
 
 

University of Birmingham

Types for Location and Data Security in Cloud
Environments
Gazeau, Ivan; Chothia, Tom; Duggan, Dominic

DOI:
10.1109/CSF.2017.25

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gazeau, I, Chothia, T & Duggan, D 2017, Types for Location and Data Security in Cloud Environments. in 2017
IEEE 30th Computer Security Foundations Symposium (CSF). IEEE Computer Society Press, 30th IEEE
Computer Security Foundations Symposium, Santa Barbara, United States, 21/08/17.
https://doi.org/10.1109/CSF.2017.25

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 04/07/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1109/CSF.2017.25
https://doi.org/10.1109/CSF.2017.25
https://birmingham.elsevierpure.com/en/publications/27f3ca22-1a2d-4863-acb0-1b0643fb310d


Types for Location and Data Security
in Cloud Environments

Ivan Gazeau
LORIA, INRIA Nancy - Grand-Est

France

Tom Chothia
School of Computer Science,
Univ. of Birmingham, UK

Dominic Duggan
Stevens Inst of Technology,

Hoboken, NJ

Abstract—Cloud service providers are often trusted to be
genuine, the damage caused by being discovered to be attacking
their own customers outweighs any benefits such attacks could
reap. On the other hand, it is expected that some cloud service
users may be actively malicious. In such an open system, each
location may run code which has been developed independently
of other locations (and which may be secret). In this paper,
we present a typed language which ensures that the access
restrictions put on data on a particular device will be observed
by all other devices running typed code. Untyped, compromised
devices can still interact with typed devices without being able
to violate the policies, except in the case when a policy directly
places trust in untyped locations. Importantly, our type system
does not need a middleware layer or all users to register with a
preexisting PKI, and it allows for devices to dynamically create
new identities. The confidentiality property guaranteed by the
language is defined for any kind of intruder: we consider labeled
bisimilarity i.e. an attacker cannot distinguish two scenarios that
differ by the change of a protected value. This shows our main
result that, for a device that runs well typed code and only places
trust in other well typed devices, programming errors cannot
cause a data leakage.

I. INTRODUCTION

Organisations commonly trust their cloud providers not to
be actively malicious but may still need to verify that the cloud
service does not make mistakes and does store their data at
particular locations. For example, data protection laws prevent
the storage of certain forms of data outside the European
Union. In order to ensure compliance, a company policy may
require that data from a user’s device not be synchronized
with a cloud storage provider, unless that provider can certify
that the data will not be stored in data centers outside the EU.
Such checks against inappropriate storage of data can be costly
and time consuming, sometimes leading to organisations not
allowing their employees to use cloud services, even though a
particular cloud service may be known to be compliant with
data handling policies.

This paper presents a language-based approach to dealing
with these kinds of scenarios, of ensuring that data can be
shared with cloud services while ensuring compliance with
policies on data storage. The approach is based on a type
system that explicitly models trust between cloud services and
mobile devices, based on a notion of principals represented at
runtime by cryptographic keys. In this language, principals are
dynamically associated to (non-disjoint) sets of devices, and
the rights of devices to access data is based on sets of principals
(delineating the principals that are allowed to access protected
data). For instance, if two devices A and B can (individually)
act for a principal P , while devices B and C can act for

principal Q, then the right {P,Q} implicitly allows the devices
A, B and C to access data guarded by this right. We argue that
this two-layer representation of access rights (data guarded by
principal rights, and devices acting for principals) is convenient
to allow principals to share a device, and to allow one principal
to use several devices (laptop, mobile phone etc.)

Based on this type system, we present a language that
includes most of the primitives necessary for secure imperative
programming (multi-threading, references, secure channel es-
tablishment, and cryptographic ciphers). A key feature of this
language is the ability for new principals to dynamically join
the network (in the sense of making network connections to
cloud services and other devices) without having to register
to any public key infrastructure (PKI) or to use a particular
middleware layer1.

Our threat model assumes some “honest” collection of prin-
cipals (e.g. the employees of an enterprise) and some collection
of devices acting for those principals (e.g. devices provided
to those employees). A device may act for several principals,
in the sense that it may issue access requests on behalf of
any of the principals that it acts for), while a principal may
be associated with several devices. We describe the devices
acting for these principals as honest devices, in the sense that
they are certified according to the type system presented in
this paper to be in conformance with data sharing policies.
We refer to the corresponding principals for these devices as
“honest” rather than “trusted” because trust management is an
orthogonal issue for the scenarios that we consider. Our threat
model also allows for “dishonest” or untyped devices, acting
for outside principals, who should not be able to access the
data. These are the attacker devices. Our security guarantee is
that, as long as no honest device provides access to a dishonest
principal, the dishonest devices will not be able to obtain any
information from any honest devices, unless an honest device
has explicitly given the attacker access.

This capability is critical for cloud services. While it
is reasonable to assume that there exists a PKI to certify
the identities of cloud providers, and that cloud providers
are trusted by their users, client devices and their corre-
sponding principals are unlikely to have certificates. While
an infrastructure for mutual authentication, based on client
and server X509 certificates, might be provided as part of
an enterprise data sharing network, there are difficult issues

1 Although middleware for e-commerce (such as CORBA) was popular
in the 1990s, that approach was discredited by experience, while SOAP-
based approaches have been largely superseded by REST-based Web services,
that deliberately eschew the notion of a middleware at least for Internet
communication..



with extending this trust model to third party cloud service
providers. Furthermore, such a PKI does not provide the level
of confidence in conformance with data-sharing protocols, that
our approach provides for honest (well-typed) devices. Instead
of requiring such a global PKI, the approach described in this
article represents principals by cryptographic public keys, and
these are stored on devices like any other values. Our type
system therefore uses a nominal form of dependent types, to
reflect these runtime representatives of principal identity to the
type system, where access rights on data are tracked through
security labels attached to types.

Another contribution of the paper is a security guaran-
tee suitable for our threat model. As stated above, in an
open network, we must allow for “dishonest” devices that
are unchecked (untyped), and potentially malicious. These
devices are able to use any third-party cloud services, including
services used by honest devices. A secure data-sharing system
should remain robust to such an intruder. Our security guaran-
tee is that if data is protected with rights that only includes hon-
est principals (i.e., that do not include any principal which is
associated to an attacker device), then an attacker cannot learn
any information about that data. In this work, we are focused
on confidentiality of the data, and do not consider integrity
(that data has not been tampered with by attackers). There is a
notion of integrity in the sense of trust management underlying
our approach: Honest principals identify themselves by their
public keys, and these keys are to state access restrictions
on data, to specify when a device is allowed to “act for” a
principal, and to validate that communication channels are with
honest parties trusted to be type-checked and therefore con-
formant with data-sharing policies. This is reflected in several
aspects of the communication API, including the establishment
of communication channels, generating new principals and
transmitting those principals between devices.

A practical difficulty with expressing security guarantees in
this setting is that, as principals can be created dynamically,
it is not possible to statically check if a variable has a higher
or lower security level than some other variable. Consider the
following example:

Example 1: Assume three devices: an honest cloud service
with a certified principal p, and two (mobile) devices, an honest
device A and a malicious device B. The server code consists
of receiving two principal values p1 and p2 from the network
before it creates two memory locations x1 and x2 where x1
has rights {p, p1} while x2 has right {p, p2}. A secure location
is defined one which cannot be accessed by the attacker. If
we assume that devices A and B send their principal values
(public keys) to the server, then depending on which key is
received first, either x1 or x2 will be considered secure (only
accessible by the honest principal and the cloud provider),
while the other is explicitly accessible by the attacker. As
usual with information flow control type systems, we propagate
these access restrictions through the handling of data by the
cloud provider and the devices, ensuring that data protected by
the right {p, pi}, where pi is the representative for the honest
principal.

Therefore, our security property is a posteriori: once the system
has created a memory cell corresponding to some variable,
if the rights associated to this variable at creation time did
not include a principal controlled by the attacker, then there

will never be any leak about the contents of this memory cell
to the attacker. We argue that such a property is suitable for
cloud services to increase users’ confidence that their data
will not be leaked by the service due to a programming error.
Indeed, our system allows us to certify that once some principal
creates data, only explicitly authorised principals can obtain
information about that data, by statically checking the code
that processes that data. Verifying the identity of the principals
allowed to access the data, and deciding where to place trust
among the principals in a distributed system, is an important
consideration. However it properly remains the responsibility
of the application written in our language, and a concern which
is independent of this type system. Our approach serves to
guarantee proper handling of data among honest principals,
once an appropriate trust management system has established
who is honest.

Our typed language is intended to be a low level language,
without high-level notions such as objects and closures. It
includes consider references, multi-threading and a realistic
application programming interface (API) for distributed com-
munication. Communications can either be through a secure
channel mechanism, implementable using a secure transport
layer such as TLS for example, or through public connections,
in which case any device can connect. The language includes
primitives for asymmetric key encryption, since we represent
by public keys. “Possessing” a secret key, in the sense that
the private key of a public-private key is stored in its memory,
allows a device to “act for” the principal that key represents.
Our approach is similar in philosophy to the Simple Public
Key Infrastructure (SPKI), where principals and public keys
are considered as synonymous, rather than linking principals
to a separate notion of public key representatives. However,
we do not include notions such as delegation that are the
central consideration of SPKI, since we explicitly avoid the
consideration of trust management, leaving that to applications
written using the API that we provide. This also differentiates
our approach from frameworks such as JIF and Fabric, that
include delegation of authority to principals based on an
assumed trust management infrastructure.

Nevertheless, there is a notion at least tangentially relegated
to delegation of trust in our framework: In order to allow a
device to act for more than one principal, our semantics allows
a principal to be created on one device and communicated to
another device, where it is registered on the receiver device
as one of the principals upon whose behalf that device can
access data. For example, a client of a cloud service provider
may generate a proxy principal representing that client on
the cloud service, and then upload that principal to the cloud
service in order to access data that the client is storing on the
cloud service. This ability to share principals across devices is
controlled by restrictions established when proxy principals
are generated: Such a proxy (client) principal can only be
registered on a device that acts for (cloud service) principals
that are identified at the point of generation of the proxy.

The security analysis of the type system uses standard tech-
niques from the applied-pi calculus [1]. This allows us to prove
our correctness property as a non-interference property based
on process equivalence, i.e., two systems differing by one value
are indistinguishable by any party that is not allowed to access
this value. The standard pi-calculus includes message-passing



with structured values, but does not include an explicit notion
of memory (although it can obviously be modeled using pro-
cesses as references). Since our language combines message-
passing communication and localized stateful memory, we use
the stateful applied pi-calculus [2] as the starting point for
our security analysis. This calculus does not explicitly model
location (i.e., the distinction between two processes on the
same device and two processes on two distinct devices). Since
this distinction is critical for our security analysis, we add
this notion in our calculus. Nevertheless the proof techniques
that we employ are heavily based on those developed for the
stateful applied pi-calculus.

The security analysis that we perform expresses that data
are secure if keys received from other devices are not associ-
ated to an attacker. To formalise this conditional statement, we
need more techniques than in a standard protocol where data
are either secret or public, but their status does not depend on
the execution. In our verification in Section V-C, we introduce
an extended syntax that marks which keys, variables and chan-
nels are secure in the current trace. We then prove that when a
new memory location is created with a secure key according to
this marking, then the attacker cannot distinguish between two
scenarios: one where the system reduces normally, and another
one where the memory location is sometimes altered to another
value. This is the basis for our noninterference property for the
security guarantee provided by this approach. The full details
of the proofs of correctness for information flow control are
provided in the complete version of the paper [11].

In the next section we discuss related work. In Section III
we present our language, type system and semantics. In
Section IV we present an extended example and in Section V
present our result and outline the proof, then we conclude in
Section VI.

II. RELATED WORK

Implicit flow: Implicit information flow properties in-
volve the ability for an attacker to distinguish between two
executions. Previous work that has provided type systems to
control implicit information flow [20], [3] considered high and
low data, and this could be extended to a bigger lattice but not
to the creation of new principals, as the security of a variable is
defined statically. Zheng and Myers presented an information
flow type system that includes dynamic checks on rights [22]
which can be used, for instance, when opening a file. The Jif
Project [17] adds security types to a subset of Java, leading
to a powerful and expressive language. Unlike our work, this
other work does not address how to enforce principal identities
and type information to be correctly communicated to other
locations.

Security properties on distributed system: Work on
type security for distributed systems can be distinguished
according to the kind of security they aim to provide. Muller
and Chong present a type system that includes a concept of
place [16] and their type system ensures that covert channels
between “places” cannot leak information. Vaughan et al. look
at types that can be used to provide evidence based audit
[12], [19]. Fournet et al. look at adding annotations with a
security logic to enforce policies [10]. Liu and Myers [14]
look at a type system which ensures referential integrity in

a distributed setting. This work uses a fix lattice of policy
levels, which does not change at runtime. The Fabric language
[13] provides decentralised, type-enforced security guarantees
using a powerful middleware layer for PKI, and Morgenstern
et al. [15] extend Agda with security types. In contrast, our
work allows programs to generate new principals at run-
time and provides a security property that tracks implicit
information flow, without requiring the support of a purpose
built middleware layer or global PKI. Due to the fact that the
attackers in our model can access services in the same way as
honest principals, this security property is an adaptation of the
bisimulation property which is a strong property introduced
in the (s)pi-calculus by [1]. Bisimilation can be checked for
processes by tools like Proverif [5] but these kind of tools do
not scale up to large systems.

Managements of new principals: Bengtson et al. [4]
present a security type system which allows creation of dy-
namic principals in presence of an untyped attacker. However,
this type system provides only assertion-based security prop-
erties of cryptographic protocols. These are weaker than non-
interference properties as they are expressed on one process
instead of comparing two processes. [7] considers a framework
in which principals can be created at run time (without a global
PKI) they prove type soundness rather than a non-interference
result. Finally, the DSTAR program [21] achieves these two
goals but is focused on network information and relies on
local systems to actually analyse implicit flow, which leads
to a more coarse system.

Safety despite compromised principals: Past work [6]
has looked at un-typed attackers in a security type system,
however this work only considers a static number of principals,
fixed at run time. Fournet, Gordan and Maffeis [9] develop a
security type system for a version of the applied pi-calculus
extended with locations and annotation. Their type system can
enforce complex policies on these annotations, and they show
that these policies hold as long as they do not depend on
principals that have been compromised. Unlike our work they
assume that the principals are all known to each other and there
is a direct mapping from each location to a single principal
that controls it. Our work allows principals to be dynamically
created, shared between locations and for locations to control
multiple principal identities. We argue that this model is a
better fit to cloud systems in which users can dynamically
create many identities and use them with many services.

III. LANGUAGE: SEMANTICS AND TYPE SYSTEM

A. Syntax

The syntax of our language is given in Figures 1, 2, 3 and
4. We let x, y, z range over variable names Nv , p, p1, p2, . . .
range over principal names Np, k1, k2, . . . range over public
key names Nk and c, c1, c2, . . . range over channel names Nc.
A system νc̄.D1 | . . . | Dn is a set of devices that run in
parallel and that communicates through channels of c̄.

The list c̄ records which channel names correspond to
establish channels (globally bound). Channel also appear in
connect and accept commands in the devices, and these are
added to c̄ once the channel is opened. When there are no
established channels, we omit the ν{}. prefix. Note that to
guarantee freshness of keys and nonce used in encryption,



P,Q ::= νc̄.D devices sharing channels c̄
D ::= 〈M I C〉 | D C running with M

| 0 no device
M ::= {} a memory which maps . . .

| {x 7→ v} ∪M . . . a variable
| {p 7→ P} ∪M . . . a principal name
| {k′ 7→ k+} ∪M . . . a key name

v ::= i an integer
| k+ the value of a public key
| encLR,n(v) a cipher of v with seed n
| encLR,n(pv) an encapsulated principal
| {v1, . . . vn} an array of values
| NaV a special error value

pv ::= prin(k+, k−,LR) a principal value
LR ::= {k+} ∪ LR a set of public keys

| { }
c̄ ::= {}
| c̄.c c : established channel

Fig. 1. The syntax of devices, values, principals and rights where k−/k+

is a secret/public key pair.

we might also provide global binders k̄ and n̄ in addition
to c̄. However this guarantee is straightforward to provide,
using “freshness” predicates, so for readability reasons we omit
explicit binders for generated keys and nonces.

A device consists of a memory M and a command C.
Memories associate variable names with values, key names
with keys and principal names with principals.

Given a nonce k from some assumed set of key nonces, we
define (k+, k−) as the public private key pair generated from
k, where .+ and .− are two constructors. A principal pv is a
tuple prin(k−, k+,LR) which contains a key pair (k−, k+),
together with a (possibly empty) set of public key values LR.
When a device has pv in its memory, it is allowed to act for
pv. Devices that can act as a principal pv0, whose public key
k0

+ is one of the public keys in LR, are allowed to add pv
to their memory.

Each variable x in Nv represents a reference to a value
i.e. variables are mutable. At declaration time, a reference is
associated with some rights R, which cannot be revoked or
changed. Making all variables mutable is convenient for our
security analysis: it allows us to define non interference as the
property that a parallel process that alters the value of a high-
level variable cannot be detected by an attacker. If variables
were not mutable we would have to consider a much more
complex security property and proof. In addition, to avoid to
consider scope of variables, we assume that a command never
declares twice the same name for variables, channels, keys and
principals.

Types (Figure 2) for these variables consists of a pure-type
S which indicates the base type for the value of the variable
(e.g. integer, public key, cipher, etc.) and a label (or right) R
which indicates the principals who are allowed to access to the
variable. A label can be either ⊥ i.e. the variable is public or
a set which contains public key names: k ∈ Nk and pub(p)
where p ∈ Np.

Key names are declared by a command let k = x in C.

S ::= PubKey a public key
| PrivKeyEnc an encapsulated private key
| Int integers
| Enc{S} encrypted data of type S
| Array{S} an array of type S

R ::= RS a set of rights
| ⊥ no restriction

RS ::= { } the empty set
| {K} ∪RS K added to a set of rights

K ::= k1, k2, . . . , public key names
| {pub(p)} the public key of a principal

Fig. 2. The types syntax

C ::= if(e1 = e2) then C1 else C2

| new x :SR = e; C
| x := e; C
| x[e1] := e2; C
| let k = x in C
| C1 | C2

| skip
| ! C
| connect c :Chan(S⊥)⊥; C
| accept c :Chan(S⊥)⊥; C
| connect c :Chan(SR)R′ to k as p; C
| accept c :Chan(SR)R′ from k as p; C
| output c〈e〉; C
| input c(x); C
| synchronized{G};C2

| newPrin pRS ;C
| decryptp e as x :SRS then C1 else C2

| registerp1
e as p2 then C1 else C2

Fig. 3. The syntax of the commands.

This command copies the value of the reference x into k which
represents a public key (not a reference to a public key). The
type system (deref T) ensures that x in this command is an
unrestricted public key: x : PubKey⊥.

Channel types are declared when they are established, we
have two kinds of channel: public and secure channels. Their
types have syntax Chan(SR1)R2 where SR1 is the type of
values that are past over the channel and R2 expresses which
principals are allowed to know the existence of c and when
communication on this channel takes place.

B. Semantics

The semantics of the system is defined as a small-step
semantics for commands and as a big-step semantics for
expressions. Devices run concurrently with synchronized com-
munication between them. Inside each device, all parallel
threads run concurrently and communicate through the shared
memory of the device (since memory is mutable). The main
reduction rules are presented in Figure 5 for commands and
in Figure 6 for main expressions. When a command that
declares a new variable is reduced, the name is replaced by
a fresh name that represents a pointer to the location in the
memory where the value has been stored. The evaluation of
expressions has the form M(e) = v: the evaluation of e with



e ::= x, y, . . . variable names
| pub(p) the public key of p
| release(p) pack a principal
| encRS(e) encrypt some data
| e1 ⊕ e2 where ⊕ is +,−,×, . . .
| {e1, . . . en} an array of expressions
| x[e] an element of an array
| i an integer i ∈ Z

Fig. 4. The syntax of the expressions

memory M returns the value v. We note that this is different
from some other calculi, in which variables are not references,
and are replaced with a value when declared. Our correctness
statement below depends on the use of references and, since we
have a memory mechanism, we prefer to store the key names
and principal names in memory and instead of applying a
substitution, the names are evaluated when a command reduces
(cf the (rights RS) rules).

Principals are generated using the newPrin pRS ;C com-
mand, where RS are the keys to use to protect the prin-
cipal (and therefore cannot ⊥). The rule for this command
(newPrin S) generates a fresh key pair (k+, k−) and stores
the principal prin(k+, k−,LR) at a new location p′ in the
memory, where M(RS) = LR. To bootstrap the creation of
these principals, they can be declared with RS = {}; such
principal identities can only be used on a single device, they
cannot be sent over channels. Additionally some devices may
start off with the public keys of some trusted parties, i.e., the
same assumption as TLS. This too lends itself well to cloud
systems, in which web browsers come with a number of trusted
certificates.

Communication between devices uses Java like channels:
a channel is first established then it can be used to input and
output values. The channel establishment is done by substi-
tuting the channel names in both devices by a unique fresh
channel name added to c̄ (we assume that initial channel names
and active channel names range over distinct sub-domains of
Nc to avoid collision). Note that channels do not name the
sending and receiving device as these may be spoofed by an
attacker, however, to get a more tuneable system, it would be
a simple extension to add a port number which would restrict
possible connections. For secure channels (open priv S), in a
similar way to TLS with client certificates, both devices must
provide the public key k+ of who they want to connect to.
They must also provide the principal (which includes a private
key) to identify themselves to the other party. To set up a
secure channel, the client and the server also have to ensure
that they are considering the same rights for the channel. For
that they have to exchange the value of their channel right
M(Chan(SR1)R2) and make sure that it corresponds to the
distant right value M ′(Chan(SR′1

)R′2). Indeed, even if type-
checking is static inside a device, type-checking has to be
dynamic between distinct devices since programs are type-
checked on each device and not globally.

Example 2 (Principal set up): Assume that a cloud ser-
vice C has a public key c+, which is known to Alice and Bob,
and that Alice wants to share some private data with Bob using
this cloud service. Alice can do this using the code shown in
Figure 7. Alice starts by generating a key pair (a−, a+). As

fresh(k+, k−) fresh(p′) M(RS) = LR

νc̄.D | 〈M I C ′ | newPrin pRS ;C〉
→ νc̄.D | 〈M ∪ {p′ 7→ prin(k+, k−,LR)} I C ′ | C{p′/p}〉

(newPrin S)

M(e) = v fresh(y)

νc̄.D | 〈M I C ′ | new x :SR = e; C〉
→ νc̄.D | 〈M ∪ {y 7→ v} I C ′ | C{y/x}〉

(new S)

M(e) = v2

νc̄.D | 〈M ∪ {x 7→ v1} I C ′ | x := e; C〉
→ νc̄.D | 〈M ∪ {x 7→ v2} I C ′ | C〉

(assign S)

fresh(k′) M(e) = k+

νc̄.D | 〈M I C ′ | let k = e in C〉
→ νc̄.D | 〈M ∪ {k′ 7→ k+} I C ′ | C{k′/k}〉

(deref S)

M(p) = prin(k+, k−,LR2) M(e) = encLR,n(v)
k+ ∈ LR M(RS) ⊆ LR fresh(y)

νc̄.D | 〈MIC ′ |decryptp e as x :SRS then C1 else C2〉
→ νc̄.D | 〈M ∪ {y 7→ v} I C ′ | C1{y/x}〉

(dec true S)

fresh(c)

νc̄.D | 〈M1 I C
′ | connect c1 :Chan(S⊥)⊥;C1〉

| 〈M2 I C
′′ | accept c2 :Chan(S⊥)⊥;C2〉

→ νc̄.c.D | 〈M1 I C
′ | C1{c/c1}〉 | 〈M2 I C

′′ | C2{c/c2}〉
(open public S)

fresh(c) M1(ps) = prin(k1
−, k1

+,LRs)
M2(pc) = prin(k2

−, k2
+,LRc)

M1(R1) = M2(R2) M1(R′1) = M2(R′2)
M1(kc) = k2

+ M2(ks) = k1
+

νc̄.D |
〈M1 I C

′ | accept c1 :Chan(SR1
)R2

from kc as ps;C1〉
|〈M2 I C

′′ | connect c2 :Chan(SR′1
)R′2 to ks as pc;C2〉

→ νc̄.c.D | 〈M1 I C
′ | C1{c/c1}〉|〈M2 I C

′′ | C2{c/c2}〉
(open priv S)

M1(e) = v fresh(y)

νc̄.D | 〈M1 I C
′ | output c〈e〉;C1〉

| 〈M2 I C
′′ | input c(x);C2〉

→ νc̄.D | 〈M1 I C
′ | C1〉

| 〈M2 ∪ {y 7→ v} I C ′′ | C2{y/x}〉

(i/o S)

M(e) = encLR1,n(prin(k+1 , k
−
1 ,LR1))

M(p2) = prin(k+2 , k
−
2 ,LR2) k+2 ∈ LR1 fresh(p3)

νc̄.D | 〈M I C ′ | registerp2
e as p1 then C1 else C2〉

→ νc̄.D |
〈M ∪ {p3 7→ prin(k+1 , k

−
1 ,LR1)} I C ′ | C1{p3/p1}〉

(register true S)

M(e) = encLR1,n(prin(k+1 , k
−
1 ,LR1))

M(p2) = prin(k+2 , k
−
2 ,LR2) k+2 6∈ LR1

νc̄.D | 〈M I C ′ | registerp2
e as p1 then C1 else C2〉

→ νc̄.D | 〈M I C ′ | C2〉
(register false S)

Fig. 5. Main command rules



M(p) = prin(k+, k−,LR) LR 6= {} fresh(n)

M(release(p)) = encLR,n(prin(k+, k−,LR))
(release E)

fresh(n) M(e) = v M(RS) = LR

M(encRS(e)) = encLR,n(v)
(enc E)

M(e1) = v1 M(e2) = v2 v1 ∈ Z v2 ∈ Z
M(e1 + e2) = v1 + v2

(+ E)

M(e1) = v1 M(e2) = v2 v1 /∈ Z ∨ v2 /∈ Z
M(e1 + e2) = NaV

(error + E)

∀i, 1 ≤ i ≤ n, pi 7→ prin(ki
+, ki

−,LRi) ∈M
∀i, n+ 1 ≤ i ≤ n+m, k′i 7→ ki

+ ∈M
M({pub(p1), . . . ,pub(pn), k′n+1, . . . , k

′
n+m})

= {k1+, . . . , kn+m
+}

(rights RS)

Fig. 6. Main semantic rules for expressions and rights

〈kc 7→ c+ I

newPrin A{};
accept c :Chan(PubKey⊥)⊥;
input c(xb);
let kb = xb in
new secret :Int{kc,pub(A),kb} = 42;
connect upload :Chan(Int{kc,pub(A),kb})⊥

to kc as pub(A);
output upload〈secret〉;

〉

Fig. 7. Alice sharing data with Bob using a cloud service. N.B. this code
does not authenticate Bob.

neither Alice nor Bob have certificates, Bob just sends his key
publicly to Alice over a public channel. Alice receives it, and
creates a new variable to be shared with Bob and the cloud
service. She then opens a secure channel with the cloud that is
typed to allow data of type {a+, b+, c+}, the ⊥ right on this
channel indicates that, while the data on the channel must be
kept confidential, the knowledge that some value has been sent
is not. This fragment of code does not authenticate Bob, this
could be done using another protocol, or offline, but we will
show that if the device that sent her this key, and the cloud
server, both run well typed code, then she is guaranteed that
the secret will only be shared by the device sending the key,
the cloud server and herself. She knows that no leak can come
from, for instance, bad code design on the cloud device.

The encRS(e) expression, governed by the (enc E) rule,
encrypts the evaluation of e for each of the public keys
ki

+ named in RS, i.e., anyone that has a single private
key corresponding to any ki

+ can decrypt it, the set of
all ki

+ is also included in the encryption. We use ran-
domised encryption to avoid leakage that would occur oth-
erwise when the same value is encrypted twice, and we
model this by including a fresh nonce in the encryption. The
decryptp e as x :SRS then C1 else C2 command reduces
successfully (dec true S) when e evaluates to a ciphertext
encRS,n(v) that can be opened by the secret key of p and

that the LR, which is packed into the encryption, is a subset
of the evaluation of RS.

The release(p) expression reduces by encrypting the
principal p for each of the set of public keys representing the
principals that can access it. It is the only way to produce a
value which contains a secret key and therefore to send private
keys through a channel. The register command behaves as
decrypt except that it deals with encrypted principals instead
of encrypted values.

All other semantics rules are standard except that instead
of returning run-time error (division by 0, illegal offset index
etc.) expression returns a special value NaV. This feature is
critical to guarantee the security of our system. Indeed, we
allow a device to evaluate expressions with secure variables
and then to do an output on a public channel. This scenario is
safe only if we can ensure that no expression will block any
thread. Note that the attacker can also send values with some
type through a channel of another type, consequently run time
type errors can also occur.

Finally, the command synchronised{C} executes a com-
mand C with no communication or interleaving of other
processes. This is useful to avoid race conditions.

C. Types

The type judgment for expressions takes the form
Γp; Γk; Γ ` e : SR and the type judgment for commands takes
the form pc; Γp; Γk; Γc; Γ ` C where Γ is a mapping from
variable names to types SR, Γc from channel names to channel
type Chan(SR1)R2 , Γp is a set of principal names, Γk is a set
of public key names, and where pc is a right of form R called
the program-counter. The program counter allows to analyse
programs for indirect secure information flow [8]. Figure 8
defines the main type rules for commands and Figure 9 defines
the rules for expressions and rights.

In many typing judgments, we use a condition R1 ⊆ R2

that states that R1 is more confidential than R2. The predicate
R1 ⊆ R2 holds either when R2 = ⊥ or when R1 is a
syntactical subset of R2 (no aliasing). For instance, we have
{k2, pub(p)} ⊆ {k1, pub(p), k2} and {k1, k2}  {k2} even
if k1 and k2 map to the same key in memory. We also use
R1∩R2 to define the syntactic intersection of the sets R1 and
R2 (which is R2 if R1 = ⊥).

Types rules for new principals and variables: The
typing rule for principal declaration (newPrin T) only allows
the program counter to be bottom. This restriction avoids
the situation in which a variable with a right including this
principal might be less confidential than the principal itself.

The new variable declaration (new T) checks that the rights
R1 to access the new variable x are more restrictive than (a
subset of) the rights R2 of the expression being assigned and
of the program counter pc. We also ensure that one of the
principal in R1 belongs to Γp. The type rule for assignment
(assign T) ensures that high security values cannot be assigned
to lower security variables.

While the semantics for new principals (newPrin S) stores
the rights set LR dynamically (as LR is only used when the
principal is sent to another device), the semantics for managing



Γp; Γk ` RS pc = ⊥ pc; Γp ∪ {p}; Γk; Γc; Γ ` C
pc; Γp; Γk; Γc; Γ ` newPrin pRS ;C

(newPrin T)

Γp; Γk ` R1 Γp; Γk; Γ ` e : SR2

R1 ⊆ pc ∩R2 ∃p ∈ Γp.pub(p) ∈ R1

pc; Γp; Γk; Γc; Γ ∪ {x : SR1} ` C
pc; Γp; Γk; Γc; Γ ` new x :SR1 = e;C

(new T)

Γp; Γk; Γ ` x : SR1
Γp; Γk; Γ ` e : SR2

R1 ⊆ pc ∩R2 pc; Γp; Γk; Γc; Γ ` C
pc; Γp; Γk; Γ ` x := e; C

(assign T)

pc = ⊥
Γp; Γk; Γ ` x : PubKey⊥ pc; Γp; Γk ∪ {k}; Γc; Γ ` C

pc; Γp; Γk; Γc; Γ ` let k = x in C
(deref T)

Γp; Γk; Γ ` e1 : SR1

Γp; Γk; Γ ` e2 : SR2 pc ∩R1 ∩R2; Γp; Γk; Γc; Γ ` C1

pc ∩R1 ∩R2; Γp; Γk; Γc; Γ ` C2

pc; Γp; Γk; Γc; Γ ` if(e1 = e2) then C1 else C2

(if T)

Γp; Γk ` RS1 pub(p) ∈ RS1

p ∈ Γp Γp; Γk; Γ ` e : Enc{S}R2
RS1 ⊆ (R2 ∩ pc)

pc ∩R2; Γp; Γk; Γc; Γ ∪ {x : SRS1
} ` C1

pc ∩R2; Γp; Γk; Γc; Γ ` C2

pc; Γp; Γk; Γc; Γ `
decryptp e as x :SRS1

then C1 else C2

(dec T)

pc = ⊥ pc; Γp; Γk; Γc ∪ {c :Chan(S⊥)⊥}; Γ ` C
pc; Γp; Γk; Γc; Γ ` connect c :Chan(S⊥)⊥; C

(connect 1 T)

Γp; Γk ` R1 Γp; Γk ` R2

p ∈ Γp k ∈ Γk {pub(p), k} ⊆ R1 ⊆ R2 ⊆ pc
R2; Γp; Γk; Γc ∪ {c : Chan(SR1

)R2
}; Γ ` C

pc; Γp; Γk; Γc; Γ ` connect c :Chan(SR1
)R2

to k as p; C
(connect 2 T)

Γp; Γk; Γ ` e : SR3 c : Chan(SR1)R2 ∈ Γc

pc = R2 R1 ⊆ R3 pc; Γp; Γk; Γc; Γ ` C
pc; Γp; Γk; Γc; Γ ` output c〈e〉; C

(output T)

c : Chan(SR1
)R2
∈ Γc

R2 = pc pc; Γp; Γk; Γc; Γ ∪ {x : SR1
} ` C

pc; Γp; Γk; Γc; Γ ` input c(x); C
(input T)

p2 ∈ Γp Γp; Γk; Γ ` e :PrivKeyEnc⊥
pc; Γp ∪ {p1}; Γk; Γc; Γ ` C1

pc; Γp; Γk; Γc; Γ ` C2 pc = ⊥
pc; Γp; Γk; Γc; Γ ` registerp2

e as p1 then C1 else C2

(register T)

Fig. 8. Typing rules for main commands

Γp; Γk ` RS Γp; Γk; Γ ` e : SR RS ⊆ R
Γp; Γk; Γ ` encRS(e) : Enc{S}⊥

(enc T)

p ∈ Γp

Γp; Γk; Γ ` release(p) : PrivKeyEnc⊥
(release T)

∀i, 1 ≤ i ≤ n, pi ∈ Γp ∀i, 1 ≤ i ≤ m, ki ∈ Γk

Γp; Γk ` {pub(p1), . . . ,pub(pn), k1, . . . , km}
(rights T)

Fig. 9. Types rules for non standard expressions and rights

variables (new S) does not consider them: their confidentiality
is entirely provided by the type system.

Example 3: We consider the following piece of code in
which two new principals are declared, and both Alice and
Bob may know the value of y, but only Alice may know the
value of x:

〈{} I newPrin Alice{};
newPrin Bob{};
new x :Int{pub(Alice)} = 5;
new y :Int{pub(Alice),pub(Bob)} = 7;
x := y;
if(x = 1) then y := 1;

〉

Here the assignment of y to x should be allowed because
x is protected by rights more confidential than y. However,
in the last line, the value of y (which Bob can read) leaks
some information about the value of x (which Bob should not
be able to read). Therefore, this is an unsafe command and it
cannot be typed.

Types rules for encryption: The type rule for encrypting
values (enc T) verifies that the encrypted value is less confi-
dential than the set of keys used for encryption, it then types
the ciphertext as a public value, i.e., encryption removes the
type restrictions on a value while ensuring that the encryption
provides at least as much protection. We note that if the
encrypting key depends on non-public data, then the program
counter would not be public, which would ensured that the
ciphertext was not stored in a public variable. Hence the use
of restricted keys will not leak information.

The corresponding decryption rule (dec T) verifies that the
principal p used to decrypt the cipher is valid (p ∈ Γp) and
is consistent with the rights of the decrypted value. As the
knowledge of which keys has been used to encrypt is protected
with the rights R2 of the cipher, the success of the decryption
also depends on R2. Therefore, the program counter has to be
at least as high as R2 when typing the continuation. Finally, as
with an assignment, the rule enforces that the created variable
does not have a type that is more confidential than the program
counter.

Types rules for public channels: Typing rules for public
channels ensures that these are only of type public and, when
they are used, the program counter is ⊥.



Example 4: The following system illustrates the use of
public channels and encryption:

〈{Alice 7→ prin(k+a , k
−
a , {}), bobPub 7→ k+b }} I

new x :Int{Alice,bobPub} = 7;
connect c : Chan(Enc{Int}⊥)⊥;
output c〈enc{pub(Alice),bobPub}(x)〉;
input c(e);
decryptAlice e as xInc :Int{pub(Alice),bobPub} then
x := xInc; 〉

| 〈{Bob 7→ prin(k+b , k
−
b , {}), alicePub 7→ k+a } I

! accept c : Chan(Enc{Int}⊥)⊥;
input c(z);
decryptBob z as w :Int{pub(Bob),alicePub} then
output c〈enc{pub(Bob),alicePub}(w + 1)〉; 〉

Alice and Bob start off knowing each other’s public keys,
and Bob provides a service to add one to any number sent by
Alice. The variable x is restricted so that only Alice and Bob
can know the value. Encrypting this value removes these type
protections, so that it can be sent across the public channel c.
On Bob’s device decrypting with Bob’s private key replaces
these type protections.

Types rules for secure channels: For secure channels
(client and server side), the rule (connect 2 T) enforces that
the principal who is creating the channel and the principal be-
ing connected to, both have the right to access the data passed
over the channel, hence {pub(p), k} ⊆ R1. In order to ensure
that the possible side effects caused by using the channel are
not more restrictive than the data passed over the channel
we need that R1 ⊆ R2. The R2 ⊆ pc condition stops side
channel leakage to the device receiving the connection at the
time the channel is opened. Finally, the program counter is set
to R2 once connected: this ensures both devices have the same
program counter. Without this we would have implicit leakage,
for instance, one device with a public program counter could
wait for a message from a device with a non public program
counter, then outputs something on a insecure channel. As the
sending of the message may depend on a value protected by
the program counter, this would result in a leakage.

We make the strong assumption that the existence of a
connection attempt can only be detected by someone with the
correct private key to match the public key used to set up
the connection. If we assumed a stronger attacker, who could
observe all connection attempts, we will need the condition
that pc = ⊥ at least for the client.

The output rule (output T) has two main restrictions: one
which verifies that the device still has the program counter
agreed with the corresponding device, and R1 ⊆ R3 i.e., the
type on the channel is no less restrictive than the type of data
sent. This is because when this data is received it will be
treated as data of type R1.

For channel creation the restriction on the channel must
be at least as restrictive as the program counter. For input and
output we must additionally check that the program counter has
not become more restrictive, hence requiring that the channel
restriction and the program counter are equal, i.e., testing the
value of a high level piece of data and then sending data over
a lower level channel is forbidden.

Example 5: The different roles of R1 and R2 is illustrated
in these two programs.

new x :Int{pub(Alice),bob} = 7;
accept c :Chan(Int{pub(Alice),bob}){pub(Alice),bob}

from bob as Alice;
if(x > 10){
x := x+ 1;
output c〈x〉; }

new x :Int{pub(Alice),bob} = 7;
accept c :Chan(Int{pub(Alice),bob})⊥ from bob as Alice;
{if(x > 10){
x := x+ 1; }}

| output c〈x〉;

Both programs aim at sending x to Bob, which is a
secret shared by Alice and Bob. In the first case, the
sending of x depends on its value: therefore the com-
munication should can only be on a channel with rights
Chan(Int{pub(Alice),bob}){pub(Alice),bob}. In the other exam-
ple, even if the value of x is updated due to a parallel thread
that has a non public program counter, the sending of x is
unconditional.

Note that the language does not have “{if condition then C
}; C ′′ structure as this construct would not be safe: if C waits
infinitely for a connection then C ′′ is not executed. However,
a delay command could be added to help the second program
to output x after x has been updated.

Type rules for release and register: The release com-
mand is similar to the encryption command except that the
rights with which the principal is encrypted are provided by
the principal value. Therefore, there is no static check to
perform in (release T). The registration rule (register T), for
the same reason has less checks than (dec T). However, it does
enforce that pc = ⊥, without which we could get non public
rights; revealing a such a none public right would then be
an information leak. Removing this restriction, and allowing
non public rights, would be possible in a more complex type
system but we decide not to do so to keep the type system
more understandable.

IV. EXAMPLE: A SECURE CLOUD SERVER

As an extended example we consider a cloud server that
provides a data storage service. The motivation of our work
is to make it possible to type an open cloud service, without
the need for a global PKI neither the need to verify that its
users run typed programs, so ensuring that it provides security
guarantees to all of its users. The server process in Figure 10
defines an open service which users can connect to and register
to store data. This data can be shared with another principal,
hence the server takes a pair of public keys, representing the
principals, when registering.

To keep the example simple this server accepts up to
3 accounts and denies further registrations. The data for
each accounts is stored in the data variable defined in the
RegisterUsers process; the restriction set used to type this
variable specifies that only the server and the two clients named
at registration can have knowledge of this data. Additionally,
the server keeps track of how often each account is used (in



Server ≡
new usage :Array{Int}⊥ = {0, 0, 0};
new blocked :Array{Int}⊥ = {0, 0, 0};
new nextID :Int⊥ = 0;
RegisterUsers | CheckUsage

RegisterUsers ≡
! accept newUsers :Chan(Array{PubKey}⊥)⊥;
input newUsers(client1Client2);
let client1 = client1Client2[0] in
let client2 = client1Client2[1] in
synchronized {
new accountID :Int⊥ = nextID;
nextID = nextID + 1; }

if (accountID ≤ 2) then{
new data :Int{pub(Server),client1,client2} = 0;
ServeClient(client1, client2, client1)
| ServeClient(client1, client2, client2) }

CheckUsage ≡! synchronized{
new total :Int⊥=usage[0] + usage[1] + usage[2] + 3;
{ if(usage[0] > total/2) then
blocked[0] := 1 else blocked[0] := 0;
| if(usage[1] > total/2) then
blocked[1] := 1 else blocked[1] := 0;
| if(usage[2] > total/2) then
blocked[2] := 1 else blocked[2] := 0; }

ServeClient(c1, c2, c3) ≡
! accept upload :Chan(Int{Server,c1,c2})⊥

from c3 as Server;
if (blocked[accountID] = 0) then{
input upload(z);
usage[accountID] = usage[accountID] + 1;
data = z; }

| ! accept dowload :Chan(Int{Server,c1,c2})⊥
from c3 as Server;

if (blocked[accountID] = 0) then{
usage[accountID] = usage[accountID] + 1;
output download〈data〉; }

Fig. 10. An example server that monitors the clients usage but not their data

the usage array) and runs a process to monitor the usage (the
CheckUsage process). If any account is found to have made
more than 50% of the total number of requests (plus 3), it
is temporarily blocked (by setting the corresponding index in
the blocked array to 1). The usage data and blocked status
are public data. This is an example of an open cloud service
which writes to public variables after processing private data.
Our type system ensures that there is no leakage between the
two.

An example configuration is given in Figure 12, with
the definitions of the processes provided in Figure 11: this
configuration consists of four devices SD, MD and two
identical RD devices. We assume that, in the physical world,
SD and MD are the laptop and respectively the mobile of
Alice while the two other devices RD are owned by Bob and
Charlie. In the system definition, Alice’s and Bob’s devices
start off knowing the servers public key, but the server has
no knowledge of Alice’s and Bob’s principals. The mobile
device MD first creates a new principal identity and shares
the public key to SD. Note that RD could also send its private

Sender ≡
accept otherPrin :Chan(PubKey⊥)⊥;
input otherPrin(mobileKey);
let mobile = mobileKey in
newPrin Alice{mobile};
accept releasedPrin :Chan(PrivKeyEnc⊥)⊥;
output releasedPrin〈release(Alice)〉;
accept c :Chan(PubKey⊥)⊥;
input c(bobKey);
output bobKey〈otherPrin〉;
let bob = bobKey in
output c〈pub(Alice)〉;
connect newUsers :Chan(Array{PubKey}⊥)⊥;
output newUsers〈{pub(Alice), bobKey}〉;
Send(Alice, bob, 42)

Send(p, k, v) ≡
connect upload :Chan(Int{srvKey,pub(p),k})⊥

to srvKey as p;
new sharedSecret :Int{srvKey,pub(p),k} = v;
output upload〈sharedSecret〉;

Mobile ≡
newPrin Mobile{};
connect keyChan :Chan(PubKey⊥)⊥;
output keyChan〈pub(Mobile)〉;
connect releaseChan :Chan(PrivKeyEnc⊥)⊥;
input releaseChan(encaps)
registerMobile encaps as MyId then
input keyChan(bobKey);
let bob = bobKey in Send(MyId, bob, 24)

Receiver ≡
newPrin Bob{};
connect fromBob :Chan(PubKey⊥)⊥;
output fromBob〈pub(Bob)〉;
input fromBob(aliceKey);
let alice = aliceKey in
connect download :Chan(Int{srvKey,alice,pub(Bob)})⊥

to srvKey as Bob;
input download(data);

Fig. 11. Definitions of Sender, Receiver and Mobile Processes

SD ≡ 〈{srvKey 7→ k+s } I Sender〉
MD ≡ 〈{srvKey 7→ k+s } IMobile〉
RD ≡ 〈{srvKey 7→ k+s } I Receiver〉
Srv ≡ 〈{Server 7→ prin(k+s , k

−
s , {})} I Server〉

System ≡ SD |MD | RD | RD | Srv

Fig. 12. The server context with 4 devices: a sender with its mobile device
and two concurrent receivers

key to SD at this point which is not the expected behavior.
To avoid honest users to establish unwanted connection, a
port number mechanism should be added to the connections
rules. Once SD receives the principal’s public key from MD,
SD creates a new principal identity to use with the cloud
service which is known by the mobile’s principal identity. This
allows SD to release and to send the new principal Alice to



MD which registers it. Therefore both SD and MD can use
the service with the same account. Finally Bob’s device RD
and SD exchange their public keys, and SD sends to MD
the public key received from RD then SD registers for a
shared account between pub(Alice) and bobKey on the server.
Finally, SD or MD can upload a sharedSecret value to the
server. Meanwhile MD is able to recover the last uploaded
value (0 if it downloads before an upload occurs).

The security type on the variable sharedSecret means that
its value can only have an effect on other variables with the
same or a more restrictive type. Importantly, our correctness
result limits knowledge of these values to just the Alice, Bob
and Server devices, no matter what well-typed code are run in
these devices. On the other hand, checking the authenticity of
the Bob key (with a mechanism such as PGP, or out-of-band
checks) is Alice’s responsibility.

These are exactly the guarantees that a user, or a organ-
isation, would want before using the cloud service. While
many people trust their cloud services, and organisations enter
into complex legal agreements, leaks can still occur due to
programming errors. Type checking the code, as we outline
in this paper can show that it is safe from such programming
errors, and help provide the users with the guarantees they
need to use the system.

V. SECURITY ANALYSIS

We now prove that the type system preserves confidentiality
of data: when a variable is declared with rights R then the only
devices that can observe anything when the variable’s value
changes are the devices that are allowed to know one of the
keys in R.

The proof uses techniques from the applied pi-calculus,
rephrased for our formalism. Our basic result uses a notion of
bisimulation formulated for reasoning about information flow
in nondeterministic programs [18]. Intuitively, two programs
are bisimilar (for “low” observers) if each one can “imitate”
the low actions of the other, and at each step the memories
are equivalent at low locations. Note that memory can change
arbitrarily at each step, reflecting the ability of concurrent
attacker threads to modify memory at any time.

The applied pi-calculus extends the well-known pi-
calculus, a process calculus where communication channels
may be sent between processes, with binding of variables
to non-channel values. In our approach, “memory” is this
set of bindings of variables to values in the applied pi-
calculus. Also, our bisimilarity is a labelled bisimilarity since
we consider communications on channels as observable events.
Our correctness result shows that a high (insider) attacker
cannot leak information to low observers by communication
on high channels or by modifying high locations in memory.

We explain our proof over the following five subsections. In
the following subsection we annotate devices with an identifier,
so that we can keep track of particular devices as a process
reduces, and we define when a particular device is entitled to
read data protected with a particular set of rights. In Subsection
V-B we define our untyped attacker and outline an labelled,
open semantics which defines how an “honest” (typed) process
can interact with an untyped attacker process. We also prove

that this open semantics is correct with respect to the semantics
presented above.

To give us the machinery we need to prove our main results,
in Subsection V-C we annotate our processes with the rights
that apply to all variables. We show that a well annotated,
well typed process reduces to a well annotated, well typed
process, this results shows that a well typed system does not
leak data, but it does not account for untyped attackers. To
do this we introduce a labelled bisimulation in Subsection
V-D. This bisimulation relation defines the attackers view of
a process, and their ability to distinguish systems. Finally, in
Subsection V-E, we prove that, for our open semantics, a well
annotated, well typed process is bisimular to another process
that is the same as the first, except that the value of a high
level variable is changed. This means that no information can
leak about the value of that variable for any possible attacker
behaviour, so proving our main correctness results.

A. From rights to allowed devices

As a preliminary step, we need to formally define which
devices are and are not granted permissions by a particular set
of rights. To do this we need a way to refer to particular devices
while they make reductions, so as a notational convention,
we place identifiers on devices, that are preserved through
reductions. By convention an identifier will be an index on
each device, so for example D1 | D2 → D′1 | D′2 expresses
that Di and D′i represent the same physical device in different
states.

In Definition 1, Definition 2 and Definition 3 below, we
formally define an association between the public keys in a
rights set and devices, but first we motivate these definitions
with an example:

Example 6: Consider the the system SDA | SDB |
MDM | MDN | RDX | RDY | SrvS where SD,MD,RD
and Srv are defined in Figure 11 and Figure 12 (i.e. there
are two clones of each devices of the system from Sec-
tion IV, except for the server). Consider the variable data :
Int{pub(Server),client1 ,client2} of the RegisterUser command
on Device S (the server). There are three reasons for a device
to be allowed to access shared data, depending on which
reduction occurs in the system.

First, the devices that created the keys client1 and client2
are allowed access to this data. This pair of keys is passed to
the server at the start of its loop. Depending on which device
(A or B) made the connection to the server channel newUsers ,
client1 allows either Device A or Device B (as client1 ).
Assume that it is Device A. Similarly client2 represents
Device X or Y depending on which device connected to
channel c during the Sender command of Device A. Assume
it is Device X .

Next, since the public key client1 has been created by the
command newPrin Alice{mobile} in Device A, the device
which corresponds to the public key mobile is also allowed to
access data . We assume that it is Device M .

Thirdly, the public key pub(Server) has not been gener-
ated by any device. However it was in the initial memory of
Device S, therefore this device is also allowed to access the
shared data by the right granted by this key.



Our security property grants that no other device than
Device S,A,X and M can get information about the value
of data. On the other hand, if an untyped attacker provides
its own key to Device A, through channel c, then no security
guarantee can be provided about data . Indeed, such a case
means that the rights explicitly allows the attacker’s device to
access the data as any other regular device.

Before we formalise what are the allowed devices, we
make reasonable assumption about the initial process. For
instance, when the process starts, we assume that devices have
not already established any channel between them. We also
consider that they have an empty memory except for some
public keys and principals (and we do not allow duplicate
principals). Finally, we consider that all devices are well-typed
except one (Device 0) which is the untyped attacker.

We first define a well-formed and well-typed condition on
processes:

Definition 1: A valid initial process P = νc̄. 〈M0 I
C0〉0 | 〈M1 I C1〉1 | . . . | 〈Mn I Cn〉n is a process where:

1) There is no active channel already established be-
tween the processes: c̄ = {}.

2) The bound values in memory are either principals or
public keys: For all 0 ≤ i ≤ n, x 7→ w ∈Mi implies
there exists k+, w = prin(k+, k−, {}) or w = k+.

3) Each principal exists only on one device: For all
0 ≤ i, j ≤ n, i 6= j, prin(k+, k−, {}) ∈ Mi implies
prin(k+, k−, {}) /∈Mj .

4) The memory of every device is well-typed with
contexts corresponding to its memory and pc =
⊥: for all 1 ≤ i ≤ n, w.l.o.g. assume that
Mi = {p1 7→ prin(k1

+, k1
−, {}), . . . , pm 7→

prin(km
+, km

−, {}), pk1 7→ k′1
+
, . . . pkp 7→ k′p

+},
we have ⊥; {p1, . . . , pn}; {pk1, . . . , pkp}; {}; {} ` C
for some command C.

Before defining the set of allowed devices, we define an
auxiliary function that maintains which devices are allowed to
access shared data, and which public keys need to be associated
to devices. This auxiliary metafunction maps backward from
a set of rights LR that confers access, to all possible devices
that may have provided the keys that gave them those rights.
This is the set of allowed devices Entitled(LR)T where T is
a process trace, defined below. Any device that is not in this
set is not allowed by LR; we will consider such devices as
attacker devices in our threat model.

Definition 2: Given a reduction P → P ′ where devices
identifiers are in {0, . . . , n}, given a subset of identifiers
I ⊆ {1, . . . , n} and a set of public keys LR, we define the
backward function BP→P ′(I,LR) in the following way.

• If P → P ′ is the reduction (newPrin S) on a
device Di, i 6= 0 that creates a new principal
prin(k+, k−,LR′) and that k+ ∈ LR then

BP→P ′(I,LR) =
(
I ∪ {i},LR′ ∪ LR \ {k+}

)
.

• Otherwise BP→P ′(I,LR) = (I,LR).

Definition 3: Let P0 = 〈M0 I C0〉0 | 〈M1 I C1〉1 |
. . . | 〈Mn I Cn〉n a valid initial process. Let a sequence of

reductions T = P0 → P1 . . .→ Pn and let LR a set of public
keys, we consider

(I0,LR0) = BP0→P1
◦ . . . ◦ BPn−1→Pn

(∅,LR).

Let I ′ = {i | ∃k+ ∈ LR0, i ∈ {1, . . . , n}, prin(k+, k−, {}) ∈
Mi}. We define the set of allowed devices identifiers
Entitled(LR)T as Entitled(LR)T = I0 ∪ I ′.

Consider the set {k+ | k+ ∈ LR0 ∧ @i ∈
I ′, prin(k+, k−, {}) ∈Mi}. We say that Entitled(LR)T is safe
if this set is empty.

In other words, Entitled(LR)T is safe when all keys
involved by LR have been either created by devices of
Entitled(LR)T or owned by them at the beginning. This
implies, since valid initial processes don’t have duplicated
keys, that the untyped attacker whose index cannot be in
Entitled(LR)T have not generated any of these keys.

B. Definition of the attacker and of the open process semantics

An attacker is a device A = 〈M I C〉 where M
is a standard memory and C is a command which is not
typed and which contains additional expressions to do realistic
operations that an attacker can perform like extracting k−, k+
and LR from prin(k+, k−,LR), decrypting a ciphertext with
only a secret key, or releasing a principal with arbitrary rights
(encLR,n(prin(k+, k−,LR′)) with LR 6= LR′).However, the
attacker is not able to create principals with a public key that
does not correspond to the private key because we assume that
the validity of any pairs is checked when received by an honest
device. We denote such an extended expression using E.

To reason about any attacker, we introduce open processes
in a similar way as in the applied pi-calculus [1]. An open
process has the syntax K |= νc̄. D1 | . . . | Dn where
D1, . . . , Dn are well-typed devices (the indexes 1, . . . n are
the tags of the devices: we do not change them through reduc-
tions), where c̄ are the channels which have been established
between devices D1, . . . , Dn (not with the attacker) and where
K is a memory representing the values that the attacker already
received. We refer to D1, . . . , Dn as the honest devices. We
also refer to K as the attacker knowledge. This plays the same
role as frames in the applied pi-calculus, and also plays a
similar role as computer memory in the bisimulation that we
use for reasoning about noninterference for nondeterministic
programs. We denote K(E) the evaluation of E with the
memory K (to be defined the variables of E should exists
in K).

Our type system ensures that an attacker is never able to
learn any of the secret keys belonging to “honest” devices,
as represented by the notion of reference rights defined below.
The following predicate overapproximates what an attacker can
learn about a value, based on the “knowledge” represented by
its memory K and on the assumption that it knows all keys
which are not in LR (which aims at being the reference rights).

Definition 4: Given a set of keys LR and a value v, we
define the predicate K `LR v as there exists an extended
expression E such that K(E) = v, where this extended ex-
pression contains all standard functions and attacker functions,
as well as an oracle function which provides the secret key of
any public key which is not in LR.



Open processes have two forms of reductions: internal
reductions, which are the same as the reductions for closed
processes, and labeled reductions which are reductions involv-
ing the attacker. Labels on these latter reductions represent the
knowledge that an attacker can use to distinguish between two
traces, effectively the “low” information that is leaked from
the system.

There are two forms of labelled reductions, both of which
take the form P

l−→ P ′. In the first form, input reductions
P

in((c)att,E)−−−−−−→ P ′, the attacker provides data, and in the
second form, output reductions P

out((c)att,x)−−−−−−−→ P ′, the attacker
receives data from an honest device. There are also two further
forms of input reductions: those for establishing channels and
those which send data. The reduction that establishes a secure
channel takes the form:

K|=νc̄.D |〈MIaccept c :Chan(SR1)R2 from k as P ;C〉i
in((c)att,(Chan(SR1

)R2
,E,E′))

−−−−−−−−−−−−−−−−−−−→
K |= νc̄.D | 〈M I C{(c)att/c}〉i

where (c)att is any attacker channel name, K(E) should be
the private key corresponding to M(k) and K(E′) should be
the public key of M(p). The reduction to establish a public
channel is similar but simpler. There is no need for checks on
E or E′.

Note that, unlike standard connection establishment where
a fresh channel name is added to νc̄, here the name of the
established channel is provided by the attacker and is not added
in c̄, which is out of the scope of the attacker. However the
attacker has to provide channel names in a separate subdomain
which prevents it from using an existing honest channel name.
The names which are the attacker’s channel names are written
(c)att. To summarize, a channel name of form (c)att represents
a channel which is established between a device and the
attacker, a channel c ∈ c̄ is a channel between two devices
(not accessible from the attacker) and a channel name c /∈ c̄
and not in the attacker’s channel domain is just a program
variable representing a future channel. Finally, we consider an
implicit injection c 7→ (c)att from c̄ to attacker’s channels.

For input reductions that sends data on an established
attacker channel, E is an expression of the extended syntax
admitting lower level operations that are available to attackers
but not to honest devices, as explained above. There is just
one rule for output reduction, saying that an attacker can learn
from a value output on an attacker channel:

fresh(x) M1(e) = v

K |= νc̄.D | 〈M1 I C
′ | output (c)att〈e〉;C〉i

out((c)att,x)−−−−−−−→ K ∪ (x 7→ v) |= νc̄.D | 〈M1 I C
′ | C〉i

Example 7: We consider the system consisting of MD |
SD from Figure 12 running in parallel with an untyped attacker
A. The corresponding open process is initially {} |= SDA |
MDM . Assume that Device M (MDM ) reduces with the
attacker instead of SDA, we have:

→ {} |= SDA | MD ′M
in((c)att,ct)−−−−−−→ {} |= SDA | MD ′′M
out((c)att,x)−−−−−−−→ (x 7→ k+) |= SDA | MD ′′′M

where ct = Chan(PubKey⊥)⊥ and Device M has memory
Mobile ′ 7→ prin(k+, k−, {}) (a renaming of the local variable
Mobile on the device), after the first internal reduction where
the principal is created.

After the first reduction where MDM creates its principal,
the attacker establish the connection with Device M : as M is
expecting a connection of type ct, the attacker have to provide
ct and one of its channel name (c)att. Next, Device M outputs
the value of pub(Mobile) on (c)att which is then stored on the
attacker’s memory.

The following defines a subprocess of the “honest” devices
of a system P , where some (other) devices of that system may
be attacker devices. This subprocess of honest devices will be
those defined by Entitled(LR)T . In other words, all devices
which are not allowed by some key in LR are assumed to be
controlled by the attacker.

Definition 5: Given a process P = νc̄. D1 | . . . | Dn

and {I1, . . . , Im} ⊆ {1, . . . , n}, let c̄′ the names of channels
between devices of {I1, . . . , Im} we define the subprocess of
devices P �{I1,...,Im}= νc̄′.D′I1 | . . . | D

′
Im where D′i is Di

where each channel name c ∈ c̄ \ c̄′ have been replaced by an
attacker-channel name (c)att.

In the following, we will denote by P
l1,...,ln

=====⇒ P ′ a
sequence of reductions P → ∗P1

l1−→ P ′1 → ∗P2 . . . Pn
ln−→

P ′n → ∗P ′. We also denote by P l?−→ P ′ a reduction which is

either P → P ′ or P l′−→ P ′ for some label l′ and by P l?−→?P ′

either P l?−→ P ′ or P = P ′.

The following proposition states that if there is an execution
of a system that includes communication with attacker devices,
where all communication is local in this closed system, then we
can consider subsystem of this, omitting the attacker devices,
where communications with attacker devices are modelled by
labelled reductions of the form described above. So the attacker
devices become part of the context that the devices in the
subsystem interact with through a labelled transition system.
Such a subsystem may also exclude some of the “honest”
devices in the original system, and in that case we treat those
excluded devices as attacker devices in the context (since labels
on the reductions only model communication with attackers).

Proposition 1: Let P = νc̄.A | D1 | . . . | Dn where all Di

are well-typed and A is an untyped device. If P → ∗νc̄′.P ′,
then for all subset S of {1, . . . , n}, there exist l1, . . . , lm and
K′ (the attacker knowledge at the end of the execution) such
that

K |= P �S
l1,...,lm

=====⇒ K′ |= P ′ �S

where K is a memory which is the union of the memories of A
and all Di with i /∈ S (variable names are renamed whenever
there is a name conflict).

For instance, the system SDA | MSM | SD0, where SD0

is part of the attacker, can perform three internal reductions
between MSM and SD0 where MSM sends its public key to
SD0. In Example 7, we provided the three reductions of the
system ({} |= SDA | MSM | SD0)�{A,M}.



C. Extended syntax with extra annotations

In this section, we add extra annotations to processes
to perform a specific analysis about a given right LR =
{pk1, . . . , pkn}. Since the keys in LR do not necessary exist
in the initial process, we first annotate open processes with
a reference right Rr with the intention that this right will
eventually grow to the right LR as keys are generated and
added to this right during execution. Given a reference right
Rr, we define any rights whose all keys are in Rr to be high
(by opposition to low). The set Rr starts with keys that exists
in the initial process.

An annotated process has the syntax

K; Rr |= P

for attacker knowledge K, reference right Rr and process
P . The exact form of the annotations is explained below.
The reference right Rr only changes during a reduction of a
command newPrin pRS . In this case, there is a choice of
whether or not to include the generated public key in Rr.

Definition 6: A sequence of reductions is called standard
if each time a (newPrin S) reduction adds a key to Rr:

K; Rr |= νc̄.〈M I newPrin pRS ;C〉 | P

→ K; Rr∪{k+} |= νc̄.〈M∪p 7→ prin(k+, k−,LR) I C〉 | P

we have LR ⊆ Rr.

The next proposition ensures the existence of a standard
annotation such that the rights we want to consider at the end
are high and that the attacker does know any key in the set Rr
of the initial process. We will state in Proposition 3 that this
implies that the attacker never knows the keys in Rr during
the whole reduction.

Proposition 2: Let P be a valid initial process such that
P → ∗P ′ and let LR a set of keys defined in P ′. If
DH = Entitled(LR)P→∗P ′ is safe then there exists a stan-
dard annotation for the reduction provided by Proposition 1:
K0; Rr0 |= P �DH

l1,...,ln
=====⇒ K; Rr |= P ′ �DH

where Rr0 and Rr
are such that ∀k+ ∈ Rr0, K0 0Rr0

k− and LR ⊆ Rr.

When a variable or a channel is created with some rights,
the reduction rules of the operational semantics remove all
information about those rights. Therefore we add annotations
to devices to remember if the defined right was high or low,
according to Rr. Recall that a right is high if it contains a key
in the reference right Rr. We use ` as a metavariable for an
annotation H or L.

1) A memory location x 7→ v ∈M which is created by
a command new x :SR = e;C, where R evaluates
in M to a high right according to Rr, is annotated as
a high location: xH 7→ v. Otherwise x is annotated
as a low location: xL 7→ v. By convention K contains
only low locations.

2) A new channel name c, which is created by a com-
mand that establishes a channel c : Chan(SR1)R2 ,
is annotated as c`1`2 where `1 resp. `2 is H if the
evaluation of R1 (resp. R2) is high, and is annotated
as L otherwise.

3) A value which is the result of an expression (besides
an encryption expression) where one variable refers
to a high location is annotated as a high value
(v)H. Otherwise, it is annotated as a low value
(v)L. When a value (v)` is encrypted, it becomes
(encRS,n((v)`))L i.e., the initial tag is associated to
the subterm.

4) A device 〈M I C1 | . . . | Cn〉 is annotated as
〈M I (C1)(`1) | . . . | (Cn)(`n)〉i. There is one tag
`i ∈ {L,H} for each sub-command Ci which can
be reduced. The annotation of each thread (Ci)(`i)
records whether the existence of this thread was due
to a high value or a high right. When `i = H, we say
that the thread is high, otherwise the thread is low.
For instance, the annotated device 〈aH 7→ (1)H I
(if (a = 0) then C1 else C2)(L)〉1 reduces to
〈aH 7→ 1 I (C2)(H)〉1 because a is a high location.
The other case where a thread can be set to high is in
the establishment of a secure channel that is annotated
with cH(H).

These annotations allow us to define technical invariants
that are preserved during reduction. In the following technical
definition, we formalize the idea that there exist a typing
judgment for devices (Case (1) below) which is consistent with
the annotations:

1) Variables (Case (2)) and channels (Case (3)) should
have a type which corresponds to their annotation

2) The type system tracks a notion of security level for
the control flow, and this level pc must be consistent
with the thread annotation (Case (4)).

3) In addition, we express that the devices are not in
a corrupted configuration, in the sense that secure
channels are not being used to communicate with the
attacker (Case (5)), nor are they used in a low thread
(Case (6)).

4) Finally, ciphers for values (Case (7)) and principals
(Case (8)) should not have high contents protected by
low keys.

Definition 7: A tuple consisting of a reference right Rr,
a memory M and a thread (C)(`) is well-annotated written
“Rr  M B (C)(`) : well-annotated” if there exists pc, Γp,
Γk, Γc and Γ such that

1) pc; Γp; Γk; Γc; Γ ` C
2) For all locations x in M , we have

• either xL 7→ (v)L in M for some value v and
x ∈ Γp ∪ Γk

• or Γp; Γk; Γ ` x : SR and
◦ if Rr ⊇M(R), xH 7→ (v)H in M ,
◦ if Rr ) M(R), xL 7→ (v)L in M for

some value v.
3) For all channels c in the thread such that Γc ` c :

Chan(SR1)R2 , the annotation of c is c`2(`1) where `2 =

H iff. Rr ⊇ R2, `1 = H iff. Rr ⊇M(R1).
4) Rr ⊇ pc if and only if ` = H.
5) For all (c)att, we have Γc ` (c)att : Chan(SR1)R2

with Rr )M(R2) and Rr )M(R1).
6) if ` is L, then there is no cH(H) in C.



7) For all values v stored in memory, if a sub-term of v
matches encLR,n((t)H) then Rr ⊇ LR.

8) For all values v in memory, if a sub-term of v matches
encLR′,n(prin(k,LR, )) then LR = LR′ or Rr ⊇
LR.

When, for a device D = 〈M I (C1)(`1) | . . . | (Cn)(`n)〉i
and a set Rr, we have Rr  M B (Ci)(`i) : well-annotated
for i ∈ {1, . . . , n}, then we use the notation Rr  D :
well-annotated.

Finally, we get the following subject-reduction result:

Proposition 3: Let K; Rr |= νc̄.D1 | . . . | Dn an open
process such that for all k+ ∈ Rr we have K 0Rr k− and
for all 1 ≤ i ≤ n we have Rr  Di : well-annotated. If
K; Rr |= νc̄.D1 | . . . | Dn

l?−→ K′; Rr ′ |= νc̄′.D′1 | . . . | D′n
then for all 1 ≤ i ≤ n we have Rr  D′i : well-annotated.
Moreover if the reduction is standard, we have K′ 0Rr ′ k− for
all k+ ∈ Rr

′.

Finally, valid initial processes which only require each
device to be well-typed are well-annotated.

Proposition 4: Given a valid initial process P =
(
K |=

〈M1 I C1〉1| . . . |〈Mn I Cn〉n
)

, We have Rr  Mi B

(Ci)(L) : well-annotated for 1 ≤ i ≤ n for any Rr.

D. Labelled bisimilarity

The invariants expressed above are about a single process.
To ensure that the attacker cannot track implicit flows, we need
to compare the execution of two processes in parallel. In this
section, we define a relation between processes which implies
an adapted version of the bisimilarity property of the applied
pi-calculus [1].

The two processes that we compare are the actual process
and another one where the value of one of the high variables
of the memory of some device has been changed to another
one. So first, we define what is a process where a variable is
modified arbitrarily.

Definition 8: Given a device D = 〈M ∪ {x 7→ v′} I C〉,
and a value v, we define Dx=v to be the device that updates
the variable x to be v by assignment, 〈M ∪ {x 7→ v′} I C |
x := v; 〉. Extending this from devices to processes, given a
process P which contains D with index i, we define Pi:x=v

to be the same process except that D has been replaced by
Dx=v .

In contrast to systems where the attacker can only observe
public values in memory after reduction, here we model that
the attacker can observe communications on channels that
have been established with other devices. In the following
examples, we stress how an attacker can distinguish between
two processes even without knowing actual confidential values
in the memory of those devices.

Example 8: We consider the device D(X,Y ), where the
description is parametrized by two meta-variables: X is a value
stored in memory and Y is a value that is encrypted and sent
on an attacker channel. The device has a memory M(X) =
{x 7→ X, k 7→ k0

+}, and the full description of the device is

〈M(X) I if x = 0 then output (c)att〈enck(Y )〉〉A.

The process D(0, Y ) can be distinguished from the process
D(1, Y ). In the first case, we have:

{} |= D(0, Y )
out((c)att,m)−−−−−−−→

{m 7→ enck(Y )} |= 〈M(X) I skip 〉A
On the other hand, there is no reduction with only the label
out((c)att,m) and internal reductions starting from {} |=
D(1, Y ). This distinction models the fact that if the attacker
receives data on (c)att, it learns that X = 0.

The processes D(0, 2) and D(0, 3) can also be distin-
guished even if both {k 7→ k0

−} |= D(0, 2) and {k 7→
k0
−} |= D(0, 3) can reduce with a label out((c)att,m).

Indeed, after reduction the attacker’s knowledge is K =
{k 7→ k0

−,m 7→ enck0
+,n(Y )} where Y is 2 (resp. 3): By

performing the decryption of m with an untyped decryption,
the attacker can compare the result to 2, and K(decrk(m)) = 2
is only true in the first case.

Finally, the processes {} |= D(0, 2) and {} |= D(0, 3) are
not distinguishable. In both cases:

• there is no test to distinguish between the two at-
tacker’s knowledge, and

• the labelled reductions are the same i.e out((c)att,m)

With these examples in mind, we introduce static equiva-
lence, an adaptation of the one used in the applied pi-calculus,
which expresses that it is not possible to test some equality
which would work with one memory but not with the other.

Definition 9: We say that two memories M1 and M2 are
statically equivalent (≈s) if they have exactly the same variable
names and for all extended expressions E where its variables
x1, . . . , xn ∈M1, we have M1(E) = M2(E).

Finally, we define an adaptation of the labelled bisimilarity.
This recursive definition generalizes the conclusion of the
example: the two memories should be statically equivalent,
and a transition in one process can be mimicked in the other
process, where the reduced processes should also be bisimilar.

Definition 10: Labeled bisimilarity (≈l) is the largest sym-
metric relation R on open processes such that (KA |= PA) R
(KB |= PB) implies:

1) KA ≈s KB ;
2) if (KA |= PA) → (KA′ |= PA′), then (KB |=

PB) → ∗(KB ′ |= PB ′) and (KA′ |= PA′) R
(KB ′ |= PB ′) for some KB ′ |= PB ′;

3) if (KA |= PA)
l−→ (KA′ |= PA′), then (KB |=

(KB |= PB)
l

==⇒ (KB ′ |= PB ′) and (KA′ |=
PA′) R (KB ′ |= PB ′) for some KB ′ |= PB ′.

The labelled bisimilarity is a strong equivalence property,
and its we use it to state the security property that an attacker is
unable to distinguish between two processes in the same class
[2]. However this definition does not help to actually compute
the processes in the same class. Therefore we define a stronger
relation that can be defined from our annotated semantics.

First, we define an obfuscation function obf(LR, w) which
takes a set of public key LR and a value or a principal w and



returns an obfuscated value (its syntax is like the syntax of
value except that there is an additional option � and that a
principal value is also an option).

Definition 11: Let LR a set of public key, w a principal
p or a value v. We define obf(LR, w) depending on the
structure of w.

obf(LR, encLR′,n(w
′)) =

{
encLR′,n(obf(LR, w′)) if LR ) LR′

encLR′,n(�) if LR ⊇ LR′

obf(LR, {v1, . . . , vn}) ={obf(LR, v1), . . . , obf(LR, vn)}
otherwise obf(LR, w) =w.

where w′ is a value or a principal and n a nonce.

The set LR aims at containing a set of keys whose private
keys will never be known by the attacker. In our previous
example, we have obf(k0

+, enck0
+,n(Y )) = enck0

+,n(�): if
k0
− is never known by the attacker, the attacker will never be

able to know anything about Y . Note that the random seed
n used for the cipher is not hidden. Indeed, the attacker is
able to distinguish between a cipher that is sent twice and two
values which are encrypted then sent: in the first case the two
message are strictly identical.

We now define an equivalence on memories: given a
reference right Rr, a set of safe keys, then we say that two
memories are equivalent if they differ only by the high values
which aims at never been sent to the attacker and by the
obfuscated terms of the low values.

Definition 12 (equivalent memories): Equivalent memory
is a relation on memories such that M1 RRr M2 if for each low
location xL 7→ vA in M1 (resp. M2), there exists xL 7→ vB in
M2 (resp. M1) such that obf(Rr, v

A) = obf(Rr, v
B) and each

location p 7→ pv in M1 (resp. M2) exists in M2 (resp. M1).

Next, we define an equivalence relation between two well-
annotated processes: two processes are equivalent if they have
the same commands up to some additional high threads and
have equivalent memories:

Definition 13: Two annotated processes PA and PB are
annotated-equivalent (PA R PB) when there exists an alpha-
renaming (capture-avoiding renaming of bound variables) of
PB such that

PA is KA; Rr |= νc̄.〈MA
1 I C

A
(1,1) | . . . | CA

(1,m1)
〉1|

. . . |〈MA
n I C

A
(n,1) | . . . | CA

(n,mn)
〉n,

PB is KB ; Rr |= νc̄′.〈MB
1 I C

B
(1,1) | . . . | CB

(1,m1)
〉1|

. . . |〈MB
n I C

B
(n,1) | . . . | CB

(n,mn)
〉n,

and we have KA RRr KB , for all k+ ∈ Rr, we have KA 0Rr
k− and furthermore for all (i, j), first MA

i RRr M
B
i , next, the

annotation on each thread CX
(i,j) (where X stands for A or B)

is either H or L such that either:

• Rr MX
i B (CX

(i,j))(H) : well-annotated

• Rr MX
i B (CX

(i,j))(L) : well-annotated and CA
(i,j) =

CB
(i,j) (the commands are syntactically identical up to

renaming of bound variables).

Finally, we prove that this relation actually implies bisim-
ilarity.

Proposition 5: Let PA be (KA; Rr |= νc̄.QA) and PB be
(KB ; Rr |= νc̄′.QB), where both are well-annotated processes
such that PA R PB , Furthermore assume that for all k+ ∈
Rr we have KA 0Rr k−. Then the processes are annotated
equivalent, PA ≈l P

B (with the annotations removed).

E. Main theorems

Our first security property grants confidentiality for each
created variable in the following way. When a variable x is
created with a protection R, this implicitly defines a set of
devices which are allowed to access x. If the untyped attacker
is not in this set, then any collaboration of the attacker with
the denied-access devices can not learn any information about
the value stored by the variable: they cannot detect an arbitrary
modification of the variable.

Theorem 1: Let P = A | D1 | . . . | Dn be a valid
initial process. We consider a reduction P → ∗P ′ with
P ′ = νc̄.A′ | D′1 | . . . | D′n such that for some 1 ≤ i ≤ n, D′i
is 〈M I new x :SR = E;C | C ′〉. Let LR = M(R) be the
set of keys corresponding to R, let DH = Entitled(LR)P→P ′

and let K be the unions of memories of the devices of P ′ whose
indexes are not in DH and of device A′. If DH is safe (as stated
in Definition 3), then (K |= P ′ �DH

) ≈l (K |= P ′i:x=v �DH
).

Proof: According to Proposition 1, we have K0 |=
P �DH

l1,...,ln
=====⇒

∗
K′ |= P ′ �DH

where K0 =
⋃

i/∈DH
Mi. As P

is a valid initial process, we get that P �DH
is also a valid initial

process (the verification of all conditions to be a valid initial
process is immediate). Since DH is safe, we consider Rr0, Rr
and the standard annotated semantics from Proposition 2:

K0; Rr0 |= P �DH

l1,...,ln
=====⇒ K; Rr |= P ′ �DH

where LR ⊆ Rr and

∀k+ ∈ Rr0, K0 0Rr0
k−. (1)

From Proposition 4, the annotation of the initial process is
well-annotated. From Proposition 3 on this annotation, we get
for all i ∈ DH : Rr  Di : well-annotated and, due to (1), for
all k+ ∈ Rr we have K 0Rr k−. Since LR ⊆ Rr, and given
the (assign T) rule, we also have

Rr M ∪ {xH 7→ v′} B (x := v)(H) : well-annotated.

Therefore, we satisfy all conditions of Definition 13:

(K; Rr |= P ′) R (K; Rr |= P ′i:x=v).

Finally, we conclude with Proposition 5.

Example 9: From the example of Section IV, let consider
the variable sharedSecret : Int{serverKey,Alice,Bob} of the
device SD. The Theorem 1 states that only devices from
Entitled({serverKey ,Alice,Bob})System→System′ can distin-
guish between sharedSecret = 42 or sharedSecret = 43.
Whatever are the reductions, these devices contains for sure
Srv since its key is known from the beginning and SD since
it creates Alice . The only threat is that the channel otherPrin
has not been established with MD or that c has not been
established with the device RD of Bob. These threats could be



removed by an additional authentication protocol or the use of
a private channel (for instance if the connection between SD
and MD is a direct wired connection). This means that not
knowing which code is run on Srv and RD is not a threat as
long as Srv and RD guarantee that their codes are well-typed.

Finally, we state a standard security property in the simpler
case where there is no untyped attacker. Given a process P , if,
at some point, we change the value that a variable is bound to
in memory, where that variable has been typed with right R,
then new reductions will not alter values in memory locations
that have been typed strictly less confidential than R (i.e., those
variables have rights that contain public keys not contained in
R).

Theorem 2: Let P be a valid initial process. We consider
a reduction P → P ′ with P ′ = D′1| . . . |D′n such that for some
i, D′i is 〈M I new x :SR = E;C | C ′〉. Let v be any value
of type S. Let P ′′ = D′′1 | . . . |D′′n such that P ′ → ∗P ′′ then
there exists Q′′ such that P ′x=v → ∗Q′′ where for all memory
location y that have been created in any device with rights Rl

with R ) Rl, we have obf(R, vP ) = obf(R, v′Q) where vP is
the value of y in P ′′ and vQ the value of y in Q′′.

Implementation: We have implemented an interpreter for
this language in Ocaml2. The program strictly follows the
extended semantics, it has commands to add a new device;
to do an internal reduction on the selected thread(s) of the
selected device(s); to perform an attacker communication, and
to type-check each device of the system according to the
annotations. To define a device which starts with keys in
memory, two additional commands are provided which are
allowed only as a preamble: load principal p from i; and
load x : PubKey from i; where i is a number; an identical
i on two devices represents a shared key. This implementation
demonstrates that the syntax is well-defined and effective,
and allows us to test the invariance of the properties with
demonstrative examples. The example of Section IV has been
tested using this implementation: we are able to reduce the
process such that Bob gets the secret from Alice and we can
verify that each step correctly type-checks.

VI. CONCLUSION

We have presented a security type system that provides
location based correctness results as well as a more traditional
non-interference result. The key novelty of our system is
to allow principal identities to be created and shared across
devices in a controlled way, without the need for a global
PKI or middleware layer. Hence, our correctness result states
that well-typed devices can control which other devices may
acquire their data, even in the presents of untyped attackers.
We have illustrated our system with an example of an open
cloud server that accepts new users. This server does perform
some monitoring of its users but our type system proves that it
does not monitor the content of their data. We argued that our
framework is particularly appropriate to cloud systems where
organizations will want guarantees about where their data will
be stored as well as the secrecy of their data.

Acknowledgement: We would like to thank Alley
Stoughton for her help with this work; her insightful comments
and useful advice greatly improved this paper.

2https://github.com/gazeaui/secure-type-for-cloud

REFERENCES

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In Proc. 28th ACM Symposium on Principles
of Programming Languages (POPL’01), London, UK, 2001. ACM.

[2] Myrto Arapinis, Jia Liu, Eike Ritter, and Mark Ryan. Stateful Applied
Pi Calculus. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[3] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. Theor. Comput. Sci., 402(2-3), 2008.

[4] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. Refinement types for secure implementa-
tions. ACM Trans. Program. Lang. Syst., 33(2), 2011.

[5] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In Proc. of the 14th IEEE Computer Security Foundations
Workshop (CSFW’01). IEEE Computer Society Press, 2001.

[6] Tom Chothia and Dominic Duggan. Type-based distributed access
control vs. untyped attackers. In Formal Aspects in Security and Trust,
Third International Workshop, FAST, 2005.

[7] Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed
access control. In 16th IEEE Computer Security Foundations Workshop
(CSFW-16), 2003.

[8] Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. Commun. ACM, 20(7), July 1977.

[9] Cedric Fournet, Andy Gordon, and Sergio Maffeis. A type discipline
for authorization in distributed systems. Technical Report MSR-TR-
2007-47, Microsoft Research, April 2007.

[10] Cédric Fournet and Tamara Rezk. Cryptographically sound imple-
mentations for typed information-flow security. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’08, 2008.

[11] Ivan Gazeau, Tom Chothia, and Dominic Duggan. Types for location
and data security in cloud environments. Technical Report CS-2017-1,
Stevens Institute of Technology, Hoboken, NJ, June 2017. Available at
https://github.com/gazeaui/secure-type-for-cloud.

[12] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke
Zarko, Joseph Schorr, and Steve Zdancewic. AURA: a programming
language for authorization and audit. In 13th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP, 2008.

[13] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A platform for secure distributed computation
and storage. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, 2009.

[14] Jed Liu and Andrew C. Myers. Defining and enforcing referential
security. In Principles of Security and Trust: Third International
Conference, POST, 2014.

[15] Jamie Morgenstern and Daniel R. Licata. Security-typed programming
within dependently typed programming. In 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP, 2010.

[16] Stefan Muller and Stephen Chong. Towards a practical secure con-
current language. In Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Languages, Systems,
Languages, and Applications, 2012.

[17] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng. Methodol., 9(4),
October 2000.

[18] Andrei Sabelfeld and David Sands. Probabilistic noninterference for
multi-threaded programs. In Computer Security Foundations Workshop
(CSFW’00), 2000.

[19] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic.
Evidence-based audit. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium, CSF-08,, 2008.

[20] Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized
label model. In IEEE Symposium on Security and Privacy, 2007.

[21] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Secur-
ing distributed systems with information flow control. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’08. USENIX Association, 2008.

[22] Lantian Zheng and Andrew C. Myers. Dynamic security labels and
noninterference (extended abstract). In IFIP TC1 WG1.7 Workshop on
Formal Aspects in Security and Trust (FAST), 2005.

https://github.com/gazeaui/secure-type-for-cloud

