
1

Formal Computational Unlinkability Proofs of
RFID Protocols

Hubert Comon∗, Adrien Koutsos∗,
∗ LSV, CNRS & ENS Paris-Saclay,

Abstract—We set up a framework for the formal proofs of
RFID protocols in the computational model. We rely on the
so-called computationally complete symbolic attacker model. Our
contributions are:

1) To design (and prove sound) axioms reflecting the proper-
ties of hash functions (Collision-Resistance, PRF).

2) To formalize computational unlinkability in the model.
3) To illustrate the method, providing the first formal proofs

of unlinkability of RFID protocols, in the computational
model.

I. INTRODUCTION

It is important to increase our confidence in the security of
protocols. Using formal methods to prove a formal security
property is the best way to get a strong confidence. There is
however a difficulty: we need not only to specify formally the
programs and the security properties, but also the attacker.

One of the most popular attacker model, sometimes called
the “Dolev-Yao” attacker, consists in assuming that, in be-
tween any message emission and the corresponding reception,
the attacker may apply a fixed set of rules modifying the mes-
sage. In addition, the attacker schedules the communications.
More precisely, the messages are terms in a formal algebra
and the rules are given by a fixed set of combination abilities,
together with a rewrite system specifying how to simplify the
terms.

There are several more or less automatic verification tools
that rely on such a model. Let us cite ProVerif [8], Tamarin
[22] and APTE [11] for instance. Completing a proof with
one of these tools will however only prove the security in the
corresponding DY model.

Another popular attacker model, the computational attacker,
gives the same network control to the attacker as in the Dolev-
Yao model, but does not limit the attacker computations to
the combination of a fixed set of operations: any probabilistic
polynomial time computation is possible. More precisely, mes-
sages are bitstrings, random numbers are typically bitstrings in
{0, 1}η (where η is the security parameter) and the attacker’s
computation time is bounded by a polynomial in η. This model
reflects more accurately a real-world attacker than the Dolev-
Yao model, but formal proofs are harder to complete and more
error-prone.

There exist several formal verification tools in the compu-
tational model. For example EASYCRYPT [6] can be used for
the construction of provably secure cryptographic primitives,
and CRYPTOVERIF [9] and F? [5] have been used for the
study of security protocols (e.g. [10], [7]). As expected, such

tools are less automatic than the verification tools in the DY
model. Using such tools, we may also fail to find a proof while
there is one.

We advocate the use of another approach, sketched in [3],
[4], which allows to complete formal proofs in the computa-
tional model that can be automated and formally checked. This
method has many other advantages, some of which are given in
these papers: it could be applied, in principle, to more powerful
attacker models (such as attackers having access to some side-
channels); it can be used to derive “minimal” properties of
the primitives that are sufficient to entail the security of the
protocol (we will come back to this feature later).

The main technique, which we will recall, is to express the
security of a protocol as the unsatisfiability of a formula in
first-order logic. The formula contains axioms, reflecting the
assumed computational properties of the security primitives,
and the negation of the security property, applied to terms
reflecting the execution(s) of the protocol. This approach is,
we believe, simpler than formally specifying computational se-
curity games, probabilistic machines and simulations: there is
no security parameter, no probabilities, no timing constraints,
no Turing machines . . . Nonetheless, in case of success, the
proof is valid in any model of the axioms, including the
computational model.

Compared to EASYCRYPT, our logic works at a more
abstract level, using only first-order formulas and targeting
full automation and a form of completeness (saturating the
axioms and the negation of the security property implies that
there is an attack).

As it is now, this approach does not provide any quantitative
information: the protocol is computationally secure or it is
not. We could however extract from a security proof a bound
on the success probability of the attacker, depending on its
computational power: we would only have to compose the
adversary’s advantages corresponding to each clause. Also,
because the logic does not include the security parameter, we
can only prove the security of a number of sessions of the
protocol that does not depend on the security parameter (while
there is no such limitation in CRYPTOVERIF for instance).
Still, it subsumes the symbolic approach, in which the number
of sessions is also independent of the security parameter.

A related logic for reachability security properties has been
introduced in [3] and is implemented in the prototype tool
SCARY [25]. It has been used for a few experiments. The
logic for indistinguishability properties, introduced in [4], is
not (yet) implemented. There is only one toy example provided
in [4], another one in [2] and a more significant case study

ar
X

iv
:1

70
5.

02
29

6v
1

 [
cs

.C
R

]
 5

 M
ay

 2
01

7

2

developed in [26].
We investigate in this paper the application of this approach

to security proofs of RFID protocols, typically proofs of
unlinkability. There are a lot of such protocols that appeared
in the literature, most of which are very simple, due to
the low computing capabilities of a RFID tag: the protocols
often use only primitives such as hashing, xoring, pairing and
splitting. These protocols have been studied, attacked, patched
and automatically proved in the DY model (see for instance
[17]). On the computational side, [28] investigates the com-
putational definitions of unlinkability, together with examples
of RFID protocols that satisfy (or not) the definitions. There
are however very few proofs of security in the computational
model and no (up to our knowledge) formal security proof.
For instance, an RFID protocol is proposed in [20], together
with a universally composable (claimed) proof. The proof
is however quite informal, and attacks were found on this
protocol (see [23]). Admittedly, such attacks can be easily
circumvented, but this shows that a formal approach is useful,
if not necessary. Similarly, as reported in [18], other RFID
protocols that were claimed secure turned out to be broken.

A large fraction of RFID protocols, the so-called Ultra-
lightweight RFID protocols (e.g. [12], [24]), aim at ensuring
only weak security properties, and against passive attackers,
because of the strong constraints on the number of gates
embedded in the RFID tags. We do not consider such protocols
in this paper.

a) Contributions: The contributions of this paper are:
1) To design axioms that reflect security assumptions on the

primitives that are used in the RFID protocols (typically
hash functions, pseudo-random generators and xor), and
to prove their correctness.

2) To express formally the computational unlinkability.
There are various definitions; we chose to formalize
one of them (from [18]). Most other definitions can
be expressed in a similar way. The security property is
expressed as the indistinguishability of two sequences
of terms. These terms are computed from the protocol
specification extended with corruption capabilities. We
use a specific technique inspired by the folding of
transition systems described in [4].

3) To illustrate the proof technique on two examples taken
from [27]: KCL and LAK. As far as we know, all pub-
lished RFID protocols, that do not rely on encryption,
are computationally insecure. This is also the case of
these two protocols. We propose small modifications of
the protocols, which prevent the known attacks. Some
of the modified versions are secure in the DY model.
Depending on the assumptions on the primitives, they
may however be insecure in the computational model.
For instance, if we assume the hash function to be pre-
image resistant and one-way, the corrected version of
LAK, proved in [17], is not necessarily computationally
secure: there might be attacks on both authentication and
unlinkability. We actually need a family of keyed hash
functions, which satisfies the pseudo-random functions
(PRF) property. With the appropriate implementation
assumptions, we formally prove the security of the two

protocols. Up to our knowledge, these are the first formal
security proofs of RFID protocols in the computational
model.

b) Outline: In Section II, we briefly recall the method-
ology described in [4] and we propose some axioms for the
hashing and exclusive or, that depend on the assumptions
on the cryptographic libraries. In Section III we recall the
definition of privacy of a RFID protocol given by Juels and
Weis in [18], and we show how this property translates in
the logic. In Section IV we recall the two protocols KCL and
LAK, known attacks on them and formally prove the security
of fixed versions of the protocols. We also show that relaxing
the assumptions yields some attacks. Finally, in Section V, we
show (as expected) that abstracting pseudo-random numbers
with random numbers is sound, provided that the seed is not
used for any other purpose.

II. THE LOGIC

Our goal is to formally study the protocols in the compu-
tational model. In order to do this we follow the directions
described in [4]: we specify in a first-order logic what the
attacker cannot do, which yields a set of axioms A. We also
compute from the protocol and the security property a formula
¬ψ expressing that there is an attack on the protocol. We know
that if A∪{¬ψ} is unsatisfiable, then the protocol is secure in
any model of A. If, in addition, every axiom is computationally
sound, then the protocol is computationally secure.

In this section we recall the first-order (indistinguishability)
logic and provide a set of axioms A, some of which are valid
in any computational model while others require some security
assumptions on the cryptographic primitives.

A. Syntax of the logic
a) Terms: In the logic terms are built on a set of function

symbols F , a set of function symbols G (used to represent
the attacker’s computations), a set of names N and a set of
variables X .

In the examples that are considered in this paper, F contains
at least the following function symbols:

H,⊕, 〈_ , _〉 ,EQ(_; _), if _ then _ else _, true, false, π1, π2, 0

Each variable and term has a sort, which is either bool,
short, or message. Every term of sort bool or short, has
also the sort message. The typing rules for function symbols
are defined as follows:
• 〈_ , _〉 : message×message→ message
• true, false :→ bool
• π1, π2 : message→ message
• EQ(_; _) : message×message→ bool
• Names have type short
• In the computational interpretation of the terms, we will

only need to xor bitstrings of a fixed length: the length
of the random numbers. We therefore restrict the type of
⊕ to: short × short → short

• if _ then _ else _ has three types:
bool×message×message→ message
bool× bool× bool→ bool
bool× short× short→ short

3

• In our examples, hash values will have a length equal to
the security parameter, so H returns a value of sort short.
Furthermore, we need a keyed hash function, otherwise
we cannot state any computationally sound property over
the hash function H: message× short→ short

• 0 :→ short
We can also use arbitrary additional symbols in F if

needed. Each term has always a least sort (w.r.t. the ordering
bool, short < message), which we call the sort of the term.

b) Formulas: Atomic formulas aim at representing the
indistinguishability of two experiment. They are expressions :

u1, . . . , un ∼ v1, . . . , vn

where u1, . . . , un, v1, . . . , vn are terms and, for every i, ui
and vi have the same sort. More formally, for every n, we are
using a predicate symbol ∼n with 2n arguments. Formulas
then are obtained by combining atomic formulas with Boolean
connectives ∧,→,∨,¬ and (first-order) quantifiers.

c) Syntactic shorthands: Displaying the formulas and
axioms, we use the notation ~u for a sequence of terms of
the appropriate type. We also use “=” as a syntactic sugar:
u = v is a shorthand for EQ(u; v) ∼ true. We may also
use logical connectives in the conditions, as a shorthand.
For instance “if b1 ∨ b2 then x else y” is a shorthand for
“if b1 then x else if b2 then x else y”.

B. Semantics of the logic
We rely on classical first-order interpretations: function

symbols are interpreted as functions on an underlying in-
terpretation domain and predicate symbols are interpreted as
relations on this domain.

Though, we assume that the interpretation satisfies the
generic axioms of the Figure 1, which do not depend on the
actual cryptographic libraries. These axioms are computation-
ally valid, as we will see.

One particular class of interpretations of the logic are the
so-called computational semantics. We recall here the main
features (the complete definition can be found in [4]):
• The domain of a computational model is the set of

deterministic polynomial time Turing machines equipped
with an input (and working) tape and two random tapes
(one for honestly generated random values, the other for
random values directly available to the attacker). The
length of the machine input is the security parameter η.

• A name n ∈ N is interpreted as a machine that, on
input of length η, extracts a word of length η from the
first random tape ρ1. Furthermore, different names extract
disjoint parts of ρ1.

• true, false, EQ(_; _), if _ then _ else _, ⊕ are al-
ways interpreted in the expected way. For instance,
if _ then _ else _, takes three machines M1,M2,M3 and
returns a machine M such that, on input w, ρ1.ρ2, M
returns M2(w, ρ1, ρ2) if M1(w, ρ1, ρ2) = 1 and returns
M3(w, ρ1, ρ2) otherwise.

• Other function symbols f in F (including H and 〈_ , _〉,
π1, π2) are interpreted as arbitrary deterministic poly-
nomial time Turing machines. Though, we may restrict

the class of interpretations using assumptions on the
implementations of the primitives. This is discussed in
the next section.

• A function symbol g ∈ G with n arguments is interpreted
as a function [[g]], such that there is a polynomial time
Turing machine Ag such that for every n machines
d1, . . . , dn in the interpretation domains, and for every
inputs w, ρ1, ρ2,

[[g]](d1, . . . , dn)(w, ρ1, ρ2) =

Ag(d1(w, ρ1, ρ2), . . . , dn(w, ρ1, ρ2), ρ2)

In particular, the machine does not use directly the
random tape ρ1.

• The interpretation is lifted to terms: given an assignment
σ of the variables of a term t to the domain values,
we write [[t]]ση,ρ1,ρ2 the computational interpretation of
the term, with respect to η, ρ1, ρ2. The assignment σ
is omitted when empty. We may also omit the other
parameters when they are irrelevant.

• The predicates ∼ are interpreted as computational indis-
tinguishability ≈, defined by:

d1, . . . , dn ≈ d′1, . . . , d′n
iff, for every deterministic polynomial time Turing ma-
chine A,∣∣Pr(ρ1, ρ2 : A(d1(1η, ρ1, ρ2), . . . , dn(1η, ρ1, ρ2)) = 1)−
Pr(ρ1, ρ2 : A(d′1(1η, ρ1, ρ2), . . . , d′n(1η, ρ1, ρ2)) = 1)

∣∣
is negligible when ρ1, ρ2 are drawn according to the
uniform distribution.

C. Computationally valid axioms

We only consider the purely universal fragment of first-order
logic: every variable is implicitly universally quantified. A for-
mula is computationally valid if it is valid in all computational
interpretations.

Proposition 1. The axioms displayed in the figure 1 are
computationally valid.

Most of the axioms have already been proven valid else-
where (for instance in [4], [2]). Only the axioms ~u, x ⊕ n ∼
~u, y⊕n and EQ(n;x) = false are new, but their computational
validity is quite straightforward to prove (e.g. for every x, the
distributions x⊕ n and y ⊕ n are both uniform distributions).
EASYCRYPT is using a similar rule through the rnd tactic. A
formal proof of these two axioms is given in Appendix A.

D. Assumptions on primitives

Some of our axioms reflect implementation assumptions,
that is, identities that must be satisfied by any implementation
of these functions. For example we will assume that the
projections of a pair return the components of the pair:

π1(〈x , y〉) = x π2(〈x , y〉) = y

We do not make any further assumption on the implementation
of pairing.

4

• (Refl), (Sym), (Trans) : ∼ is reflexive, symmetric
and transitive.

• For all ~u,~v, t, t′ of appropriate types:

~u, t ∼ ~v, t ⇒ ~u, t, t ∼ ~v, t′, t′ (Dup)

• (Congr) : = is a congruence
• For any permutation π of 1, . . . , n and for all
x1, . . . , xn, y1, . . . , yn of appropriate types:

x1 . . . , xn ∼ y1, . . . , yn

⇒ xπ(1), . . . , xπ(n) ∼ yπ(1), . . . , yπ(n) (Perm)

• For every function symbol f of appropriate type, for all
~x, ~y, ~x′, ~y′:

~x, ~y ∼ ~x′, ~y′ ⇒ f(~x), ~y ∼ f(~x′), ~y′ (FA)

• For every b, x, y, z, ~w of appropriate types:
EQ(x;x) = true

if true then x else y = x
if false then x else y = y

if b then x else x = x
if b then if b then x else y else z = if b then x else z
if b then x else if b then y else z = if b then x else z
if b then (if a then x else y) else z =

if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)
f(~x, if b then y else z, ~w) =

if b then f(~x, y, ~w) else f(~x, z, ~w)
x⊕ y = y ⊕ x
x⊕ x = 0
0⊕ x = x

x⊕ (y ⊕ z) = (x⊕ y)⊕ z

• If n does not occur in x, y, ~u,~v:

~u ∼ ~v ⇒ ~u, x⊕ n ∼ ~v, y ⊕ n (Indep)
EQ(n;x) = false (EqIndep)

• If n does not occur in ~u and n′ does not occur in ~u′:

~u ∼ ~u′ ⇒ ~u,n ∼ ~u′,n′ (FreshNonce)

• For every x, y, z, ~w, ~x′ of appropriate types and for every
context t:

if EQ(x; y) then t[x] else z, ~w ∼ ~x′

⇒ if EQ(x; y) then t[y] else z, ~w ∼ ~x′ (IfThen)

• (CS) : For every b, b′, x, x′, y, y′, z, z′, ~u, ~u′ of appro-
priate types:

b, if b then x else z, ~u ∼ b′, if b′ then x′ else z′, ~u′

∧b, if b then z else y, ~u ∼ b′, if b′ then z′ else y′, ~u′

⇒ if b then x else y, ~u ∼ if b′ then x′ else y′, ~u′

Fig. 1. Axioms that are independent of the cryptographic primitives

Other axioms reflect cryptographic assumptions on the
primitives. For example, for hash functions, we need to express
some computational hardness properties. An example of such
a property is the Collision Resistance property, that we recall
below:

Definition 1 (CR-HK [16]). A hash function H is said to be
collision resistant under hidden-key attacks if and only if for
all probabilistic polynomial time adversary A with access to
an oracle returning the keyed hash value of the request,

Pr(k, ρ : AH(·,k)(1η) = 〈m1 , m2〉 ∧ H(m1, k) = H(m2, k))

is negligible, where k is drawn uniformly at random in {0, 1}η
and ρ is the random tape of the attacker.

This property can be expressed in the logic by the following
CR axiom:

If the only occurrences of k in t, t′, ~u are as a second
argument of H:

~u, if EQ(t; t′) then false else EQ(H(t, k); H(t′, k))

∼
~u, false

Remark 1. Note that we need the conditional here: we cannot
simply state that when t and t′ are distinct,

EQ(H(t, k); H(t′, k)) ∼ false

For instance, take t = g(u) and t′ = g(u′) where u, u′ are
distinct and g is an attacker’s function. Then even though t and
t′ are syntactically distinct, the function g can be interpreted
as a function that discards its argument and always return the
same value. In such a case, the computational interpretations
of t and t′ are identical.

Proposition 2. The CR axiom is sound in any computational
model Mc where the hash function H is collision resistant
under hidden-key attacks.

Proof: Let bCR be the following term:

if EQ(t; t′) then false else EQ(H(t, k); H(t′, k))

Let Mc be a computational model such that H is interpreted
by a collision-resistant keyed hash function, and assume that
there exists an adversary A such that:∣∣Pr (ρ : A(JbCRKη,ρ))−Pr (ρ : A(JfalseKη,ρ))

∣∣
is not negligible in η. Since bCR is a boolean term, [[bCR]]η,ρ ∈
{true, false}, hence the existence of A is equivalent to

Pr (ρ : JbCRKη,ρ = true) is non-negligible
We are going to define a probabilistic polynomial time ad-
versary with access to an hash oracle with a non negligible
chance of winning the CR-HK game.

Since the only occurrences of k in t, t′, ~u are as a second
argument of H, we can define A′ to be the CR-HK-adversary
that computes and returns JtKη,ρ and Jt′Kη,ρ (names different
from k are computed by uniform sampling, and subterms of

5

the form H(u, k) are computed by calling the hash oracle on
the inductively computed JuKη,ρ). Then we have:

Pr
(
k : A′H(·,k)() = 〈m1 , m2〉

∧H(m1, k) = H(m2, k) ∧m1 6= m2

)
= Pr

(
ρ : 〈JtKη,ρ , Jt′Kη,ρ〉 = 〈m1 , m2〉 ∧

H(m1, JkKη,ρ) = H(m2, JkKη,ρ) ∧m1 6= m2

)
= Pr

(
ρ : H(JtKη,ρ, JkKη,ρ) = H(JtKη,ρ, JkKη,ρ)

∧JtKη,ρ 6= Jt′Kη,ρ
)

= Pr
(
ρ : JH(t, k)Kη,ρ = JH(t′, k)Kη,ρ ∧ JtKη,ρ 6= Jt′Kη,ρ

)
= Pr

(
ρ : JbCRKη,ρ = true

)
which we assumed to be non negligible in η.

Unfortunately, this property is not sufficient to prove the
security of the RFID protocols considered in this paper (we
will show attacks when only CR-HK is assumed). Therefore
we need to consider a stronger property:

Definition 2 (PRF[14], [15]). A family of keyed hash func-
tions: H(·, k) : {0, 1}∗ → {0, 1}η is a Pseudo Random
Function family if, for any PPT adversary A with access to
an oracle Of :

|Pr(k, ρ : AOH(·,k)(1η) = 1)−Pr(g, ρ : AOg(·)(1η) = 1)|

is negligible. Where
• k is drawn uniformly in {0, 1}η .
• ρ is the random tape of the attacker A (drawn uniformly).
• g is drawn uniformly in the set of all functions from
{0, 1}∗ to {0, 1}η .

We express this property in the logic using the following
recursive schema of axioms:

~u, if c then 0 else H(t, k) ∼ ~u, if c then 0 else n (PRFn)

where:
• the occurrences of H (and k) in ~u, t are

H(t1, k), . . . ,H(tn, k)
• n is a name, that does not occur in ~u, t, c
• c ≡

∨n
i=1 EQ(ti; t).

Proposition 3. For any n, (PRFn) is computationally sound
if H(·, k) is a PRF family.

The proof can be found in Appendix B, and is a little more
complicated than the previous one. Note that k cannot appear
in ti itself, unless H(tj , k) is a subterm of ti for some j; the
statement of the axiom does not cover “key cycles” such as
in the expression H(k, k). Extending the axiom to cover such
situations would require a Random Oracle assumption for the
hash function.

III. SECURITY PROPERTIES

Radio Frequency IDentification (RFID) systems allow to
wirelessly identify objects. These systems are composed of
readers and tags. Readers are radio-transmiters connected
through a secure channel to a single server hosting a database
with all the tracked objects information. Tags are wireless

R : nR
$←

TA : nT
$←

1 : R −→ TA : nR
2 : TA −→ R : 〈A⊕ nT , nT ⊕ H(nR, kA)〉

Fig. 2. The original KCL protocol

transponders attached to physical objects that have a limited
memory and computational capacity (so as to reduce costs).
For the sake of simplicity we will assume that there is only
one reader, which will represent the database server as well
as all the physical radio-transmitters.
Example 1. In order to illustrate the properties, we introduce
a very simple version of the protocol KCL. The original
protocol from [19] is (informally) described in Figure 2. The
key kA is a shared secret key between the tag TA and the
reader R. For simplicity we assume, for now, that names
nT ,nR are randomly generated by each party ($← is used to
denote random sampling); this will be justified in Section V.
The protocol is expected to ensure both authentication and
unlinkability.

A. Privacy of RFID protocols

We use the notion of Privacy for RFID protocols defined
in [18], that we informally recall here. This is a game-based
definition, in which the adversary is a probabilistic polynomial
time Turing machine and interacts with a reader R and a finite
set of tags {T1, . . . , Tn} (also probabilistic Turing machines)
through fixed communication interfaces, which are informally
described below and in Figure 3:
• A tag Ti can store a secret key ki, an id Idi, a session

identifier sid and the previous l challenge-response pairs
of the current session. It has the following interface:

– SETKEY: Corrupts the tag by returning its old key
ki and id Idi, and allows the adversary to send a
new key k′i and a new id Id′i of its choice.

– TAGINIT: Initialize a tag with a session identifier
sid′. The tag deletes the previous session identifier
and the logged challenge-response pairs.

– TAGMSG: The tag receives a challenge ci and returns
a response ri (that was computed using the key, the
session identifier and the logged challenge-response
pairs). Additionally the tag logs the challenge-
response pair (ci, ri).

• The reader R stores some private key material (for
example a master secret key, the tags private keys . . .)
and entries of the form (sid, status, c0, r0, . . . , cl) where
status is either open or closed depending on whether the
session is completed or on-going. It has the following
interface:

– READERINIT: Returns a fresh session identifier sid
along with the first challenge co. The reader also
stores a new entry of the form (sid, open, co).

– READERMSG: The reader receives a session identi-
fier sid and a response ri. It looks for a data entry

6

of the form (sid, open, c0, r0, . . . , ci), appends the
message ri to the data entry, and either closes the
session (by changing the status from open to closed)
and outputs a new challenge message ci+1 (possibly
0) and appends it to the data entry.

The adversary is allowed to corrupt (by a SETKEY com-
mand) up to n − 2 tags. At the end of a first phase of
computations and interactions with the reader R and tags
{T1, . . . , Tn}, the adversary chooses two uncorrupted tags
Ti0 and Ti1 , which are removed from the set of available
tags. Then one of these tags is chosen uniformly at random
by sampling a bit b and made accessible to the adversary
as an oracle. The adversary performs a second phase of
computations and interactions with the reader R, the tags
{T1, . . . , Tn}\{Ti0 , Ti1}, as well as the randomly selected tag
Tib (obviously the adversary is not allowed to corrupt Tib).
Finally the adversary outputs a bit b′, and wins if it guessed
the chosen tag (that is if b = b′). A protocol is said to verify
m-Privacy if any adversary A using at most m calls to the
interfaces, has a probability of winning the game bounded by
1
2 + fA(η), where fA is a negligible function in the security
parameter.
Remark 2. Our definition of privacy is slightly different from
the one in [18]:
• We do not assume that the reader answers “reject” or

“accept” when a session is completed. We can easily en-
code this feature by adding an answer from the reader at
the end of the protocol with the corresponding message.
Not taking this as the default behavior allows to model
adversaries that are less powerful and do not have access
to the result of the protocol.

• We use m-Privacy, whereas they use (r, s, t)-Privacy
where r and s are a bound on the number of calls to
READERINIT and TAGINIT respectively, and t is a bound
on the running time. We dropped the explicit mention of
t as we are only interested in proving privacy against any
polynomial time adversary. Moreover using m or r, s is
equivalent, as, for a given protocol, the number of calls
to the interfaces is bounded by the number of calls to
READERINIT and to TAGINIT, and conversely.

B. Bounded Session Privacy

a) Protocol Description: We let Γn be the set of possible
actions of an adversary interacting with n tags:

Γn = {SETKEYi, TAGINITi, TAGMSGi,

READERINIT,READERMSG | 1 ≤ i ≤ n}

We are going to use a substitution σ to save the state of
the reader R and the tags T1, . . . , Tn internal memories. For
instance, for each tag Ti, we use two locations xki , xIdi to
store respectively the values of the key and of the id.

For every adversarial frame φ, for every action α ∈ Γ
and for every internal memory state σ we can build from
the protocol description a term tσα(φ), which represents the
answer of the reader or tag to the action α. We also build
a internal memory update θσα(φ) such that σ θσα(φ) represents

the updated memory of the reader and tags after the action has
been performed. We also build from the protocol description
the initial internal memory σinit.

For the sake of simplicity, we assume that all names
appearing in a term tσα(φ) are fresh. If one wants to reuse
a name (e.g. in the LAK protocol the reader uses the same
name in the first and second challenge), then we will store it
in the internal memory σ.

b) Folding of the Protocol: Given a subset of actions S
of Γn, we construct a term tσS(φ) and a substitution θσS(φ)
representing (respectively) the message sent over the network
and the memory update, depending on the action chosen by
the attacker in S (under memory σ and frame φ). Intuitively,
such terms gather together all possible interleavings of actions
using the folding technique explained in [4].

Given an (arbitrary) enumeration of S = {α1, . . . , αr},
tσS(φ) and θσS(φ) are defined using intermediate terms uσi (φ)
and τσi (φ) (for all i ∈ {1, . . . , r}), relying on an attacker
function symbol to ∈ G (representing the scheduling choice
of the attacker):

uσ1 (φ) = tσα1
(φ) τσ1 (φ) = θσα1

(φ)

uσi+1(φ) = if EQ(to(φ);αi+1) then tσαi+1
(φ) else uσi (φ)

τσi+1(φ) = if EQ(to(φ);αi+1) then θσαi+1
(φ) else τσi (φ)

where if b then θ1 else θ2 denotes the substitution θ defined
by: for every variable x, xθ = if b then xθ1 else xθ2.

We then let tσS(φ) = uσr (φ) and θσS(φ) = τσr (φ).
Example 2. Let us return to the example 1.

Each tag TAi has an identifier Ai and a key kAi . In the KCL
protocol the TAGINITi call is useless because the tag has only
one message to send in a round of the protocol (TAGINITi
is used to tell a tag to stop the current round of the protocol
and to start a new one). Since we consider a finite number
n of interface calls, there is at most n sessions executed in
parallel. We will use a variable nb to store the index of the next
session to start (initialized to 1), and variables c10, . . . , c

n
0 and

c11, . . . , c
n
1 (initialized to 0) where ci0 and ci1 store respectively

the first challenge and the second challenge of session i.
• tσSETKEYi

(φ) = 〈σ(xki) , σ(xIdi)〉: the data of the tag i
are disclosed.

• θσSETKEYi
(φ) = {xki 7→ gKEYi(φ), xIdi 7→ gIDi(φ)}: the

key and id of the tag i are set to values chosen by the
attacker (gKEYi , gIDi ∈ G).

• tσTAGMSGi
(φ) =

〈σ(xIdi)⊕ nT , nT ⊕ H(gTMSGi(φ), σ(xki))〉

The reply of the tag i follows the protocol, according to
its local store. gTMSGi(φ) is the message, forged by the
adversary, replacing the expected name nR; gTMSGi ∈ G.

• θσTAGMSGi
(φ) = ε: there is no update in this case (nothing

is stored for further verifications in this particular proto-
col)

• tσREADERINIT(φ) = 〈σ(nb) , nR〉: when starting a new
session, the reader sends a new challenge nR

• θσREADERINIT(φ) ={
nb 7→ (σ(nb) + 1)
cj 7→ if EQ(σ(nb); j) then nR else σ(cj) | 1 ≤ j ≤ n

7

First Phase:

T1 T2

A R

S
E

T
K

E
Y

TA
G

IN
IT

TA
G

M
S

G

S
E

T
K

E
Y

TA
G

IN
IT

TA
G

M
S

G
READERINIT

READERMSG

Second Phase:

Tb

A R

TA
G

IN
IT

TA
G

M
S

G

S
E

T
K

E
Y

TA
G

IN
IT

TA
G

M
S

G
READERINIT

READERMSG

b′

Fig. 3. Privacy game with two tags T1, T2. The adversary A wins if b = b′.

The local memory of the reader is updated.
We now express the Privacy game as a set of equivalence

properties. After the first phase, once the attacker has chosen
the corrupted tags, we rename the tags in such a way that the
challenged tags are Tn−1 and Tn. In the definition below, p
is the number of interactions of the adversary during the first
phase and q is the number of interactions of the adversary
during the second phase.

Definition 3 (m-Bounded Session Privacy). Given a (com-
putational) interpretation I of the function symbols in F , a
protocol satisfies m-Bounded Session Privacy if for every p, q
such that p+ q = m and for every computational model MI

c

that extends I , we have:

MI
c |= (tσi(φi))i≤m, gguess(φm+1)

∼ (tσ̃i(φ̃i))i≤m, gguess(φ̃m+1)

where φ1 = ε, σ1 = σinit and for all 1 < i ≤ m:

• φi+1 =

{
φi, t

σi
Γn

(φi) if i ≤ p
φi, t

σi
Γn−1\{SETKEYn−1}(φi) if i ≥ p

• σi+1 =


σi θ

σi
Γn

(φi) (if i ≤ p)
σi {xkn−1

7→ σi(xkn−1
)} θσiΓn−1\{SETKEYn−1}(φi)

(if i = p+ 1)

σi θ
σi
Γn−1\{SETKEYn−1}(φi) (if i > p+ 1)

φ̃i and σ̃i are defined similarly, except that the chosen tag is Tn
and not Tn−1 (that is the key substitution used is {xkn−1

7→
σ̃i(xkn)} instead of {xkn−1

7→ σi(xkn−1
)} in the case i =

p + 1). gguess ∈ G is the attacker’s function guessing with
which tag the interaction took place.

Theorem 1. Given a computational interpretation of function
symbols in F , a protocol P satisfies m-Bounded Session
Privacy iff it satisfies m-Privacy.

Proof sketch: If there is an attacker on m-privacy, we can
construct an interpretation of the attacker’s function symbols
that yields a counter-model of the equivalence property. Con-
versely, if there is a counter-model we can build an attacker

that performs the actions and computations specified by the
interpretations of these function symbols. These constructions
correspond basically to the proofs in [4].

C. Fixed Trace Privacy

The m-Bounded Session Privacy definition is a bit cum-
bersome, since the terms gather together all possible trace
interleavings of the protocol with n tags and m calls to the
interfaces. It is easier to use the following definition, that
we call m-Fixed Trace Privacy, that considers equivalence
formulas between executions of the protocol with a fixed
sequence of actions chosen by the adversary. Basically we
split a big equivalence into an exponential number (in m) of
smaller formulas.

Definition 4 (m-Fixed Trace Privacy). Given an interpretation
I of function symbols in F , a protocol satisfies m-Fixed Trace
Privacy if for all p, q such that p+q = m, for all (αi)1≤i≤m ∈
(Γn)p × (Γn−1\SETKEYn−1)q , for all computational models
Mc that extend I , we have:

Mc |= (tσiαi(φi))i≤m, gguess(φm+1)

∼ (tσ̃iαi(φ̃i))i≤m, gguess(φ̃m+1)

where φ1 = ε, σ1 = σinit and for all 1 < i ≤ m:
• φi+1 = φi, t

σi
αi(φi)

• φ̃i+1 = φ̃i, t
σ̃i
αi(φ̃i)

• σi+1 =

{
σi θ

σi
αi(φi) if i 6= p+ 1

σi {xkn−1
7→ σi(xkn−1

)} θσiαi(φi) if i = p+ 1

• σ̃i+1 =

{
σ̃i θ

σ̃i
αi(φ̃i) if i 6= p+ 1

σ̃i {xkn−1
7→ σ̃i(xkn)} θσ̃iαi(φ̃i) if i = p+ 1

Proposition 4. m-Fixed Trace Privacy is equivalent to m-
Bounded Session Privacy.

Proof: We start by showing that m-Bounded Session
Privacy implies m-Fixed Trace Privacy by contraposition: let
p, q be two integers such that p + q = m, (αi)1≤i≤m ∈

8

(Γn)p × (Γn−1\SETKEYn−1)q and Mc be a computational
model such that:

Mc |= (tσiαi(φi))i≤m, gguess(φm+1)

6∼ (tσ̃iαi(φ̃i))i≤m, gguess(φ̃m+1)

Let A be an adversary with a non negligible probability of
distinguishing between the two distributions (interpreted in
Mc). We define the model M′c to be Mc with a signature
extended by the function symbols {to} ∪ Γn: for all α ∈ Γn,
JαKM′c is interpreted by a machine returning α on all input,
and the function symbol to is interpreted by a machine
satisfying:

Jto(φi)KM′c = Jto(φ̃i)KM′c = JαiKM′c
This only depends on the size of φi and φ̃i, and is therefore
possible to do with a polynomial time probabilistic Turing
Machine, hence M′c is a computational model. Moreover by
construction A has a non negligible probability of breaking m-
Bounded Session Privacy in M′c, which concludes the proof.

Conversely we show that m-Fixed Trace Privacy implies m-
Bounded Session Privacy by contraposition: using notation of
Definition 3, let p, q be such that p + q = m and assume
a model Mc and an adversary A with a non negligible
probability of distinguishing between Jφm+1K and Jφ̃m+1K (we
remove Jgguess(φm+1)K) since A can compute it himself). We
let S = (Γn)p× (Γn−1\SETKEYn−1)q and for all ~α ∈ S, E~α
is the event

∧
iJto(φi)Kη = αi. We then have:

Prρ(A(Jφm+1Kη,ρ) = 1)

=
∑
~α∈S

Prρ(A(Jφm+1Kη,ρ) = 1 | E~α)×Prρ(E~α)

=
∑
~α∈S

Prρ(A(J(tσiαi(ψ
~α
i))i≤mKη,ρ) = 1)×Prρ(E~α)

where ψ~αi denotes the i-th frame obtained for the fixed trace
~α (it is the φi from Definition 4 renamed to avoid notations
clash). Similarly we let E′~α is the event

∧
iJto(φ̃i)Kη = αi and

we have:

Prρ(A(Jφ̃m+1Kη,ρ) = 1)

=
∑
~α∈S

Prρ(A(J(tσ̃iαi(ψ̃
~α
i))i≤mKη,ρ) = 1)×Prρ(E

′
~α)

Since Prρ(E~α) ≤ 1, Prρ(E
′
~α) ≤ 1 and bounding the

absolute value of the sum by the sum of the absolute values
we get that:∣∣Prρ(A(Jφm+1Kη,ρ) = 1)−Prρ(A(Jφ̃m+1Kη,ρ) = 1)

∣∣
is upper bounded by:∑

~α∈S

∣∣Prρ(A(J(tσiαi(ψ
~α
i))i≤mKη,ρ) = 1)−

Prρ(A(J(tσ̃iαi(ψ̃
~α
i))i≤mKη,ρ) = 1)

∣∣
SinceA distinguishes Jφm+1K and Jφ̃m+1K with non negligible
probability, and since S is finite we know that there exists ~α
such that:∣∣Prρ(A(J(tσiαi(ψ

~α
i))i≤mKη,ρ) = 1)−

Prρ(A(J(tσ̃iαi(ψ̃
~α
i))i≤mKη,ρ) = 1)

∣∣

is non negligible. Therefore m-Fixed Trace Privacy does not
hold, which concludes this proof.

As explained in [4], indistinguishability properties can be
expressed in the logic for arbitrary determinate protocols. For
such protocols, observational equivalence and trace equiva-
lence coincide [13]. The above proposition is a similar result
in the computational model. It can be extended to other
equivalence properties, as long as m does not depend on the
security parameter.

IV. TWO RFID PROTOCOLS

We are now going to describe the LAK and KCL RFID
protocols, as well, attacks, patches and formal (computational)
security proofs of the fixed versions.

We first consider that names are randomly generated num-
bers, even though, because of the limited computing capa-
bilities of the tags, they have to be implemented using a
Cryptographic Pseudo Random Number Generator (PRNG).
This issue will be discussed in the section V: we will show that
we can always safely abstract the pseudo random numbers as
random numbers, provided that a PRNG is used and the random
seed is never used for other purposes.

A. A known attack on KCL

Let us return to the simple example described in Figure 2:

R : nR
$←

TA : nT
$←

1 : R −→ TA : nR
2 : TA −→ R : 〈A⊕ nT , nT ⊕ H(nR, kA)〉

As reported in [27], there is a simple attack that we depict
in Figure 4. In this attack the tag is challenged twice with
the same name: observing the exchanges between the tag and
the reader, the adversary can replay the name. Finally the
adversary checks if he is talking with the same tag by xoring
the two components of the message sent by the second tag,
and verifies whether the result is the same as what he obtained
with the same operation in the first session.

In the left execution, the xor of the two part of the tag
answers will be the same:

TA ⊕ nT ⊕ nT ⊕ H(nR, kA) = TA ⊕ n′T ⊕ n′T ⊕ H(nR, kA)

= TA ⊕ H(nR, kA)

Whereas in the right execution we will obtain two values TA⊕
H(nR, kA) and TB ⊕ H(nR, kB) which will be different with
high probability.

B. KCL+, a revised version of KCL

We propose a simple correction to the KCL protocol: we
replace the first occurrence of the name nT with its hash,
breaking the algebraic property that was used in the attack.
This protocol is depicted in Figure 5, and to our knowledge
there exists no formal study of this revised version.

9

1 : R −→ TA : nR R −→ TA : nR
2 : TA −→ R : 〈TA ⊕ nT , nT ⊕ H(nR, kA)〉 TA −→ R : 〈TA ⊕ nT , nT ⊕ H(nR, kA)〉

3 : E −→ TA : nR E −→ TB : nR
4 : TA −→ R : 〈TA ⊕ n′T , n′T ⊕ H(nR, kA)〉 TB −→ R : 〈TB ⊕ n′T , n′T ⊕ H(nR, kB)〉

Fig. 4. Attack against the original KCL protocol

R : nR
$←

T : nT
$←

1 : R −→ TA : nR
2 : TA −→ R : 〈A⊕ H(nT , kA) , nT ⊕ H(nR, kA)〉

Fig. 5. The KCL+ protocol

We are now going to illustrate our method by showing that
the KCL+ protocol verifies m-Fixed Trace Privacy with two
tags A and B. Assuming collision resistance only, there is
actually an attack on the protocol KCL+ (exactly the same
attack as the one described in Section IV-D). We therefore
assume the PRF property.

Theorem 2 (Unlinkability for an arbitrary number of rounds).
Assuming PRF for the keyed hash function, the KCL+ protocol
verifies m-Fixed Trace Privacy for two agents and all m.

In the proof below, the primed version of a term t is the
term t, in which the names n1, . . . ,nl appearing in t have been
replaced by n′1, . . . ,n′l. We will use tIdφ (where Id = A or B)
to denote the response of the tag TId to a challenge:

tIdφ = 〈Id⊕ H(nT , kId) , nT ⊕ H(g(φ), kId)〉

Since the axioms are Horn clauses, we can view them as
inference rules, in which the premises of the inferences are
the negative literals of the clause. This is easier to display and
read.

Proof: We prove this by induction on m (induction is
outside our logic). Let φ, φ̃ be two sequences of terms from
the m-Fixed Trace Privacy definition. By induction hypothesis,
we assume that we have a derivation of φ ∼ φ̃ (in the base
case, this is the reflexivity of ∼). We consider two cases.

If the adversary decides to start a new session with the
reader, we need to show that φ,nR ∼ φ̃,nR where nR is
fresh in φ, φ̃. This case is easy, we only need to apply the
FreshNonce axiom:

φ ∼ φ̃
F reshNonce

φ,nR ∼ φ̃,nR
Otherwise, the adversary decides to interact with the tags,

e.g. A on the left and B on the right (the other cases are
identical). We want to show that φ, tAφ ∼ φ̃, t̃Bφ̃. We let n be a

fresh name and ψ, ψ̃ be defined by:

ψ ≡ φ,nT ⊕ H(g(φ), kA)

ψ̃ ≡ φ̃,nT ⊕ H(g(φ̃), kB)

We start (from the root) our proof by applying the FA axiom
(breaking the pair) and then to introduce an intermediate term
A ⊕ n since, intuitively, H(nT , kA) (resp. H(nT , kB)) should
be indistinguishable from a random number.

ψ,H(nT , kA) ∼ ψ,n
FA

ψ,A,H(nT , kA) ∼ ψ,A,n
FA

ψ,A⊕ H(nT , kA) ∼ ψ,A⊕ n P1
Trans

ψ,A⊕ H(nT , kA) ∼ ψ̃,B⊕ H(nT , kB)
FA

φ, tAφ ∼ φ̃, tBφ̃
where P1 is a derivation of ψ,A⊕ n ∼ ψ̃,B⊕ H(nT , kB).

a) Left Derivation: We have to find first a a derivation of
ψ,H(nT , kA) ∼ ψ,n. The ultimate goal is to apply the PRF
axioms. For that, we need to introduce, on both sides of the ∼
predicate, equality tests between the last message hashed under
key kA (i.e. nT), and all the previous hashed messages under
key kA. We let m1, . . . ,ml be the set of messages hashed with
kA in φ. We know that these messages are either names n′T ,
or of the form g(φ′) where φ′ is a strict prefix of φ.

Let α = H(nT , kA), β = n. For all 1 ≤ i ≤ l we let
ei ≡ EQ(nT ;mi), and sx be the term:

if e1 then x else
if e2 then x else

..
.

if el then x else x

We observe that, for every term u, u = su is derivable from
the equality axioms. We are now going to use the CS axiom
to split the proof. To do so we introduce for every 1 ≤ i ≤ l
the term uxi :

if e1 then 0 else

..
.

if ei−1 then 0 else
if ei then x else 0

And the term uxl+1:

if e1 then 0 else . . . if el then 0 else x

By repeatedly applying the CS axiom we obtain:

∀i ∈ {1, . . . , l + 1}, ψ, e1, . . . , el, u
α
i ∼ ψ̃, e1, . . . , el, u

β
i
CS

ψ, sH(nT ,kA) ∼ ψ, sn
Congr

ψ,H(nT , kA) ∼ ψ,n
First note that, using the EqIndep axiom, we derive, for every
1 ≤ i ≤ l, ei = false. This allows us to deal with cases 1 to

10

l, since this implies that uαi = uαi = 0 is derivable. Therefore
we have for all i ∈ {1, . . . , l}:

Refl
ψ, false, . . . , false, 0 ∼ ψ, false, . . . , false, 0

Congr
ψ, e1, . . . , el, u

α
i ∼ ψ, e1, . . . , el, u

β
i

Consider now the case i = l + 1. The conditions on the
occurrences of H and kA are satisfied, thanks to the choice of
e1, . . . , el. We may use the PRFl axiom:

PRF
ψ, uα1 ∼ ψ, u

β
1

FA(l)

ψ, false, . . . , false, uαl+1 ∼ ψ, false, . . . , false, uβl+1
Congr

ψ, e1, . . . , el, u
α
1 ∼ ψ, e1, . . . , el, u

β
1

b) Right Derivation (P1): Now, we have to derive ψ,A⊕
n ∼ ψ̃,B⊕H(nT , kB). We start by replacing A with B, splitting
again the proof in two subgoals:

ψ,A ⊕ n ∼ ψ̃,B ⊕ n ψ̃,B ⊕ n ∼ ψ̃,B ⊕ H(nT , kB)
Trans

ψ,A ⊕ n ∼ ψ̃,B ⊕ H(nT , kB)

For the right part, we first decompose the goal:

ψ̃,H(nT , kB) ∼ ψ̃,n
Sym

ψ̃,n ∼ ψ̃,H(nT , kB)
FA

ψ̃,B,n ∼ ψ̃,B,H(nT , kB)
FA

ψ̃,B⊕ n ∼ ψ̃,B⊕ H(nT , kB)

Then, the derivation of ψ̃,H(nT , kB) ∼ ψ̃,n is similar to the
derivation of ψ,H(nT , kA) ∼ ψ,n.

For the left part, we start by using the axiom on ⊕:

ψ ∼ ψ̃
Indep

ψ,A⊕ n ∼ ψ̃,B⊕ n

It only remains to show that ψ ∼ ψ̃. We do this using the
Trans and Indep axioms:

LSim︷ ︸︸ ︷
φ,nT ⊕ H(g(φ), kA) ∼ φ,nTφ,nT ⊕ H(g(φ), kA) ∼ φ,nT ∼ φ̃,nT︸ ︷︷ ︸

MSim

∼φ,nT ⊕ H(g(φ), kA) ∼ φ,nT ∼

RSim︷ ︸︸ ︷
φ̃,nT ∼ φ,nT ⊕ H(g(φ), kB)

Refl
φ ∼ φ

Indep
LSim

φ ∼ φ̃
Indep

MSim

Refl
φ ∼ φ

Indep
RSim

Trans
φ,nT ⊕ H(g(φ), kA) ∼ φ,nT ⊕ H(g(φ), kB)

Which concludes the inductive step proof.
In this result we consider only two tags, for simplicity

reasons. In particular they cannot be corrupted tags. Our
framework is expressive enough for multiple tags, including
corrupted one, though we did not complete the proof in that
case.

C. The LAK protocol

a) Description: We describe in Figure 6 the original
protocol from [21]. As we mentioned before, the protocol we
consider is a simplified version of the LAK protocol, without
the key server. In the LAK protocol, the reader shares a private
key kA with each of its tags TA. h is an hash function.
This is a stateful protocol: the key is updated after each

R : nR
$←

TA : nT
$←

1 : R −→ TA : nR
2 : TA −→ R : 〈nT , h(nR ⊕ nT ⊕ kA)〉
3 : R −→ TA : h

(
(h(nR ⊕ nT ⊕ kA)⊕ nR ⊕ kA

)
R : kA = h(kA) , k0

A = kA
TA : kA = h(kA)

Fig. 6. The LAK protocol

successful completion of the protocol, and the reader keeps
in k0

A the previous value of the key. This value is used as a
backup in case TA has not completed the protocol (for example
because the last message was lost) and therefore not updated
its version of the key. The protocol allows to recover from
such a desynchronization: the reader R can use the previous
version of kA at the next round (which is the version used by
TA) and finish the protocol.

The protocol is supposed to achieve mutual authentication
and unlinkability. Even though such properties can be defined
in various ways, we recall below a known attack against the
LAK protocol, which will force us to modify it.

b) An attack on LAK: An attack on authentication is
described in [27] and sketched below:

1 : R −→ TA : nR
2 : TA −→ E : 〈nT , h(nR ⊕ nT ⊕ kA)〉

3 : R −→ E : n′R
4 : E −→ R : 〈n′R ⊕ nR ⊕ nT , h(nR ⊕ nT ⊕ kA)〉
5 : R −→ E : h

(
(h(nR ⊕ nT ⊕ kA)⊕ n′R ⊕ kA

)
In this attack, the adversary simply observes the beginning

of an honest execution of the protocol (without completing
the protocol, so that the reader and the tag do not update the
key) between a tag A and the reader. The adversary obtains
h(nR⊕nT⊕kA) and the names nR,nT . He then interacts with
the reader to get a new name n′R and impersonates the tag A
by choosing the returned tag n′T such that n′R⊕n′T = nR⊕nT .

D. A stateless revised version of LAK

In [17], the authors consider a corrected (and stateless)
version of the protocol, which they proved secure. This version
of the protocol is described below:

R : nR
$←

TA : nT
$←

1 : R −→ TA : nR
2 : TA −→ R : 〈nT , h(〈nR,nT , kA〉)〉
3 : R −→ TA : h

(
〈(h(〈nR,nT , kA〉),nR, kA〉

)
This new version avoids the previous attack, which relied on

the algebraic properties of exclusive-or. Formally, the protocol
is described in the applied pi-calculus in [17], in which they
prove the strong unlinkability property of [1] in the Dolev-Yao
model for an unbounded number of session.

11

a) Attack against stateless LAK: Since the stateless ver-
sion of LAK was proved in the symbolic model, no com-
putational security assumptions were made on h. We show
in Figure 7 that choosing h to be a one-way cryptographic
hash function (OW-CPA and Strongly Collision Resistant for
example) is not enough to guarantee unlinkability.

The attack is quite simple: it suffices that the hash function
h leaks a few bits of the hashed message (which is possi-
ble for an one-way hash function). This means that, when
hashing a message of the form 〈nR,nT , k〉, the hash function
h will leak some bits of the agent key k. Since the keys
are drawn uniformly at random, there is a non negligible
probability for the leaked bits to be different when hashing
messages with different keys. In particular an adversary will be
be able to distinguish h(〈nR,nT , kA〉),h(〈n′R,n′T , kA〉) from
h(〈nR,nT , kA〉),h(〈n′R,n′T , kB〉) with high probability.

Observe that this attack would still work if we modified
the protocol to update the keys after a successful execution
of the protocol (in other word, if we consider the original
LAK protocol with concatenation instead of xor), because the
attacker could start executions of the protocol without finishing
them, preventing the keys from being updated.

Remark 3. In the original paper introducing LAK [21], the
hash function is described as a one-way cryptographic hash
function, which a priori does not prevent the attack described
above. However, in the security analysis section, the authors
assume the function to be indistinguishable from a random
oracle, which prevents the attack. It is actually sufficient
to assume PRF, for which there are effective constructions
(subject to hardness assumptions).

E. The LAK+ protocol

We describe here a stateless version of the LAK protocol,
that we call LAK+. As in the LAK protocol, the reader shares
with each tag a secret key k. We use a keyed-hash function
that is assumed to be PRF to prevent the attack depicted in
Section IV-D. This protocol uses a function c that combines the
names. It could be a priori a xor, as in the original protocol,
or a pairing, as in the revised version of [17] or something
else. We will look for sufficient conditions on this function c,
such that the protocol is secure.

R : nR
$←

T : nT
$←

1 : R −→ T : nR
2 : T −→ R : 〈nT , H(c(nR,nT), kA)〉
3 : R −→ T : H

(
c(H(c(nR,nT), kA),nR), kA

)
We start by describing two different attacks that rely on

some properties of the function c. In each case, we give a
sufficient condition on c that prevents the attack. Next, we
show that these two conditions are sufficient to prove that the
LAK+ protocol verifies the Bounded Session Privacy property.

a) First Attack:: The attack depicted below is a general-
ization of the attack from [27]. It works when there exists a

function s (computable in probabilistic polynomial time) such
that the quantity below is not negligible:

Pr
(
nR,nT ,n′R : EQ(c(nR,nT); c(n′R, s(nR,nT ,n

′
R)))

)
(1)

This condition is satisfied if c is the xor operation (choose
s(nR,nT ,n′R) = n′R ⊕ nT ⊕ n′R).

1 : E −→ TA : nR
2 : TA −→ E : 〈nT , H(c(nR,nT), kA)〉

3 : R −→ E : n′R
4 : E −→ R : 〈s(nR,nT ,n′R) , H(c(nR,nT), kA)〉
5 : R −→ E : H

(
c(H(c(nR,nT), kA),nR), kA

)
The attacker starts by sending a name nR to the tag, and
gets the name nT chosen by the tag as well as the hash
H(c(nR,nT), kA). Then the attacker initiates a second round
of the protocol with the reader. The reader sends first a
name n′R. The attacker is then able to answer, re-using the
hash H(c(nR,nT), kA) sent by the tag in the first round,
choosing s(nR,nT ,n′R) as a replacement of the name n′T .
Using Equation (1), there is a non negligible probability for
the reader to accept the forged message as genuine.

This attack can be prevented by requiring c to be injective
on its first argument:

∀a, b, x, y. EQ(c(a, b); c(x, y))⇒ EQ(a;x)

b) Second Attack:: We have an unlinkability attack if we
can distinguish between the answers of the tags, even though
the hash function is assumed to be a PRF. This is possible if
there exists a constant g1 and a function s such that:

Pr
(
x, y : c(g1, x) = c(s(x), y)

)
is not negligible (2)

If this is the case, then the unlinkability attack described below
has a non negligible probability of success in distinguishing
two consecutive rounds with the same tag A from one round
with the tag A and one round with the tag B.

The attack works as follows: it starts by impersonat-
ing the reader, sends g1 to the tag and gets the response
〈nT , H(c(g1,nT), kA)〉. Then the attacker initiates a new
round of the protocol by sending s(nT) to the second tag.
Using Equation 2, there is a non negligible probability that
the hash in the response from the tag A in the second round
of the protocol is the same as in the first round, whereas this
will not be the case if the second round is initiated with B.

This attack can be prevented by asking c to be right injective
on its second argument:

∀a, b, x, y. EQ(c(a, b); c(x, y))⇒ EQ(b; y)

c) Unlinkability of the LAK+ protocol: To prevent all the
attacks against LAK+ described above, we are going to require
c to be right and left injective. This can easily be expressed in
the logic using the two axioms in Figure 9, which are satisfied,
for instance, when c is a pairing.

if EQ(u;u′) then false else EQ(c(u, v); c(u′, v′)) = false
if EQ(v; v′) then false else EQ(c(u, v); c(u′, v′)) = false

Fig. 9. Injectivity axioms on the combination function c

12

1 : E −→ TA : nR E −→ TA : nR
2 : TA −→ E : 〈nT , h(〈nR,nT , kA〉)〉 TA −→ E : 〈nT , h(〈nR,nT , kA〉)〉

3 : E −→ TA : n′R E −→ TB : n′R
4 : TA −→ E : 〈n′T , h(〈n′R,n′T , kA〉)〉 TB −→ E : 〈n′T , h(〈n′R,n′T , kB〉)〉

Fig. 7. Unlinkability attack in two rounds against the stateless LAK protocol

1 : E −→ TA : g1 E −→ TA : g1

2 : TA −→ E : 〈nT , H(c(g1,nT), kA)〉 TB −→ E : 〈nT , H(c(g1,nT), kA)〉

3 : E −→ TA : s(nT) E −→ TB : s(nT)
4 : TA −→ E : 〈n′T , H(c(s(nT),n′T), kA)〉 TB −→ E : 〈n′T , H(c(s(nT),n′T), kB)〉

Fig. 8. Unlinkability attack against LAK+

Three messages are sent in a complete session of the LAK+

protocol: two by the reader and one by the tag. Therefore, if
we want to show interesting properties of the LAK+ protocol,
we need to consider at least 6 terms in the trace (two full
sessions, e.g. twice with the same tag TA or with the tag TA
and the tag TB). This leads us to consider the 6-Fixed Trace
Privacy of the LAK+ protocol.

Theorem 3. The LAK+ protocol verifies 6-Fixed Trace Pri-
vacy. In particular, the following formula is derivable using
the axioms from Section II and the axioms in Figure 9:

nR, sA
φ0
, tAφ1

,n′R, s
′A
φ2
, t′Aφ3

∼ nR, sA
φ0
, tAφ1

,n′R, s
′B
φ2
, t′B
φ̃3

Where:

sId
φ = 〈nT , H(c(g(φ),nT), kId)〉
tIdφ = if EQ

(
H
(
c(nR, π1(g(φ))), kId

)
;π2(g(φ))

)
then H

(
c(π2(g(φ)),nR), kId

)
φ0 = nR φ1 = nR, sA

φ0
φ2 = nR, sA

φ0
, tAφ1

φ3 = nR, sA
φ0
, tAφ1

,n′R, s
′A
φ2

φ̃3 = nR, sA
φ0
, tAφ1

,n′R, s
′B
φ2

The proof of this theorem is given in Appendix C. As for
the KCL+ protocol, by induction on m, it should be possible
to generalize the result to an arbitrary m-Fixed Trace Privacy
(if m is independent of the security parameter), although we
did not complete this generalization formally.

V. PSEUDO RANDOM NUMBER GENERATOR

A PRNG uses an internal state, which is updated at each call,
and outputs a pseudo random number. This can be modeled by
a function G taking the internal state as input, and outputing
a pair with the new internal state and the generated pseudo
random number (retrieved using the projections πS and πo).
Besides, a function initS is used to initialized the internal state
with a random seed (which can be hard-coded in the tag).

Definition 5. A PRNG is a tuple of polynomial functions
(G, initS) such that for every PPT adversary A and for every
n, the following quantity is negligible in η:∣∣Pr (r ∈ {0, 1}η : A(πo(s0), . . . , πo(sn)) = 1)−

Pr (r0, . . . , rn ∈ {0, 1}η : A(r0, . . . , rn) = 1)
∣∣

where s0 = G(initS(r, 1η)) and for all 0 ≤ i < n, si+1 =
G(πS(si)).

This can be translated in the logic by the PRNGn axioms:

πo(s0), . . . , πo(sn) ∼ n0, . . . ,nn

where s0 ≡ G(initS(n)) and ∀0 ≤ i < n, si+1 ≡ G(πS(si)).

The soundness of these axioms is an immediate conse-
quence of Definition 5:

Proposition 5. The (PRNGn)n axioms are sound in any
computational model Mc where (G, initS) is interpreted as
a PRNG.

For each protocol where a strict separation exists between
the cryptographic material used for random number generation
and the other primitives (e.g. encryption keys), pseudo random
numbers generated using a PRNG can be abstracted as random
numbers using the following proposition (the proof can be
found in Appendix D):

Proposition 6. For every names n, (ni)i≤n and contexts
u0, . . . , un that do not contain these names, the following for-
mula is derivable using the axioms in Figure 1 and PRNGn:

u0[πo(s0)], . . . , un[πo(sn)] ∼ u0[n0], . . . , un[nn]

where s0 ≡ G(initS(n)) and ∀0 ≤ i < n, si+1 ≡ G(πS(si)).

Remark 4 (Forward Secrecy). We did not study forward
secrecy of RFID protocols, but this could easily be done.
The standard forward secrecy assumption on a PRNG states
that leaking the internal state πS(sn) of the PRNG (e.g.
with a physical attack on the RFID chip) does not allow
the adversary to gain any information about the previously
generated names (πo(sn))i≤n. This could be expressed in the
logic using, for example, the following formula:

πo(s0), . . . , πo(sn), πS(sn) ∼ n0, . . . ,nn, πS(sn)

where s0 ≡ G(initS(n)) and ∀0 ≤ i < n, si+1 ≡ G(πS(si)).

13

VI. CONCLUSION

We gave a framework for formally proving the security of
RFID protocols in the computational model: we expressed
cryptographic assumptions on hash functions and an unlinka-
bility property as formulas of the Complete Symbolic Attacker
logic. We then illustrated this method on two examples,
providing formal security proofs. We also showed that the
security assumptions used in the proofs of these two protocols
cannot be weakened (at least not in an obvious way).

What our framework is missing is an automatic tool for the
logic, since the formal proofs are already heavy for simple
protocols. Building such a tool would help streamline the
design of formally verified protocols, and is the goal of our
future research.

Compiling the process equivalence in our logic has already
been explained in [4]. In principle, we could use any automatic
first order theorem prover to complete the proofs. However,
the search space may be too large on our examples. This is
why the focus of our current research is on the design of
appropriate strategies.

REFERENCES

[1] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In Proceedings of IEEE
Conf. Computer Security Foundations, 2010.

[2] Gergei Bana and Rohit Chadha. Verification methods for the computa-
tionally complete symbolic attacker based on indistinguishability. IACR
Cryptology ePrint Archive, 2016:69, 2016.

[3] Gergei Bana and Hubert Comon-Lundh. Towards unconditional sound-
ness: Computationally complete symbolic attacker. In Pierpaolo Degano
and Joshua D. Guttman, editors, Proceedings of the 1st International
Conference on Principles of Security and Trust (POST’12), volume 7215
of Lecture Notes in Computer Science, pages 189–208. Springer, March
2012.

[4] Gergei Bana and Hubert Comon-Lundh. A computationally complete
symbolic attacker for equivalence properties. In Proc. ACM Conference
on Computers and Communications Security, 2014.

[5] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub,
Nikhil Swamy, and Santiago Zanella-Béguelin. Probabilistic relational
verification for cryptographic implementations. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 193–205, New York, NY, USA, 2014.
ACM.

[6] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-Aided Security Proofs for the Working Cryptog-
rapher, pages 71–90. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[7] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Y. Strub.
Implementing tls with verified cryptographic security. In 2013 IEEE
Symposium on Security and Privacy, pages 445–459, May 2013.

[8] Bruno Blanchet. PROVERIF: Cryptographic protocols verifier in the
formal model. available at http://proseccco.gforge..inria.fr/personal/
bblanchet/proverif/.

[9] Bruno Blanchet. A computationally sound mechanized prover for
security protocols. In 2006 IEEE Symposium on Security and Privacy
(S&P 2006), 21-24 May 2006, Berkeley, California, USA, pages 140–
154. IEEE Computer Society, 2006.

[10] Bruno Blanchet, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay.
Computationally sound mechanized proofs for basic and public-key
Kerberos. In ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’08), pages 87–99, Tokyo, Japan, March
2008. ACM.

[11] Vincent Cheval. APTE: An Algorithm for Proving Trace Equivalence,
pages 587–592. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[12] Hung-Yu Chien. Sasi: A new ultralightweight rfid authentication
protocol providing strong authentication and strong integrity. IEEE
Trans. Dependable Secur. Comput., 4(4):337–340, October 2007.

[13] Véronique Cortier and Stéphanie Delaune. A method for proving
observational equivalence. In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium (CSF’09), pages 266–276, Port Jeffer-
son, NY, USA, July 2009. IEEE Computer Society Press.

[14] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic
Techniques. Cambridge University Press, 2001.

[15] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[16] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography,
2001.

[17] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for
verifying privacy-type properties: the unbounded case. In Michael
Locasto, Vitaly Shmatikov, and Úlfar Erlingsson, editors, Proceedings
of the 37th IEEE Symposium on Security and Privacy (S&P’16), pages
564–581, San Jose, California, USA, May 2016. IEEECSP.

[18] Ari Juels and Stephen A. Weis. Defining strong privacy for rfid. ACM
Trans. Inf. Syst. Secur., 13(1):7:1–7:23, November 2009.

[19] I. J. Kim, E. Y. Choi, and D. H. Lee. Secure mobile rfid system
against privacy and security problems. In Security, Privacy and Trust
in Pervasive and Ubiquitous Computing, 2007. SECPerU 2007. Third
International Workshop on, pages 67–72, July 2007.

[20] Tri Van Le, Mike Burmester, and Breno de Medeiros. Universally
composable and forward-secure RFID authentication and authenticated
key exchange. In Feng Bao and Steven Miller, editors, Proceedings of the
2007 ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2007, Singapore, March 20-22, 2007, pages 242–
252. ACM, 2007.

[21] Sangshin Lee, Tomoyuki Asano, and Kwangjo Kim. Rfid mutual
authentication scheme based on synchronized secret information. In
Symposium on cryptography and information security, 2006.

[22] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin.
The tamarin prover for the symbolic analysis of security protocols.
In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV’13, pages 696–701, Berlin, Heidelberg, 2013.
Springer-Verlag.

[23] Khaled Ouafi and Raphael C.-W. Phan. Privacy of recent RFID
authentication protocols. In Liqun Chen, Yi Mu, and Willy Susilo,
editors, Information Security Practice and Experience, 4th International
Conference, ISPEC 2008, Sydney, Australia, April 21-23, 2008, Pro-
ceedings, volume 4991 of Lecture Notes in Computer Science, pages
263–277. Springer, 2008.

[24] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M. Estévez-
Tapiador, and Arturo Ribagorda. Advances in ultralightweight cryptog-
raphy for low-cost RFID tags: Gossamer protocol. In Kyo-Il Chung, Ki-
wook Sohn, and Moti Yung, editors, Information Security Applications,
9th International Workshop, WISA 2008, Jeju Island, Korea, September
23-25, 2008, Revised Selected Papers, volume 5379 of Lecture Notes in
Computer Science, pages 56–68. Springer, 2008.

[25] Guillaume Scerri. Proofs of security protocols revisited. PhD thesis,
École Normale Supérieure de Cachan, 2015.

[26] Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping
apis: Generic policies, computational security. In IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27
- July 1, 2016, pages 281–295. IEEE Computer Society, 2016.

[27] Ton Van Deursen and Sasa Radomirovic. Attacks on rfid protocols.
IACR Cryptology ePrint Archive, 2008:310, 2008.

[28] Serge Vaudenay. On Privacy Models for RFID, pages 68–87. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

APPENDIX A
PROOF OF PROPOSITION 1

If terms u and v have no name in common then the
distribution obtained when interpreting u, v is the product of
the distribution of u and the distribution v. This generalized to
interpretations under substitution σ fixing all names common
to u and v.

Proposition 7. If names(u) ∩ names(v) ⊆ dom(σ) then
J~u,~vKση = J~uKση × J~vKση .

If there is a set of names S such that the distributions
obtained when interpreting u and v are the same for all

http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/
http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/

14

valuation of the names in S then distributions obtained when
interpreting u and v are the same.

Proposition 8. If dom(σ) ∩ S = ∅ and if for all σ′ such
that dom(σ′) = S we have J~uKσ∪σ

′

η = J~vKσ∪σ
′

η then we have
J~uKση = J~vKση .

We use the two proposition above to prove the soundness
of the Indep and EqIndep axioms:

• Indep: Assume that for all computational model Mc

we have Mc |= ~u ∼ ~v. Using the FreshNonce
axiom we know that Mc |= ~u,n ∼ ~v,n. Therefore for
all computational adversary A the following quantity is
negligible:

|Pr (ρ : A(J~u,nKη,ρ) = 1)−Pr (ρ : A(J~v,nK)η,ρ = 1)|

Let σ be an arbitrary substitution fixing all names except
n. Then we have:

J~u,n⊕ xKση = J~uKση × Jn⊕ xKση
= J~uKση ×

(
JnKση ⊕ JxKση

)
= J~uKση × JnKση
= J~u,nKση

Since this holds for all σ we have J~u,n⊕xKη = J~u,nKη .
Similarly J~v,n⊕ yKη = J~v,nKη . Therefore the following
quantity is negligible:∣∣Pr (ρ : A(J~u, x⊕ nKη,ρ) = 1)−

Pr (ρ : A(J~v, y ⊕ nK)η,ρ = 1)
∣∣

• EqIndep: For all computational model Mc:

Pr(ρ : JEQ(n; t)Kη,ρ = JfalseKη,ρ)
= Pr(ρ : JnKη,ρ = JtKη,ρ)

=
∑
x∈Dm

1

|Dm|
Pr(ρ : JnKη,ρ = x ∧ JtKη,ρ = x)

Since n does not appear in t we have by independence:

=
∑
x∈Dm

1

|Dm|
Pr(ρ : JnKη,ρ = x)×Pr(ρ : JtKη,ρ = x)

=
∑
x∈Dm

1

|Dm|
× 1

2η
×Pr(ρ : JtKη,ρ = x)

≤
∑
x∈Dm

1

|Dm|
× 1

2η

≤ 1

2η

APPENDIX B
PROOF OF PROPOSITION 3

We give here and show a simpler version of the Proposi-
tion 3. The proof below can then easily be generalized.

Proposition 9. The following axiom:

~u, if EQ(t1; t) then 0 else H(t, k)

∼ ~u, if EQ(t1; t) then 0 else n (PRF1)

where:
• the only occurrence of H in ~u, t is in a subterm H(t1, k)
• k does not occur in t1 and only in key position in t, ~u.
• n is a name, that does not occur in ~u, t, t1

is computationally sound if H(·, k) is a PRF family.

Proof: Let A be an attacker that distinguishes the two
sequences of terms. We construct an attacker on the PRF
property as follows:

1) B draws all names appearing in ~u, t1, t, except k. Let τ
be the resulting sampling.

2) B computes (bottom-up) the distribution:

[[~u, if EQ(t1; t) then 0 else H(t, k)]]τ+k,ρ

calling the oracle each time there is an occurrence of
H(·, k). (τ+k,ρ is the extension of τ with a sampling of
k and attacker’s random tape ρ). This is possible, thanks
to the occurrences assumptions on k.

3) B simulates A on the result.
Given a fixed τ we have:

Pr
(
k, ρ : BOH(·,k)(1η) = 1

)
=

Pr
(
k, ρ : A([[~u, if EQ(t1; t) then 0 else H(t, k)]]τ+k,ρ) = 1

)
Hence,

Pr(τ+k,ρ : BOH(·,k)(1η) = 1) =

Pr(τ+k,ρ : A([[~u, if EQ(t1; t) then 0 else H(t, k)]]τ+k,ρ) = 1)
(3)

On the other hand, consider the term sequences, in which
each occurrence H(·, k) is replaced with a function symbol
g: let ~u′, if EQ(t1; t′) then 0 else g(t′) be the result of such
a replacement in ~u, if EQ(t1; t) then 0 else H(t, k). Let τ+g,ρ
be an extension of τ with g, ρ,where g is uniformly sampled
from {0, 1}∗ → {0, 1}η .

C = Pr(τ+k,ρ : BOH(·,k)(1η) = 1) =

Pr(τ+g,ρ : A([[~u′, if EQ(t1; t′) then 0 else g(t′)]]τ+g,ρ) = 1)
(4)

Hence, letting ~U ′ = ~u′, if EQ(t1; t′) then 0 else g(t′),

C =∑
w∈{0,1}η

Pr(τ+g,ρ : g([[t1]]τ+g,ρ) = w)

×Pr(τ+g,ρ : A([[~U ′]]τ+g,ρ) = 1 | g([[t1]]τ+g,ρ) = w)

Since t1 is assumed not to contain any occurrence of g and g
is drawn uniformly at random,

C =∑
w∈{0,1}η

1

2η
×Pr(τ+g,ρ : A([[~U ′]]τ+g,ρ) = 1 | g([[t1]]τ) = w)

15

Now, distinguishing cases,

C =
∑

w∈{0,1}η

1

2η
(

Pr(τ+g,ρ : [[t1]]τ = [[t′]]τ+g,ρ ∧ A([[~u′]]τ+g,ρ , 0) = 1

| g([[t1]]τ) = w)

+ Pr(τ+g,ρ : [[t1]]τ 6= [[t′]]τ+g,ρ ∧ A([[~u′, g(t′)]]τ+g,ρ) = 1

| g([[t1]]τ) = w))

Now, since the only occurrences of g in t′, ~u′ are in expressions
g(t1), when we fix g([[t1]]τ) = w, [[~u′]]τ+g,ρ and [[t′]]τ+g,ρ do
not depend on g, ρ, but only on w: we write them [[~u′]]τw and
[[t′]]τw respectively. The above probability can then be written:

C =
∑

w∈{0,1}η

1

2η
(

Pr(τ, ρ : [[t1]]τ = [[t′]]τw ∧ A([[~u′]]τw , 0) = 1)

+ Pr(τ+g,ρ : [[t1]]τ 6= [[t′]]τw ∧ A([[~u′]]τw , [[g(t′)]]τ+g,ρ) = 1

| g([[t1]]τ) = w))

Given τ, ρ, w and assuming g([[t1]]τ) = w and [[t1]]τ 6=
[[t′]]τw , the distribution of g([[t′]]τw) is uniform; in other words,
if G−w is the set of functions g from {0, 1}∗ to {0, 1}η such
that g([[t1]]τ) = w, for any x ∈ {0, 1}∗ \ {[[t1]]τ}, for any
y ∈ {0, 1}η

Pr(g
U←− G−w : g(x) = y) =

1

2η

Therefore, given τ, w such that [[t1]]τ = [[t′]]τw ,

Pr(ρ, g
U←− G−w : A([[~u′]]τw , g([[t′]]τw) = 1))

= Pr(ρ, g
U←− G−w, n

U←− {0, 1}η : A([[~u′]]τw , n) = 1))

Using this in the expression of C, we get:

C =
∑

w∈{0,1}η

1

2η
(

Pr(τ, ρ : [[t1]]τ = [[t′]]τw ∧ A([[~u′]]τw , 0) = 1)

+ Pr(τ+g,ρ, n : [[t1]]τ 6= [[t′]]τw ∧ A([[~u′]]τw , n) = 1

| g([[t1]]τ) = w))

If, extending τ with a sampling of k, [[H(t1, k)]]τ+k = w,
then [[~u′]]τw = [[~u]]τ+k and [[t′]]τw = [[t]]τ+k . Since, now, g only
occurs in the conditional,

C =
∑

w∈{0,1}η

1

2η
(

Pr(τ+k, ρ : [[t1]]τ = [[t]]τ+k ∧ A([[~u]]τ+k , 0) = 1

| [[H(t1, k)]]τ+k = w)

+ Pr(τ+k, ρ, n : [[t1]]τ 6= [[t]]τ+k ∧ A([[~u]]τ+k , n) = 1

| [[H(t1, k)]]τ+k = w))

Folding back, we get:

C =
∑

w∈{0,1}η

1

2η
(

Pr(τ+k, ρ, n : A([[~u, if EQ(t; t1) then 0 else n]]τ+k,n) = 1

| [[H(t1, k)]]τ+k = w))

And summing :

C =

Pr(τ+k, ρ, n : A([[~u, if EQ(t; t1) then 0 else n]]τ+k,n) = 1)

This, together with Equation 3, shows that the advantage
of B is equal to the advantage of A: we can break the PRF
property. A contradiction.

Remark 5. In the proposition 9, the conditions on occurrences
of k are necessary, unless we work in the random oracle model.

The proofs of the (PRFn) axioms are identical to the
previous one, fixing (instead of w = g(t1)) the values
w1, . . . , wn of g(t1), . . . , g(tn).

APPENDIX C
PROOF OF THEOREM 3

Unsurprisingly, it turns out that left and right injectivity of
c implies the injectivity of c:

Proposition 10. The following formula is derivable using the
axioms from Section II and the axioms in Figure 9:

EQ
(
c(u, v); c(u′, v′)

)
= if EQ(u;u′) then(

if EQ(v; v′) then true else false
)

else false

The proof is straightforward rewriting using left and right
injectivity and the if then else axioms.

We are now ready to give the proof of Theorem 3. Most of
the formulas are easy to prove, so we are going to focus on
the formula explicitly given in the theorem statement, which
is in our opinion the hardest case.

Before starting, we define several new terms in Figure 10.
We have similar definition for the tilded versions

α̃, β̃, γ̃, We start by applying the FA axiom several times:

φ2, α, β, γ ∼ φ2, α̃, β̃, γ̃
FA∗

φ3, t
′A
φ3
∼ φ̃3, t

′B
φ̃3

We are now going to use the CS axiom on the conditional
e4, e5 to split the proof. To do so we introduce the term:

ux ≡ if e4 then
(
if e5 then x else x

)
else

(
if e5 then x else x

)
and the terms:

ux1 ≡ if e4 then 0 else
(
if e5 then 0 else x

)
ux2 ≡ if e4 then 0 else

(
if e5 then x else 0

)
ux3 ≡ if e4 then

(
if e5 then 0 else x

)
else 0

ux4 ≡ if e4 then
(
if e5 then x else 0

)
else 0

16

α ≡ 〈n′T , H(c(g(φ2),n′T), kA)〉
β ≡ H

(
c(n′R, π1(g(φ3))), kA

)
γ ≡ H

(
c(π2(g(φ3)),n′R), kA

)
ε1 ≡ EQ

(
n′R; g(φ0)

)
e1 ≡ EQ

(
c(n′R, π1(g(φ3))); c(g(φ0),nT)

)
(in term sAφ0

)

ε2 ≡ EQ
(
n′R; nR

)
e2 ≡ EQ

(
c(n′R, π1(g(φ3))); c(nR, π1(g(φ1)))

)
(in term tAφ1

)

ε3 ≡ EQ
(
n′R;π2(g(φ1))

)
e3 ≡ EQ

(
c(n′R, π1(g(φ3))); c(π2(g(φ1)),nR)

)
(in term tAφ1

)

ε4 ≡ EQ
(
n′R; g(φ2)

)
ε′4 ≡ EQ

(
π1(g(φ3)); n′T

)} e4 ≡ EQ
(
c(n′R, π1(g(φ3))); c(g(φ2),n′T)

)
(in term sAφ2

)

ε5 ≡ EQ
(
n′R;π1(g(φ3))

)
ε′5 ≡ EQ

(
n′R;π2(g(φ3))

)} e5 ≡ EQ
(
c(n′R, π1(g(φ3))); c(π2(g(φ3)),n′R)

)
(in term tAφ3

)

Fig. 10. Term Definitions for the LAK+ Unlinkability Proof

Similarly we introduced the tilded versions of these terms.
We observe that for all term s we have s = us and s = ũs.
Therefore we can apply the CS axiom, which gives us:

∀i ∈ {1, . . . , 4},
φ2, e4, e5, u

α
i , u

β
i , u

γ
i

∼ φ2, ẽ4, ẽ5, ũ
α̃
i , ũ

β̃
i , ũ

γ̃
i

CS∗
φ2, α, β, γ ∼ φ2, α̃, β̃, γ̃

We let φ = φ2, e4, e5 and φ̃ = φ2, ẽ4, ẽ5.
• Case i = 1: Let n be a fresh name, we start by the

derivation P1 displayed in Figure 11. Using EqIndep
we know that ε1 = ε2 = ε3 = false, and using the left
injectivity of c this shows that e1 = e2 = e3 = false.
Therefore we know that:

uβ1 = vβ ≡ if e1 then 0 else if e2

then 0 else
(
if e3 then 0 else

(
uβ1
))

un
1 = vn ≡ if e1 then 0 else if e2

then 0 else
(
if e3 then 0 else

(
un

1

))
Hence we can apply the PRF axiom, which shows that:

PRF
φ, uα1 , v

β , uγ1 ∼ φ, uα1 , vn, uγ1 Congr
φ, uα1 , u

β
1 , u

γ
1 ∼ φ, uα1 , un

1, u
γ
1

Similarly we show that:
PRF

φ̃, ũα̃1 , ṽ
n, ũγ̃1 ∼ φ̃, ũα̃1 , ṽβ̃ , ũ

γ̃
1 Congr

φ̃, ũα̃1 , ũ
n
1, ũ

γ̃
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1

It remains to show that φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1 . We do this

exactly like we did to get rid of the uβ1 and ũβ̃1 . First we
use FA, Trans and FreshNonce to get the derivation
P2 displayed in Figure 11.
The formulas φ, uα1 , u

γ
1 ∼ φ, uα1 , u

n
1 and φ̃, ũα̃1 , ũ

n
1 ∼

φ̃, ũα̃1 , ũ
γ̃
1 are dealt with exactly like we did for

φ, uα1 , u
β
1 , u

γ
1 ∼ φ, uα1 , u

n
1, u

γ
1 , introducing the corre-

sponding conditional tests. We do not detail these two
cases, but notice that the right injectivity of c is needed
for them.

We now need to show that φ, uα1 ∼ φ̃, ũα̃1 , which is done
by applying the FA axiom several time:

φ2,n′R,n
′
T ,H(c(g(φ2),n′T), kA)
∼ φ2,n′R,n

′
T ,H(c(g(φ2),n′T), kB)

FA∗
φ3 ∼ φ̃3

FA∗
φ, uα1 ∼ φ̃, ũα̃1

Let ψ ≡ φ2,n′R,n
′
T , it is then easy to show

that ψ,H(c(g(φ2),n′T), kA) ∼ ψ,H(c(g(φ2),n′T), kA) is
derivable using the fact that n′T is fresh in ψ, the right
injectivity of c and the PRF axiom.

• Case i = 2 and i = 3: These case are very similar to the
case i = 1, except that we need to use the Dup axiom at
some point to get rid of the double occurrence of γ (in
case i = 2) or α (in case i = 3).

• Case i = 4: Using Proposition 10 we know that

e4 = if ε4 then
(
if ε′4 then true else false

)
else false

e5 = if ε5 then
(
if ε′5 then true else false

)
else false

Since booleans ε′4 ≡ EQ
(
π1(g(φ3)); n′T

)
and ε5 ≡

EQ
(
n′R;π1(g(φ3))

)
we have:

if ε′4 then
(
if ε5 then true else false

)
else false

= if ε′4 then

if EQ
(
n′R; n′T

)
then true
else false

 else false

= if ε′4 then
(
if false then true else false

)
else false

= false

And therefore, for all term v we have uv4 = 0. Similarly
we have ũv4 = 0 This means that we have:

φ3 ∼ φ̃3
FA

φ, 0, 0, 0 ∼ φ̃, 0, 0, 0
Congr

φ, uα4 , u
β
4 , u

γ
4 ∼ φ̃, uα̃4 , u

β̃
4 , u

γ̃
4

We already showed in the case i = 1 that φ3 ∼ φ̃3 is
derivable.

17

Proof Tree P1:

φ, uα1 , u
β
1 , u

γ
1 ∼ φ, uα1 , un

1, u
γ
1

φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1

FreshNonce
φ, uα1 ,n, u

γ
1 ∼ φ̃, ũα̃1 ,n, ũ

γ̃
1

FA∗
φ, uα1 , u

n
1, u

γ
1 ∼ φ̃, ũα̃1 , ũn

1, ũ
γ̃
1 φ̃, ũα̃1 , ũ

n
1, ũ

γ̃
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1
Trans

φ, uα1 , u
n
1, u

γ
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1
Trans

φ, uα1 , u
β
1 , u

γ
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1

Proof Tree P2:

φ, uα1 , u
γ
1 ∼ φ, uα1 , un

1

φ, uα1 ∼ φ̃, ũα̃1
FreshNonce

φ, uα1 ,n ∼ φ̃, ũα̃1 ,n
FA∗

φ, uα1 , u
n
1 ∼ φ̃, ũα̃1 , ũn

1 φ̃, ũα̃1 , ũ
n
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1
Trans

φ, uα1 , u
n
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1
Trans

φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1

Fig. 11. Derivations P1 and P2

APPENDIX D
PROOF OF PROPOSITION 6

Let n, (ni)i≤n and u0, . . . , un be such that u0, . . . , un do
not contain n, (ni)i≤n. Let s0 ≡ G(initS(n)) and ∀0 ≤ i <
n, si+1 ≡ G(πS(si)). We want to give a derivation of:

u0[πo(s0)], . . . , un[πo(sn)] ∼ u0[n0], . . . , un[nn]

using the axioms in Figure 1 and PRNGn.
For all i, we let the context Ci and the names (npi,j)j be

such that ui ≡ Ci[(npi,j)j] and Ci does not contain any name
(only function applications and holes). Then using the FA
axiom we have:(

(npi,j)j
)
i≤n , (πo(si))i≤n ∼

(
(npi,j)j

)
i≤n , (ni)i≤n

Perm(
(npi,j)j , πo(si)

)
i≤n ∼

(
(npi,j)j ,ni

)
i≤n

FA∗(
Ci[(n

p
i,j)j][πo(si)]

)
i≤n ∼

(
Ci[(n

p
i,j)j][ni]

)
i≤n

Now, we can use the Duplicate axiom to get rid of multiple
occurrences of the same name: indeed if there exists a name
m such that m ≡ npi,j and m ≡ npi′,j′ then we can keep
only one occurrence of m. Let m1, . . . ,ml be such that for all
i 6= j,mi 6= mj and {mi | i ≤ l} = {npi,j | i ≤ n, j}, then:

(mi)i≤n , (πo(si))i≤n ∼ (mi)i≤n , (ni)i≤n
Dup∗(

(npi,j)j
)
i≤n , (πo(si))i≤n ∼

(
(npi,j)j

)
i≤n , (ni)i≤n

Now by assumptions we know that {n, (ni)i≤n} ∩ {mi | i ≤
l} = ∅, therefore we can apply the FreshNonce axiom for all
i ≤ l to get rid of mi. Finally we conclude with the PRNGn
axiom:

PRNGn
(πo(si))i≤n ∼ (ni)i≤n

FreshNonce∗
(mi)i≤n , (πo(si))i≤n ∼ (mi)i≤n , (ni)i≤n

	I Introduction
	II The logic
	II-A Syntax of the logic
	II-B Semantics of the logic
	II-C Computationally valid axioms
	II-D Assumptions on primitives

	III Security properties
	III-A Privacy of RFID protocols
	III-B Bounded Session Privacy
	III-C Fixed Trace Privacy

	IV Two RFID protocols
	IV-A A known attack on kcl
	IV-B kcl+, a revised version of kcl
	IV-C The lak protocol
	IV-D A stateless revised version of lak
	IV-E The lak+ protocol

	V Pseudo Random Number Generator
	VI Conclusion
	References
	Appendix A: Proof of Proposition ??
	Appendix B: Proof of Proposition ??
	Appendix C: Proof of Theorem ??
	Appendix D: Proof of Proposition ??

