let s’ := CANCELNAV(s'.w.nonce,s’)

36: call HTTP_SEND(s'.w.nonce, req, url, L, referrer, 1, s')

37: else if switch = forward then

38: NAVFORWARD®W, s')

39: else if switch = back then

40: NAVBACK®w, s')

41: else if m = FULLCORRUPT then — Request to corrupt browser
42: let s’.isCorrupted := FULLCORRUPT
43:  stop (), s’
44: else if m = CLOSECORRUPT then — Close the browser
45 let s'.secrets := ()
46:  let s’.windows := ()
47 let s’.pendingDNS := ()
48:  let s’.pendingRequests = ()
49:  let s’.sessionStorage := ()
50:  let s'.cookies C ! Cookies such that
« (c€l ¢ .cookies) <= (c €' s.cookies Ac.content.session= 1)
51: let s’.isCorrupted := CLOSECORRUPT
52: stop (), s’




53: else if 3 (reference,request,url, key, f) el s'.pendingRequests
<> such that 7 (decs(m,key)) = HTTPResp then — Encrypted HTTP response
54:  let m' := decs(m,key)

55: if m’ nonce # request.nonce then
56: stop
57: remove (reference, request,url,key, f) from s'.pendingRequests

58: call PROCESSRESPONSE (n?, reference, request, url, s')
59: else if ) (m) =HTTPResp A 3 (reference,request,url, L, f) el s’ .pendingRequests
< such that m'.nonce = request.key then
60: remove (reference,request,url, |, f) from s'.pendingRequests
61: call PROCESSRESPONSE (m, reference, request, url, s")
62: else if m € DNSResponses then ~ — Successful DNS response
63: if m.nonce ¢ s.pendingDNSV m.result ¢ IPsV m.domain # m,(s.pendingDNS).host then
64: stop

65: let (reference,message,url) := s.pendingDNS[m.nonce|
66: if url.protocol =S then
67: let s'.pendingRequests := s'.pendingRequests
— +<> (reference, message, url, V3, m.result)
68: let message := enc,({message, v3),s' keyMapping [message host])
69: else
70: let s'.pendingRequests := s'.pendingRequests

— —|—<> (reference, message, url, 1, m.result)
71: let s'.pendingDNS := s’.pendingDNS — m.nonce
72: stop ((m.result,a,message)), s'
73: else — Some other message

74: call PROCESS_OTHER(m, a, f, s)
75: stop




APPENDIX E
GENERIC HTTPS SERVER MODEL

This model will be used as the base for all servers in the following. It makes use of placeholder algorithms that are later
superseded by more detailed algorithms to describe a concrete relation for an HTTPS server.

Definition 47 (Base state for an HTTPS server.). The state of each HTTPS server that is an instantiation of this relation must
contain at least the following subterms: pendingDNS € [N x Ty|, pendingRequests € [N x Tp] (both containing arbitrary
terms), DNSaddress € |Ps (containing the IP address of a DNS server), keyMapping € [Doms X TN] (containing a mapping
from domains to public keys), tlskeys € [Doms x (] (containing a mapping from domains to private keys), and corrupt € Ty
(either L if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to extract information from these
subterms or alter these subterms.

Let v,0 and v, denote placeholders for nonces that are not used in the concrete instantiation of the server. We now define
the default functions of the generic web server in Algorithms 10-14, and the main relation in Algorithm 15.

Algorithm 10 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending an HTTPS message).

1: function HTTPS_SIMPLE_SEND(reference, message, s')
2: let s'.pendingDNS[v,g] := (reference, message)
3: stop ({s'.DNSaddress,a, (DNSResolve,message.host, V,0))), s

/

Algorithm 11 Generic HTTPS Server Model: Default HTTPS response handler.

1: function PROCESS_HTTPS_RESPONSE(m, reference, request, key, a, f, s')
2: stop

Algorithm 12 Generic HTTPS Server Model: Default trigger event handler.

1: function TRIGGER(s")
2: stop

Algorithm 13 Generic HTTPS Server Model: Default HTTPS request handler.

1: function PROCESS_HTTPS_REQUEST(m, k, a, f, s")
2: stop

Algorithm 14 Generic HTTPS Server Model: Default handler for other messages.

1: function PROCESS_OTHER(m, a, f, s)
2: stop




Algorithm 15 Generic HTTPS Server Model: Main relation of a generic HTTPS server

Input: {(a,f,m),s
1: if s’.corrupt # L Vm = CORRUPT then

2:  let s'.corrupt := ((a, f,m),s .corrupt)

3 letm « dy(s)

4: let @’ + IPs

5. stop {(d,a,m’)), s

6: if Imgec, k, k', inDomain such that (mge.,k) = dec,(m,k') A (inDomain, k') € s.t1lskeys then
7: let n, method, path, parameters, headers, body such that

< (HTTPReq,n,method,inDomain, path, parameters, headers,body) = mgec
< if possible; otherwise stop
8: call PROCESS_HTTPS_REQUEST (mgec, k, a, f, s)
9: else if m € DNSResponses then  — Successful DNS response
10: if m.nonce ¢ s.pendingDNSV m.result ¢ IPsV m.domain # s.pendingDNS[m.nonce].2.host then
11: stop

12: let (reference,request) := s.pendingDNS[m.nonce]
13: let s'.pendingRequests := s'.pendingRequests
o 40 (reference, request, v,|, m.result)
14: let message := enc, ({request, v, ),s keyMapping [request.host])
15:  let s’.pendingDNS := s’.pendingDNS — m.nonce
16:  stop ((m.result,a,message)), s’

17: else if 3 (reference, request, key, f) € s’ pendingRequests
< such that 7 (decs(m,key)) = HTTPResp then — Encrypted HTTP response
18:  let m' := decs(m,key)

19: if m'.nonce # request.nonce then

20: stop

21: remove (reference,request,key, f) from s’.pendingRequests

22: call PROCESS_HTTPS_RESPONSE(n!, reference, request, key, a, f, s')
23: stop

24: else if m = TRIGGER then = — Process was triggered
25: call PROCESS_TRIGGER(s')

26: stop




APPENDIX F
FORMAL MODEL OF OPENID CONNECT WITH A NETWORK ATTACKER

We here present the full details of our formal model of OIDC which we use to analyze the authentication and authorization
properties. This model contains a network attacker. We will later derive from this model a model where the network attacker
is replaced by a web attacker. We use this modified model for the session integrity properties.

We model OIDC as a web system (in the sense of Appendix B-C). We call a web system OIDC" = (W, S, script, E) an
OIDC web system with a network attacker if it is of the form described in what follows.

A. Outline

The system W = Hon U Net consists of a network attacker process (in Net), a finite set B of web browsers, a finite set RP
of web servers for the relying parties, a finite set IDP of web servers for the identity providers, with Hon := BURP UIDP.
More details on the processes in ‘W are provided below. We do not model DNS servers, as they are subsumed by the network
attacker. Figure 10 shows the set of scripts .§ and their respective string representations that are defined by the mapping script.
The set E° contains only the trigger events as specified in Appendix B-C.

] sES \ script(s)
R att_script
script_rp_index script_rp_index
script_rp_get_fragment | script_get_fragment
script_idp_form script_idp_form

Figure 10. List of scripts in S and their respective string representations.

This outlines OIDC". We will now define the DY processes in OI'DC" and their addresses, domain names, and secrets in
more detail.

B. Addresses and Domain Names

The set IPs contains for the network attacker in Net, every relying party in RP, every identity provider in IDP, and every
browser in B a finite set of addresses each. By addr we denote the corresponding assignment from a process to its address.
The set Doms contains a finite set of domains for every relying party in RP, every identity provider in IDP, and the network
attacker in Net. Browsers (in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms, respectively.

C. Keys and Secrets

The set A of nonces is partitioned into five sets, an infinite sequence N, an finite set K1 g, an finite set Ksign, and a finite

set Passwords. We therefore have N = N UKTLs UKjign UPasswords.
~—~ . T S——
infinite sequence  finite finite finite

These sets are used as follows:

o The set N contains the nonces that are available for each DY process in W (it can be used to create a run of W).

o The set Kyrs contains the keys that will be used for TLS encryption. Let tlskey: Doms — Kt g be an injective
mapping that assigns a (different) private key to every domain. For an atomic DY process p we define tlskeys? =
({(d. tlskey(d)) | d € dom(p)}).

o The set Kgign contains the keys that will be used by IdPs for signing id tokens. Let signkey: IDP — Kj;s, be an injective
mapping that assigns a (different) signing key to every IdP.

o The set Passwords is the set of passwords (secrets) the browsers share with the identity providers. These are the passwords
the users use to log in at the IdPs.

D. Identities and Passwords

Identites consist, similar to email addresses, of a user name and a domain part. For our model, this is defined as follows:

Definition 48. An identity (email address) i is a term of the form (name,domain) with name € S and domain € Doms.
Let ID be the finite set of identities. We say that an ID is governed by the DY process to which the domain of the ID
belongs. Formally, we define the mapping governor : ID — W, (name,domain) — dom ™! (domain). By ID” we denote the set
-1
governor™ (y).

The governor of an ID will usually be an IdP, but could also be the attacker. Besides governor, we define the following
mappings:



o By secretOfID : ID — Passwords we denote the bijective mapping that assigns secrets to all identities.

o Let ownerOfSecret : Passwords — B denote the mapping that assigns to each secret a browser that owns this secret. Now,
we define the mapping ownerOfID : ID — B, i — ownerOfSecret(secretOfID(i)), which assigns to each identity the browser
that owns this identity (we say that the identity belongs to the browser).

E. Corruption

RPs and IdPs can become corrupted: If they receive the message CORRUPT, they start collecting all incoming messages in
their state and (upon triggering) send out all messages that are derivable from their state and collected input messages, just
like the attacker process. We say that an RP or an IdP is honest if the according part of their state (s.corrupt) is L, and that
they are corrupted otherwise.

We are now ready to define the processes in W as well as the scripts in § in more detail.

F. Network Attackers

As mentioned, the network attacker na is modeled to be a network attacker as specified in Appendix B-C. We allow it
to listen to/spoof all available IP addresses, and hence, define /"* = IPs. The initial state is s{* = (attdoms, tiskeys, signkeys),
where attdoms is a sequence of all domains along with the corresponding private keys owned by the attacker na, tlskeys is a
sequence of all domains and the corresponding public keys, and signkeys is a sequence containing all public signing keys for
all IdPs.

G. Browsers

Each b € B is a web browser atomic Dolev-Yao process as defined in Definition 46, with I” := addr(b) being its addresses.

To define the inital state, first let 1D, := ownerOfID~!(b) be the set of all IDs of b. We then define the set of passwords
that a browser b gives to an origin o: If the origin belongs to an IdP, then the user’s passwords of this IdP are contained in the
set. To define this mapping in the initial state, we first define for some process p

Secrets”” = {is | b = ownerOfSecret(s) A (Ji : s = secretOfID(i) Ai € IDP) } .

Then, the initial state sS is defined as follows: the key mapping maps every domain to its public (TLS) key, according to the
mapping tlskey; the DNS address is an address of the network attacker; the list of secrets contains an entry ((d,S), (Secrets””))
for each p € RPUIDP and d € dom(p); ids is {IDp); sts is empty.

H. Relying Parties

A relying party r € RP is a web server modeled as an atomic DY process (I",Z",R",s;,) with the addresses I” := addr(r).
Next, we define the set Z" of states of r and the initial state s, of r.

Definition 49. A state s € Z" of an RP r is a term of the form (DNSAddress, pendingDNS, pendingRequests, corrupt,
keyMapping, tiskeys, sessions, issuerCache, oidcConfigCache, jwksCache, clientCredentialsCache) with DNSaddress € Ps,
pendingDNS € [.‘7\[ X TN] , pendingRequests € [.‘7\[ X TN]’ corrupt € Ty, keyMapping € [Doms X TN] , tlskeys € [Doms x Ktps]
(all former components as in Definition 47), sessions € [9\[ X TN] , issuerCache € [‘IN X TN]’ oidcConfigCache € [TN X TN] s
and jwksCache € [Ty x Ty].

An initial state sj, of r is a state of r with 5(,.pendingDNS = (), s(,.pendingRequests = (), 5.corrupt = L, s;.keyMapping
being the same as the keymapping for browsers above, s;,.tlskeys = tlskeys’, s(.sessions = (), sy.issuerCache = (),
sp-oidcConfigCache = (), s(.jwksCache = (), and s{.clientCredentialsCache = ().

We now specify the relation R": This relation is based on our model of generic HTTPS servers (see Appendix E). Hence
we only need to specify algorithms that differ from or do not exist in the generic server model. These algorithms are defined
in Algorithms 16-21. (Note that in several places throughout these algorithms we use placeholders to generate “fresh” nonces
as described in our communication model (see Definition 6). Figure 11 shows a list of all placeholders used.)

The scripts that are used by the RP are described in Algorithms 22 and 23. In these scripts, to extract the current URL of
a document, the function GETURL (tree,docnonce) is used. We define this function as follows: It searches for the document
with the identifier docnonce in the (cleaned) tree tree of the browser’s windows and documents. It then returns the URL u of
that document. If no document with nonce docnonce is found in the tree tree, < is returned.



Algorithm 16 Relation of a Relying Party R” — Processing HTTPS Responses

1: function PROCESS_HTTPS_RESPONSE(m, reference, request, key, a, f, s')
2 let session := s'.sessions[reference[session]]

3 let id := session[identity]

4 let issuer := s’.issuerCachelid]

5: if reference[responseTo] = WEBFINGER then

6: let wf := m.body

7 if wf[subject] # id then

8

: stop
9: if wf[links][rel] # 0IDC_issuer then
10: stop
11: let s'.issuerCachelid] := wf[links][href]
12: call START_LOGIN_FLOW(reference[session], ')
13:  else if reference[responseTo] = CONFIG then
14: let oidcc := m.body
15: if oidcc[issuer| # issuer then
16: stop
17: let s'.oidcConfigCachelissuer] := oidcc
18: call START_LOGIN_FLOW(reference[session), s')
19: else if reference[responseTo] = JWKS then
20: let s'.jwksCachelissuer| := m.body
21: call START_LOGIN_FLOW(reference[session], s')
22: else if reference[responseTo] = REGISTRATION then
23: let s'.clientCredentialsCache[issuer] := m.body
24: call START_LOGIN_FLOW(reference[session), s')
25: else if reference[responseTo] = TOKEN then
26: if token €0 session [response_type| A useAccessTokenNow = T then
27: call USE_ACCESS_TOKEN(reference[session], m.body[access_token], 5)
28: call CHECK_ID_TOKEN(reference[session], m.body[id_token], s)
29: stop
Placeholder Usage
Vi new login session id
\%) new HTTP request nonce
V3 new HTTP request nonce
V4 new service session id
Vs new HTTP request nonce
Vo new state value
\% new nonce value (for the implicit flow)

Figure 11. List of placeholders used in the relying party algorithm.



Algorithm 17 Relation of a Relying Party R” — Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(m, k, a, f,s') — Process an incoming HTTPS request. Other message types are handled
in separate functions. m is the incoming message, k is the encryption key for the response, a is the receiver, f the sender of the message.
s" is the current state of the atomic DY process r.

2: if m.path=/ then — Serve index page.

3: let headers := [ReferrerPolicy:origin] — Set the Referrer Policy for the index page of the RP (cf. Section III-A).

4 let m’ := encs((HTTPResp, m.nonce, 200, headers, (script_rp_index,())),k) — Send script_rp_index in HTTP response.

5: stop ((f,a,m')), s’

6: else if m.path = /startLogin Am.method = POST then — Serve the request to start a new login.

7: if m.headers[0rigin] # (m.host,S) then

8: stop  — Check the Origin header for CSRF protection.

9: let id := m.body

10: let sessionld :==v| — Session id is a freshly chosen nonce.

11: let s'.sessions[sessionld] := [startRequest:[message:m,key:k,receiver:a,sender:f],identity:id] — Create new ses-
12: call START_LOGIN_FLOW(sessionld, s') ~— Call the function that starts or proceeds with a login ﬂo%.orilﬁencso rgiscov—

ery/registration/etc.

13: else if m.path = /redirect_ep then — User is being redirected after authentication to the IdP.

14: let sessionld := m.headers[Cookie][sessionId]

15: if sessionld ¢ s’ .sessions then

16: stop

17: let session := s'.sessions|[sessionld] ~— Retrieve session data.

18: let id := session[id]

19: let issuer := s’ .issuerCache[identity] =~ — Issuer cache contains mappings from identites to issuers. Caches are being filled during

discovery/registration in the function START_LOGIN_FLOW.
20: if m.parameters[iss] # issuer then
21: stop — Check issuer parameter (cf. Section III-A).
22: let oidcConfig := s’ .oidcConfigCachel[issuer] — Retrieve OIDC configuration for issuer.
23: let responseType := session|response_type]
— Determines the OIDC flow to use, e.g., code id_token token for a hybrid flow.

24: if responseType = (code) then — Authorization code mode: Take data from URL parameters.

25: let data := m.parameters
26: else — Hybrid or implicit mode: Send the script script_rp_get_fragment to the browser to retrieve data from URL fragment
27: if m.method = GET then
28: let headers := ((ReferrerPolicy,origin))

29: let m’ := encs((HTTPResp, m.nonce,200, headers, (script_rp_get_fragment, 1)), k)

30: stop ((f,a,m’)), s'

31: else — If this is a POST request, the script script_rp_get_fragment is sending the data from URL fragment.

32: let data := m.body

33: if data[state] # session[state| then

34: stop — Check srate value.

35: let s'.sessions[sessionld]|[redirectEpRequest] :=

< [message:m,key:k,receiver:a,sender:f] — Store incoming request for later use in CHECK_ID_TOKEN (Algo-
rithm 20).

36: if id_token €' responseType then  — Check if the chosen response type contains id_token.

37: if code €¥) responseType then  — In hybrid mode, only one of the two id tokens must be checked(cf. Appendix A).

38: let checkldTokenNow <— {T, L} — Non-deterministically decide whether to check first or second id token to capture all

' potential choices in real-world implementations (cf. Appendix A).

39: else

40: let checkldTokenNow := T  — In non-hybrid modes, the id token is always checked.

41: if checkldTokenNow = T then'®

42: call CHECK_ID_TOKEN(sessionld, data[id_token],s') — Check the id token and (if successful) log the user in. See

Algorithm 20.

43: let useAccessTokenNow <— {T,1} — Non-det. decide whether to use access token (authorization) or not.

44: if token () responseType A useAccessTokenNow = T then

45: call USE_ACCESS_TOKEN(sessionld, m.body[access_token],s’) — Use the access token at the IdP.

46: if code ¥ responselype then

47: call SEND_TOKEN_REQUEST (sessionld, m.body|code],s’) — Retrieve a token from the token endpoint of the IdP.

48: stop




Algorithm 18 Relying Party R": Request to token endpoint.

1: function SEND_ TOKEN _REQUEST (sessionld, code, s")

2: let session := s'.sessions[sessionld)

3 let identity := session[identity]

4 let issuer := s'.issuerCachelidentity]

5: let credentials := s'.clientCredentialsCachelissuer]

6: let headers := ||

7 let body := [grant_type:authorization_code,code:code,redirect_uri:session[redirect_uri]|
8 let clientld := credentials|client_id|

9: let clientSecret := credentials[client_secret]
10: if clientSecret = () then
11: let body[client_id] := clientld
12: else
13: let headers[Authorization] := (clientld, clientSecret)
14: let url := s'.oidcConfigCache[issuer|[token_ep]

15: let message := (HTTPReq, v, POST, url.domain,url.path, url.parameters, headers,body)
16: call HTTPS_SIMPLE_SEND([responseTo:TOKEN, session:sessionld], message, s')

Algorithm 19 Relying Party R": Using the access token (no response expected).

1: function USE_ ACCESS _TOKEN(sessionld, token, s")
2: let session := s'.sessions[sessionld)

3 let identity := session[identity]

4: let issuer := s'.issuerCachelidentity]

5: let headers := [Authorization: (Bearer,token)]
6.

7

8

9

let url := s’.0oidcConfigCachelissuer|[token_ep]

let url.path < S

let message := (HTTPReq, v3,POST, url.domain,url.path, url.parameters, headers, ())

call HTTPS_SIMPLE_SEND([responseTo:RESOURCE_USAGE, session:sessionld], message, s')

Algorithm 20 Relying Party R": Check id token.

1: function CHECK_ID_TOKEN(sessionld, id_token, s’y ~— Check id token validity and create service session.
2 let session := s'.sessions|sessionld] ~— Retrieve session data.

3 let identity := session[identity]

4: let issuer := s’ .issuerCachelidentity] ~— Retrieve issuer.

5: let oidcConfig := s’ .oidcConfigCache[issuer] — Retrieve OIDC configuration for that issuer.

6: let credentials := s'.clientCredentialsCache[issuer] — Retrieve OIDC credentials for issuer.

7 let jwks := s'.jwksCache[issuer] ~— Retrieve signing keys for issuer.
8 let data := extractmsg(id_token) — — Extract contents of signed id token.

9: if data[iss| # issuer then

10: stop — Check the issuer.

11:  if datalaud] # credentials[client_id] then

12: stop — Check the audience against own client id.

13: if checksig(id_token,jwks) # T then

14: stop — Check the signature of the id token.

15: if nonce € session \ data[nonce] # session[nonce] then

16: stop — If a nonce was used, check its value.

17: let s'.sessions[sessionld][loggedInAs] := (issuer,data[sub]) — User is now logged in. Store user identity and issuer.

18: let s'.sessions|sessionld][serviceSessionId]:=Vv4 — Choose a new service session id.

19: let request := session[redirectEpRequest] — Retrieve stored meta data of the request from the browser to the redir. end-
point in order to respond to it now. The request’s meta data was stored in
PROCESS_HTTPS_REQUEST (Algorithm 17).

20: let headers := [ReferrerPolicy:origin]

21: let headers[Set-Cookie] := [serviceSessionId:(v4, T,T,T)] — Create a cookie containing the service session id.

22: let m' := encs((HTTPResp, request[message].nonce, 200, headers, ok), request[key]) ~ — Respond to browser’s request to the redirec-

tion endpoint.
23: stop ((request[sender], request[receiver|,m’)), s’




Algorithm 21 Relying Party R": Continuing in the login flow.

28:
29:

30:
31:

32:
33:
34:
35:
36:
37:
38:
39:

1:
2:
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

function START_LOGIN_FLOW(sessionld, s')

let redirectUris :== {(URL,S,d, /redirect_ep,(),())|d € dom(r)}  — Set of redirect URIs for all domains.
let session := s 39551ons[sessmn1d]
let identity := session[identity|
if identity ¢ s'.issuerCache then
let host := identity.domain
let path := /.wk/webfinger
let parameters := [resource : identity]
let message := (HTTPReq, Vs, GET, host, path, parameters, (), ())
call HTTPS_SIMPLE_SEND([responseTo:WEBFINGER, session:sessionld], message, s')

let issuer := s’.issuerCachelidentity]
if issuer € s'.oidcConfigCache then
let host := issuer
let path := /.wk/openid-configuration
let message := (HTTPReq, Vs, GET, host, path, [], (), ())
call HTTPS_SIMPLE_SEND([responseTo:CONFIG, session:sessionld], message, s')

let oidcConfig := s'.oidcConfigCachelissuer]
if issuer ¢ s'.jwksCache then
let url := oidcConfig[jwks_uri]
let message := (HTTPReq, V5,GET,url.host,url.path, [, (), ())
call HTTPS_SIMPLE_SEND([responseTo:JWKS, session:sessionld], message, s')

if issuer ¢ s'.clientCredentialsCache then
let url := oidcConfig[reg_ep]
let message := (HTTPReq, Vs5,POST,url.host,url.path, [, (), [redirect_uris : (redirectUris)))
call HTTPS_SIMPLE_SEND([responseTo:REGISTRATION, session : sessionld], message, s')

let credentials := s'.clientCredentialsCachelissuer]

let responseType < {(code),(id_token),(id_token,token),(code,id_token),
<+ (code,token),(code,id_token,token)}

let redirectUri < redirectUris

let data := [response_type:responseType, redirect_uri:redirectUri,
< client_id:credentialsclient_id|,state:Vg]

if code ¢<> responseIype then  — Implicit flow requires nonce.

let data[nonce] := v;

let s'.sessions|[sessionld] := s'.sessions|sessionld)Udata

let authEndpoint := oidcConfigauth_ep|

let authEndpoint.parameters := authEndpoint.parameters Udata

let headers := [Location:authEndpoint,ReferrerPolicy:origin]

let headers[Set-Cookie] := [sessionId:(sessionld, T, T,T)]

let request := s'.sessions[sessionld][startRequest]

let m' := encs((HTTPResp, request[message].nonce, 303, headers, L), request|key])
stop ((request[sender], request[receiver|,m’)), s’




Algorithm 22 Relation of script_rp_index

Input: (tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets) — — Script that models the index
page of a relying party. Users can initiate the login flow or follow arbitrary links. The script receives various information about the
current browser state, filtered according to the access rules (same origin policy and others) in the browser.

1: let switch < {auth,1ink} — Non-deterministically decide whether to start a login flow or to follow some link.

2: if switch=auth then — Start login flow.

3: let url := GETURL(tree,docnonce)  — Retrieve own URL.

4: let id < ids — Retrieve one of user’s identities.
5 leturl' := (URL,S,url.host, /startLogin,(),()) — Assemble URL.
6: let command := (FORM,url' |POST,id, 1)
— Post a form including the identity to the RP.
7: stop (s, cookies,localStorage, sessionStorage,command)  — Finish script’s run and instruct the browser to follow the command (form

post).
8: else — Follow link.
9: let protocol < {P,8} — Non-deterministically select protocol (HTTP or HTTPS).

10: let host <~ Doms  — Non-det. select host.

11: let path < S — Non-det. select path.

12: let fragment <~ S — Non-det. select fragment part.

13: let parameters < [SxS] — Non-det. select parameters.

14: let url := (URL, protocol, host,path, parameters,fragment) ~ — Assemble URL.

15: let command := (HREF,url, 1, 1) — Follow link to the selected URL.

16: stop (s, cookies,localStorage, sessionStorage,command) ~ — Finish script’s run and instruct the browser to follow the command
(follow link).

Algorithm 23 Relation of script_rp_get_fragment

Input: (free, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets)
1: let url := GETURL(tree,docnonce)

2: let url' ;== (URL,S,url.host,/redirect_ep,[iss : url.parameters|iss]],())

3: let command := (FORM,url,POST,url.fragment, | )

4: stop (s,cookies,localStorage, sessionStorage,command)

1. Identity Providers

An identity provider i € IDP is a web server modeled as an atomic process (I',Z',R',s})) with the addresses I := addr(i).
Next, we define the set Z' of states of i and the initial state s;, of i.

Definition 50. A state s € Z' of an 1dP i is a term of the form (DNSAddress, pendingDNS, pendingRequests, corrupt, keyMapping,
tlskeys, registrationRequests, (sequence of terms) clients, (dict from nonces to terms) records, (sequence of terms) jwk)
(signing key (only one)) with DNSaddress € |Ps, pendingDNS € [.‘7\[ X TN]’ pendingRequests € [57\[ X TN]’ corrupt € Ty,
keyMapping € [Doms X TN] , tlskeys € [Doms x Ktpg] (all former components as in Definition 47), registrationRequests € Tos
clients € [TD\C X TN] , records € T%, and jwk.e Kiign. . . .

An initial state s{, of i is a state of i with s{,.pendingDNS = (), s;,.pendingRequests = (), s{.corrupt = L, s(,.keyMapping
being the same as the keymapping for browsers above, si.t1skeys = tlskeys', si.registrationRequests = (), si.clients =
an, s}.records = (), and si. jwk = signkey (i).

We now specify the relation R: As for the RPs above, this relation is based on our model of generic HTTPS servers (see
Appendix E). We specify algorithms that differ from or do not exist in the generic server model in Algorithms 24 and 25. As
above, Figure 12 shows a list of all placeholders used. Algorithm 26 shows the script script_idp_form that is used by IdPs.

Placeholder Usage

Vi new authorization code
V2, V3 new access tokens

V4 new client secret

Figure 12. List of placeholders used in the identity provider algorithm.



Algorithm 24 Relation of IdP R — Processing HTTPS Requests

1: function PROCESS_HTTPS_REQUEST(m, &, a, f, s')

2 if m.path = /.wk/webfinger then A

3 let user, domain such that (user,domain) = m.parameters|resource] A (user,domain) € ID' if possible; otherwise stop
4 let descriptor := [subject : (user,domain),links : [rel : 0IDC_issuer,href : m.host]]

5: let m’ := encs((HTTPResp, m.nonce, 200, (), descriptor) k)

o stop ((f,am)),

7 else if m.path = /.wk/openid-configuration then

8 let metaData := [issuer : m.host]!”

auth_ep| := (URL,S,m.host, /auth, (), ())

token_ep] := (URL,S,m.host, /token, (), ())

9: let metaData
10: let metaData

11: let metaData[jwks_uri] := (URL,S,m.host, /juks, (), ())
12: let metaData|reg_ep] := (URL,S,m.host, /reg, (), ())

13: let m' := ence((HTTPResp, m.nonce,200, (), metaData), k)
14: stop ((f,a,m')), s’

15: else if m.path = /jwks then

16: let m' := encs((HTTPResp, m.nonce,201, (), pub(s’.jwk)), k)
17: stop ((f,a,m')), s’

18: else if m.path = /reg A m.method = POST then

19: let s'.registrationRequests := s'.registrationRequests +0 (m,k,a, f)
20: stop  — Stop here to let attacker choose the client id.
21: else if m.path = /auth then

22: if m.method = GET then

23: let data := m.parameters

24: else if m.method = POST then

25: let data := m.body

26: let m' := encs((HTTPResp, m.nonce,200, ((ReferrerPolicy,origin)), (script_idp_form,data)),k)
27: stop ((f,a,m’)), s’

28: else if m.path = /auth2 Am.method = POST Am.headers|[Origin| = (m.host,S) then
29: let identity := m.body[identity]

30: let password := m.body|password]

31 if identity.domain ¢ dom(i) then

32: stop

33: if password % secretOfID (identity) then

34: stop

35: let responseType := m.body[response_type]

36: let clientld := m.body[client_id]

37: let redirectUri := m.body[redirect_uri]

38: let state := m.body[state]

39: let nonce := m.body[nonce]

40: if clientld ¢ s'.clients then

41: stop

42: let clientlnfo := s'.clients|clientld)

43: if redirectUri @0 clientlnfolredirect_uris| then

44: stop

45: let record := [client_id: clientld]

46: let record[redirect_uri] := redirectUri

47: let record[subject| := identity

48: let record[issuer| := m.host

49: let recordnonce] := nonce

50: let record[code] := v,

51: let record[access_tokens] := (vo,v3)18

52 let s'.records := s'.records +" record




53: let responseData := ||

54: if code €¥) responseType then
55: let responseData[code] := Vv,
56: if token () responseType then
57: let responseDatalaccess_token| := v,
58: let responseDatatoken_type] := bearer
59: if id_token ) responseType then
60: let idTokenBody = [iss : record[issuer],sub : record[subject],
< aud: record[client_id],nonce : record[nonce]]
61: let responseData|id_token] := sig(idTokenBody,s'.jwk)
62: if state # () then
63: let responseData[state| := state
64: if responseType = (code) then = — Authorization Code Mode
65: let redirectUri.parameters := redirectUri.parameters U responseData
66: else — Implicit/Hybrid Mode
67: if code ¢ 0 responseType \ id_token el responseType Anonce = () then
68: stop — Nonce is required in implicit mode.
69: let redirectUri.fragment := redirectUri.fragment U responseData
70: let redirectUri.parameters[iss] := record[issuer]
71: let m’ := encs((HTTPResp, m.nonce,303, ((Location, redirectUri)), ()), k)
72: stop ({f,a,m)), s’
73: else if m.path = /token Am.method = POST then
74: if client_id € m.body then — Only client id is provided, no client secret.
75: let clientld := m.body[client_id)]
76: let clientSecret := ()
77 else
78: let clientld := m.headers[Authorization].username
79: let clientSecret := m.headers[Authorization|.password
80: let clientlnfo := s'.clients|clientld)
81: if clientInfo = () V clientInfo[client_secret| #Z clientSecret then
82: stop
83: let code := m.body[code]
84: let record, ptr such that record = s’ .records.ptr A record|code] = code A code # | if possible; otherwise stop
85: if record[client_id] # clientld then
86: stop
87: if not (record[redirect_uri| = m.body[redirect_uri|V (|clientInforedirect_uris]| = 1 Aredirect_uri ¢ m.body)) then
88: stop  — If only one redirect URI is registered, it can be omitted.
89: let s'.records.ptricode] := L  — Invalidate code
90: let accessTokenChoice <+ {1,2}
91: let accessToken := record|access_tokens].accessTokenChoice
92: let idTokenBody := [iss : record[issuer]]
93: let idTokenBody|sub] := record[subject]
94: let idTokenBody[aud] := record|client_id]
95: let idTokenBody[nonce) := record[nonce]
96: let id_token := sig(idTokenBody,s'.jwk)
97: let m’ := encs((HTTPResp, m.nonce, 200, (), [access_token:accessToken,token_type:bearer,id_token:id_foken]),k)

98: stop ({f,a,m)), s’




Algorithm 25 Relation of IdP R’ — Processing other messages.

1:
2:
3
4.
5:
6.
7
8:
9:
10:

11:
12:

13:
14:
15:
16:
17:

function PROCESS_OTHER(m, a, f, s)
let clientld := m  — m is client id chosen by and sent by an attacker process.
if clientld € s’.clients then
stop
let m, k, a, f such that (m.k,a,f) el s'.registrationRequests if possible; otherwise stop
remove (m,k,a, f) from s’ .registrationRequests
let redirectUris := m.body[redirect_uris|
let regResponse := [client_id: clientld)
let issueSecret < {T,1}

if issueSecret =T then
let clientSecret == vy
let regResponse|client_secret] := clientSecret
let clientInfo := regResponse
let clientInfo[redirect_uris| := redirectUris
let s'.clients|clientld] := clientInfo

let m' := encs((HTTPResp, m.nonce,201, (), regResponse), k)
stop ((f,a,m')), s'

Algorithm 26 Relation of script_idp_form

Input: (tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets)

1:

O 00 1 O\ L AW N

let url := GETURL(tree,docnonce)

: let url’ := (URL,S,urlhost, /auth2, (), ())

. let formData = scriptstate

. let identity < ids

. let secret < secrets

: let formData[identity] := identity

: let formData[password] := secret

. let command := (FORM, url',POST, formData, 1)

. stop (s, cookies,localStorage, sessionStorage,command)




APPENDIX G
FORMAL MODEL OF OPENID CONNECT WITH WEB ATTACKERS

We now derive OIDC” (an OIDC web system with web attackers) from OIDC" by replacing the network attacker with a
finite set of web attackers. (Note that we more generally speak of an OIDC web system if it is not important what kind of
attacker the web system contains.)

Definition 51. An OIDC web system with web attackers, OI'DC", is an OIDC web system OIDC" = (W, S, script, E?) with
the following changes:
o We have W = HonUWeb, in particular, there is no network attacker. The set Web contains a finite number of web attacker
processes. The set Hon is as described above, and additionally contains a DNS server d as defined below.
o The set of IP addresses IPs contains no IP addresses for the network attacker, but instead a finite set of IP addresses for
each web attacker.
¢ The set of Domains Doms contains no domains for the network attacker, but instead a finite set of domains for each web
attacker.
o All honest parties use the DNS server d as their DNS server.

A. DNS Server

The DNS server d is a DNS server as defined in Definition 35. Its initial state sg contains only pairings (D,i) such that
i € addr(dom™!(D)), i.e., any domain is resolved to an IP address belonging to the owner of that domain (as defined in
Appendix F-B).

B. Web Attackers

Web attackers, as opposed to network attackers, can only use their own IP addresses for listening to and sending messages.
Therefore, for any web attacker process w we have that I = addr(w). The inital states of web attackers are defined parallel
to those of network attackers, i.e., the initial state for a web attacker process w is sy = (attdoms" tlskeys, signkeys), where
attdoms" is a sequence of all domains along with the corresponding private keys owned by the attacker w, flskeys is a sequence
of all domains and the corresponding public keys, and signkeys is a sequence containing all public signing keys for all IdPs.



APPENDIX H
FORMAL SECURITY PROPERTIES

The security properties for OIDC are formally defined as follows.

A. Authentication

Intuitively, authentication for OIDC" means that an attacker should not be able to login at an (honest) RP under the identity
of a user unless certain parties involved in the login process are corrupted. As explained above, being logged in at an RP under
some user identity means to have obtained a service token for this identity from the RP.

Definition 52 (Service Sessions). We say that there is a service session identified by a nonce n for an identity id at some
RP r in a configuration (S,E,N) of a run p of an OIDC web system iff there exists some session id x and a domain
d € dom(governor(id)) such that S(r).sessions|x][loggedInAs| = (d,id) and S(r).sessions|x|[serviceSessionId] =n.

Definition 53 (Authentication Property). Let OIDC" be an OIDC web system with a network attacker. We say that OI'DC" is
secure w.r.t. authentication iff for every run p of OI'DC", every configuration (S,E,N) in p, every r € RP that is honest in
S, every browser b that is honest in S, every identity id € ID with governor(id) being an honest IdP, every service session
identified by some nonce n for id at r, n is not derivable from the attackers knowledge in S (i.e., n & dp(S(attacker))).

B. Authorization

Intuitively, authorization for OIDC" means that an attacker should not be able to obtain or use a protected resource available
to some honest RP at an IdP for some user unless certain parties involved in the authorization process are corrupted.

Definition 54. We say that a client id ¢ has been issued to r by i iff i has sent a response to a registration request from r in
Line 17 of Algorithm 25 and this response contains c¢ in its body under the dictionary key client_id.

Definition 55 (Authorization Property). Let OI'DC" be an OIDC web system with a network attacker. We say that OIDC" is
secure w.r.t. authorization iff for every run p of OIDC", every configuration (S,E,N) in p, every r € RP that is honest in S,
every i € IdP that is honest in S, every browser b that is honest in S, every identity id € ID' owned by b, every nonce n, every
term x €V S(i).records with x[subject] = id, n €\’ x[access_tokens], and the client id x[client_id] has been issued by i
to r, we have that n is not derivable from the attackers knowledge in S (i.e., n & dp(S(attacker))).

C. Session Integrity for Authentication and Authorization

The two session integrity properties capture that an attacker should be unable to forcefully log a user in to some RP. This
includes attacks such as CSRF and session swapping.

Session Integrity Property for Authentication. This security property captures that (a) a user should only be logged in when
the user actually expressed the wish to start an OIDC flow before, and (b) if a user expressed the wish to start an OIDC flow
using some honest identity provider and a specific identity, then user is not logged in under a different identity.

We first need to define notations for the processing steps that represent important events during a flow of an OIDC web
system.

Definition 56 (User is logged in). For a run p of an OIDC web system with web attacker OI'DC" we say that a browser b
was authenticated to an RP r using an IdP i and an identity « in a login session identified by a nonce [sid in processing step
Q in p with
0= (SanN) — (S/vE/vN/)
r—Eout

(for some S, §', E, E', N, N') and some event (y,y’,m) € Eqy such that m is an HTTPS response matching an HTTPS request sent
by b to r and we have that in the headers of m there is a header of the form (Set-Cookie, [serviceSessionId:(ssid, T, T, T)])
for some nonce ssid and we have that there is a term g such that S(r).sessions[lsid] = g, g[serviceSessionId] = ssid, and
g[loggedInAs] = (d,u) with d € dom(i). We then write Ioggedlng(b,r,u,i,lsid).

Definition 57 (User started a login flow). For a run p of an OIDC web system with web attacker OI'DC" we say that the user
of the browser b started a login session identified by a nonce Isid at the RP r in a processing step Q in p if (1) in that processing
step, the browser b was triggered, selected a document loaded from an origin of r, executed the script script_rp_index in that
document, and in that script, executed the Line 7 of Algorithm 22, and (2) r sends an HTTPS response corresponding to the
HTTPS request sent by b in Q and in that response, there is a header of the form (Set-Cookie, [sessionId:(lsid, T, T, T)]).
We then write startedg(b7 rlsid).



Definition 58 (User authenticated at an IdP). For a run p of an OIDC web system with web attacker OIDC" we say that the
user of the browser b authenticated to an IdP i using an identity u for a login session identified by a nonce Isid at the RP r if
there is a processing step Q in p with

Q0= (S,E,N)— (S E'\N')

(for some S, §', E, E’, N, N') in which the browser b was triggered, selected a document loaded from an origin of i, executed
the script script_idp_form in that document, and in that script, (1) in Line 4 of Algorithm 26, selected the identity u, and
(2) we have that the scriptstate of that document, when triggered, contains a nonce s such that scriptstate[state] = s and
S(r).sessionsllsid|[state] =s. We then write authenticatedg(b, ru,i,lsid).

Definition 59 (RP uses an access token). For a run p of an OIDC web system with web attacker OIDC" we say that the RP
r uses some access token ¢ in a login session identified by the nonce Isid established with the browser b at an IdP i if there is
a processing step Q in p with

Q= (S,E,N)— (S, E',N")

(for some S, §', E, E', N, N') in which (1) r calls the function USE_ACCESS_TOKEN with the first two parameters being Isid and
1, (2) S(r).issuerCache[S(r).sessions|lsid][identity]] € dom(i), and (3) (sessionid, (Isid,y,z,7')) €' S(b).cookies[d] for
d € dom(r), y,z,7' € Tp,. We then write usedAuthorizationg(b, ri,lsid).

Definition 60 (RP acts on the user’s behalf). For a run p of an OIDC web system with web attacker OI'DC" we say that the
RP r acts on behalf of the user with the identity u at an honest IdP 7 in a login session identified by the nonce Isid established
with the browser b if there is a processing step Q in p with

Q0= (S,E,N)— (S E'\N')

(for some S, S, E, E’, N, N') in which (1) r calls the function USE_ACCESS_TOKEN with the first two parameters being Isid
and £, (2) we have that there is a term g such that g €V S(i).records with r €{ g[access_tokens] and g[subject] = u, and (3)
(sessionid, (Isid,y,z,7)) €V S(b).cookies|d] for d € dom(r), y,z,7 € Ty We then write actsOnUsersBehalfg(b,r,u,i,lsid).

For session integrity for authentication we say that a user that is logged in at some RP must have expressed her wish to be
logged in to that RP in the beginning of the login flow. If the IdP is honest, then the user must also have authenticated herself
at the IdP with the same user account that RP uses for her identification. This excludes, for example, cases where (1) the user
is forcefully logged in to an RP by an attacker that plays the role of an IdP, and (2) where an attacker can force a user to be
logged in at some RP under a false identity issued by an honest IdP.

Definition 61 (Session Integrity for Authentication). Let OI'DC" be an OIDC web system with web attackers. We say that
OIDC" is secure w.r.t. session integrity for authentication iff for every run p of OIDC", every processing step Q in p with

Q= (S,E.N) = (§,E'\N)
(for some S, §', E, E', N, N'), every browser b that is honest in S, every i € IdP, every identity u that is owned by b, every
r € RP that is honest in S, every nonce Isid, and Ioggedlng(b,r,u,i,lsid) we have that (1) there exists a processing step Q' in
/
p (before Q) such that startedg (b,r,Isid), and (2) if i is honest in S, then there exists a processing step Q" in p (before Q)
//

such that authenticatedg (b, r,u,i,lsid).

For session integrity for authorization we say that if an RP uses some access token at some IdP in a session with a user,
then that user expressed her wish to authorize the RP to interact with some IdP. If the IdP is honest, and the RP acts on the

user’s behalf at the IdP (i.e., the access token is bound to the user’s identity), then the user authenticated to the IdP using that
identity.

Definition 62 (Session Integrity for Authorization). Let OIDC" be an OIDC web system with web attackers. We say that
OIDCY is secure w.r.t. session integrity for authentication iff for every run p of OIDC", every processing step Q in p with
Q= (S,E,N)— (S',E',N")

(for some S, S, E, E', N, N'), every browser b that is honest in S, every i € IdP, every identity u that is owned by b, every
r € RP that is honest in S, every nonce Isid, we have that (1) if usedAuthorizationg(b,r7 i,Isid) then there exists a processing
step Q' in p (before Q) such that startedg (b,r,Isid), and (2) if i is honest in S and actsOnUsersBehaIfg(bm u,i,lsid) then

there exists a processing step Q" in p (before Q) such that authenticatedg (b,r,u,i,lsid).



APPENDIX I
PROOF OF THEOREM 1

Before we prove Theorem 1, in order to provide a quick overview, we first provide a proof sketch. We then show some
general properties of OIDC web systems with a network attacker, and then proceed to prove the authentication, authorization,
and session integrity properties separately.

A. Proof Sketch

For authentication and authorization, we first show that the secondary security properties from Section V-C hold true (see
Lemmas 1-6 below). We then assume that the authentication/authorization properties do not hold, i.e., that there is a run p of
OIDC" that does not satisfy authentication or authorization, respectively. Using Lemmas 1-6, it then only requires a few steps
to lead the respective assumption to a contradication and thereby show that OI'DC”" enjoys authentication/authorization.

For the session integrity properties, we follow a similar scheme. We first show Lemma 9, which essentially says that a
web attacker is unable to get hold of the state value that is used in a session between an honest browser b, an honest RP
r, and an honest IdP i. (Recall that the state value is essential for session integrity.) We then show session integrity for
authentication/authorization by starting from the latest “known” processing steps in the respective flows (e.g., for authentication,
Ioggedln/g(b,r,u,i,lsid)) and tracking through the OIDC flows to show the existence of the earlier processing steps (e.g.,

startedg (b,r,Isid)) and their respective properties.

B. Properties of OI'DC"

Let OIDC" = (W, S,script, E°) be an OIDC web system with a network attacker. Let p be a run of OI'DC". We write
sy = (S%,E*,N¥) for the states in p.

Definition 63. We say that a term ¢ is derivably contained in (a term) t' for (a set of DY processes) P (in a processing step
si— Sit1 of a run p = (sg,s1,...)) if ¢ is derivable from ¢ with the knowledge available to P, i.e.,

redo({r'yulJ S (p))

peEP

Definition 64. We say that a set of processes P leaks a term t (in a processing step s; — siv1) to a set of processes P if there
exists a message m that is emitted (in s; — s;41) by some p € P and ¢ is derivably contained in m for P’ in the processing step
si = Sip1. If we omit P, we define P/ := W\ P. If P is a set with a single element, we omit the set notation.

Definition 65. We say that an DY process p created a message m (at some point) in a run if m is derivably contained in a
message emitted by p in some processing step and if there is no earlier processing step where m is derivably contained in a
message emitted by some DY process p'.

Definition 66. We say that a browser b accepted a message (as a response to some request) if the browser decrypted the
message (if it was an HTTPS message) and called the function PROCESSRESPONSE, passing the message and the request
(see Algorithm 8).

Definition 67. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of a run if it can derive the
term from its knowledge, i.e., € dp(S(p)).

Definition 68. We say that a script initiated a request r if a browser triggered the script (in Line 10 of Algorithm 7) and the
first component of the command output of the script relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the
browser issues the request r in the same step as a result.

The following lemma captures properties of RP when it uses HTTPS. For example, the lemma says that other parties cannot
decrypt messages encrypted by RP.

C. Proof of Authentication

We here want to show that every OIDC web system is secure w.r.t. authentication, and therefore assume that there exists an
OIDC web system that is not secure w.r.t. authentication. We then lead this to a contradiction, thereby showing that all OIDC
web systems are secure w.r.t. authentication. In detail, we assume:

Lemma 1 (Integrity of Issuer Cache). For any run p of an OIDC web system OIDC" with a network attacker or an OIDC web
system OIDC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S, every identity id € ID’,
every relying party r that is honest in S, we have that S(r).issuerCache[id] = () (not set) or S(r).issuerCachelid] € dom(i).

PROOF. Initially, the issuer cache of an honest relying party is empty (according to Definition 49). This issuer cache can
only be modified in Line 11 of Algorithm 16. There, the value of S'(r).issuerCachelid’] (for some I < j) is taken from



an HTTPS response. The value of id’ is taken from session data (Line 3) which is identified by a session id that is taken
from the internal reference data of the incoming message. This internal reference data must have been created previously in
Algorithm 10 (HTTPS_SIMPLE_SEND) which must have been called in Line 10 of Algorithm 21 (since this is the only place
where the reference data for a webfinger request is created). In this algorithm, it is easy to see that the request to which the
request is sent (see Line 6) is the domain part of the identity. We therefore have that a webfinger request must have been sent
(using HTTPS) to the IdP i. (Note that an attacker can neither decrypt any information from this request, nor spoof a response
to this request. The request must therefore have been responded to by the honest IdP. )

Since the path of this request is /.wk/webf inger, the IdP can respond to this request only in Lines 3ff. of Algorithm 24. Since
the IdP there chooses an issuer value that is one of its own domains (see Line 4), we finally have that S(r).issuerCachelid] = ()
(if the response is blocked or the webfinger request was never sent) or we have that S(r).issuerCachelid] € dom(i), which
proves the lemma. n

Lemma 2 (Integrity of oidcConfigCache). For any run p of an OIDC web system OIDC" with a network attacker or an
OIDC web system OIDC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S, every
domain d € dom(i), every relying party r that is honest in S, / € {1,2,3,4} we have that S(r).oidcConfigCache[d] = () (not
set) or S(r).oidcConfigCache[d] = [issuer :d,auth_ep: u|,token_ep: up, jwks_ep : u3,reg_ep : us] with u; being URLs,
u;.host € dom(i), and u;.protocol =S.

PROOF. This proof proceeds analog to the one for Lemma 1 with the following changes: First, the OIDC configuration cache
is filled only in Line 17 of Algorithm 16. It requires a request that was created in Line 16 of Algorithm 21. This request was
not sent to the domain contained in an ID (as above) but instead to the issuer (in this case, d). The issuer responds to this
request in Lines 8ff. of Algorithm 24. There, the issuer only choses the redirection endpoint URIs such that the host is the
domain of the incoming request and the protocol is HTTPS (S). This proves the lemma. n

Lemma 3 (Integrity of JWKS Cache). For any run p of an OIDC web system OIDC" with a network attacker or an OIDC web
system OIDC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S, every domain d € dom(i),
every relying party r that is honest in S, we have that S(r).jwksCache[d] = () (not set) or S(r).jwksCache|d] = pub(S(i).jwks).

PROOF. This proof proceeds analog to the one for Lemma 2. The relevant HTTPS request by r is created in Line 21 of
Algorithm 21, and responded to by the IdP i in Lines 15ff. of Algorithm 24. There, the IdP chooses its own signature verification
key to send in the response. This proves the lemma. n

Lemma 4 (Integrity of Client Registration). For any run p of an OIDC web system OIDC" with a network attacker or an
OIDC web system OIDC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S, every
domain d € dom(i), every relying party r that is honest in S, every client id ¢ that has been issued to r by i, every URL
u €V S(i).clients|c|[redirect_uris] we have that u.host € dom(r) and u.protocol =S.

PROOF. From Definition 54 it follows that an HTTPS request must have been sent from r to i in Lines 23ff. of Algorithm 21.
This request must have been processed by 7 in Lines 18ff. of Algorithm 24, and, after receiving the client id from some other party
(usually the attacker), in Algorithm 25. From the latter algorithm it is easy to see that the redirection endpoint data must have been
taken from r’s initial registration request to create the dictionary stored in S(i).clients[c]. This data, however, was chosen by r
in Line 2 of Algorithm 21 such that u.host € dom(r) and u.protocol =8 for every u €' S(i).clients|c|[redirect_uris|.m

Lemma 5 (Other parties do not learn passwords). For any run p of an OIDC web system OIDC" with a network attacker
or an OIDC web system OIDC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S,
every identity id € ID', every browser b with b = ownerOfID(id) that is honest in S, every p € W\ {b,i} we have that
secretOfID(id) & dy(S' (p)).

PROOF. Let s := secretOflD(id). Initially, in S°, s is only contained in S°(b).secrets[(d,S)] with d € dom(i) and in no other
states of any atomic processes (or in any waiting events). By the definition of the browser, we can see that only scripts loaded
from the origins (d,S) can access s. We know that i is an honest IdP. Now, the only script that an honest IdP sends to the
browser is script_idp_form. This scripts sends the form data only to its own origin, which means, that the form data is sent over
HTTPS and to the honest IdP. In this request, the script uses the path /auth2. There, identity and password are checked, but
not used otherwise. Therefore, the form data cannot leak from the honest IdP. It could, however, leak from the browser itself.
The form data is sent via POST, and therefore, not used in any referer headers. A redirection response from the server contains
the status code 303, which implies that the browser does not send the form data again when following the redirection. Since
there are also no other scripts from the same origin running in the browser which could access the form data, the password s
cannot leak from the browser either. This proves Lemma 5. n



Lemma 6 (Attacker does not Learn ID Tokens). For any run p of an OIDC web system OIDC" with a network attacker or an
OIDC web system OI'DC" with web attackers, every configuration (S,E,N) in p, every IdP i that is honest in S, every domain
d € dom(i), every identity id € ID' with b = ownerOfID(id) being an honest browser (in S), every relying party r that is honest
in S, every client id ¢ that has been issued to r by i, every term y, every id token ¢t = sig([iss:d,sub:id,aud : c¢,nonce: y|,k)
with k = S(i).jwks, every attacker process a we have that t & dy(S(a)).

PROOF. The signing key k is only known to i initially and at least up to S (since i is honest). Therefore, only i can create ¢.
There are two places where an honest IdP can create such a token in Algorithm 24: In Line 60 (immediately after receiving
the user credentials) and in Lines 92ff. (after receiving an access token).

We now distinguish between these two cases to show that in either case, the attacker cannot get hold of an id token. We
start with the first case.

ID token was created in Line 60.
To create ¢, the IdP i must have received a request to the path /auth?2 in Lines 28ff. of Algorithm 24. It is clear that
i sends the response to this request to the sender of the request, and, if that sender is honest, the response cannot be
read by an attacker. The request must contain secretOfld(id). Only b and i know this secret (per Lemma 5). Since i
does not send requests to itself, the request must have been sent from b. Since the origin header in the request must
be a domain of i, we know that the request was not initiated by a script other than i’s own scripts, in particular, it
must have been initiated by script_idp_form.
Now it is easy to see that this script does not use the token 7 in any way after the token was returned from i, since
the script uses a form post to transmit the credentials to i, and the window is subsequently navigated away. Instead, i
provides an empty script in its response to b. This response contains a location redirect header. It is now crucial to
check that this location redirect does not cause the id token to be leaked to the attacker: With Lemma 4 we have that
the redirection URIs that are registered at i for the client id ¢ only point to domains of r (and use HTTPS).
We therefore know that b will send an HTTPS request (say m) containing ¢ to r. We have to check whether r or a
script delivered by r to b will leak ¢. Algorithm 17 processes all HTTPS requests delivered to r. As i redirected b using
the 303 status code, the request to » must be a GET request. Hence,  does not process this request in Lines 6ff. of
Algorithm 17. Lines 2ff. do only respond with a script and do not use ¢ in any way. We are left with Lines 13ff. to
be analyzed.
As in m the id token ¢ is always contained in a dictionary under the key id_token and this dictionary is either in
the parameters, the fragment, or the body of m, it is now easy to see that  does not store or send out ¢ in any way.
We now have to check if a script delivered by r to b leads to ¢ being leaked. First note that » always sets the header
ReferrerPolicy to origin in every HTTP(S) response r sends out. Hence, ¢ can never leak using the Referer
header.
There are only two scripts that r may deliver: (1) The script script_rp_index either issues a FORM command to the
browser, which does not contain ¢, or this script issues a HREF command to the browser for some URL, which also
does not contain ¢. (2) The script script_rp_get_fragment takes the fragment of the current URL (which may be a
dictionary that contains ¢ under the key id_token) and the iss parameter and issues an HTTPS request to r for the
path /redirect_ep, which will be processed by r in Lines 13ff. of Algorithm 17. Now, the same reasoning as above
applies.

ID token was created in Lines 92ff.
In this case, the id token is created by i only when an HTTPS request was received by i that matches the following
criteria: (a) it must be for the path /token, (b) it must contain the client id ¢ in the body (under the key client_id),
and (c) it must contain a authorization code in the body (under the key code) that occurs in one of i’s internal
records with a matching subject, issuer, and nonce. To be more precise, the request must contain a code code such
that there is a record rec with rec €V S(i).records and rec[issuer] = d, rec[subject] = id, rec[client_id] =,
and rec[code] = c. Such a record can only be created and the authorization code code issued under exactly the same
circumstances that allow an id token (of the above form) to be created in Line 92. With exactly the same reasoning
as above, this time for the code instead of the id token, we can follow that code does not leak to the attacker.

We have therefore shown that no attacker process can get hold of the id token ¢. This proves the lemma. n
Assumption 1. There exists an OIDC web system OIDC" with a network attacker such that there exists a run p of OI'DC", a
configuration (S,E,N) in p, some r € RP that is honest in S, some identity id € ID with governor(id) being an honest IdP (in

S) and ownerOfID(id) being an honest browser (in S), some service session identified by some nonce n for id at r, and n is
derivable from the attackers knowledge in S (i.e., n & dp(S(attacker))).

Lemma 7. Assumption 1 is a contradiction.



PROOF. We first recall how the service session identified by some nonce n for id at r is defined. It means that
there is some session id x and a domain d € dom(governor(id)) with S(r).sessions|x][loggedInAs| = (d,id) and
S(r).sessions[x][serviceSessionId] =n. Now the assumption is that n is derivable from the attacker’s knowledge. Since
we have that S(r).sessions[x|[serviceSessionId| =n, we can check where and how, in general, service session ids can be
created. It is easy to see that this can only happen in Algorithm 20, where, in Line 18, the RP chooses a fresh nonce as the
value for the service session id, in this case x. In the line before, it sets the value for S(r).sessions|x][loggedInAs], in this
case (d,id). In the Lines 9ff., r performs several checks to ensure the integrity and authenticity of the id token.
The function function CHECK_ID_TOKEN can be called in either (a) Line 42 of Algorithm 17 or (b) in Line 28 of
Algorithm 16.
We can now distinguish between these two cases.
Case (a).
In this case, we can easily see that the same party that finally receives the service session id x, must have provided,
in an HTTPS request, an id token (say, t') with the following properties (for some [ < j):

extractmsg(t')[iss] =d
extractmsg(t')[sub] = id
extractmsg(r')[aud] = §'(r).clientCredentialsCache[d][client_id]
checksig(t’, pub(S(i).jwks)) = T .

The attacker (and, by extension, any other party except for i, b, and r), however, cannot know such an id token (see
Lemma 6). Since r and i do not send requests to r, the id token must have been sent by b to r. As the service
session id x is only contained in a set-cookie header with the httpOnly and secure flags set, b will only ever send the
service session id x to r (contained in a cookie header). As b does not leak x in any other way and as r does not
leak information sent in cookie headers, the service session id x does not leak.
Case (b).

Otherwise, the party that finally receives the service session id x needs to provide a code ¢ such that, when this code
is sent to the token endpoint of i (Algorithm 18), i responds with an id token matching the criteria listed in Case (a).
This, however, would mean that an attacker, knowing this code, could do the same, violating Lemma 6. (Note that for
every run where a client secret is associated with the client id there is also a run where the client secret is not used;
the client secret does not prevent the attacker from requesting an id token at the token endpoint for a valid code.)

We therefore have shown that the attacker cannot know x, proving the lemma and showing that Assumption 1 is, in fact, a
contradiction. -

D. Proof of Authorization

As above, we assume that there exists an OIDC web system that is not secure w.r.t. authorization and lead this to a
contradiction.

Assumption 2. There exists an OIDC web system with a network attacker OI'DC", a run p of OIDC", a state (S/,E/,N7) in p,
a relying party € RP that is honest in S/, an identity provider i € IdP that is honest in S/, a browser b that is honest in S/, an
identity id € ID' owned by b, a nonce n, a term x €' §/(i).records with x[subject] = id, n €\ x[access_tokens], and the
client id x[client_id] has been issued by i to r, and n is derivable from the attackers knowledge in S/ (i.e., n € dp (S’ (attacker))).

Lemma 8. Assumption 2 is a contridiction.

PROOF. We have that n € dy(S’(attacker)) and therefore, there must have been a message from a third party to attacker (or
any other corrupted party, which could have forwarded n to the attacker) that contained n. We can now distinguish between
the parties that could have sent n to the attacker (or to the corrupted party):

The access token n was sent by the browser b:

We now track different cases in which the access token n can get into b’s knowledge. We will omit the cases in which
b learns n from any dishonest party as in such a case there is a different run p’ of OIDC" in which this dishonest party
immediately sends n to the attacker.

(I) First, we analyze the case in which b has learned n from an honest (in $/) identity provider, say i’. In this case, b must
have received an HTTPS response from i’ (honest identity providers do not send out unencrypted HTTP responses). Honest
identity providers send out HTTPS responses in Lines 6, 14, 17, 27, 72, and 98 of Algorithm 24 and Line 17 of Algorithm 25.
It is easy to see that i/ does not send out n in Lines 6, 14, 17, and 27 of Algorithm 24 and Line 17 of Algorithm 25 (given
that the attacker does not know n), leaving Lines 72, and 98 of Algorithm 24 to analyze.



(a) If i/ sends out n in Line 72 of Algorithm 24, b must have sent an HTTPS POST request bearing an Origin header for
one of the domains of i’ to i’. As i’ only delivers the script script_idp_form, only this script could have caused this request
(using a FORM command). Hence, b will navigate the corresponding window to the location indicated in the Location header
of the HTTPS response assembled in Lines 28ff. of Algorithm 24. The body of this response can consist of an authorization
code (a fresh nonce), an access token (a fresh nonce), and an id token consisting of one domain of i, a valid user name for 7/,
a client id, and a nonce (say n’) from the request.

We now reason why i’ must be i, and the access token in the response must be z. In the id token, only the client id and the
nonce n’ could be n. As the client id is always set by the attacker during registration, the client id cannot be n. The nonce
n' originates from the request sent by b on the command of script_idp_form. In this request, the nonce n’ must be contained
in the URL, which is the URL from which the script was loaded before. Hence, the browser must have been navigated to
this URL. As the attacker does not know n at this point, only honest scripts or honest web servers could have navigated the
browser to such an URL (containing 7). Honest relying parties only populate the parameter nonce (bearing n’) in such a
redirect with a fresh nonce, honest identity providers do not populate such an URL parameter by themselves, but could have
used this parameter in a redirect based on a registered redirect URL. As honest parties never register such a redirect URL, n’/
cannot be n. Hence, only the access token in the response above can be n. As the access token is a fresh nonce, we must have
that ¢/ is i and that i creates the term x €0 §/(i).records with x[subject] = id, n €' x[access_tokens]| (i will never create
such a term at any other time), and the client id x[client_id] has been issued by i to r. Hence, the location redirect issued
by i must point to an URL of r with the path /redirect_ep (see Lemma 4) and this URL contains the parameter iss with a
domain of i. The access token n is only contained in the fragment of this URL under the key access_token.

Now, b sends an HTTPS request to r. This request does not contain n (as it is placed in the fragment part of the URL). The
relying party r can (regardless of the path) send out only the scripts script_rp_index and script_rp_get_fragment as a response
to such a request. The script script_rp_index ignores the fragment of its URL. The script script_rp_get_fragement takes the
fragment of the URL and uses it as the body of a POST request to its own origin (which is r) with path /redirect_uri.
When r processes this POST request, r only ever uses n in Line 45 of Algorithm 17. There, the access token n and the value
of the parameter iss (a domain of i) is processed by Algorithm 19. From Lemma 2, we know that r will only send 7 to the
token endpoint of i in an HTTPS request. This request is then processed by i in Lines 73ff. of Algorithm 24. There, i only
checks n, but does not send out 7.

If b sends out a response, the same reasoning as above applies. Hence, we have that n does not leak to the attacker in this
case.

(b) If // sends out n in Line 98 of Algorithm 24, we have that the response does not contain a script or a redirect. The
browser would only interpret such a response if the request was caused by an XMLHTTPREQUEST command of a script. Honest
scripts do not issue such a command, leaving only the attacker script as the only possible source for such a request. If i’ is
not i, it is easy to see that this response cannot contain n. The identity provider i only sends out n (taken from the subterm
records from its state) if the request contains a valid authorization code for this access token. With the same reasoning as for
the authentication property above, the attacker cannot know a valid id token for any user id owned by b. If the attacker would
know a valid authorization code, he could retrieve a valid id token (for such a user id) from i. Hence, the attacker cannot know
a valid authorization code. As this reasoning also applies for the attacker script, the attacker script could not have caused a
request to i revealing n.

(IT) Now, we analyze the case in which b received n from some honest (in $/) relying party, say . In this case, b must have
received an HTTPS response from # (honest relying parties do not send out unencrypted HTTP responses). Honest relying
parties only send out such HTTPS responses in Lines 5 and 29 of Algorithm 17, Line 23 of Algorithm 20, and Line 39 of
Algorithm 21. In the former three cases, r’ only sends out fixed information and fresh nonces (either chosen by # directly
before sending out the message or the HTTPS nonce and key chosen by b when creating the request). In the latter case, »/
(besides the pieces of information as before) also adds information from its OpenID Connect configuration cache (i.e., client
id and authorization URL). From Lemma 2 and 4 we know that if #/ gathered this information from an honest party, this
information cannot contain n. As the attacker does not know 7 at this point, this registration information cannot contain n if r/
gathered this information from a dishonest party. Hence, b cannot have learned n from any .

(IIT) b cannot have learned n from a different honest (in S/) browser as honest browsers do not create messages that can be
interpreted by honest browsers.

(IV) b cannot have learned n from the attacker, as the attacker does not know »n at this point.

The access token n was sent by the IdP i: We can see that access tokens are sent by the IdP only after a request to the
path (endpoints) /auth2 or to the path and /token.

In case of a request to the path /auth2, a pair of access tokens is created and the first access token in the pair is returned
from the endpoint. If the attacker would be able to learn n from this endpoint such that there exists a record x €' §/(i).records
with x[subject] = id, then the attacker would need to provide the user’s credentials to the IdP i. The attacker cannot know
these credentials (Lemma 5), therefore the attacker cannot request n from this endpoint.



In case of a request to the path /token, the attacker would need to provide an authorization code that is contained in the
same record (in this case x) as n. Now, recall that we have that x[subject] =id and ¢ := x[client_id] has been issued to
r by i. We can now see that if the attacker would be able to send a request to the endpoint /token which would cause a
response that contains 7, the attacker would also be able to learn an id token of the form shown in Lemma 6 (the issuer is a
domain of i, the subject is id, and the audience is c¢). This would be a contradiction to Lemma 6.

We can conclude that the access token n was not sent by the IdP i.

The access token n was sent by the RP r:

The only place where the (honest) RP uses an access token is in Algorithm 19. There, the access token is sent to the domain
of the token endpoint (compare Algorithm 18, where the authorization code is sent to that endpoint). We can now see that
the access token is always sent to i: If the access token would be sent to the attacker, so would the authorization code in
Algorithm 18, and Lemma 6 would not hold true.

E. Proof of Session Integrity

Before we prove this property, we highlight that in the absence of a network attacker and with the DNS server as defined
for OIDC", HTTP(S) requests by (honest) parties can only be answered by the owner of the domain the request was sent to,
and neither the requests nor the responses can be read or altered by any attacker unless he is the intended receiver.

We further show the following lemma, which says that an attacker (under the assumption above) cannot learn a state value
that is used in a login session between an honest browser, an honest IdP, and an honest RP.

Lemma 9 (Third parties do not learn state). There exists no run p of an OIDC web system with web attackers OIDC", no
configuration (S, E,N) of p, no r € RP that is honest in S, no i € IDP that is honest in S, no browser b that is honest in S, no nonce
Isid € A\, no domain / € dom(r) of r, no terms g, x, y, z € Ty, no cookie ¢ := (sessionld, (Isid,x,y,z)), no atomic DY process
p € W\ {b,i,r} such that (1) S(r).sessions|[lsid] = g, (2) g[state] € dp(S(p)). (3) S(r).issuerCache[g[identity]] € dom(i),
and (4) ¢ € S(b).cookies]h].

PROOF. To prove Lemma 9, we track where the login session identified by Isid is created and used.

Login session ids are only chosen in Line 10 of Algorithm 17. After the session id was chosen, its value is sent over the
network to the party that requested the login (in Line 39 of Algorithm 21). We have that for Isid, this party must be b because
only r can set the cookie ¢ for the domain 7 in the state of b'° and Line 39 of Algorithm 21 is actually the only place where
r does so.

Since b is honest, b follows the location redirect contained in the response sent by . This location redirect contains state (as
a URL parameter). The redirect points to some domain of i. (This follows from Lemma 2.) The browser therefore sends (among
others) state in a GET request to i. Of all the endpoints at i where the request can be received, the authorization endpoint is
the only endpoint where state could potentially leak to another party. (For all other endpoints, the value is dropped.) If the
request is received at the authorization endpoint, state is only sent back to b in the initial scriptstate of script_idp_form. In this
case, the script sends state back to i in a POST request to the authorization endpoint. Now, i redirects the browser b back to
the redirection URI that was passed alongside state from r via the browser to i. This redirection URI was chosen in Line 2 of
Algorithm 21 and therefore points to one of ’s domains. The value state is appended to this URI (either as a parameter or in
the fragment). The redirection to the redirection URI is then sent to the browser b. Therefore, b now sends a GET request to r.

If state is contained in the parameter, then state is immediately sent to r where it is compared to the stored login session
records but neither stored nor sent out again. In each case, a script is sent back to b. The scripts that r can send out are
script_rp_index and script_rp_get_fragment, none of which cause requests that contain state (recall that we are in the case
where state is contained in the URI parameter, not in the fragment). Also, since both scripts are always delivered with a
restrictive Referrer Policy header, any requests that are caused by these scripts (e.g., the start of a new login flow) do not
contain state in the referer header.?’

If state is contained in the fragment, then state is not immediately sent to r, but instead, a request without state is sent to r. Since
this is a GET request, r either answers with a response that only contains the string ok but no script (Lines 23ff. of Algorithm 20),
a response containing script_rp_index (Lines 2ff. of Algorithm 17), or a response containing script_rp_get_fragment (Line 29 of
Algorithm 17). In case of the ok response, state is not used anymore by the browser. In case of script_rp_index, the fragment
is not used. (As above, there is no other way in which state can be sent out, also because the fragment part of an URL is
stripped in the referer header.) In the case of script_rp_get_fragment being loaded into the browser, the script sends state in
the body of an HTTPS request to r (using the path /redirect_ep). When r receives this request, it does not send out state
to any party (see Lines 13ff. of Algorithm 17).

This shows that state cannot be known to any party except for b, i, and r. n

19Note that we have only web attackers.
20We note that, as discussed earlier, without the Referrer Policy, state could leak to a malicious IdP or other parties.



Proof of Session Integrity for Authentication. To prove that every OIDC web system with web attackers is secure w.r.t. session
integrity for authentication, we assume that there exists an OIDC web system with web attackers which is not secure w.r.t. session
integrity for authentication and lead this to a contradiction.

Assumption 3. There exists an OIDC" be an OIDC web system with web attackers, a run p of OI'DC", a processing step Q
in p with
Q=(S,E,N) = (§,E',N')

(for some S, S', E, E’, N, N'), a browser b that is honest in S, an IdP i € IdP, an identity u that is owned by b, an RP
r € RP that is honest in S, a nonce Isid, with Ioggedlng(b, r,u,i,lsid) and (1) there exists no processing step Q' in p (before

Q) such that startedg(b, r,Isid), or (2) i is honest in S, and there exists no processing step Q" in p (before Q) such that
authenticatedg (b,r,u,i,lsid).

Lemma 10. Assumption 3 is a contradiction.

PROOF. (1) We have that Ioggedlng(b,r,u,i,lsid). With Definition 56 we have that r sent out the service session id belonging
to Isid to b. (This can only happen when the function CHECK_ID_TOKEN (Algorithm 20) was called with Isid as the first
parameter.) This means that » must have received a request from b containing a cookie with the name sessionId and the
value Isid: The response by r (which we know was sent to b) was sent in Line 23 in Algorithm 20. There, r looks up the
address of b using the login session record under the key redirectEpRequest. This key is only ever created in Line 35 of
Algorithm 17. This line is only ever called when r receives an HTTPS request from b with the cookie as described.

We can now track how the cookie was stored in b: Since the cookie is stored under a domain of r and we have no
network attacker, the cookie must have been set by r. This can only happen in Line 39 in Algorithm 21. Similar to the
redirectEpRequest session entry above, r sends this cookie as a response to a stored request, in this case, using the key
startRequest in the session data. This key is only ever created in Lines 6ff. of Algorithm 17. Hence, there must have been
a request from b to r containing a POST request for the path /startLogin with an origin header for an origin of r. There
are only two scripts which could potentially send such a request, script_rp_index and script_rp_get_fragment. It is easy to see
that only the lformer send requests of the kind described. We therefore have a processing step Q' that happens before Q in p
with startedg (b,r,lsid).

(2) Again, we have that Ioggedlng(b,r,u,i,lsid). Now, however, i is honest.

We first highlight that if r receives an HTTPS request, say m, which contains state such that S(r).sessions[lsid]|[state] =
state and contains a cookie with the name sessionId and the value Isid then this request must have come from the browser
b and be caused by a redirection from i or a script from r. From Ioggedlng(b,r,u,i,lsid) it follows that there is a term
g such that S(r).sessionsllsid] = g, and g[loggedInAs| = (d,u) with d € dom(i). From the Algorithm 20 we have that
S(r).issuerCache(g[identity]] =d. With Lemma 9 we have that only b, r, and i know state.

We can now show that m must have been caused by i by means of a Location redirect that was sent to b or by the script
script_rp_get_fragment. First, neither r nor i send requests that contain cookies. The request must therefore have originated
from b. Since no attacker knows stare, the request cannot have been caused by any attacker scripts or by redirects from parties
other than r or i (otherwise, there would be runs where the attacker learns state).

Redirects from » can be excluded, since r only sends a redirection in Line 39 in Algorithm 21 but there, a freshly chosen
state value is used, hence, there is only one processing step in which r uses state for this redirect. This is the processing step
where r adds state to the session data stored under the key Isid. Since this is a session in which the honest IdP i is used, and
with Lemma 2, we have that r does not redirect to itself (but to i instead).

The scripts script_rp_index and script_idp_form do not send requests with the state parameter. Therefore, the remaining
causes for the request m are either the script script_rp_get_fragment or a location redirect from i.

If the request m was caused by script_rp_get_fragment, then it is easy to see from the definition of script_rp_get fragment
(Algorithm 23) that this script only sends data from the fragment part of its own URI (except for the iss parameter) and it
sends this data only to its own origin. This script therefore must have been sent to b by r, which only sends this script after
receiving HTTPS request to the redirection endpoint (/redirect_ep). With the same reasoning as above this must have been
caused by a location redirect from i.

For clarity, by myeqiy we denote the response by i to the browser b containing this redirf/action. We now show that for megir
to take place, there must have been a processing step Q" (before Q) with authenticatedg (b,r,u,i,Isid) for some identity u'.

In the honest IdP i, there is only one place where a redirection happens, namely in Line 72 in Algorithm 24. To reach this
point, i must have received the login data for «’ in the HTTPS request corresponding to meqi;. This must be a POST request
with an origin header containing an 01/rigin of i. As i only uses script_idp_form, the request must have been caused by this
script. Hence, we have authenticatedg/(b,r, u' i, Isid).

We now only need to show that u’ = u.



With Ioggedlng(b7 r,u,i,lsid), we know that r must have called the function CHECK_ID_TOKEN (Algorithm 20). We further
have that S(r).sessions[lsid|[loggedInAs| = (d,u). We therefore have that i must have created an id token with the issuer d
and the identity u. CHECK_ID_TOKEN can be called in Line 28 in Algorithm 16 and in Line 42 in Algorithm 17. We now
distinguish between these two cases.

CHECK_ID_TOKEN was called in Line 28 in Algorithm 16: When the function is called in this line, there must have been
an HTTPS request reference with the string TOKEN (cf. generic web server model, Algorithm 10). Such a reference is only
created in Line 16 of Algorithm 18. With Lemma 2 we know that this HTTPS request was sent to the token endpoint (path
/token) of i (because the issuer, stored in the login session record, is i). Since the token endpoint returned an id token of
the form described above, and i is honest, there must have been a record in i, say v, with v[subject] = u. In the request to
the token endpoint, r must have sent a nonce ¢ such that v[code] = c. This request, as already mentioned, must have been
sent in Line 16 of Algorithm 18. This means, that there must have been an HTTPS request to i containing the session id Isid
as a cookie, ¢, and state. Such a request can only be the request m as shown above, hence there must have been the HTTPS
response myedir containing the values ¢ and state. Recall that we have the record v as shown above in the state of i. Such a
record is only created in i if authenticatedg,(b,r,u,i,lsid). Therefore, u = ' in this case.

CHECK_ID_TOKEN was called in Line 42 in Algorithm 17: In this case, the id ”token must have been contained in m and
Mredir @s above. Such an id token is only sent out in meqir by i if authenticatedf,2 (b, r,u,i,lsid). Therefore, u =4’ in every
case. n

Proof of Session Integrity for Authorization. To prove that every OIDC web system with web attackers is secure w.r.t. session
integrity for authorization, we assume that there exists an OIDC web system with web attackers which is not secure w.r.t. session
integrity for authorization and lead this to a contradiction.

Assumption 4. There is a OIDC web system OIDC" with web attackers, a run p of OIDC", a processing step Q in p with
Q= (S,E,N)— (S E',N')

(for some S, ', E, E’, N, N') a browser b that is honest in S, an IdP i € |dP, an identity u that is owned by b, an RP r € RP
that is honest in S, a nonce Isid, with (1) usedAuthorizationg(b,r,i7 Isid) and there exists no processing step Q' in p (before

Q) such that startedg(b,r, Isid), or (2) i is honest in S and actsOnUsersBehaIfg(b,r,u,i,lsid) and there exists no processing
step Q" in p (before Q) such that authenticatedg (b,r,u,i,lsid).

Lemma 11. Assumption 4 is a contradiction.

PROOF. (1) We have that usedAuthorizationg(b, r,i,Isid). With Definition 59 we have that r sent out the access token belonging
to Isid to i. This can only happen when the function USE_ACCESS_TOKEN (Algorithm 19) was called with Isid. This function
is called in Line 45 of Algorithm 17 and in Line 27 of Algorithm 16.

In both cases, there must have been a request, say m, to r containing a cookie with the session id Isid. In the former case,
this is the request that is processed in the same processing step as calling the function USE_ACCESS_TOKEN. In the latter
case, there must have been an HTTPS request reference with the string TOKEN (cf. generic web server model, Algorithm 10).
Such a reference is only created in Line 16 of Algorithm 18. To get to this point in the algorithm, a request as described above
must have been received. Since we have web attackers (and no network attacker), it is easy to see that this request must have
been sent by b. With the same reasoning as in the proof, for session integrity for authentication, we now have that there exists
a processing step Q' in p (before Q) such that startedg (b,r,lsid).

(2) We have that i is honest and actsOn UsersBehaIfg’(b, r,u,i,lsid). From (1) we know that r must have received a request m
from b containing a cookie with the session id Isid. Therefore, we know that my.qi; exists just as in the proof for Lemma 10 (2).
As in that proof, we have that authenticatedgﬂ(bm, u',i,lsid) for some identity u’. We therefore need to show that u = u'.

With actsOnUsersBehalfg(lL ru,i,lsid), we know that r must have called the function USE_ACCESS_TOKEN with some
access token 7 (Algorithm 19). We further have that there is a term g such that g €0 § (i).records with r € 0 glaccess_tokens]
and g[subject] = u.

USE_ACCESS_TOKEN can be called in Line 27 in Algorithm 16 and in Line 45 in Algorithm 17. We now distinguish
between these two cases.

USE_ACCESS_TOKEN was called in Line 27 in Algorithm 16: When the function is called in this line, there must have
been an HTTPS request reference with the string TOKEN (cf. generic web server model, Algorithm 10). Such a reference is
only created in Line 16 of Algorithm 18. With Lemma 2 we know that this HTTPS request was sent to the token endpoint
(path /token) of i (because the issuer, stored in the login session record, is i). Since the token endpoint returned the access
token ¢, and i is honest, there must have been a record in i, say v, with v[subject] = u. In the request to the token endpoint,
r must have sent a nonce ¢ such that v[code] = c¢. This request, as already mentioned, must have been sent in Line 16 of



Algorithm 18. This means, that there must have been an HTTPS request to i containing the session id Isid as a cookie, c,
and state. Such a request can only be the request m as shown above, hence there must have been the HTTPS response miegir
containing the values ¢ and state. Recall that we have the record v as shown above in the state of i. Such a record is only
created in i if authenticatedg,(b,r,u,i,lsid). Therefore, u = u’ in this case.

USE_ACCESS_TOKEN was called in Line 45 in Algorithm 17: In this case, the access token ¢ must have been contained

!/
in m and myg;: as above. This access token is only sent out in myegi by i if authenticatedg (b, r,u,i,lsid). Therefore, u = u’
in every case.

FE. Proof of Theorem 1
With Lemmas 7, 8, 10, and 11, Theorem 1 follows immediately.
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