
Deciding Secrecy of Security Protocols for an Unbounded Number of Sessions:
The Case of Depth-bounded Processes

Emanuele D’Osualdo
University of Kaiserslautern, Germany

dosualdo@cs.uni-kl.de

Luke Ong
University of Oxford, UK

lo@cs.ox.ac.uk

Alwen Tiu
Nanyang Technological University, Singapore

atiu@ntu.edu.sg

Abstract—We introduce a new class of security protocols
with an unbounded number of sessions and unlimited fresh
data for which the problem of secrecy is decidable. The
only constraint we place on the class is a notion of depth-
boundedness. Precisely we prove that, restricted to messages
of up to a given size, secrecy is decidable for all depth-
bounded processes. This decidable fragment of security pro-
tocols captures many real-world symmetric key protocols,
including Needham-Schroeder Symmetric Key, Otway-Rees,
and Yahalom.

Keywords-depth-bounded process; security protocols; proto-
col secrecy; well-structured transition system

I. INTRODUCTION

Security protocols are distributed programs that are de-
signed to achieve secure communications using cryptography.
They are extensively deployed today to improve the security
of communication applications, ranging from electronic
payments and internet banking to e-voting. However protocol
design is notoriously error-prone. Because the financial and
societal costs of failure are often prohibitively high, formal
verification of security protocols is widely acknowledged as
a necessity. In contrast to other safety critical systems, a
distinctive feature of the security properties of protocols is
that they must hold in the presence of an adversary or intruder,
and this makes them challenging to verify. An important
example of such a security property is secrecy: to verify that
a protocol satisfies secrecy amounts to checking whether it
can leak a given (secret) message to the environment as a
result of interference by the intruder.

Known Undecidability and Decidability Results

In essence, to verify secrecy, we need a way of analysing
the set of messages that the intruder knows; if a message
does not belong to this set, then that message is not leaked.
Here we assume a model of intruders as defined by Dolev
and Yao [1]. The difficulty is that this set of messages is in
general infinite, because the Dolev-Yao intruder is in control
of three sources of infinity: a) messages of unbounded size,
b) an unbounded set of nonces (and other freshly generated
data such as session keys), and c) an unbounded number
of sessions. Indeed the secrecy problem was proved to be
undecidable by Durgin et al. [2]. Amadio et al. [3] and

Heintze and Tygar [4] showed that the problem is undecidable
even if the set of atomic terms is fixed and finite, assuming
that terms of arbitrary size can be substituted for nonces.

Several decidability results have been obtained by restrict-
ing the three sources of infinity identified above. Durgin et
al. [2] proved that secrecy is DEXPTIME-complete when
both the number of nonces and the size of messages are
bounded. Rusinowitch and Turuani [5] and Comon-Lundh et
al. [6] proved that nonsecrecy is NP-complete when the
number of sessions is bounded. Of course, analysing a
protocol for a fixed finite number of sessions does not prove
secrecy.

A direction of investigation which has proved fruitful
does not constrain the above sources of infinity a priori,
but restricts the format of messages, so that the encrypted
messages become context explicit. In a pioneering paper [7],
Lowe considered messages with encrypted components that
are textually distinct, and each encrypted component must
include all protocol roles. In a similar vein, Ramanujam and
Suresh [8] (and subsuming [9]) introduced a non-unifiability
condition: between any two terms occurring in distinct
communications, no encrypted subterm of one can be unified
with a subterm of the other. Ramanujam and Suresh [10] also
studied more elaborate, dynamic schemes that tag encryptions
with fresh nonces when composed during a run.

All these results assume somewhat ad hoc features; for
example, the protocol must have an “honest run” (i.e. with-
out intruder interaction), or satisfy subtle type constraints.
Dissatisfied with the rather ad hoc nature of these models,
Fröschle [11] introduced the class of well-founded protocols
which is designed to exclude a common feature in all
protocols used in undecidability proofs: the message format
allows honest information to be propagated unboundedly
without the intruder manipulating it.

Closely related to well-founded protocol is a recent
decidability result for trace equivalence of security protocols
for an unbounded number of sessions and unrestricted nonces
by Chrétien et al. [12]. Equivalences can encode reachability
properties such as (strong) secrecy. Chrétien et al. give a
procedure for deciding trace equivalence for protocols that
are simple (each process communicates on a distinct channel),
type-compliant, and have acyclic dependency graphs. This

class of protocols includes many tagged variants of symmetric
key protocols in the literature.

Our Contributions

We show that the problem of secrecy is decidable for a
class of security protocols with an unbounded number of
sessions and unlimited fresh data. We use a cryptographic
process calculus based on the π-calculus [13], but presented
in a style that makes the intruder’s knowledge base (qua a
set of messages) explicit. I.e. a protocol and the intruder’s
knowledge base are represented together as a process term.
As is standard, we use an inference system, Γ `M (meaning
“intruder can derive message M from the set Γ of messages”),
to define what the intruder knows. A technical innovation
crucial to our decidability proof is the internalisation of the
inference system as a congruence relation of the process
terms, called knowledge congruence, written ≡kn. By con-
struction ≡kn contains the standard structural congruence;
further it is sound and complete with respect to derivability,
i.e., M1, · · · ,Mn `M if, and only if,

〈M1〉 ‖ · · · ‖ 〈Mn〉 ≡kn 〈M1〉 ‖ · · · ‖ 〈Mn〉 ‖ 〈M〉

where 〈M〉 is the process representation of the message M .
Every finite set of messages is knowledge-equivalent to a
unique irreducible set of messages. Further, every process
is knowledge congruent to a process in irreducible standard
form.

Our decidability result relies on two process measures,
and their corresponding notions of boundedness. The first is
a measure on the size of messages. The second measure is
depth, an adaptation of a concept introduced by Meyer [14]
for the π-calculus. A subterm of a process has nesting of
restriction k ∈ N just if it is in the scope of k restrictions;
the nesting of restriction of a process is just the maximum
nesting of restriction of its subterms. The depth of a process
is then defined as the minimal nesting of restrictions in its
knowledge congruence class.

Given s, k ∈ N, we say that a process is (s, k)-bounded
if all processes reachable from it have depth at most k,
when only messages of size up to s are allowed. Intu-
itively, bounding depth means that, as a result of any
interaction—be it honest or malicious—the protocol cannot
produce what we call encryption chains of unbounded
length {N1}N2

, {N2}N3
, . . . , {Nn−1}Nn

, for secret nonces
N1, . . . , Nn.

Our main result (Theorem 7) says that, restricted to
messages of up to a given size s, secrecy is decidable for
all (s, k)-bounded processes, for all k ∈ N.

Besides the obvious applications, this result’s relevance is
chiefly conceptual: we show, for the first time, that limiting
the length of the encryption chains is enough, together with
the necessary message size limitation common to other
approaches, to obtain decidability of secrecy. As importantly,
we show how to technically implement the restriction so

that only the relevant encryption chains are considered, and
position the result in the literature.

Our proof of decidability is an application of the theory of
well-structured transition system (WSTS) [15, 16]. Recall that
the coverability problem of an effective WSTS is decidable.
The main technical argument lies in the proof that with
respect to the process reduction relation, and a notion of
knowledge embedding, the set of processes reachable from
a given (s, k)-bounded process forms an effective WSTS.
Secrecy queries are then encoded as appropriate instances of
the coverability problem.

The decidable fragment of security protocols that we have
identified captures many real-world symmetric key protocols,
including Needham-Schroeder Symmetric Key, Otway-Rees,
and Yahalom. Using these and other examples, we show that
our decidable class of protocols is incomparable to those
in [11, 12]. The message algebra is deliberately chosen as
the simplest that illustrates our approach. The techniques
used in our decidability result are robust enough to handle
asymmetric key cryptographic protocols as well.

Outline

In Section II, we present a formal model of the Dolev-
Yao intruder. In Section III, we introduce our cryptographic
process calculus. After presenting its syntax, knowledge
congruence and operational semantics, we define the secrecy
problem. In Section IV, we define the notion of depth, and
(s, k)-bounded processes, and prove the main decidability
result. We present in Section V a general method, amenable
to automation, for proving that a protocol is (s, k)-bounded.
Then in Section VI we examine several examples of real-
world symmetric protocols and compare our model with
those of Fröschle [11] and Chrétien et al. [12]. Finally in
Section VII we briefly discuss future directions and conclude.

II. AN INTRUDER MODEL

We give a formal model of the intruder, which describes the
capabilities of the intruder in deducing messages from a given
set of messages (e.g. those intercepted during a protocol run).
We follow the Dolev-Yao model [1], which assumes perfect
encryption, i.e., the intruder cannot decrypt an encrypted
message without knowing the decryption key. For simplicity,
we model only symmetric encryption/decryption, but the
approach described here can be extended to cover other
operators [17]. We model the intruder’s capability using a
proof system formalized in sequent calculus [17] so that we
can reuse some results already established in [17], notably
cut-elimination, to simplify proofs of some properties of
our intruder model. We note however that our decidability
results can be established using other representations of the
intruder’s capability, e.g., as natural deduction proof systems
or as rewriting systems. The proof techniques used here are
a straightforward adaptation from related work [17, 18].

M ∈ Γ

Γ `M
ID

Γ ` N Γ, N `M
Γ `M

CUT

Γ, (M,N),M,N `M ′

Γ, (M,N) `M ′
PL

Γ `M Γ ` N
Γ ` (M,N)

PR

Γ, {M}K ` K Γ, {M}K ,M,K ` N
Γ, {M}K ` N

EL

Γ `M Γ ` K
Γ ` {M}K

ER

Figure 1. A proof system for Dolev-Yao intruders

Let N , ranged over by lowercase letters a, b, . . . , be an
enumerable set of names. The set M of messages is defined
as the set of terms constructed as follows:

M,N,K ::= a | (M,N) | {M}K

where (-, -) denotes the pairing operator and {M}K denotes
the symmetric encryption of the message M with encryp-
tion key K. Projection and decryption are not modelled
explicitly in the messages, but will instead be encoded via
pattern matching in the operational semantics, which will be
discussed later.

The set of names occurring in a set of mes-
sages Γ is denoted by names(Γ). The size of a
message is defined as the height of its syntax tree,
i.e. size(a) := 1 and size((M,N)) := size({M}N) :=
1 + max(size(M), size(N)). We write MX

s for the set of
messages with size bounded by s and names in X ⊆ N , that
is MX

s := {M | size(M) ≤ s,names(M) ⊆ X}.
The intruder’s capability is defined via the sequent calculus

proof system given in Figure 1. This sequent system is a
fragment of the sequent system for an intruder model in [17].
For a set Γ of messages, the sequent Γ ` M means that
the message M can be derived by using knowledge of the
messages in Γ. As is standard, we write Γ,M to denote the
set Γ] {M}.

Lemma 1 (Cut-elimination [17]). The cut rule is admissible.

Lemma 2. If Γ `M is provable then Γ,Γ′ `M is provable
for all Γ′.

Lemma 3. If Γ, f(X,Y) `M is provable, where f is either
the pairing or the encryption operator, then Γ, X, Y `M is
provable.

Lemma 4. Let a be a name that occurs neither in Γ nor in
M , then if Γ, a `M is provable, Γ `M is also provable.

Definition 1 (Knowledge order, equivalence). Let Γ1,Γ2

be two sets of messages. We define the knowledge quasi

order ≤kn by: Γ1 ≤kn Γ2 if for all M , if Γ1 ` M then
Γ2 `M . The two sets Γ1 and Γ2 are said to be knowledge
equivalent (or simply equivalent) if Γ1 ≤kn Γ2 and Γ2 ≤kn

Γ1. We write Γ1 ∼kn Γ2 when Γ1 and Γ2 are equivalent.

We want to define a canonical “core” subset of a set of
messages Γ which is sufficient for deriving any message
derivable from Γ. In order to do so, we introduce a simple
rewriting system that simplifies a set of messages.

Definition 2. We define a rewrite relation −→ on sets of
messages as follows:

Γ, (M,N) −→ Γ,M,N
RP

Γ, {M}K ` K
Γ, {M}K −→ Γ,M,K

RE

Lemma 5. The rewriting system in Definition 2 is terminating
and confluent.

Lemma 6. If Γ1 −→ Γ2 then Γ1 ∼kn Γ2.

Definition 3 (Irreducible set). We say that Γ is irreducible
if there exists no Γ′ such that Γ −→ Γ′.

By Lemma 5, for every set of messages Γ there exists a
unique irreducible Γ′ such that Γ −→∗ Γ′; we call such a Γ′

the irreducible form of Γ, denoted by ird(Γ). By Lemma 6,
we have Γ ∼kn ird(Γ).

III. A MODEL OF CRYPTOGRAPHIC PROTOCOLS

We present a cryptographic process calculus based (ulti-
mately) on the π-calculus [13, 19–23]. Fix a finite signature
Q of process names (ranged over by Q) each of which has a
fixed arity ar(Q) ∈ N. The syntax of processes follows the
grammar:

P ::= 0 | νx.P | P ‖P | 〈M〉 | Q[~x] process
A ::= in(~x : M).P | A+A action

We use the vector notation for names ~x = x1, . . . , xn (for
some n ∈ N which is left unspecified when irrelevant).
We reserve ~x, ~y, . . . for bound names, with the convention
that the names in a vector of bound names are all pairwise
distinct. We often abuse notation by writing vectors for
the set of their components, e.g. a ∈ ~b reads a ∈ {bi |
~b = b1, . . . , bn, 1 ≤ i ≤ n}. The notation ν~x.P is a shorthand
for νx1. · · · νxn.P . If Γ = {M1, . . . ,Mk} is a finite set of
messages, then 〈Γ〉 := 〈M1〉 ‖ . . . ‖ 〈Mk〉.

In an action in(~x : M).P we call ~x : M the pattern,
in(~x : M) the input prefix and P the continuation, and we say
P is under a prefix. A subterm Q of a term P is called active
in P if it is not under a prefix. The process 〈M〉 is called an
active message and is essentially a degenerate form of the
notion of an active substitution in the applied π-calculus [19],
where we omit the domain of the substitution. An active
message is essentially a message output by a process that

is captured by the environment (intruder). Processes of the
form 〈M〉 or Q[~a] are called sequential. The internal action
τ , can be understood as an abbreviation for in(x : x), for a
fresh x.

The calculus has two binders: the names ~x are bound in
both ν~x.P and in(~x : M).P . We denote the set of free names
of a term P with fn(P) and the set of bound names with
bn(P). As is standard, α-conversion can be used to rename
bound names to fresh names without changing the structure of
a term. Therefore, we require, wlog, that fn(P)∩bn(P) = ∅.

A program consists of an initial term P and a finite set ∆
of definitions of the form Q[x1, . . . , xn] := A, with ar(Q) =
n and fn(A) ⊆ {x1, . . . , xn}. Notice that we require every
definition to be prefixed by an action. This simplifies the
technical developments without sacrificing expressivity.

We assume there is at most one definition for each Q in
Q. We write P for the set of all processes over an underlying
signature Q.

Pattern matching is formalised using substitutions of bound
names to messages. We write σ = [M1/x1, . . . , Mn/xn],
often abbreviated with [~M/~x], for the substitution with
σ(xi) = Mi for all 1 ≤ i ≤ n.

Definition 4. A pattern ~x : M is said to be admissible, if
for all y ∈ ~x we have M,~z ` y where ~z = fn(M) \ ~x.

We require every pattern in a program to be admissible.
Thanks to admissible patterns, we can model decryption and
projections using pattern matching. For instance, an action
in(x, y : {(x, y)}k).P can match a message {(a, {b}c)}k
resulting in P [a/x, {b}c/y]; note that the encryption key k
is not bound so it is already known by the action: the same
action cannot match a message {(a, b)}k′ where k′ 6= k.

Admissible patterns rule out patterns that bind encryption
keys so that decryption is possible only if the required keys
are known. For instance, the pattern in the previous example
is admissible because {(x, y)}k, k ` x, and {(x, y)}k, k ` y,
while the pattern x, y : {(x, b)}y is not admissible because
{(x, b)}y, b 6` y. Note that multiple decryptions and projec-
tions can be modelled by a single admissible pattern, for
example x, y, z : {(x, ({y}(z,x), z))}k can be implemented
by first decrypting the message with the known key k,
obtaining (by projection) x, {y}(z,x) and z, and then pairing
z and x to obtain the key needed to decrypt y.

Remark 1. We choose to adopt a variant of π-calculus with
guarded choice (A+ A) and guarded recursive definitions.
A common alternative is to omit choice and use replication
(!P) instead of definitions. Choice is not strictly necessary to
specify common protocols and can indeed be simulated in the
calculus without choice. Similarly, guarded replication can be
simulated by using definitions: P = !

(∑
i∈I in(~yi : Mi).Qi

)
,

with ~x = fn(P), can be encoded by a definition RepP [~x] :=∑
i∈I in(~yi : Mi).(Qi ‖ RepP [~x]). It may seem that our

undecidability proofs (see Theorems 1 and 2) are made

weaker by the adoption of these powerful primitives, but
they can be replicated in weaker calculi, as studied more
thoroughly in the literature (see for example [3] or [24, §3.3]).
The undecidability results rely on folklore encodings, briefly
presented to motivate the restriction that we use to prove
our main decidability result (Theorem 7). In this respect, the
adoption of such rich primitives strenghtens our result and
allows a more natural representation for common protocols.

A. Structural and Knowledge Congruences

Structural congruence, ≡, is the least relation that respects
α-conversion of bound names, and is associative and commu-
tative with respect to ‖ and + with 0 as the neutral element,
and satisfies the laws:

νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P

P ‖ νa.Q ≡ νa.(P ‖ Q) (if a 6∈ fn(P))

The second law is called exchange, the third scope extrusion.
It is easy to show that every process is congruent to a

process sf(P) in standard form, i.e. of the form

ν~x.
(
〈M1〉 ‖ · · · ‖ 〈Mm〉 ‖ Q1[~N1] ‖ · · · ‖ Qk[~Nk]

)
(∗)

where every name in ~x occurs free in some subterm. We
write sf(P) = ν~x.(〈 ~M〉 ‖ Q) to mean that Q is a parallel
composition of processes Q[~N]; and all the active messages
are collected in ~M . Note that ~M represents all the messages
that have been sent through the insecure communication
medium and are therefore available to the intended receiver,
and leaked to the intruder. We define msg(P) = ~M ∪ ~N1 ∪
. . . ∪ ~Nk when sf(P) is the expression (∗). Thus msg(P) is
the set of messages appearing in a term. When m = 0, k =
0, ~x = ∅, the expression (∗) is 0.

It is useful to incorporate the knowledge reduction
(Definition 2) in the structural congruence so that the
irreducible forms are canonical members of the congruence
classes. The knowledge congruence relation is obtained by
extending structural congruence with the rewriting relation
of Definition 2. Formally, the knowledge congruence ≡kn is
the smallest congruence that includes ≡ and satisfies:

〈(M,N)〉 ≡kn 〈M〉 ‖ 〈N〉 Diffusion

〈{M}K〉 ‖ 〈K〉 ≡kn 〈M〉 ‖ 〈K〉 Decryption

〈M〉 ‖ 〈M〉 ≡kn 〈M〉 Persistence

Persistence is a consequence of the ability of the intruder to
duplicate messages: as reflected by the semantics, receiving
a message does not consume it, the intruder needs to acquire
it only once to be able to replay it at any time.

Lemma 7. If Γ ` M then there is a Γ′ ⊇ Γ with
〈Γ′〉 ≡kn 〈Γ〉 and M ∈ Γ′.

As a consequence, knowledge congruence is sound and
complete with respect to derivability.

Corollary 1. Γ `M if and only if 〈Γ〉 ≡kn 〈Γ〉 ‖ 〈M〉.

Definition 5. We say that a process P is irreducible if the
active messages of its standard form are an irreducible set of
messages, that is: sf(P) = ν~x.(〈Γ〉 ‖ Q) and Γ = ird(Γ).

Every process P is knowledge congruent to a process
in irreducible standard form, written isf(P), defined as
isf(P) := ν~x.(〈ird(Γ)〉 ‖ Q), where sf(P) = ν~x.(〈Γ〉 ‖ Q).

Lemma 8. For all P , sf(P) ≡kn isf(P).

Proof: Assume Γ = Γ1 −→ . . . −→ Γn = ird(Γ). Let
sf(P) = ν~x.(〈Γ〉 ‖ Q), then isf(P) = ν~x.(〈ird(Γ)〉 ‖ Q).
We show that every rewriting step Γi −→ Γi+1, for
1 ≤ i ≤ n, can be replicated using knowledge congruence
laws. If Γi −→ Γi+1 is due to an application of Rule RP then
〈Γi〉 ≡kn 〈Γi+1〉 by the diffusion law. If Γi −→ Γi+1 is justi-
fied by Rule RE , then Γi = Γ′, {M}K , Γi+1 = Γ′,M,K and
Γi ` K. By Corollary 1, 〈Γi〉 ≡kn 〈Γi〉 ‖ 〈K〉 and therefore
〈Γi〉 ≡kn 〈Γ′, {M}K ,K〉 ≡kn 〈Γ′,M,K〉 = 〈Γi+1〉

B. Operational Semantics

A process consists of a number of sequential processes
(modelling the principals of the protocol) and some messages
that have been communicated through a global, insecure
medium. An input action can be fired if the intruder can
produce a message that matches the action’s pattern. Since
the intruder can also replay genuine messages as they are,
this interaction models both legitimate and malicious com-
munications. The result of firing an action is the activation
of its continuation: this can have the effect of changing the
state of the principal, asynchronously sending new messages
and creating new principals.

We write Q[~M] , A if Q[~x] := A′ ∈ ∆ and, up to
commutativity and associativity of +, A = A′[~M/~x].

We formalise the calculus’ semantics by defining the
transition relation →∆ between processes, dependent on
the definitions ∆: P →∆ Q holds if

1) P ≡kn ν~a.(〈Γ〉 ‖ Q[~M ′] ‖ C),

2) Q[~M ′] , in(~x : N).P ′ +A,

3) Γ,~c ` N [~M/~x], for some messages ~M and fresh names
~c = names(~M) \ (~a ∪ fn(P)), and

4) Q ≡kn ν~a.ν~c.(〈Γ〉 ‖ 〈~c 〉 ‖ P ′[~M/~x] ‖ C).
We often omit ∆ when it is clear from the context.

Notice how the intruder can inject fresh names ~c (which
can be used as keys) and use them in conjunction with
the leaked knowledge Γ to produce messages that can be
consumed by a principal, who is unable to distinguish the
genuine messages from the counterfeit. That the matching
message is derived from Γ is worth noting; it means that
decryption and projections can simply be implemented by
pattern matching.

The processes that are reachable from P , under the def-
initions in ∆, form the set Reach∆(P) := {Q | P →∗∆ Q}.

The set of traces, i.e. transition sequences, from P under ∆
is the set

Traces∆(P) := {Q0 · · ·Qn | P ≡kn Q0 →∆ · · · →∆ Qn}.

C. The Secrecy Problem

We are interested in checking whether a protocol is secure,
which, for the purposes of this paper, amounts to checking
whether a secret can be leaked to the environment as the
result of interference by the intruder. To mark a name as a
secret, we assume Q contains a special symbol Secret of
arity 1, with the convention that if a process Secret[M] and
the message 〈M〉 become active, the secret M is leaked.

Definition 6 (Secrecy). The secrecy problem asks, given a set
of definitions ∆, a process P , and a message M , if there is a
process Q such that P →∗∆ Q and Q ≡kn ν~x.(Secret[M] ‖
〈M〉 ‖ Q′) with ~x ∩ fn(P) = ∅. We call such Q a leak. We
call secrecy relative to C the same problem where all the
processes in the transitions to reach the leak (and the leak
itself) are required to be in the class of processes C.

We now show how informal specifications of protocols can
be encoded in our process calculus and how secrecy queries
can be encoded as coverability problems. In the following,
we use the notation

∏
i∈I Pi, for some index set I , to denote

parallel compositions of processes Pi.

Example 1 (Needham-Schroeder Symmetric Key (NSSK)
protocol). The well-known Needham-Schroeder symmetric
key establishment protocol [25] can be described as follows:

(1) A→ S : A,B,NA

(2) S → A : {NA, B,KAB , {KAB , A}KBS
}KAS

(3) A→ B : {KAB , A}KBS

(4) B → A : {NB}KAB

(5) A→ B : {NB − 1}KAB

Here NA, NB are nonces, and KAB is a fresh session key.
KBS and KAS are long-term symmetric keys shared by the
server and A and B, respectively.

In Fig. 2 we present a model of the protocol us-
ing our process calculus. Notice the definition of A1 is
prefixed with a τ action to fit our syntax for defini-
tions. Here we use the abbreviation (M1,M2, . . . ,Mn) for
(M1, (M2, · · · (Mn−1,Mn) · · ·)). We also omit the pairing
brackets inside an encryption. Since our calculus does not
have arithmetic operators, the term NB − 1 in the response
from A to B in the last step is modelled as a pair (NB , NB).
The definitions in the figure correspond to different steps
for the roles (A, B and S) in the protocol. The initial
configuration of the protocol is (NSP ‖

∏
(x,k)∈P〈x〉) where

NSP =
∏

(x,kxs)∈P
(y,kys)∈P\{(x,kxs)}

(S1[x, y, kxs, kys] ‖ A1[x, y, kxs] ‖ B1[x, y, kys])

S1[x, y, kxs, kys] := in(nx : (x, y, nx)).νk.〈{nx, y, k, {k, x}kys
}kxs
〉 ‖ S1[x, y, kxs, kys]

A1[x, y, kxs] := τ .νn.(〈(x, y, n)〉 ‖ A2[x, y, kxs, n] ‖ A1[x, y, kxs])

A2[x, y, kxs, n] := in(m, k : {n, y, k,m}kxs
).(〈m〉 ‖ A3[x, y, kxs, k])

A3[x, y, kxs, k] := in(s : {s}k).〈{s, s}k〉
B1[x, y, kys] := in(k : {k, x}kys

).νs.(〈{s}k〉 ‖ B2[x, y, kys, k, s]) ‖ B1[x, y, kys]

B2[x, y, kys, k, s] := in({s, s}k).0

Figure 2. An encoding of the symmetric Needham-Schroeder protocol.

and P is the set of principals and shared keys be-
tween the principals and the server. For example, with
P = {(a, kas), (b, kbs)} the above process represents the pro-
tocol with two honest principals a and b, sharing, respectively,
the symmetric keys kas and kbs with the server.

Example 2 (NSSK with dishonest principal). In the encoding
in Example 1, the principals in P are considered honest
principals. If we want to model the case where the intruder
can be among the principals, the protocol specification would
be (NSP ‖

∏
(x,k)∈P〈x〉 ‖ 〈kis〉) where (i, kis) ∈ P and

NSP is defined as in Example 1. Here the free name i
represents the intruder. Note that we expose the shared key
kis between i and the server to the environment.

Example 3 (Secrecy queries). To reason about the secrecy
of certain messages, we mark them with the label Secret.
For example, to reason about the secrecy of NB (Example 2,
where the intruder is also a principal of the protocol), we
modify the definition for B2 in Figure 2 as follows:

B2[x, y, kys, k, s] := in({s, s}k).Secret[(x, y, s)]

Secrecy of nonce NB in an exchange between honest
participants A and B can then be specified as the prob-
lem of finding a process Q such that P →∗∆ Q and
Q ≡kn ν~x, s.(Secret[(a, b, s)] ‖ 〈(a, b, s)〉 ‖ Q′). Here it
is important that we associate the secret with the honest
principals a and b, as otherwise the secrecy property will
be trivially violated, e.g., if the intruder initiates a honest
session (as itself) with one of the honest principals.

Example 4 (Replay attack). The NSSK protocol in Example 1
is vulnerable to a replay attack [26]. That is, if a past
session key KAB is known to the intruder, then the intruder
(impersonating B) can replay Step (3) to A, tricking A into
accepting the old session key, and use it to decrypt {NB}KAB

to obtain NB . To reason about replay attacks, we can modify
the definition of B2 as follows:

B2[x, y, kys, k, s] :=
in({s, s}k).Secret[(x, y, s)] +
in({s, s}k).〈k〉

That is, at the last step of the protocol, B can non-
deterministically choose to mark the nonce NB as secret
or to expose the current session key.

D. Undecidability of the Secrecy Problem

Before we turn to our decidability results, we justify the
restrictions we will impose (in Section IV) to prove decidabil-
ity of secrecy, by showing that the problem is undecidable
in the general case. To this end, it is sufficient to encode
a 2-counter Minsky machine (2MM) as a cryptographic
protocol and get undecidability of secrecy as a consequence of
undecidability of control-state reachability for 2MM. Though
such reductions are not new (see e.g. [3, 24]), we present
two encodings of a counter with different properties which
will be useful for the rest of the paper.

A first encoding exploits the fact that if no bound on the
size of the messages is enforced, then the value of a counter
can be encoded in the size of a message: a counter ci is
encoded by some process 〈{{{. . . {a}a . . . }a}a}ci〉 where
the number of encryptions with a represents the current value
of the counter. The encoding, detailed in Appendix B, takes a
2MM A and produces SJAK = (PA,∆A), with the property
that a program location i is reachable in A if and only if from
PA one can reach a process containing Si[~x], for some ~x.

Theorem 1. The secrecy problem for unconstrained pro-
cesses is undecidable.

Since the above encoding relies on messages of unbounded
size, it is common to put an artificial bound on the allowed
size. As is well-known, this restriction is not enough to
get a decidable secrecy problem. Although the result is
not new, we think it informative to examine a proof. The
undecidability result cannot be derived from the previous
encoding: bounding the size of messages corresponds to
bounding the counters’ value, which yields a decidable
control-state reachability problem. We therefore adapt the
above encoding to reduce control-state reachability of 2MM
to secrecy of a protocol where messages have bounded size.
Specifically our encoding will only require messages of size
no greater than 2. The key idea is to encode a natural number
n with what we call an encryption chain of length n:

ECn = νx1, . . . , xn.
〈
{z}x1

, {x1}x2
, {x2}x3

, · · · , {xn}k
〉
.

The value n is encoded by the number of decryptions needed
to reach a secret z from knowledge of k. Using this idea,
a 2MM A is encoded into DJAK = (P ′A,∆

′
A) with the

property that a program location i of A is reachable if and
only if one can reach, from P ′A a process containing Di[~x],
for some ~x.

Let Ss := {P ∈ P | ∀m ∈ msg(P) : size(m) ≤ s} be the
set of processes containing active messages of size at most s.
Since for any 2MM A with encoding DJAK = (P,∆) we
have Reach∆(P) ⊆ S2, we conclude the following.

Theorem 2. Secrecy relative to Ss is undecidable, for any
s ≥ 2.

The case with s < 2 is hardly relevant as no encryption is
then possible. The result motivates the restriction presented
in the following section, which has the effect of bounding
the length of the encryption chains a protocol can create.

IV. DEPTH BOUNDEDNESS

Motivated by the undecidability results of the previous
section, we introduce a measure on processes, their depth,
adapting a concept introduced by Meyer [14, 27] for the
π-calculus. By bounding the depth of processes we will be
able to rule out encryption chains of unbounded length.

A. Depth and Notions of Boundedness

Definition 7 (Depth). The nesting of restrictions of a term
is given by the function

nestν(Q[~a]) := nestν(〈M〉) := nestν(0) := 0

nestν(νx.P) := 1 + nestν(P)

nestν(P ‖ Q) := max(nestν(P),nestν(Q)).

The depth of a term is defined as the minimal nesting of
restrictions in its knowledge congruence class,

depth(P) := min {nestν(Q) | Q ≡kn P}.

It is important to note that here we measure depth modulo
the coarser knowledge congruence (as opposed to structural
congruence), which enables us to “cast off” encryption chains
that are not essential. For example, consider

P = νa, b, c.(〈a〉 ‖ 〈{b}a〉 ‖ 〈{c}b〉 ‖ 〈c〉)

we have nestν(P) = 3; however, by minimising the scopes
of the restrictions using the exchange and scope extrusion
laws, we can obtain the term

Q = νb.
(
νa.
(
〈a〉 ‖ 〈{b}a〉

)
‖ νc.

(
〈{c}b〉 ‖ 〈c〉

))
with Q ≡ P and nestν(Q) = 2. The reader can check
that every other process structurally congruent to P has
nesting of restriction at least 2. But if one admits knowledge
congruence, the term P can be transformed to the irreducible
process P ′ = (νa.〈a〉 ‖ νb.〈b〉 ‖ νc.〈c〉) with P ≡kn P

′ and
nestν(P ′) = 1, from which it follows that depth(P) = 1.
Example 5. Consider again the encryption chain ECn

introduced in the previous section. For any n the term ECn is
irreducible, and has nestν(ECn) = n. It is however possible

to extrude the restrictions and get a shallower nesting by
minimising the scopes starting from the restriction in the
middle of the chain and proceeding recursively in the two
halves. For example EC 3 ≡ νx2.

(
νx1.〈{z}x1 , {x1}x2〉 ‖

νx3.〈{x2}x3
, {x3}k〉

)
= EC ′3 with nestν(EC ′3) = 2. In

general it can be proven that depth(ECn) = dlog2(n)e.
This means that if a set of processes X contains, for any
n ∈ N, a term having ECm with m ≥ n as a subterm up to
congruence, then there is no finite upper bound to the depth
of the terms in X .

Lemma 9. For every process P there exists an irreducible
process Q ≡kn P with nestν(Q) = depth(P).

Proof: Let k = depth(P). By definition of depth, we
know there is a P ′ ≡kn P with nestν(P ′) = k. If P ′ is
irreducible we are done. Otherwise, it can be made irreducible
by replacing some of its active messages with some of their
subterms as dictated by Definition 2. Since the replacement
can be made in-place, and it does not affect restrictions,
we obtain an irreducible Q ≡kn P

′ with the same nesting
nestν(Q) = nestν(P ′) = k.

The following easy lemma will be useful later; it states
that since names can be reused in non-nested restrictions, the
nesting of restrictions of a term is a bound on the number
of distinct names needed to represent the term.

Lemma 10. Every P can be α-converted into a process Q
such that |bn(Q)| ≤ nestν(P).

Proof: By induction on the structure of P . For the base
cases, where P is 0 or a sequential process, nestν(P) = 0
and P does not contain restrictions, so |bn(P)| = 0. For the
induction step, if P = νa.P ′, by induction hypothesis we can
α-convert P ′ to Q′ so that |bn(Q′)| ≤ nestν(P ′), ensuring
wlog that a 6∈ bn(Q′). Then νa.Q′ is the required process.
If P = P1 ‖ P2 then, by induction hypothesis for each
i ∈ {1, 2} we can α-convert Pi to Qi so that |bn(Qi)| ≤
nestν(Pi) and we can do so by ensuring that bn(Q1) ⊆
bn(Q2) or bn(Q2) ⊆ bn(Q1). So P is α-equivalent to
Q1 ‖ Q2 and |bn(Q1 ‖ Q2)| = |bn(Q1) ∪ bn(Q2)| =
max(|bn(Q1)|, |bn(Q2)|) ≤ max(nestν(P1),nestν(P2)) =
nestν(P).

For example, the term EC ′3 from Example 5 can be
α-converted to

νx2.
(
νx1.〈{z}x1

, {x1}x2
〉 ‖ νx1.〈{x2}x1

, {x1}k〉
)

Let DX
k := {P ∈ P | depth(P) ≤ k, fn(P) ⊆ X} be the

set of processes of depth at most k ∈ N∪ {ω} and with free
names in X . Since our results do not depend on the choice
of X we write Dk to mean DX

k for some finite X ⊆ N .
Note that in both DX

k and SXs , the non-trivial restriction is
on depth and size respectively, while the condition on the
free names can typically be satisfied by setting X to the free
names of the initial term. Let A∗ be the set of sequences of
elements of A.

Definition 8. Let s, k ∈ N ∪ {ω}. We say the process P
is (s, k)-bounded (w.r.t. a finite set ∆ of definitions) if
Traces∆(P)∩S∗s ⊆ D∗k, i.e. from P only processes of depth
at most k can be reached, when only messages of size up to
s are allowed.

First we note that bounding the depth and not the message
size is not enough to get a decidable secrecy property thanks
to the encoding SJ-K presented in Section III-C. Since for any
2MM A with SJAK = (P,∆) we have Reach∆(P) ⊆ D2,
we conclude the following.

Theorem 3. Let k ≥ 2, then:

- Secrecy is undecidable for (ω, k)-bounded processes.
- Secrecy relative to Dk is undecidable.

It is natural to ask at this point whether secrecy relative to
Dk ∩ Ss is decidable, since it would rule out the reductions
using both encodings SJ-K and DJ-K. By means of a third,
weaker, encoding, we show that this is not the case.

Theorem 4. Secrecy relative to Dk ∩ Ss is undecidable, for
any k > 6 and s ≥ 3.

Proof (Sketch): The idea of the proof is to define an
encoding of 2MM, detailed in Appendix C, such that the
runs of the 2MM can all be matched by some runs of its
encoding, and, crucially, these runs only involve processes of
depth at most 6 and message sizes at most 3. The encoding
is weak in the sense that it also yields spurious runs which
do not correspond to real runs of the 2MM. However, the
encoding is constructed so that these spurious traces lead
invariably to processes exceeding the depth k. The halting
instruction of the 2MM is translated to a leak. Therefore we
obtain that by considering secrecy relative to Dk ∩Ss we are
effectively considering reachability of the halting instruction
using the non-spurious traces only.

In the rest of the section we will show that secrecy becomes
decidable for (s, k)-bounded processes when s and k are
both finite; namely, for protocols whose messages are suitably
bounded in size so that no process exceeding some depth
bound is reachable, regardless of the intruder’s interference.

B. Well-Structured Transition Systems (WSTS)

In this section we review the well-known theory of Well
Structured Transition Systems (WSTS) [15, 16], and recall
the main results that we are going to use for proving our
main decidability result.

Let (S,v) be a quasi order (qo). An infinite sequence
s0, s1, . . . of elements of S is called good if there are two
indexes i < j such that si v sj . The sequence is called bad
if it is not good. When the qo (S,v) has no bad sequences
it is called a well quasi order (wqo).

Definition 9 (Coverability, WSTS). Let → and v be binary
relations on a set S. For a triple (S,→,v), the coverability

problem asks if, given s, t ∈ S, there exists t′ such that
s→∗ t′ and t v t′. We call t the coverability query.

The triple (S,→,v) is a Well Structured Transition
System (WSTS) if

1) (S,v) is a wqo
2) for every s, s′, t ∈ S such that s→ t and s v s′, there

is a t′ ∈ S such that s′ → t′ and t v t′.
When condition 2 is met, we say v is a simulation.

It is well-known that for any subset S′ ⊆ S of a wqo
(S,v), the set of minimal elements of S′, min(S′), is finite.
A WSTS (S,→,v) is called effective if v is decidable and
the function minpre : S →P(S) such that

minpre(t) = min {s ∈ S | ∃t′ : s→ t′, t v t′}.

is computable.

Theorem 5 ([15, 16]). The coverability problem is decidable
for effective WSTS.

The algorithm from the proof of Theorem 5 works as
follows. Define pre(X) := {s | s→ t ∈ X} and X↑ =
{y ∈ S | ∃x v y} to be the upward-closure of a set X; a set
is upward-closed if X = X↑. Coverability of t from s can
be reformulated as the question whether s is a member of⋃

n∈N pren({t}↑)↑. This set can be computed as the upward-
closure of

⋃
n∈N minpren(t), which saturates after finitely

many iterations due to the wqo property.
The section that follows is devoted to defining an ordering

on processes, such that it forms a WSTS with the process’
semantics, for which secrecy reduces to coverability.

C. Bounded Processes are Well-Structured

We now define two quasi orders on terms. The first,
vird, compares irreducible standard forms. The second, vkn,
takes message derivability into account. The former serves
as a stepping-stone to prove that the latter is a wqo over
(s, k)-bounded terms, for s, k ∈ N.

Definition 10 (Irreducible embedding). Let P, P ′ ∈ P.
The relation P vird P

′ holds if isf(P) = ν~x.(〈Γ〉 ‖ Q),
isf(P ′) = ν~x.ν~y.(〈Γ′〉 ‖ Q ‖ Q′) and Γ ⊆ Γ′.

Definition 11 (Knowledge embedding). Let P, P ′ ∈ P. The
relation P vkn P

′ holds if sf(P) = ν~x.(〈Γ〉 ‖ Q), sf(P ′) =
ν~x.ν~y.(〈Γ′〉 ‖ Q ‖ Q′) and Γ ≤kn Γ′.

Both orderings are adequate to reduce secrecy to cov-
erability. Let v be either vird or vkn. Assuming a ∈ ~x,
we have Q ≡kn ν~x.(Secret[a] ‖ 〈a〉 ‖ Q′) if and only
if νa.(Secret[a] ‖ 〈a〉) v Q. In other words, embedding
νa.(Secret[a] ‖ 〈a〉) characterises leaks.

To be able to apply Theorem 5 we need to show that one
of the two embedding forms a WSTS with the semantics of
a term. Unfortunately, vird fails to be a simulation.

Fact 1. The relation vird is not a simulation.

Proof: Consider, as counterexample, P = 〈{{a}b}c〉 ‖
τ .〈c〉 and P ′ = P ‖ 〈b〉. Clearly, P vird P ′ and P →
〈{{a}b}c〉 ‖ 〈c〉 = 〈Γ〉 and P ′ → 〈{{a}b}c〉 ‖ 〈c〉 ‖ 〈b〉 =
〈Γ′〉. But ird(Γ) = {{a}b, c} 6⊆ ird(Γ′) = {a, b, c}. (Note
however that Γ ≤kn Γ′)

Knowledge embedding, on the other hand, is easily shown
to be a simulation.

Lemma 11. The relation vkn is a simulation.

Proof: Assume P1 vkn P2 and P1 → Q1 where

P1 ≡kn ν~a1.(〈Γ〉 ‖ Q[~b] ‖ C)

P2 ≡kn ν~a1.ν~a2.(〈Γ′〉 ‖ Q[~b] ‖ C ‖ C ′)
Q[~b] , in(~x : N).P ′ +A

Q1 ≡kn ν~a1.ν~c.(〈Γ〉 ‖ 〈~c 〉 ‖ P ′[~M/~x] ‖ C)

with Γ ≤kn Γ′, as in the operational semantics rule. Then
by Γ ≤kn Γ′ we obtain that the message N [~M/~x] can be
derived from Γ′,~c, so P2 → Q2 where

Q2 ≡kn ν~a1.ν~a2.ν~c.(〈Γ′〉 ‖ 〈~c 〉 ‖ P ′[~M/~x] ‖ C ‖ C ′).

Since Q1 vkn Q2 this completes the proof.
Our goal is to show that for all s, k ∈ N and for all

(s, k)-bounded processes P , (Reach∆(P)∩Ss,→∆,vkn) is
an effective WSTS. The next step is proving that vkn is a
wqo over Dk ∩ Ss. We do so by exploiting the following
easy observation.

Lemma 12. Let P,Q ∈ P. If P vird Q then P vkn Q.

From this fact we obtain that every bad sequence of (Dk∩
Ss,vkn) needs to be a bad sequence of (Dk ∩ Ss,vird).
Therefore we focus on proving that the latter has no bad
sequence.

Lemma 13. For any s, k ∈ N, (Dk ∩ Ss,vird) is a wqo.

Proof: Fix a finite set of names Y ⊆ N . We first show
how terms in DY

k ∩SYs can be mapped to forests with finitely
many labels, so that forest embedding implies irreducible
embedding. Then we can invoke Kruskal’s theorem [28],
which states that forest embedding is a wqo on forests with
wqo labels (finite sets are wqo by equality). Formally, FL is
the set of forests with nodes labelled by elements of a set L,
and is defined as the smallest set satisfying FL =M(L×FL)
whereM(X) is the set of finite-basis multisets over X , with
multiset union ⊕. The forest-embedding quasi order vF is
defined so ϕ1 vF ϕ2 holds just if there is an injective function
ι : dom(ϕ1)→ dom(ϕ2) such that for all t ∈ dom(ϕ1),

- ϕ1(t) ≤ ϕ2(ι(t)), and
- if t = (`1, ϕ

′
1) and ι(`1, ϕ

′
1) = (`2, ϕ

′
2) then (`1 = `2

and ϕ′1 vF ϕ
′
2), or {(`1, ϕ′1)} vF ϕ

′
2.

It follows from Kruskal’s theorem that (FL,vF) is a wqo
if L is finite. We now define a finite set L and a mapping
FJ-K from processes to forests, such that:

(A) for all P ∈ DY
k ∩ SYs there is an irreducible process Q

such that Q ≡kn P and FJQK ∈ FL;
(B) if FJQ1K vF FJQ2K then Q1 vird Q2, for any

irreducible processes Q1, Q2.
Then the theorem follows from these two properties: assume
there is a bad sequence P1, P2, . . . in (DY

k ∩ SYs ,vird), then
by (A) there is a corresponding sequence of irreducible
processes Q1, Q2, . . . with Pi ≡kn Qi and FJQiK ∈ FL.
Since vird is invariant under ≡kn by definition, the se-
quence Q1, Q2, . . . is also bad. Hence, by (B) the sequence
FJQ1K,FJQ2K, . . . is also bad, which is in contradiction
with Kruskal’s theorem.

To conclude the proof we need to define a suitable
map FJ-K:

FJP K :=

∅ if P = 0

{(P, ∅)} if P is sequential
{(a,FJQK)} if P = νa.Q

FJQ1K⊕FJQ1K if P = Q1 ‖ Q2

It is not difficult to see that (B) holds for this definition:
FJQ1K vF FJQ2K implies that every node in FJQ1K is
mapped to a node in FJQ2K with the same label; therefore,
by renaming every name to a fresh name to avoid clashes, and
applying scope extrusion, we obtain that Q1 ≡ ν~a.(〈Γ〉 ‖
Q) and Q2 ≡ ν~a.ν~b.(〈Γ〉 ‖ Q ‖ R) (here ~a and Q are
the renamed labels that were matching in the two forests).
Since Q1 and Q2 are assumed to be irreducible, this proves
Q1 vird Q2.

Now to prove (A) we have to fix a finite set of labels
L: let Xk = {x1, . . . , xn} ⊆ N such that Xk ∩ Y = ∅ and
define

L := X ∪O ∪ S X := Y ∪Xk O := {〈M〉 |M ∈MX
s }

S := {Q[M1, . . . ,Mn] | Q ∈ Q, ar(Q) = n,Mi ∈MX
s }

The set L is clearly finite. We can now use Lemma 9 to
get an irreducible Q ≡kn P with nestν(Q) = depth(P) ≤
k. By Lemma 10 we can assume bn(Q) ⊆ Xk, therefore
FJQK ∈ FL as required.

Lemma 14. For any s, k ∈ N, (Dk ∩ Ss,vkn) is a wqo.

Proof: Straightforward consequence of Lemma 13 and
Lemma 12: any bad sequence of vkn is also a bad sequence
of vird.

Theorem 6. Let s, k ∈ N and P be a (s, k)-bounded process,
under a set ∆ of definitions. Then (Reach∆(P) ∩ Ss,→∆

,vkn) is an effective WSTS.

Proof: Let S := Reach∆(P) ∩ Ss. From the bound-
edness assumption on P we have S ⊆ Dk ∩ Ss, so by
Lemma 14, (S,vkn) is a wqo. To show that vkn is a
simulation on S, we can replicate the proof of Lemma 11:
for every P1, P2, Q1 ∈ S with P1 vkn P2 and P1 → Q1, we
can find a Q2 such that P2 → Q2; it is easy to check that

Q2 is in S: Q2 is clearly in Reach∆(P), and since P2 and
Q1 are in Ss, so is Q2.

We complete the proof by showing effectiveness. The
relation vkn is clearly decidable. The following construc-
tion of minpre is proof of its computability. We define
minpre(R) := minvkn

(B) where the finite set of processes B
is computed as follows. Let Y = bn(R) and let ZQ ⊆ N be
a set of fresh names with |ZQ| = ar(Q)·2s−1 for any Q ∈ Q;
similarly let Z~x be a set of fresh names with |Z~x| = |~x| ·2s−1

for any tuple ~x. We enumerate:
- all Q ∈ Q, and let W = X ∪ Y ∪ ZQ,

- all tuples ~M ′ = M ′1, . . . ,M
′
ar(Q) ∈MW

s ,

- all in(~x : N).P ′ such that Q[~M ′] , in(~x : N).P ′ +A

- all tuples ~M = M1, . . . ,M|~x| ∈MW∪Z~x
s and let

~c = names(~M) ∩ Z~x, and
- all Γ ⊆MW

s .
For each, we compute the vkn-smallest process C such that:

Q = νY.νZQ.(〈Γ〉 ‖ Q[~M ′] ‖ C)

→ νY.νZQ.ν~c.(〈Γ〉 ‖ 〈~c〉 ‖ P ′[~M ′/~x] ‖ C) = R′

with R vkn R
′ ∈ DX

k ∩ SXs . The resulting Q is added to B
when depth(Q) ≤ k. The key observation is that, while
the predecessors of some process greater than some Q may
contain arbitrarily many new names, to compute the minimal
predecessors it suffices to make up a finite number of fresh
names. To see this, first observe that a message of size at
most s can mention at most 2s−1 distinct names. Since we
are considering only processes in S, and therefore in SXs for
X = fn(P), the size of every message involved in a step is
bounded by s.

As a corollary, since secrecy reduces to coverability, and
coverability is decidable for effective WSTS, we prove that
secrecy is decidable for bounded processes.

Theorem 7 (Decidability). Let P be a (s, k)-bounded
process, under a set ∆ of definitions, for some s, k ∈ N.
Then secrecy for P relative to Ss is decidable.

Proof: If P is (s, k)-bounded then, by Theorems 5 and 6,
secrecy for P relative to Ss is reducible to coverability from
P of the query ν~x.(Secret[M] ‖ 〈M〉) with ~x = fn(M) \
fn(P), in the effective WSTS (Reach∆(P) ∩ Ss,→,vkn).

Note that this does not contradict Theorem 4: even for finite
s, k, (Dk ∩ Ss,→,vkn) is not a WSTS. This is because vkn

is not a simulation over Dk ∩ Ss: in the proof of Lemma 11
the depth of Q2 is not necessarily less than k.
Example 6 (Encryption Oracle). Consider the following
definition:

O[k] := in(x : x).(〈{x}k〉 ‖ O[k])

We call O[k] an encryption oracle since it encrypts every
message it receives with a private key k. There is a common

pattern in protocols: an interaction begins by a principal
sending an unencrypted nonce x to the server, and expecting
to receive back from the server some data encrypted together
with the nonce. It is problematic to apply Theorem 7 to such a
pattern: if messages of size 3 are allowed, the intruder would
be able to send to the oracle messages of the form 〈(c0, c1)〉,
〈(c1, c2)〉 etc. where c1, c2, . . . are intruder generated nonces.
Consequently, and since k is never leaked, the reachable
irreducible processes are not depth-bounded. Typically, this
pattern is employed to encrypt nonces couple with certain
data known to the oracle, which means that the pattern
variable x is expected to match simple nonces, and not
structured messages. The above complication is thus caused
by a type-confusion interference by the intruder.

The process O[k] is (2, 1)-bounded however: the oracle
can only output messages of the form {ci}k (which have
size 2). The irreducible reachable processes have the form1(
νc.〈{c}k〉

)n ‖ O[k] which have depth 1.

The example above illustrates a limitation of our decidabil-
ity result. We present two ways of fixing this issue: either we
require the designer of the protocol to always send encrypted
nonces to oracles, or we restrict the size of messages so
that the problematic type-confusion interference is avoided.
Consider the modified oracle definition:

EO[ko, k] := in(x : {x}ko
).(〈{x}k〉 ‖ EO[ko, k])

Now a principal needs to know the ko key to be able to
interact with the encryption oracle and the intruder cannot
inject counterfeit messages in x, unless the key ko is leaked.
Since most commonly a principal and an encryption oracle
share a private key with which they encrypt their further
communications, the same key can be used to communicate
the nonce. To apply this fix, the designer must also fence-off
indirect influences of the intruder on the nonces; how this
is done depends on the specific structure of each protocol.
This precaution can be used to obtain a slight variant of

the NSSK protocol of Example 1, where the only changes
needed are in the first step of the protocol

S1[x, y, kxs, kys] := in(na : {(x, y, nx)}kxs
).νk.(. . .)

A1[x, y, kxs] := τ .νn.(〈{(x, y, n)}kxs
〉 ‖ . . .)

while the omitted portion of the code remains identical
to Fig. 2. Thus modified, the protocol can be shown
(s, 3)-bounded for all s ∈ N.

The second way to make the protocol analysable using our
decidability result, is by assuming the implementation has
some means to detect and fence-off type confusion attacks in
which the intruder can send messages of unexpected sizes to
principals. We model this assumption by means of what we
call a sizing function ς : N → N that maps names to sizes.
We then require every substitution to respect ς , that is only

1Here we write Pn for the parallel composition of n copies of P .

names assigned the same size can be replaced for one another.
Only names n with ς(n) = 1 can be used in restrictions.
A sizing function is naturally extended to messages by
setting ς({M}N) := ς((M,N)) := 1 + max(ς(M), ς(N)).
We define Tracesς∆(P) to be the set of traces respecting
the sizing ς , i.e. where the each step involves only ς-re-
specting substitutions. We say a process is (ς, k)-bounded if
Tracesς∆(P) ⊆ D∗k. Naturally, a (ς, k)-bounded process P is
also (s, k)-bounded where s is the maximum value of ς(M)
where M occurs as a subterm of P or of the body of some
definition in ∆.

In Example 1 the intended type of nx is a nonce created
by a principal. So we can impose the sizing with ς(nx) = 1
and arbitrary size values to all the other pattern variables
(all the restricted names will have sizing 1). We obtain that
the program is (ς, 2)-bounded which enables the use of
Theorem 7 for verification. In the next section, we elaborate
on this claim.

V. PROVING BOUNDEDNESS

We present in this section a general method, amenable to
automation, for proving that a protocol is (s, k)-bounded for
some given s, k ∈ N. Although we only demonstrate it on an
example, it builds on the general theory of ideal completions,
which we discuss in Section VII-A.

We want to prove that the NSSK protocol is (ς, 3)-bounded,
with ς(nx) = 1. To improve readability, we only consider the
instance with two honest principals a, always the initiator, and
b, always the responder. The general case is a straightforward
extension of the proof. The definitions are the ones of Fig. 2
but the starting point is

NS 0 = S1[~s] ‖ A1[~a] ‖ B1[~b] ‖ 〈a, b〉

with ~s = a, b, kas, kbs, ~a = a, b, kas, and ~b = a, b, kbs.
The proof method works by checking, given s, k ∈ N, the

existence of a set I of processes such that:
(C1) P0 ∈ I;
(C2) I is an inductive invariant (up to size bound s):

if P ∈ I and P → Q ∈ Ss then Q ∈ I;
(C3) I ⊆ Ss ∩ Dk.

An invariant satisfying (C1) and (C2) necessarily satisfies
Reach(P0)∩Ss ⊆ I . Condition (C3) then ensures that P0 is
(s, k)-bounded. The scheme can be easily adapted to support
a sizing function.

What makes this use of inductive invariants suitable for
automation is that all the subsets of Ss ∩ Dk that may be
needed to carry out such a proof, can be denoted using a
simple symbolic representation.

We call limits the terms L formed according to the
grammar:

L ::= 0 | 〈M〉 | Q[~x] | νx.L | L ‖L | Lω

That is, we add to the grammar of processes a case Lω,
called iteration. The crucial difference with processes is that

these limits represent sets of processes. The denotation of L
is the set JLK defined by:

JP K := {Q | Q vkn P} if P is sequential
Jνx.LK := {Q | Q ≡kn νx.P, P ∈ JLK}

JL1 ‖ L2K := {Q | Q ≡kn (P1 ‖ P2), Pi ∈ JLiK}
JLωK := {Q | Q ≡kn (P1 ‖ · · · ‖ Pn), Pi ∈ JLK, n ∈ N}

We call the processes in JLK instances of L. Note that:
- every denotation contains 0 and more generally is

downward-closed with respect to vkn, i.e. if P ∈ JLK
and Q vkn P , then Q ∈ JLK;

- as a consequence of downward closure, every denotation
is also closed under ≡kn;

- iterating a process 〈M〉 is superfluous: by the persistence
law J〈M〉ωK = J〈M〉K.

Define nestν(L) to be defined as nestν on processes with
the addition of the case nestν(Lω) := nestν(L). It is easy
to check that for each P ∈ JLK, depth(P) ≤ nestν(L).

We now write a limit L1, the denotation of which
satisfies (C1) to (C3), for P0 = NS 0, the sizing ς and
k = nestν(L1) = 3, allowing us to conclude that NS 0 is
(ς, 3)-bounded.

L1 = S1[~s]ω ‖ A1[~a]ω ‖ B1[~b]ω ‖ 〈a, b〉 ‖ G ‖ Lω
2

G = (νk.〈Ma,k〉)ω ‖ (νk.〈Mb,k〉)ω

Mx,k = {x, k, b, {k, a}kbs
}kas

L2 = νn.
(
〈n〉 ‖ A2[~a, n] ‖ Lω

3

)
L3 = νk.

(
〈Mn,k, {k, a}kbs

〉 ‖ A3[~a, k] ‖ Lω
4

)
L4 = νs.

(
〈{s}k, {s, s}k〉 ‖ B2[~b, k, s]

)
Clearly, P0 ∈ JL1K. It is not difficult, if tedious, to check
that JL1K is an inductive invariant up to ς .

The attentive reader may notice an interesting consequence
of invariance of L1: since no irreducible instance of L1

embeds a message 〈s〉, the invariant proves s is not leaked
(recall that this is the scenario where replay attacks are not
modelled). This is no coincidence: the above scheme is an
instance of forward coverability algorithms for WSTS with
a post-effective ideal completion [29]. Presenting the full
details is out of the scope of this paper; for a brief discussion
see Section VII.

Since boundedness is a property of the reachable configu-
rations, it should not come as a surprise that proving it is
a hard task. Other conditions from the literature of a more
syntactic nature may be easier to check but not as expressive.
Isolating a more statically checkable fragment is a topic for
future work.

VI. EXAMPLES OF SECURITY PROTOCOLS

We shall now discuss several examples of real-world
protocols to illustrate the key differences between our
approach and those of Fröschle [11] and of Chrétien et al. [12]

A[kab] := τ .νna.(〈na〉 ‖ A1[kab, na] ‖ A[kab])

A1[kab, na] := in(k, nb : ({1, k, na}kab
, nb)).〈{2, k, nb}kab

〉
B[kab] := in(x : x).νk, nb.(〈({1, k, x}kab

, nb)〉 ‖ B[kab])

System := νkab.(A[kab] ‖ B[kab])

Figure 3. An encoding of the protocol in Example 7

in closely related work. One main difference between our
approach and both Fröschle [11] and of Chrétien et al. [12]
work is that we do not impose a restriction that the encryption
key has to be atomic. The following examples lend further
support to our conclusion that the class of depth-bounded
protocols are incomparable to the class of protocols defined
in [11, 12], both of which rely on a notion of acyclicity in
the protocols, i.e., the notion of well-founded protocols in
[11] and a notion of acyclicity in dependency graph between
encrypted messages in [12].

Example 7. Consider the following key exchange protocol:

(1) A→ B : NA

(2) B → A : {1,K,NA}KAB
, NB

(3) A→ B : {2,K,NB}KAB

where NA and NB are nonces and K is a fresh session
key and KAB is a long term key shared by A and B.
For simplicity, we consider only two honest principals A
and B, and the intruder is not a principal of the protocol.
This protocol is not depth-bounded, regardless of the size
restriction on messages. For every nonce N1 generated by A,
the intruder can create an encryption chain {1,K1, N1}KAB

and {2,K1, X}KAB
where X is controlled by the intruder,

as follows:

(1) A→ B : N1

(2) B → I(A) : {1,K1, N1}KAB
, N2

(2) I(B)→ A : {1,K1, N1}KAB
, X

(3) A→ I(B) : {2,K1, X}KAB

This sequence can be repeated for each session initiated by
A to form an unbounded encryption chain: {1,K2, N2}KAB

,
{2,K2, N1}KAB

, {1,K3, N3}KAB
, {2,K3, N2}KAB

, etc.
Figure 3 shows an encoding of the above protocol, where

1 and 2 are distinct free names (omitted from the argument
lists). The natural size bound of the protocol is 4: since
size({(1, (k, x))}kab

) = 4, the principals can exchange all
the messages needed, but the intruder cannot try to replace
any structured message for x without exceeding the size
bound.

We illustrate here some transitions that lead to unbounded
depth, using the informal idea above to form encryption

chains. Observe that for any name x, we have:

A[kab] ‖ B[kab] ‖ 〈x〉 →∗
νk1.

(
〈{2, k1, x}kab

〉 ‖ νn1.(〈{1, k1, n1}kab
〉 ‖

A[kab] ‖ B[kab] ‖ 〈n1〉) ‖ νnb.〈nb〉
)
‖ 〈x〉

We can apply the same transitions to the subprocess A[kab] ‖
B[kab] ‖ 〈n1〉 to create:

A[kab] ‖ B[kab] ‖ 〈x〉 →∗
νk1.

(
〈{2, k1, x}kab

〉 ‖ νn1.(〈{1, k1, n1}kab
〉

νk2.(〈{2, k2, n1}kab
〉 ‖ νn2.(〈{1, k2, n2}kab

〉 ‖
A[kab] ‖ B[kab] ‖ 〈n2〉)))

)
‖ . . .

This expansion can be repeated to create a process with
arbitrary depth, while never exceeding the size bound 4. Note
that none of the encrypted subterm can be decrypted by the
attacker, since the key kab is not known to the attacker, so the
terms are irreducible. Since we can reach terms embedding
encryption chains of unbounded length, the reachable terms
have unbounded depth. It is easy to show that

System→∗ νkab, k, x, y.(〈{1, k, x}kab
〉 ‖ 〈y〉 ‖

〈{2, k, y}kab
〉 ‖ A[kab] ‖ B[kab] ‖ 〈x〉).

Since A[kab] ‖ B[kab] ‖ 〈x〉 is not (4, n)-bounded, for
any n ∈ N, it follows that the protocol (System) is not
(4, n)-bounded.

It can be shown that the above protocol is well-founded
(see Appendix E), in the sense of Fröschle [11], hence is in
the class of decidable protocols in [11]. This is essentially
due to the tagging of encrypted messages (via the constants 1
and 2), so ‘honest’ encrypted messages created by a principal
cannot be propagated indefinitely, i.e., the encrypted message
in the output of a step in the protocol cannot be fed back to
the input at an earlier step due to the different tags used at
every step.

Example 8. Recall the Otway-Rees protocol [30]:

(1) A→ B : M,A,B, {NA,M,A,B}KAS

(2) B → S : M,A,B, {NA,M,A,B}KAS
,

{NB ,M,A,B}KBS

(3) S → B : M, {NA,KAB}KAS
, {NB ,KAB}KBS

(4) B → A : M, {NA,KAB}KAS

This protocol is not well-founded [11]: the offending part is
a simple blind copy (no re-encryption involved) of message
{NA,M,A,B}KAS

. Fröschle shows [11] that such simple
blind copies can be removed from the protocol encoding in
her framework, without affecting the termination analysis.
Chrétien et al. [12] introduce tagging in the encrypted
messages to the above protocol to ensure termination in
their analysis, but they do not restrict the size of messages
exchanged during the runs of the protocol. They noted that,
without tagging, the dependency graph resulting from their
model of the protocol is cyclic.

S1[a, b, kas, kbs] := in(m,na, nb : m, a, b, {na,m, a, b}kas
, {nb,m, a, b}kbs

).

(νkab.〈m, {na, kab}kas
, {nb, kab}kbs

〉 ‖ S1[a, b, kas, kbs])

A1[a, b, kas] := τ .νm,na.(〈m, a, b, {na,m, a, b}kas
〉 ‖ A2[m,na, kas] ‖ A1[a, b, kas])

A2[m,na, kas] := in(kab : m, {na, kab}kas
).0

B1[a, b, kbs] := in(m,x : m, a, b, x).νnb.(〈m, a, b, x, {nb,m, a, b}kbs
〉 ‖ B2[nb, kbs] ‖ B1[a, b, kbs])

B2[nb, kbs] := in(m, y, kab : m, y, {nb, kab}kbs
).〈m, y〉

Figure 4. An encoding of Otway-Rees protocol

Figure 4 shows an encoding of the different roles of the
protocol in our calculus. The protocol itself, assuming two
fixed principals a and b, can be encoded as the process

OR = S1[a, b, kas, kbs] ‖ A1[a, b, kas] ‖ B1[a, b, kbs]

We impose the size restrictions on the variables of the process
OR as follows: x is of size 5, y is of size 3, and the rest
of the variables are all of size 1. Note that although our
analysis works on the untagged version of the protocol, we
still need to restrict the message size, so in this case there
is no direct comparison with the work done in [12]. Using
the proof techniques in Section V, we can show that this
protocol is depth-bounded. It may be worth highlighting
the difference between this protocol and that in Example 7.
Both have encryption oracles where nonces controlled by
the attacker are encrypted by honest participants. In the
case of Otway-Rees, the trick used in Example 7 to form
the encryption chain does not work, since the value of
nonces NA, NB and the key KAB are not leaked. The
only nonce that the attacker knows and can influence is
M . It is easy to see that the longest encryption chain the
attacker can form from its interactions with the protocol is of
length at most 4, e.g. {NA,M, . . . }KAS

, {NB ,M, . . . }KBS
,

{NB ,KAB}KBS
, {NA,KAB}KAS

.

Example 9. Recall the Yahalom protocol [31]:

(1) A→ B : A,NA

(2) B → S : B, {A,NA, NB}KBS

(3) S → A : {B,KAB , NA, NB}KAS
, {A,KAB}KBS

(4) A→ B : {A,KAB}KBS
, {NB}KAB

If we assume the attacker is among the principals, then
it is not depth-bounded. For example, if A is the attacker,
it controls NA, and by the end of the session, will know
NB , so it can use NB as the nonce at the start of the next
session with B, and will form an encryption chain through
the message at step (2). In the setting of Chrétien et al. [12],
the corresponding dependency graph is cyclic if sessions
with dishonest agents are admissible, for the same reason
as above. The cycles do not arise when restricted to honest
sessions. Figure 5 shows an encoding of the roles in the
Yahalom protocol in our calculus. The full protocol, when

we fix the principals to a and b, can be encoded as

Y = S1[a, b, kas, kbs] ‖ A1[a, b, kas] ‖ B1[a, b, kbs]

To prove depth-boundedness, we restrict the size of variables
in Y such that x is of size 3 and all other variables are of
size 1. Using the proof techniques in Section V, we can
prove this protocol depth-bounded.

VII. DISCUSSION AND FUTURE WORK

A. Forward analysis

Theorem 7 proved decidability of coverability for
(s, k)-bounded processes by instantiating the backwards
search, detailed in Section IV-B. The backwards search has
two main drawbacks: 1) it needs to be given a suitable
depth-bound k, 2) it may be inefficient due to the fact that
it starts from the coverability query: a backward step may
involve many terms that are in no way reachable from the
initial state. To remedy both shortcomings, one could instan-
tiate the so-called forward search algorithm for WSTS with
post-effective ideal completions [29]. As a nice byproduct,
we would be able, by slight modification of the algorithm
to get a decision procedure that given P , and s, k ∈ N,
determines if P is (s, k)-bounded. The instantiation of the
ideal completions framework for cryptographic protocol is a
topic of ongoing research.

B. Approximate analyses

Protocols that are bounded in depth are very expressive,
a fact that we pay in terms of complexity: the only known
lower-bound for coverability is non-primitive recursive for
depth-bounded processes. Only extensive experimentation
will reveal if typical protocols exercise this very high
computational price. It is therefore natural to ask if there
are further restrictions, or approximate coverability analyses,
that can lower the complexity. There is indeed scope for
developing both, by adapting recent work for the π-calculus.

A type-theoretic approach to reason about depth at low
complexities is introduced in [32]; while adapting the types
to embed message-derivability information is not obvious,
we are hopeful that a similar type system can be constructed
for our calculus, unlocking the cheap estimation of secrecy
invariants expressed as types. On the static analysis side,

S1[a, b, kas, kbs] := in(na, nb : b, {a, na, nb}kbs
).νkab.(〈{b, kab, na, nb}kas

, {a, kab}kbs
〉 ‖ S1[a, b, ka, kb])

A1[a, b, kas] := τ .νna.(〈a, na〉 ‖ A2[na, a, b, kas] ‖ A1[a, b, kas])

A2[na, a, b, kas] := in(kab, nb, x : {b, kab, na, nb}kas
, x).〈x, {nb}kab

〉
B1[a, b, kbs] := in(na : a, na).νnb.(〈b, {a, na, nb}kbs

〉 ‖ B2[nb, a, b, kbs] ‖ B1[a, b, kbs])

B2[nb, a, b, kbs] := in(kab : {a, kab}kbs
).〈{nb}kab

〉

Figure 5. An encoding of Yahalom protocol

acceleration schemes such as the ones presented in [33] can
provide sound but approximate methods to find invariants
proving secrecy.

C. Conclusions

We have presented a new expressive class of security proto-
cols with an unbounded number of sessions and unrestricted
fresh data for which secrecy is decidable. Based on the notion
of depth-boundedness, this class of protocols includes many
real-world symmetric key protocols. Our investigation on
the relation between depth bounds and other known protocol
restrictions reveals that depth boundedness cannot be seen
as a generalisation of known results. At the same time, the
fragment is not subsumed by any other restriction in the
literature, making it a genuinely new perspective on the
structure of protocols.

ACKNOWLEDGEMENT

The third author is supported by Singapore Ministry
of Education Tier 2 grant MOE2014-T2-02-076 and NTU
Startup grant M4081190.020.

REFERENCES

[1] D. Dolev and A. C. Yao, “On the security of public key
protocols,” IEEE Trans. Information Theory, vol. 29, no. 2,
pp. 198–207, 1983.

[2] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov,
“Undecidability of bounded security protocols,” in Workshop
on Formal Methods and Security Protocols, 1999.

[3] R. M. Amadio, D. Lugiez, and V. Vanackère, “On the symbolic
reduction of processes with cryptographic functions,” Theor.
Comput. Sci., vol. 290, no. 1, pp. 695–740, 2003.

[4] N. Heintze and J. D. Tygar, “A model for secure protocols
and their compositions,” IEEE Trans. Software Eng., vol. 22,
no. 1, pp. 16–30, 1996.

[5] M. Rusinowitch and M. Turuani, “Protocol insecurity with
finite number of sessions is NP-complete,” in CSFW’01, 2001,
pp. 174–187.

[6] H. Comon-Lundh, V. Cortier, and E. Zalinescu, “Deciding
security properties for cryptographic protocols. application to
key cycles,” ACM Trans. Comput. Log., vol. 11, no. 2, pp.
9:1–9:42, 2010.

[7] G. Lowe, “Towards a completeness result for model checking
of security protocols,” Journal of Computer Security, vol. 7,
no. 1, pp. 89–146, 1999.

[8] R. Ramanujam and S. P. Suresh, “Decidability of context-
explicit security protocols,” Journal of Computer Security,
vol. 13, no. 1, pp. 135–165, 2005.

[9] ——, “A decidable subclass of unbounded security protocols,”
in WITS’03, 2003, pp. 11–20.

[10] ——, “Tagging makes secrecy decidable with unbounded
nonces as well,” in FSTTCS’03, 2003, pp. 363–374.

[11] S. B. Fröschle, “Leakiness is decidable for well-founded
protocols,” in POST’15, 2015, pp. 176–195.

[12] R. Chrétien, V. Cortier, and S. Delaune, “Decidability of trace
equivalence for protocols with nonces,” in CSF’15. IEEE
Computer Society, 2015, pp. 170–184.

[13] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes, I & II,” Inf. Comput., vol. 100, no. 1, pp. 1–77,
1992.

[14] R. Meyer, “On boundedness in depth in the π-calculus,” in
IFIP TCS, ser. IFIP, G. Ausiello, J. Karhumäki, G. Mauri, and
C.-H. L. Ong, Eds., vol. 273. Springer, 2008, pp. 477–489.

[15] A. Finkel and P. Schnoebelen, “Well-structured transition
systems everywhere!” Theor. Comput. Sci., vol. 256, no. 1-2,
pp. 63–92, 2001.

[16] P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay, “Algorith-
mic analysis of programs with well quasi-ordered domains,”
Inf. Comput., vol. 160, no. 1-2, pp. 109–127, 2000.

[17] A. Tiu, R. Goré, and J. E. Dawson, “A proof theoretic analysis
of intruder theories,” Logical Methods in Computer Science,
vol. 6, no. 3, 2010.

[18] A. Tiu and J. E. Dawson, “Automating open bisimulation
checking for the spi calculus,” in CSF’10. IEEE Computer
Society, 2010, pp. 307–321.

[19] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in POPL’01. ACM Press, 2001, pp.
104–115.

[20] M. Abadi and A. D. Gordon, “A calculus for cryptographic
protocols: The spi calculus,” Inf. Comp., vol. 148, no. 1, pp.
1–70, 99.

[21] M. D. Ryan and B. Smyth, “Applied pi-calculus,” in Formal
Models and Techniques for Analyzing Security Protocols, 2011.

[22] R. Chadha, Ştefan Ciobâcă, and S. Kremer, “Automated verifi-
cation of equivalence properties of cryptographic protocols,” in
ESOP’12, ser. LNCS, vol. 7211. Springer, 2012, pp. 108–127.

[23] D. Baelde, S. Delaune, and L. Hirschi, “Partial order reduction
for security protocols,” in CONCUR’15, ser. LIPIcs, vol. 42,
2015, pp. 497–510.

[24] S. B. Fröschle, “Causality in security protocols and security
APIs: Foundations and practical verification,” Habilitationss-
chrift, University of Oldenburg, 2012.

[25] R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers,” Commun.
ACM, vol. 21, no. 12, pp. 993–999, 1978.

[26] D. E. Denning and G. M. Sacco, “Timestamps in key
distribution protocols,” Commun. ACM, vol. 24, no. 8, pp.
533–536, 1981.

[27] R. Meyer, “Structural stationarity in the π-calculus,” Ph.D.
dissertation, Carl von Ossietzky University of Oldenburg,
2009.

[28] J. B. Kruskal, “Well-quasi-ordering, the tree theorem, and
Vazsonyi’s conjecture,” Transactions of the American Mathe-
matical Society, vol. 95, no. 2, pp. 210–225, 1960.

[29] A. Finkel and J. Goubault-Larrecq, “Forward analysis for
WSTS, part I: completions,” in STACS, ser. LIPIcs, vol. 3,
2009, pp. 433–444.

[30] D. J. Otway and O. Rees, “Efficient and timely mutual
authentication,” Operating Systems Review, vol. 21, no. 1,
pp. 8–10, 1987.

[31] M. Burrows, M. Abadi, and R. M. Needham, “A logic of
authentication,” in SOSP’89. ACM, 1989, pp. 1–13.

[32] E. D’Osualdo and C.-H. L. Ong, “On hierarchical communi-
cation topologies in the π-calculus,” in ESOP’16, 2016.

[33] D. Zufferey, T. Wies, and T. A. Henzinger, “Ideal abstractions
for well-structured transition systems,” in VMCAI’12’, ser.
LNCS, vol. 7148. Springer, 2012, pp. 445–460.

APPENDIX A.
PROOF OF LEMMA 7

We proceed by induction on the depth of the cut-free
inference for Γ1 ` M . In the base case, the inference is a
single application of Rule ID and Γ1 is the desired set of
messages. In the induction step, we do a case analysis on
the last rule used in the derivation:
Rule EL: by using the induction hypothesis on the left

and right premises we obtain Γl ⊇ Γ, {M}K ,K
and Γr ⊇ Γ, {M}K ,M,K,N respectively, with
〈Γl〉 ≡kn 〈Γ, {M}K〉 and 〈Γr〉 ≡kn 〈Γ, {M}K ,M,K〉.
Now consider the set Γ′ = Γl∪Γr which contains N ; by
the above congruences, persistence and decryption, we

have 〈Γl,Γr〉 ≡kn 〈Γl,M,K〉 ≡kn 〈Γl, {M}K ,K〉 ≡kn

〈Γ, {M}K〉 as desired.
Rule ER: by using the induction hypothesis on the left

and right premises we obtain Γl ⊇ Γ,M and Γr ⊇
Γ,K respectively, with 〈Γl〉 ≡kn 〈Γ〉 ≡kn 〈Γr〉. Now
consider the set Γ′ = Γl ∪ Γr ∪ {{M}K}; by diffu-
sion and persistence we have 〈Γ〉 ≡kn 〈Γl,Γr〉 ≡kn

〈Γl,M,Γr,K〉 ≡kn 〈Γl,M,Γr,K, {M}K〉 ≡kn

〈Γl,Γr, {M}K〉 ≡kn 〈Γ′〉 as desired.
Rule PL: by using the induction hypothesis on the premise

we obtain a Γ′ ⊇ Γ, (M,N),M,N,M ′ with 〈Γ′〉 ≡kn

〈Γ, (M,N),M,N〉. By applying diffusion and persis-
tence we have 〈Γ, (M,N),M,N〉 ≡kn 〈Γ, (M,N)〉 so
Γ′ is the desired set.

Rule PR: analogous to the case for Rule ER.

APPENDIX B.
MINSKY MACHINES ENCODINGS

A. Exploiting unbounded message size

A first encoding exploits the fact that if no bound on
the size of the messages is enforced, then the value of a
counter can be encoded in the size of a message: SJ0Ka := a,
SJn+ 1Ka = {SJnKa}a. Then a counter ci with value n ∈ N
can be encoded as the message {SJnKa}ki

for some names
ki, a. Since messages are persistent, the counter “key” ki
needs to be refreshed at every operation. Formally, a 2MM
is a finite sequence of instructions I1, . . . , I`; instructions
can be increments ci++ (for i ∈ {0, 1}) or decrements if not
zero ci−− or goto h (for i ∈ {0, 1} and h ∈ {1, . . . , `}). To
each instruction Ij we associate a process name Sj[a, k0, k1].
An instruction Ij = ci++ is encoded as

SJIjK =
(
Sj[a, k0, k1] := in(v : {v}ki).Pinc

)
Pinc = νk.

(
〈{{v}a}k〉 ‖ Sj+1[a, k

′
0, k
′
1]
)

where k′i = k and k′1−i = k1−i. The encoding of an
instruction Ij = ci−− or goto h is the definition

SJIjK =
(
Sj[a, k0, k1] := A>0 +A=0

)
A>0 = in(v : {{v}a}ki

).νk.
(
〈{v}k〉 ‖ Sj+1[a, k

′
0, k
′
1]
)

A=0 = in({a}ki
).Sh[a, k0, k1]

with k′0, k
′
1 as before. The initial configuration is encoded

by the process PS := νk1, k2.
(
S1[a, k0, k1] ‖ 〈{a}k0

〉 ‖
〈{a}k1〉

)
. To modify the value of a counter, it is necessary to

possess the corresponding encryption key ki. Clearly, since
no key is ever output, the intruder cannot interfere with the
value of a counter.

To reduce reachability of a control-state j of the 2MM to
secrecy, it is sufficient to replace the definition of Sj with
Sj[a, k0, k1] := τ .νx.(Secret[x] ‖ 〈x〉).

B. Exploiting unbounded encryption chains

To each instruction Ij we associate a process name
Dj[z, k0, k1]. An instruction Ij = ci++ is encoded as

DJIjK =
(
Dj[z, k1, k2] := τ .P ′inc

)
P ′inc = νk.

(
〈{ki}k〉 ‖ Dj+1[z, k

′
0, k
′
2]
)

where k′i = k and k′1−i = k1−i. The encoding of an
instruction Ij = ci−− or goto h is the definition

DJIjK =
(
Dj[z, k0, k1] := A′>0 +A′=0

)
A′>0 = in(k : {k}ki

).Dj+1[z, k
′
0, k
′
1]

A′=0 = in({z}ki
).Dh[z, k0, k1]

with k′0, k
′
1 as before. The initial configuration is the process

PD := νk0, k1.
(
D1[z, k0, k1] ‖ 〈{z}k0

〉 ‖ 〈{z}k1
〉
)
.

APPENDIX C.
PROOF OF THEOREM 4

The idea of the proof is to define an encoding WJ-K of
2MM such that the runs of the 2MM can be all matched by
some runs of its encoding, and, crucially, these runs only
involve processes of depth at most 6 and message sizes at
most 3. The encoding is weak in the sense that it also yields
spurious runs which do not correspond to real runs of the
2MM. However, the encoding is constructed so that these
spurious traces lead invariably to processes exceeding the
depth k. The halting instruction of the 2MM is translated
to a leak. Therefore we obtain that by considering secrecy
relative to Dk∩Ss we are effectively considering reachability
of the halting instruction using the non-spurious traces only.

Let us present the main ingredients of the encoding. A
counter is represented by two names a, b and its value
by the number of active processes S[a, b] in the current
configuration. An increment is simply the creation of a
new S[a, b] component. A decrement is implemented by
a protocol that, when correctly followed, terminates with the
effect of removing one S[a, b] component. Since there is no
way to know if a component is absent, the branch of the
computation accounting for the case when the counter to be
decremented is zero, is selected non-deterministically, but
with a subtle side-effect: two terms, one using a, the other
using b, that attach to each the two names a long encryption
chain. The two names a and b are then discarded and two
fresh names are used by the instructions from then on. When
the counter is zero, in a non-spurious run, the two names a, b
are both known only to the process implementing the current
instruction. When the run becomes spurious, because of a
wrong guess that the counter’s value is zero, there will be still
some process S[a, b] knowing both names. This would form,
together with the two long encryption chains created during
the guess, an even longer chain that pushes the depth of the
term beyond the depth bound respected in non-spurious runs.

The main complication in implementing this scheme is
given by the persistence of output messages: we cannot

consume them so we need to guard against interference
of past communications the implementation of the current
instruction. We do this by exploiting the fact that input actions
can be “consumed”.

S[a, b] := in(s : {s}a).νs′.(〈{s′}s〉 ‖ S′[a, b, s′])
S′[a, b, s′] := in({s′}s′).〈{s′, s′}s′〉

Let ~c = ~c. To each instruction Ij we associate a process
name Wj[~c]. An instruction Ij = ci++ is encoded as

WJIjK =
(
Wj[~c] := τ .Pinc

)
Pinc = S[ai, bi] ‖Wj+1[~c]

The encoding of an instruction Ij = c1−− or goto h is the
following definition (the case involving c2 is analogous):

WJIjK =
(
Wj[~c] := τ .A>0 + τ .A=0

)
A>0 = νs.(〈{s}a〉 ‖ Decj[~c, s])

Decj[~c, s] := in(s′ : {s′}s).(〈{s′}s′〉 ‖ Dec′j[~c, s′])
Dec′j[~c, s

′] := in({s′, s′}s′).Wj+1[~c]

A=0 = νa, b.Wh[a, b, a2, b2] ‖ E2k

a1
‖ E2k

b1

The term A=0, here representing the effect of guessing
that the counter value is zero, invokes the instruction at
h refreshing the names representing the affected counter; at
the same time it creates two encryption chains of length 2k

from a1 and b1 respectively:

Em
y = νx1, . . . , xm.({y}x1 ‖ {x1}x2 ‖ · · · ‖ {xm}xm−1)

This ensures that if the counter was really zero, the depth of
the term would be at most k, if there is a process knowing
both a1 and b1, a witness for a non-zero value for c1, then the
encryption chain would overall be 2k+1 long, which makes
the overall depth k + 1. The rest of the proof is just careful
checking of the above claims by examination of the possible
transitions in the encoding.

APPENDIX D.
BOUNDEDNESS OF NSSK

We now write a limit L1, the denotation of which
satisfies (C1) to (C3), for P0 = NS 0, the sizing ς and
k = nestν(L1) = 3, allowing us to conclude that NS 0 is
(ς, 3)-bounded.

L1 = S1[~s]ω ‖ A1[~a]ω ‖ B1[~b]ω ‖ 〈a, b〉 ‖ G ‖ Lω
2

G = (νk.〈Ma,k〉)ω ‖ (νk.〈Mb,k〉)ω

Mx,k = {x, k, b, {k, a}kbs
}kas

L2 = νn.
(
〈n〉 ‖ A2[~a, n] ‖ Lω

3

)
L3 = νk.

(
〈Mn,k, {k, a}kbs

〉 ‖ A3[~a, k] ‖ Lω
4

)
L4 = νs.

(
〈{s}k, {s, s}k〉 ‖ B2[~b, k, s]

)
Clearly, P0 ∈ JL1K. It is easy, if tedious, to check that
JL1K is an inductive invariant up to ς . This is done by case

analysis on the sequential processes involved in a transition.
We consider all sequential processes Q[~x] that may appear
in an instance of L1. For each, we examine the actions
available according to the definition for Q: we match each
action to each possible derivable message of instances of
L1, provided it respects the sizing constraint. Applying the
semantic rule will have the effect of removing Q[~x] from
the term (which does not alter membership to JLK because
0 ∈ JQ[~x]K), and replaces it with the action’s continuation,
with the appropriate substitution applied. It is then sufficient
to check that said continuation will produce an instance of
L1. We say the continuation C is covered by some subterm
L′ of L1 to mean that C is an instance of L′, proving that
the overall result of the transition is in JL1K.

Case S1[~s]: The pattern nx : (a, b, nx) can only be matched
by three derivable messages: (a, b, a), (a, b, b), and
(a, b, n) where n stands for any instance of restriction
νn in L2 or some intruder-made name. Any attempt to
substitute structured messages for nx would result in
a violation of the sizing constraint. All three messages
would produce one instance of S1[~s] which is clearly
covered by L1. Matching the first two messages results
also in the addition of νk.〈Ma,k〉 or νk.〈Mb,k〉, which
are covered by G ‖ S1[~s]). The third case (a, b, n) is
covered by Lω

2 : (νn, k.〈n,Mn,k〉) ∈ JL2K.
Case A1[~a]: The τ action can always be executed, produc-

ing continuations that are all covered by A1[~a]ω ‖ Lω
2 .

Note that since a and b are active messages, the only
contribution of 〈a, b, n〉 is making 〈n〉 active (as covered
by L2).

Case A2[~a, n]: The pattern m, k : {n, k, b,m}kas
can only

match messages encrypted by kas, which is unknown to
the attacker: no irreducible instance of L1 contains 〈kas〉.
The only messages encrypted with that key are the ones
in instances of G and Lω

3 . Note however that none of
the messages in G have the nonce n as first component
(i.e. n is always different from a, b, and c). Therefore,
the only matching messages are the Mn,k in instances of
L3, which all share the n with some A2[~a, n] in some
instance of L2. The resulting continuation 〈{k, a}kbs

〉 ‖
A3[~a, k] is covered by Lω

3 .
Case A3[~a, k]: Since no k is ever leaked (it does not appear

as an active message), the only messages that can match
the pattern s : {s}k are the ones in instances of L4, the
only ones encrypted with a k shared by some occurrence
of A3[~a, k]. The continuation 〈{s, s}k〉 is covered by
L4.

Case B1[~b]: The pattern k : {k, a}kbs
can only be matched

by messages encrypted with the secret key kbs. The
only candidates are therefore the {k, a}kbs

in instances
of L3. The continuations are covered by B1[~b]ω and
Lω

4 .
Case B2[~b, s]: Independently of the possible matches, if a

transition is possible it will still trivially produce an
instance of L1.

APPENDIX E.
EXAMPLES

A. Proof of well-foundedness of Example 7

The specification for the protocol above (in the notation of
[11]) is a pair P = (roles, script) where roles = {A,B}
and script is defined as follows:

A B
(1) −A,B −B,A
(2) +NA −NA

(3) −{1,K,NA}KAB
+{1,K,NA}KAB

, NB

(4) +{2,K,NB}KAB
−{2,K,NB}KAB

Note that we assume that A,B are agent names, NA, NB

and K are of atomic types. To show that the protocol P is
well-founded, it is enough to show that ≺1

P is acyclic. The
relation ≺1

P consists of two components ⇒P and →P . The
former is defined as: (r, i)⇒P (r′, j) iff r = r′ and i < j.
That is, it follows the order of the protocol script above. The
relation →P relates output in one step to input in another
step of the protocol (possibly under different roles). In this
case, there are only two possible such pairs:

- (B, 3) →P (A, 3): This is justified by taking an
encrypted term me = {1,K,NA}KAB

, substitutions
σ = σ′ = id (identity), and checking that me is a
subterm of both msg((B, 3)) = {1,K,NA}KAB

, NB

and msg((A, 3)) = {1,K,NA}KAB
.

- (A, 4)→P (B, 4): similar reasoning as above.
It is clear that ≺1

P = ⇒P ∪ →P is acyclic, therefore the
protocol is well-founded.

The key here is the tagging of messages, so, for example,
output at (A, 4) cannot be fed into input at (B, 3) (which
would create a cyle in ≺1

P .)

