
Canonical Representations of
k-Safety Hyperproperties

Bernd Finkbeiner
Reactive Systems Group

Saarland University
Saarbrücken, Germany

finkbeiner@react.uni-saarland.de

Lennart Haas
Graduate School of Computer Science

Saarland University
Saarbrücken, Germany

lennart.haas@stud.uni-saarland.de

Hazem Torfah
Reactive Systems Group

Saarland University
Saarbrücken, Germany

torfah@react.uni-saarland.de

Abstract—Hyperproperties elevate the traditional view of trace
properties form sets of traces to sets of sets of traces and
provide a formalism for expressing information-flow policies.
For trace properties, algorithms for verification, monitoring, and
synthesis are typically based on a representation of the properties
as omega-automata. For hyperproperties, a similar, canonical
automata-theoretic representation is, so far, missing. This is a
serious obstacle for the development of algorithms, because basic
constructions, such as learning algorithms, cannot be applied.

In this paper, we present a canonical representation for the
widely used class of regular k-safety hyperproperties, which
includes important polices such as noninterference. We show
that a regular k-safety hyperproperty S can be represented by
a finite automaton, where each word accepted by the automaton
represents a violation of S. The representation provides an
automata-theoretic approach to regular k-safety hyperproperties
and allows us to compare regular k-safety hyperproperties,
simplify them, and learn such hyperproperties. We investigate
the problem of constructing automata for regular k-safety hy-
perproperties in general and from formulas in HYPERLTL, and
provide complexity bounds for the different translations. We also
present a learning algorithm for regular k-safety hyperproperties
based on the L∗ learning algorithm for deterministic finite
automata.

Index Terms—Hyperproperties, Automata, Learning,
Information-flow control.

I. INTRODUCTION

Hyperproperties [1] generalize traces properties to sets of

sets of traces. Famous examples of hyperproperties that cannot

be expressed as trace properties are information-flow policies,

such as noninterference, because they relate multiple runs of a

system: a violation of a information-flow policy can therefore

only be detected by looking at trace sets with more than one

trace.

Many verification and analysis techniques for trace prop-

erties are, nowadays, based on the automata-theoretic ap-
proach [2], whereby the property is translated into an equiva-

lent automaton and then processed by standard operations on

This work was partially supported by the German Research Foundation
(DFG) as part of the Collaborative Research Center “Methods and Tools for
Understanding and Controlling Privacy” (CRC 1223) and the Collaborative
Research Center “Foundations of Perspicuous Software Systems” (TRR 248,
389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

automata. For hyperproperties, there is, so far, no automata-

theoretic foundation. This means that algorithms for hyper-

properties cannot be based directly on automata transforma-

tions.

One might argue that the lack of an automata representa-

tion is not a big issue, because many verification problems,

such as model checking against k-safety hyperproperties,

can be reduced, via a self-composition of the system under

verification, to standard trace-based model checking against

a trace property. However, there are important algorithmic

approaches that do not translate this easily. A prime example

are learning algorithms like Dana Angluin’s L∗ algorithm [3].

Learning is a fundamental building block for compositional

verification [4], synthesis [5], and for mining specifications

of malicious behavior [6]–[8]. Generally, the advantage of

learning algorithmis like L∗ compared to other construction

methods is that the number of queries the learner needs to

pose to the teacher is determined by the size of the smallest

deterministic automaton for the target language. Usually, this is

significantly smaller than the intermediate automata that occur

in a direct construction.

In this paper, we develop an automata representation for

the class of regular k-safety hyperproperties. The k-safety
hyperproperties are those hyperproperties where every set of

traces that violates the hyperproperty contains a set of at most

k bad trace prefixes, such that every extension of the bad

prefixes also violates the hyperproperty. We represent a k-
safety hyperproperty using a bad-prefix automaton, a finite-

word automaton that recognizes the bad prefixes as finite

words over an alphabet consisting of k-tuples, where each

word in the language is interpreted as a set of (at most)

k traces. A k-safety hyperproperty may, in principle, have

many different representations as such a bad prefix language.

Consider, for example, the 2-safety hyperproperty given by the

HYPERLTL formula ϕ = ∀π∀π′. �(aπ → aπ′) over the set

of atomic propositions {a}, which specifies for each pair of

traces π, π′, that whenever a holds on π it also holds on π′. A
bad prefix for ϕ is, for example, the set of finite traces {t, t′}
where t = {a}{a} and t′ = {a}{}. A tuple representation

of {t, t′} is the sequence ({a}, {a})({a}, {}). Since the set

defines no order on t and t′, another representation of the bad

prefix is the sequence ({a}, {a})({}, {a}).

17

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Bernd Finkbeiner. Under license to IEEE.
DOI 10.1109/CSF.2019.00009



Just as for bad prefixes for trace properties, the bad prefixes

may or may not be minimal; additionally, any ordering of

traces in a trace set will lead to a different tuple representation.

Using the terminology for trace properties [9], we define a

bad-prefix automaton as tight if it accepts all bad prefixes;

additionally, we say the automaton is permutation-complete
if it is closed under permutations of the tuples. Minimal

deterministic bad-prefix automata that are both tight and

permutation-complete provide a canonical representation for

k-safety hyperproperties. We provide algorithms for construct-

ing permutation-complete bad-prefix automata for regular k-
safety hyperproperties starting from representations in HY-

PERLTL, nondeterministic bad-prefix automata and determin-

istic bad-prefix automata.

Based on this automaton representation, we present the first

learning algorithm for hyperproperties. Our algorithm learns

a minimal deterministic tight permutation-complete bad-prefix

automaton for some unknown regular k-safety regular hyper-

property and an unknown minimal k.
The remainder of the paper is structured as follows. We give

background on hyperproperties and automata in Section II.

Section III introduces automata for k-safety hyperproper-

ties and establishes basic facts about tight and permutation-

complete bad-prefix automata. In Section IV we present a

learning framework for learning k-safety regular hyperprop-

erties and a realization of the framework for HYPERLTL in

Section V. With Section VI we conclude with some decidabil-

ity results on the learnability of k-safety-hyperproperties.

II. BACKGROUND

A. Hyperproperties.

A trace property T over an alphabet Σ is a set of infinite

traces from Σω . A trace t ∈ Σω satisfies the property T if

t ∈ T . The set of all trace properties over the alphabet Σ is

denoted by P(Σω).
A hyperproperty over an alphabet Σ is a set H ⊆ P(Σω)

of sets of infinite traces over Σ [1]. A set of infinite traces

T ⊆ Σω satisfies a hyperproperty H if T ∈ H.

B. HYPERLTL: A temporal logic for hyperproperties.

Let V be an infinite supply of trace variables and let AP

be a set of atomic propositions. The syntax of HyperLTL is

given by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace

variable. Note that atomic propositions are indexed by trace

variables. The quantification over traces makes it possible to

express properties like “on all traces ψ must hold”, which is

expressed by ∀π. ψ. Dually, one can express that “there exists

a trace such that ψ holds”, which is denoted by ∃π. ψ. The
temporal operators are defined as for LTL. The next operator

ψ states that the next step along a trace must satisfy ψ. The
until operator ψ1 U ψ2 states that ψ1 must hold along a trace

until ψ2 holds. We also use the derived temporal operators

ψ eventually ψ holds, ψ the formula ψ holds on all trace

positions, and ψ1Rψ2, the release operator, the dual to U , that
states that ψ2 may not hold only after ψ1 has been fulfilled

otherwise ψ2 must hold forever.

We abbreviate the formula
∧
x∈X(xπ ↔ xπ′), expressing

that the traces π and π′ are equal with respect to a set of

atomic propositions X ⊆ AP by π =X π′.

Example 1. The following HYPERLTL formula defines the

security policy of reactive noninterference. Let AP = I ∪ O,

where I and O are sets of low-security inputs and low-security

outputs, respectively:

∀π.∀π′. (π �=I π′) R (π =O π′)

The formula states that, for every pair of traces, as long as

there is no difference in the observed inputs, no difference

should be observed in the outputs.

Let T be a set of traces of some alphabet 2AP for some set of

atomic propositions AP. Formally, the semantics of HyperLTL

formulas is given with respect to a trace assignment Π from V
to T , i.e., a partial function mapping trace variables to actual

traces. Π[π �→ t] denotes that π is mapped to t, with everything
else mapped according to Π. For a trace t ∈ T , let t[i,∞]
denote the suffix of t starting at position i. With Π[i,∞] we
denote the trace assignment that is equal to Π(π)[i,∞] for
all π.

Π |=T ∃π.ψ iff ∃ t ∈ T : Π[π �→ t] |=T ψ

Π |=T ∀π.ψ iff ∀ t ∈ T : Π[π �→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]

Π |=T ¬ψ iff Π �|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T © ψ iff Π[1,∞] |=T ψ

Π |=T ψ1 U ψ2 iff ∃ i ≥ 0 : Π[i,∞] |=T ψ2

∧ ∀ 0 ≤ j < i. Π[j,∞] |=T ψ1

We say a set of traces T satisfies a HyperLTL formula ϕ if

Π |=T ϕ, where Π is the empty trace assignment.

We call a HYPERLTL formula ϕ syntactically-safe if it

is of the form ϕ = ∀∗π.ψ and ψ is a syntactically-safe

LTL formula, i.e., an LTL formula where the only temporal

operators are © and R.

C. Automata.

A nondeterministic finite automaton (NFA) is defined as a

tuple A = (Q,Σ, q0, F, δ), where Q denotes a finite set of

states, Σ denotes a finite alphabet, q0 denotes a designated

initial state, F ⊆ Q denotes the set of accepting states, and

δ : Q×Σ→ P(Q) denotes the transition relation that maps a

state and a letter to the set of successor states. A run in a A
on a finite word w = w0 . . . wn ∈ Σ∗ is a sequence of states

r = q0 . . . qn+1 ∈ Q∗ with qi+1 ∈ δ(qi, wi) for all 0 ≤ i ≤ n.
The run r is accepting if qn+1 ∈ F . The set of all accepted

words by an automaton A is called its language and is denoted

18



by L(A). The size of an automaton is the size of its set of

states Q and is denoted by |A|.
Deterministic finite automata (DFA) are a special case of

NFAs, where |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ. The
transition relation of a deterministic automaton can be given

as a function δ : Q× Σ→ Q.

A Büchi automaton B = (Q,Σ, q0, F,Δ) is an automaton

over infinite words. A run of B on an infinite word w =
w1w2 · · · ∈ Σω is an infinite sequence r = q0q1 · · · ∈ Qω

with qi+1 ∈ δ(qi, wi) for all i ∈ N. A run r is accepting if

there exist infinitely many i ∈ N such that qi ∈ F . A Büchi

automaton A = (Q,Σ, q0, F,Δ) is called safety automaton

if Q = F , i.e., every run on a safety automaton is accepted.

In the rest of the paper we omit the set F from the tuple

representation of safety automata.

D. Safety Languages.

A finite word w = w1 . . . wi ∈ Σ∗ is called a bad prefix

for a language L ⊆ Σω , if every infinite word v ∈ Σω with

prefix w is not in the language L. A language L ⊆ Σω is

called a safety language if every w �∈ L has a bad prefix for

L. We denote the set of all bad prefixes for a language L by

BadPref(L). We say X ⊆ BadPref(L) is a trap for L, if for
every w �∈ L, there exists a prefix of w in X and denote the

set of all traps by Trap(L).
For every ω-regular safety language L, a finite automaton

A that accepts the bad prefixes of L is called a bad-

prefix automaton for L. We say that A is tight if

L(A) = BadPref(L) and fine if there exists some

X ∈ Trap(L) and L(A) = X .

E. Notations.

For a sequence t = α1α2 . . . and i ≤ j ∈ N, t[i] = αi,
t[i, j] = αi . . . αj . For t ∈ Σω , t[i,∞] = αiαi+1 . . . .
For t ∈ Σ∗ and τ ∈ Σ∗ ∪Σω , t is a prefix of τ denoted by

t ≤ τ if and only if |t| ≤ |τ | ∧ ∀i ≤ |t|. t[i] = τ [i].

III. AUTOMATA FOR k-SAFETY-HYPERPROPERTIES

A. Representations of k-Safety-Hyperproperties

The definition of safety can be generalized to hyperprop-

erties by generalizing the definition of bad-prefixes from a

finite trace to a finite set of finite traces [1]. For a set of finite

traces T ⊆ Σ∗ and a set of infinite traces T ′ ⊆ Σω , we say

that T is a prefix of T ′, denoted by T ≤ T ′, if and only

if ∀t ∈ T.∃t′ ∈ T ′. t ≤ t′. A hyperproperty S over Σ is

hypersafety if and only if

∀T ′ ⊆ Σω. (T ′ �∈ S⇒∃T ⊆ Σ∗. (T ≤ T ′∧
∀T̃ ⊆ Σω. (T ≤ T̃ ⇒ T̃ �∈ S)))

We call T a bad-prefix for the hyperproperty S. We denote

the set of bad-prefixes for a hypersafety property S by

BadPref(S) = {T ⊆ Σ∗ | ∀T ′ ⊆ Σω. (T ≤ T ′ ⇒ T ′ �∈ S)}.
We call a bad prefix T for S minimal, if and only if, there

exists no T ′ < T that is also a bad prefix for S.

Definition 1 (k-safety hyperproperty). For any k′ ∈ N, let

BadPref(S, k′) = {T ∈ BadPref(S) | |T | ≤ k′} . We call

an element of BadPref(S, k′) a k′-bad-prefix for S. A safety

hyperproperty S is a k-safety hyperproperty, if every set T ′ �∈
S has a k-bad-prefix.

In the next section, we define finite automata for k-
safety hyperproperties by defining automata that represent

their sets of bad-prefixes. Each finite bad prefix of a safety-

hyperproperty can be represented by a finite word as follows.

Definition 2 (Representations of k-safety hyperproperties).
For a sequence σ = #»v 0

#»v 1
#»v 2 . . .

#»vm ∈ (Σk)∗, let unzip
be the mapping defined as unzip(σ) = {ti ∈ Σ∗ | 1 ≤
i ≤ k, ∀0 ≤ j ≤ m. ti[j] =

#»v j [i]}. We call σ ∈ (Σk)∗ a

representation of T ⊆ Σ∗ if unzip(σ) = T .
For a k-safety-hyperproperty S, a language L ⊆ (Σk

′
)∗

is called a representation of S for some k′ ∈ N, when: for

all T ⊆ Σω , T �∈ S, if and only if, there exists σ ∈ L,
such that, unzip(σ) ⊆ T and unzip(σ) ∈ BadPref(S). We

call k′ the arity of the representation and further call L a

k′-representation of S.

We extend the definition of unzip to languages. For a

language L ⊆ (Σk)∗, unzip(L) = {unzip(σ) | σ ∈ L}.
Notice that a k-safety-hyperproperty has several represen-

tations of different arities. It also has several representations

of the same arity (by permuting the order on the traces). We

denote the set that defines the union of all representations of

a k-safety hyperproperty S of arity k′ by P(S, k′).

Example 2. The security policy of reactive noninterference

given in Example 1 is an example of a 2-safety hyperproperty.

In Figure 1 the policy is given by the HYPERLTL formula S.
A violation of S along two traces is observed, if up to some

position, the traces share the same input sequence and differ

in the output values at this position. The set of bad-prefixes

for S is given by the set BadPref(S). To check whether there

is a violation of S it is sufficient to find two traces that violate

S, i.e., any set of traces that violates S has a bad prefix of size

two. The set BadPref(S, 2) gives all the bad-prefixes of size

two. Two sets of 2-representations of these bad-prefixes are

given by the sets Rep1 and Rep2
1. To understand the difference

between the representations in Rep1 and Rep2 look at the fol-

lowing two traces: Assume w.l.o.g. that I = {i} and O = {o}
and let t = {i, o}{i, o}{i, o} . . . and t′ = {i, o}{i, o}{i} . . .
be two infinite traces over 2O∪I . The set {t, t′} violates S with

the bad prefix T = { {i, o}{i, o}{i, o} , {i, o}{i, o}{i} }.
The set T has two 2-representations: the sequence σ1 =
({i, o}, {i, o})({i, o}, {i, o})({i, o}, {i}), which is in the set

Rep1 but not in Rep2, and another representation is σ2 =
({i, o}, {i, o})({i, o}, {i, o})({i}, {i, o}) which belongs to

Rep2 but not to Rep1. Both σ1 and σ2 belong, however, to

the set P(S, 2), which contains all representations of 2-bad-

prefixes of S.

1The sets Rep1 and Rep2 are not the only sets with 2-representations
of the bad-prefixes of S. For S there is an infinite number of distinct 2-
representations.

19



S = ∀π.∀π′. (π �=I π′) R (π =O π′)
BadPref(S) = {T ⊆ Σ∗ | ∃t, t′ ∈ T. ∃j. t[...j]I = t′[...j]I ∧ t[j]O �= t′[j]O}
BadPref(S, 2) = {{t, t′} ⊆ Σ∗ | ∃j. t[...j]I = t′[...j]I ∧ t[j]O �= t′[j]O}
Rep1 = {(α0, α

′
0) . . . (αm, α′

m) ∈ (Σ2)∗ | ∀j.(αj)I = (α′
j)I ∧ ∃i.∃o ∈ O. o ∈ αi ∧ o �∈ α′

i}
Rep2 = {(α0, α

′
0) . . . (αm, α′

m) ∈ (Σ2)∗ | ∀j.(αj)I = (α′
j)I ∧ ∃i.∃o ∈ O. o �∈ αi ∧ o ∈ α′

i}
P(S, 2) = {(α0, α

′
0) . . . (αm, α′

m) ∈ (Σ2)∗ | ∀j.(αj)I = (α′
j)I ∧ ∃i.∃o ∈ O. o ∈ αi ↔ o �∈ α′

i}

Fig. 1. A 2-safety-hyperproperty given by a HYPERLTL formula S. The formula S defines the information flow policy of reactive noninterference. The
sets BadPref(S), BadPref(S, 2), Rep1, Rep2, and P(S, 2) define the sets of bad-prefixes, 2-bad-prefixes, two different 2-representations, and the set of all
2-representation of S, respectively. The set Σ is defined as Σ = 2AP for a set of atomic propositions AP = O ∪ I .

In general, for any k-safety hyperproperty S, if a sequence

σ ∈ P(S, k′) for any k′ ∈ N, then so is any permutation of σ.

Theorem 1. For every k-safety hyperproperty S, and for k′ ≥
k, there is a k′-representation of S.

Proof. Clearly, every k-safety hyperproperty has a repre-

sentation of arity k. Let L be a k-representation for S.
Define L′ such that each σ′ ∈ L′ is of the form σ′ =
(α1

0, . . . , α
k
0 , . . . , α

k′
0 )(α1

1, . . . , α
k
1 , . . . , α

k′
1 ) · · · ∈ (Σk

′
)∗,

where (α1
0, . . . , α

k
0)(α

1
1, . . . , α

k
1) · · · ∈ L, and for all i ∈ N

and for all k < j ≤ k′ we have αji = αki . Let the set

unzip(σ′) = {t1, . . . , tk, . . . , tk′}. Clearly, for k < j ≤ k′,
we have tj = tk. Thus, unzip(L′) = unzip(L), which makes

L′ a k′-representation of S.

In the rest of the paper, the length of a bad prefix T is the

length of the longest trace in T . The size of a bad prefix T is

the size |T |.

B. Bad-prefix automata for k-safety hyperproperties

We now develop a canonical representation for k-safety
hyperproperties. We start by defining bad-prefix automata for

k-safety hyperproperties. At the end of the section we show

that minimal, deterministic, tight and permutation-complete
bad-prefix automata give a canonical representation for k-
safety hyperproperties.

Definition 3 (Regular k-safety hyperproperties). A k-safety
hyperproperty S is called regular if a representation of S is a

regular language.

If a k-safety hyperproperty S is regular, we can build

an automaton that recognizes one of its representations for

some arity k′. We call such an automaton a k′-bad-prefix
automaton for S. An automaton is a bad-prefix automaton for

S, if it is a k′-bad-prefix automaton for some arity k′ ∈ N.

In the following, we show that we can distinguish different

types of bad-prefix automata for k-safety-hyperproprties. The
distinction is based on the traditional notions of tightness and

fineness for bad-prefix automata for regular properties [9], and

the novel notion of permutation-completeness that we define

later in this section.

A tight bad-prefix automaton for an ω-regular property T
accepts all bad-prefixes of T . The language of a fine bad-

prefix automaton for T includes at least one bad prefix for

each word σ �∈ T . Following this tradition we can also

make a similar distinction for bad-prefix automata for k-safety-
hyperproperty S.

Definition 4 (Tight and fine k-bad-prefix automata). Let A be

a k′-bad-prefix automaton for a k-safety-hyperproperty S for

some k, k′ ∈ N. We call A tight if and only if A accepts a

representation for each bad prefixes T of S with |T | ≤ k′.
A is called fine if and only if for every word T �∈ S

it accepts a representation of at least one bad prefix (not

necessarily the minimal one) of T .

Kupfermann and Vardi showed how to construct tight bad-

prefix automata for safety-properties [9]. The same construc-

tions cannot be adapted for k-safety hyperproperties, due

to the following reasoning. From its definition, a bad-prefix

automaton A for a k-safety-hyperproperty S that is fine must,

for each set T not in S, accept at least one representation

of a bad prefix of T . If A is not tight then either (1) A is

not vertically tight:accepts a representation for a bad prefix

T , but does not accept any representation for some T ⊂ T ′

with |T ′| ≤ k′ which is also a bad prefix for S or (2) A
is not horizontally tight: there is a representation t′ of a set

{w | ∃w′ ∈ T,w < w′} that represents a smaller bad prefix

for S, i.e., a trace in T is not minimal. The latter case defines

tightness according to the traditional definition as in [9].

Remark 1. Notice that there exists no fine automaton that

accepts a representation for a bad prefix T that is not minimal,

but accepts no representation for all bad prefixes T ′ ⊂ T .
Assume that no representation of any T ′ is accepted by A.
This means that there is word S for which no representation

of any of its bad-prefixes is accepted by A, namely the set

T̃ , where each word in T̃ is an infinite extension of a word

in T ′. This contradicts the assumption that A is a bad-prefix

automaton for S.
The next theorem how to construct a bad-prefix automaton

that is horizontally tight using the construction presented in

[9]. A construction for vertical tightness is left for the theorem

that follows.

20



Theorem 2. For a k-safety hyperproperty S over Σ, we can
construct a tight bad-prefix automaton for S of size:

• O(|A|), when S is represented by a deterministic bad-
prefix automaton A.

• 2O(|A|), when S is represented by a nondeterministic bad-
prefix automaton A.

Proof. The proof uses the ideas presented in [10].

• Let A = (Q,Σk
′
, q0, F, δ) be a deterministic bad-prefix

automaton for S for some k′ ≥ k. To construct a

deterministic horizontally tight bad-prefix automaton for

S we replace the set of accepting states F of A by a set

F ′ which is defined as follows:

F ′ = {q ∈ Q | ∀σ ∈ Qω. q < σ → ∃i ∈ N.σ[i] ∈ F}

The set F ′ defines the set of states q from which there

is no infinite run in the automaton that has no accepting

state.

• If A is a nondeterministic bad-prefix automaton for S,
we can construct an equivalent deterministic k-bad-prefix
automaton A′ of size 2|A| and use the construction above.

Bad-prefix automata for k-safety hyperproperties can also

be distinguished according to the representations they accept.

A k-bad-prefix automaton A is called permutation-complete if

it accepts all representations of every k-bad-prefix it accepts.

In general, the goal is to build a tight and permutation-

complete bad-prefix automaton for a k-safety hyperproperty.

For tasks such as monitoring a system against a k-safety
hyperproperty, such automata are of major importance. With

tight automata violations are detected as early as possible.

A permutation-complete automaton does not depend on the

ordering of the traces and therefore detects a violation no

matter in what order the traces are observed.

In the next theorem we show how to construct a

permutation-complete and tight k-bad-prefix automaton for a

k-safety hyperproperty.

Theorem 3. For a deterministic k-bad-prefix automaton A
of some k-safety hyperproperty S over Σ, we can construct
a deterministic, tight and permutation-complete k-bad-prefix
automaton of size O(|A|) and 22

O(k·log(k))

.

Proof. Let A = (Q,Σk, q0, F, δ) be a deterministic k-bad-
prefix automaton for S. We construct a permutation-complete

and vertically tight automaton AP for S that accepts a word

σ ∈ (Σk)∗ if any of its permutations 2is accepted by A.
We define these permutations as follows. Let ς1, . . . , ςkk :
{1, . . . , k} → {1, . . . , k} be pairwise different functions.

A permutation of a tuple (t1, . . . , tk) with respect to one

function ςi for 1 ≤ i ≤ kk is a tuple (tςi(1), . . . , tςi(k)). The
deterministic bad-prefix automaton AP is defined by the tuple

(QP,Σk, q0,P, FP, δP), where:

2From now on, if not stated otherwise, we use the word permutation to
mean permutation with repetition.

• QP = (Q1 × · · · × Qkk) where Qi = {(q, i) | q ∈
Q} for 1 ≤ i ≤ kk. A set of states Qi resembles a

copy of the automaton A that accepts a word σ if it is

a permutation of a word σ′ accepted by A with respect

to the permutation function ςi. The initial state q0,P =
((q0, 1), . . . , (q0, k

k)).
• A word is accepted if one of its permutations is ac-

cepted. We define the set of accepting states as FP =
{((q1, 1), . . . , (qkk , kk)) | ∃i. qi ∈ F}.

• The transition relation δP is defined as follows:

((q1, 1), . . . , (qkk , k
k))

(t1,...,tk)−−−−−−→ ((q′1, 1), . . . , (q
′
kk , k

k))

when (qi
(tςi(1),...,tςi(k))−−−−−−−−−−→ q′i) ∈ δ for all 1 ≤ i ≤ kk.

For each qi the successor state q′i for a letter (t1, . . . , tk)
is determined by the the transition of its permutation

(tςi(1), . . . , tςi(k)) in the automaton A.
The automaton AP is a deterministic, permutation-complete

and vertically tight. If the automaton AP is not horizontally

tight, it can then be translated to on by redefining the set

FP using the construction in Theorem 2. The size of AP is

|Q|kk .
Corollary 1. For a nondeterministic k-bad-prefix automaton
A of some k-safety hyperproperty S over Σ, we can construct
a permutation-complete and tight k-bad-prefix automaton of
size 2O(|A|) and 22

O(k·log(k))

.

The exponential blow-up in the size of the automaton in the

last corollary results from the translation of nondeterministic

automata to deterministic automata.

Remark 2. Notice that the complexity in k is independent of

the representation of the k-safety-hyperproperty.

C. Equivalence of k-bad-prefix automata

From the last section we know that the language of bad-

prefixes for a safety hyperproperty is superset-closed. Thus

every k-safety hyperproperty is also a k′-safety hyperproperty

for all k ≤ k′. This means that S can be represented by

different bad-prefix automata of different arities k′. In the

following we show, given a k′-bad-prefix automaton and a k′′-
bad-prefix automaton with k′ ≤ k′′, how to check whether they

are bad-prefix automata for the same k-safety hyperproperty S.

Definition 5 (Representation-equivalence of bad-prefix au-

tomata). Let Ak′ be a finite automaton over Σk
′
, and Ak′′

be a finite automaton over Σk
′′
for some alphabet Σ, where

k′ ≤ k′′. We say that Ak′ and Ak′′ are representation-
equivalent, denoted by Ak′ ≡ Ak′′ if and only if both

Ak′ and Ak′′ are bad-prefix automata for the same k-safety
hyperproperty S for some k ≤ k′, k′′.

An algorithm for checking equivalence of bad-prefix au-

tomata is given in the next theorem.

Theorem 4. Let Ak be a deterministic finite automata over
Σk, and Ak′ a deterministic finite automaton over Σk

′
for

an alphabet Σ and k, k′ ∈ N. Checking whether Ak ≡

21



Ak′ can be done in time O(|Ak| + |Ak′ |) and in space
2O(max(log(k),log(k′))·max{k,k′}).

Proof. To check whether Ak ≡ Ak′ we have to check that:

1) For every representation t accepted by Ak and for every

infinite extension t̃ of t, there is a representation t′

accepted by Ak′ , such that, t′ ≤ t̃:

∀T ∈ unzip(L(Ak)). ∀T̃ ⊆ Σω.
T ≤ T̃ → ∃T ′ ∈ unzip(L(Ak′)). T ′ ≤ T̃

2) For every representation t′ accepted by Ak′ and for

every infinite extension t̃ of t′, there is a representation

t accepted by Ak, such that, t ≤ t̃:

∀T ′ ∈ unzip(L(Ak′)). ∀T̃ ⊆ Σω.
T ′ ≤ T̃ → . ∃T ∈ unzip(L(Ak)). T ≤ T̃

W.l.o.g. assume that k < k′. Let Ak = (Qk,Σ
k, q0,k, δk, Fk)

and Ak′ = (Qk′ ,Σ
k′ , q0,k′ , δk′ , Fk′).

1) To check the first direction, we first transform Ak′ to

a tight and permutation-complete automaton AP
k′ using

the construction in Theorem 3. To be able to compare

Ak with AP
k′ we first expand the alphabet of Ak to

Σk
′
by constructing an automaton A↑k′

k that preserves

the language of Ak up to unzip(Ak). The automaton

A↑k′
k is defined by the tuple (Qk,Σ

k′ , q0,k, δ
↑k′
k , Fk),

where δ↑k
′

k (q, (t1, . . . , tk, . . . , t
′
k)) = q′ if and only if

ti = tk for all k < i ≤ k′ and δk(q, (t1, . . . , tk)) = q′,
otherwise there is no transition. Clearly, unzip(Ak) =

unzip(A↑k′
k ).

We build the product automaton A⊗ of A↑k′
k and AP

k′ . If

A⊗ has a lasso run3, where there is an accepting state of

A↑k′
k but no accepting states of AP

k′ , then condition (1)

is violated and thus Ak �≡ Ak′ . If no such run is found,

then Ak ≡ Ak′ .

The size of the product automaton is |Qk| · |Qk′ |k
′k′
.

To check the equivalence there is no need to construct

the automaton A⊗ in fully. Using the same trick as

in the polynomial-space model checking algorithm for

LTL [11], we can guess a lasso run in A⊗ of size

at most |A⊗|. The lasso can be guessed one position

at a time and in each position on can further guess

if it is the beginning of the period of the lasso. In

each step we check if the guessed next position of

the lasso satisfies the transition relation as given in the

construction above. Finding a lasso in A⊗ can thus be

done in time polynomial in the sizes of Ak and Ak′ and
in space exponential in k′.

2) For the other direction it does not suffice to construct

the tight and permutation-complete automaton for Ak
and check the condition (2) on the product automa-

ton with Ak′ as we did in the last case. The reason

why this construction does not work, is due to the

3This is an infinite run in the automaton that can be represented by a
sequence of states that reach a loop in the automaton.

different arities k and k′. Intuitively, Ak and Ak′ are

equivalent, if for each representation accepted by Ak′ ,
a permutation of one of its k-projections satisfies the

condition (2). To this aim we construct an automaton

A#k′
k = (Q#k′ ,Σk

′
, q#k

′
0 , δ#k

′
, F#k′) as follows:

Let ς1, . . . , ςk′k : {1, . . . , k} → {1, . . . , k′} be pairwise

different functions. We call ς1, . . . , ςk′k k-permuted-

projection functions.

• Q#k′ = (Qk,1×· · ·×Qk,k′k) where Qk,i = {(q, i) |
q ∈ Qk} for 1 ≤ i ≤ k′k. A set of states Qk,i

resembles a copy of the automaton A that accepts

a word σ if one of its k-permutated-projections

is accepted by A with respect to the permuted-

projection function ςi. The initial state is defined

by q#k
′

0 = ((q0, 1), . . . , (q0, k
′k)).

• A word is accepted, if one of its permuted-

projections is accepted. We define the set of ac-

cepting states as FP = {((q1, 1), . . . , (qk′k , k′k)) |
∃i. qi ∈ F}.

• The transition relation δ#k
′

k is defined as follows:

((q1, 1), . . . , (qk′k , k
′k))

(t1,...,tk′ )−−−−−−→ ((q′1, 1), . . . , (q
′
kk , k

k))

when (qi
(tςi(1),...,tςi(k))−−−−−−−−−−→ q′i) ∈ δ for 1 ≤ i ≤ k′k.

For each qi the successor state q′i for a letter

(t1, . . . , tk′) is determined by the transition of its

permuted-projection (tςi(1), . . . , tςi(k)) in the au-

tomaton A.
We build the product automaton A⊗ of A#k′

k and Ak′ . If
A⊗ has a lasso run, where there is an accepting state of

Ak′ but no accepting states of A#k′
k , then condition (2)

is violated and thus Ak �≡ Ak′ . If no such run is found,

then Ak ≡ Ak′ .
Again, To check the equivalence we can guess a lasso in

A⊗ that has an accepting state of Ak′ but no accepting

state from A#k′
k . Finding a lasso in A⊗ can thus be done

in time polynomial in the sizes of Ak and Ak′ and in

space exponential in k.

Corollary 2. Checking the representation-equivalence of
two non-deterministic finite automata Ak and Ak′ of ar-
ity k, k′ can be done in space O(|Ak|+ |Ak′ |) and
2O(max(log(k),log(k′))·max{k,k′}).

D. Minimal k-bad-prefix automata

In this section, we complete our search for a canonical

representation of regular k-safety hyperproperties and prove

that minimal deterministic, tight and permutation-complete

bad-prefix automata provide such a representation.

Definition 6 (Minimal Bad-prefix Automaton). A determinis-

tic tight permutation-complete k-bad-prefix automaton A for

some k′-safety hyperproperty S is called minimal, if there is

no k′′-bad-prefix automaton for S, with k′′ < k, and A is the

minimal automaton in size for k.

22



Lemma 5. Two safety hyperproperties S and S′ are equivalent
if and only if BadPref(S) = BadPref(S′).

Proof. (⇒) Let T ∈ BadPref(S). Thus for all T ≤ T ′,
it follows, that T ′ �|= S and therefore T ′ �|= S′, by

assumption. Hence, T ∈ BadPref(S′). The same proof

holds when exchanging S and S′ yielding BadPref(S) =
BadPref(S′).

(⇐) Let T �∈ S. Thus there exists some T ′ ∈ BadPref(S)
such that T ′ ≤ T . According to the assumption we know,

that T ′ ∈ BadPref(S′) and thus T �∈ S′. The same proof

holds when exchanging S and S′ yielding S = S′.

Theorem 6. Minimal, tight, permutation-complete, determin-
istic k-bad-prefix automata are a canonical representation for
regular k-safety hyperproperties.

Proof. Let S and S′ be two regular k-safety hyperproperties.

We show that they are equal if and only if they have the same

minimal deterministic tight permutation-complete bad-prefix

automaton.

(⇒) Let S = S′. From Lemma 5 we know that BadPref(S) =
BadPref(S′). This means that any representation L for

S is also a representation for S′. We conclude that

any deterministic tight permutation-complete bad-prefix

automaton for S is also a deterministic tight permutation-

complete bad-prefix automaton for S′.
(⇐) Let A be a k-bad-prefix automaton for S and S′. This

means that BadPref(S) = BadPref(S′). From Theo-

rem 5 it follows that S ≡ S′.
It remains to show that k-bad-prefix automata are unique

for a k-safety hyperproperty S. Clearly, the minimal arity k
is unique. The language of all bad-prefixes of size k is also

unique for S. Thus the set of all k-representations is unique

and this language is regular by assumption. Further, from

the Myhill-Nerode Theorem. it is well-known that minimal

deterministic automata are a unique representation for regular

languages [12] Hence, the claimed uniqueness follows.

Based on this canonical representation, we provide, in the

next section, a framework for learning automata for regular

k-safety hyperproperties.

IV. LEARNING AUTOMATA FOR k-SAFETY

HYPERPROPERTIES

We present a framework for learning minimal tight,
permutation-complete, deterministic bad-prefix automata for

some unknown k-safety hyperproperty S over an alphabet

Σ and an unknown minimal k. The algorithm extends Dana

Angluin’s L∗ algorithm for learning minimal deterministic

finite automata from queries and counterexamples [3], to learn

minimal bad-prefix automata for a minimal arity k.

A. L∗: A framework for learning regular languages

We give a high-level recap of the L∗ framework as presented

in Figure 2. We leave some of the technical details for the next

section when explaining the extended framework for k-safety-
hyperproperties.

Learner

w ∈ L? L(A) = L?

L∗

Teacher
Membership Equivalence

T yes/no yes/cexA

Fig. 2. L∗: A framework for learning minimal deterministic finite au-
tomata [3].

The L∗ framework consists of two components, a learner,
that learns an automaton for the unknown language, and

a teacher, that answers questions about the language. The

learner can pose two types of queries to the teacher:

membership-queries, where the learner asks whether a word

is in the target language, and equivalence-queries, where the

learner asks whether the language of a conjectured automaton

is equivalent to the target language.

The learner starts by posing membership queries for words

of increasing length. The answers of the teacher are organized

in a so-called observation table. The observation table rep-

resents a so-far constructed automaton, the accepts at least

the valid words queried using membership queries. After each

membership query, the learner performs two checks in the

observation table: (1) a consistency check, certifying that the

observation table defines a deterministic automaton; the table

contains no two transitions from a state for the same letter, and

(2) a closedness check, that tests that it defines a complete

automaton, i.e., for each state and for each letter there is a

transition from that state for this letter. If one of these checks

fails, the observation table can be repaired with the appropriate

extension and membership queries (We show how these checks

are performed in the case of k-safety hyperproperties in the

next section. For the traditional checks for regular languages

we refer the reader to [3]).

If the table is both consistent and closed, then the learner

can construct a deterministic automaton out of the observation

table and queries the teacher on whether the conjectured

automaton defines the target language. If the automaton is

not equivalent to the target language, the teacher returns a

counterexample. This is either a word in the language that is

not accepted by the conjectured automaton, or a word that

is wrongly accepted by the automaton and is not a member

of the target language. The counterexample is added to the

observation table, and the learning process continues with the

new table.

23



Angluin showed that, for a minimal adequate teacher, i.e.,
a teacher that answers membership and equivalence queries,

that L∗ terminates after a number of membership queries that

is polynomial in the size of the minimal deterministic finite

automaton for the target language.

B. L∗
Hyper : A framework for learning k-safety hyperproperties

We extend the L∗ framework given in Figure 2 to a

new framework L∗
Hyper for learning minimal deterministic

tight permutation-complete bad-prefix automaton for k-safety-
hyperproperties. In contrast to learning minimal automata for

regular properties, the bad-prefix automata learned in L∗
Hyper

must be minimal both in the arity and in the size. The work-

flow of L∗
Hyper is given in Figure 3.

Let S be the unknown k-safety-hyperproperty over some

alphabet Σ. The learner starts with membership queries, and

fills the observation table until it is closed and consistent.

Because the minimal arity k is initially unknown the learner

starts by posing questions over sets of arity 1. During the

learning process the alphabet changes to larger arity k′, when
the teacher returns a counterexample of this arity.

Assume the current arity in the learning process is k′

for some k′ ≤ k. In membership queries, the learner asks

whether a finite set of finite sequences of equal length T =
{t1, . . . , tk′} ⊆ Σn (given by some representation) for some

n ∈ N is a bad-prefix for S. The answers of the teacher

are organized in an observation table O = (S,E,Δ) where:

S ⊆ (Σk
′
)∗ is a non-empty finite prefix-closed set of accessing

sequences, E ⊆ (Σk
′
)∗ is a non-empty finite suffix-closed set

of separating sequences, and Δ : (S ∪ S · Σ) · E → {0, 1}
a mapping defined as Δ(s · e) = 1 if and only if s · e is a

representation of a bad-prefix for S.
Consider the observation table given in Figure 4. The set S

includes the words ε,¬a, a, a · ¬a in the first four rows of the

table. The set E includes the words ε,¬a defining the columns.

The words in the remaining columns define the set S · Σ (as

we will see later, these rows are necessary for the closedness

and consistency checks). The value of an entry in the table is

1 if the word s · e, where s is a word of the row and e the

word of the column, is a representation of a bad-prefix for the

hyperproperty given by the formula ∀π, π′. aπ∧ (aπ ↔ aπ′).
Otherwise the value of the entry is 0.

For t ∈ S · Σ we denote by row(t) a finite function from

E to {0, 1} defined by row(t)(e) = Δ(t · e). An observation

table O = (S,E, T ) is called closed if for all t ∈ S · Σ
there exists s ∈ S with row(t) = row(s). The table O is

called consistent, if for all t, t′ ∈ S with an equal function

row(t) = row(t′)⇒ row(t · e) = row(t′ · e) for all e ∈ Σ. We

define row(S) = {row(s) | s ∈ S}. Closedness guarantees

that every transition is defined, i.e., for each state q ∈ Q and

label a ∈ Σ, δ(q, a) ∈ Q, and consistency guarantees that A
is deterministic.

For a closed and consistent observation table O over an

arity k′ we can construct an DFA A = (Q,Σk
′
, q0, F, δ) that

accepts all the k′-bad-prefixes that have been confirmed by the

teacher so far. We define Q = {row(s) | s ∈ S}, q0 = row(ε),

F = {row(s) | s ∈ S and Δ(s) = 1} and δ(row(s), a) =
row(s · a) for all s ∈ S and a ∈ Σ. The table in Figure 4 is

closed and consistent, and defines the automaton given to its

right. For k′ ∈ N, we call an automaton A over Σk consistent

with an observation table O = (S,E,Δ) over Σk if for all

s ∈ (S ∪ S · Σk), e ∈ E Δ(s, e) = 1⇔ s · e ∈ L(A).
To check whether the learned automaton A is a k′-bad-

prefix automaton for S, the learner poses an equivalence query

to the teacher. In equivalence queries, the teacher answers

whether the proposed automaton A = (Q,Σk
′
, q0, F, δ) is a

k′-bad-prefix automaton for S. In case A is not, the teacher

provides a counterexample.

C. Handling counterexamples of equivalence queries

If the equivalence test fails, then the teacher returns a

counterexample. A counterexample is either a bad prefix

for which no representation is accepted by the conjectured

automaton, or a representation accepted by the automaton that

is no representation of a bad prefix for S.

Handling bad prefixes depends on their arity. We distinguish

between two types of counterexamples with respect to the

current considered arity k′, namely, counterexamples with arity

k′′ ≤ k′ and counterexamples with arity k′′ > k′.
If the counterexample has arity k′′ ≤ k, the counterexample

is treated as for the traditional L∗ learner, by extending

the table with a representation of this counterexample and

querying all its prefixes.

If the counterexample has arity k′′ > k′ then the arity of

the target automaton is increased to k′′. The sets S and E
are extended to sequences over the alphabet Σk

′′
by replacing

every element t = v0 . . . vn ∈ (Σk
′
)∗ in S and E by t′ =

v′0 . . . v
′
n ∈ (Σk

′′
)∗, such that, for all 0 ≤ i ≤ n and 0 ≤ j ≤

k′, vi[j] = v′i[j] and for k′ < j ≤ k′′, vi[k′] = v′i[j]. Notice
that the size of the table increases by the number of prefixes

of the counterexample.

Consider again our example in Figure 4. The conjecture

automaton is not a bad-prefix automaton for the language

∀π, π′. aπ ∧ (aπ ↔ aπ′). A counterexamples of arity 2 is

given by the set C = {{a · ¬a}, {a · a}}. The observation

table must be extended to Σ2. Having extended the observation

table, we must add a representation of the counterexample C to

the set of accessing sequences S. C is a bad prefix, which can

be verified using a membership query. As no 2-representation

of C are in the target language. We choose the 2-representation

(a, a)(¬a, a) and add it to the set of accessing sequences

resolves the current counterexample. The new observation

table is closed and consistent, and it represents a 2-bad-prefix

automaton that represents the target language. The final table

and its automaton are depicted in Figure 5.

In some case, the resulting automaton might pass the

equivalence check but is not necessarily permutation complete.

If the goal is to construct a permutation-complete automa-

ton, we additionally check the automaton for permutation-

completeness.

24



is table closed

and consistent?

build conjecture

bad-prefix A is A equivalent?

is A permutation-

complete?

arity of C less

or equal kextend O to Σ|C|

inital table

no: membership queries

yes A

no: counterexample C

yes

no: add counterexample C to O

yes: done

no: counterexample C

yes: add C to O
add C to O

Fig. 3. L∗
Hyper : A framework for learning k-safety-hyperproperties.

ε ¬a
ε 0 1

ε · ¬a 1 1

ε · a 0 0

a · ¬a 0 0

¬a · a 1 1

¬a · ¬a 1 1

a · a 0 0

a · ¬a · a 0 0

a · ¬a · ¬a 0 0

q0 q1

q2

¬a

a �

�

Fig. 4. The observation table (on the left) for the 4th iteration in the learning
process for the language ∀π, π′. aπ ∧�(aπ ↔ aπ′ ), and the corresponding
DFA (on the right).

D. Termination of L∗
Hyper

As for L∗, to guarantee that our learning framework termi-

nates with a minimal automaton, it must rely on a minimal-

adequate teacher. For L∗
Hyper we define such a teacher as

follows.

Definition 7 (Minimal-Adequate Teacher). A teacher is called

minimal-adequate, if the counterexamples provided are of

minimal length and every counterexample has an arity of at

most the minimal target-arity.

For a minimal adequate teacher we show that for an

unknown k-safety hyperproperty S, L∗
Hyper terminates after

at most n equivalence queries, where n is the size of the

minimal deterministic tight permutation-complete k-bad-prefix
automaton for S.

Let O = (S,E,Δ) be the observation table. Following the

ideas in the termination proof for L∗, we need to show that

1) the set row(S) does not grow beyond n.
2) with each counterexample, the size of the set row(S)

must be strictly monotonically increasing.

In the following lemma we give a proof for condition 1).

With Lemmas 8, 9, 10 and 11, we show that L∗
Hyper also

satisfies condition 2).

Lemma 7. Let S be a regular k-safety hyperproperty, let O =
(S,E,Δ) be an observation table, and let n be the size of
the minimal k-bad-prefix automaton for S. Then, the size of
row(S) is bounded by n in any iteration of L∗

Hyper .

Proof. The proof follows from the fact that, for any closed and

consistent observation table, an automaton that is consistent

with this table has at least n states [3].

To prove condition 2), we need to show that after every

counterexample, the set row(S) must increase by at least one.

This requires us to show that

• resolving consistency and closedness of observation ta-

bles increases the size of row(S) by at least one.

(Lemma 8 and Lemma 9)

• adding a counterexample makes the observation table O
inconsistent or not closed (Lemma 10)

• extending the observation table from an arity k′ to
k′′ > k′ preserves the size of row(S) (Lemma 11)

We define a witness of inconsistency in O as a triple

(s, t, a) ∈ S × S × Σ such that row(s) = row(t) and

row(s · a) �= row(t · a) and a witness of non-closedness in

O as a word w ∈ S · Σ such that row(w) �= row(s) for all

s ∈ S.

25



ε (¬a,¬a)
ε 0 1

ε · (¬a,¬a) 1 1

ε · (a, a) 0 0

(a, a) · (¬a,¬a) 0 0

(a, a) · (¬a, a) 1 1

(a,¬a) 1 1

(¬a, a) 1 1

(¬a,¬a) · (∗) 1 1

(a, a) · (a, a) 0 0

(a, a) · (¬a, a) 1 1

(a, a) · (¬a,¬a) · (a, a) 0 0

(a, a) · (¬a,¬a) · (¬a, a) 1 1

(a, a) · (¬a,¬a) · (a,¬a) 1 1

(a, a) · (¬a,¬a) · (¬a,¬a) 0 0

(a, a) · (¬a, a) · (∗) 1 1
.

q0 q1

q2

¬(a, a)

(a, a)

�

(a, a) ∨ (¬a,¬a)

(¬a, a) ∨ (a,¬a)

Fig. 5. Final observation table for learning ϕ = ∀π, π′. aπ∧�(aπ ↔ aπ′ ),
and 2-bad-prefix automaton for ϕ. We employ the notation x · (∗) to denote
all extensions of x.

The proofs for the following three lemmas are given in Dana

Angluin’s termination proof for L∗ [3].

Lemma 8. Let O = (S,E,Δ) be an inconsistent observation
table over Σ with a witness (s, t, a). Resolving this witness
increases the size of row(S).

Lemma 9. Let O = (S,E,Δ) be an observation table over
Σ that is not closed with a witness w ∈ S · Σ. Resolving this
witness increases the size of row(S).

The next lemma states that amending an observation table

with a counterexample results in an inconsistent observation

table.

Lemma 10. Let O = (S,E,Δ) be a consistent observation
table over an alphabet Σ. Let w ∈ Σ∗, be a counterex-
ample resulting from an equivalence check or from a check
of permutation-completeness. Then the resulting observation
table O′ = (S′, E′,Δ′) that results from O by amending it
with w is either inconsistent or not closed.

Obtaining a counterexample containing k′ many traces,

which can not be represented by the learner’s current arity

kL, i.e., k
′ > kL, the observation table needs to be extended

to k′ before adding the counterexample. We want to achieve

this extension without losing information obtained by earlier

queries, i.e., without changing the size of row(S). Therefore,
we extend each representation in S ∪ E to a representation

in Σk
′
by repeating its last position. After this extension

every representation still represents the same set of traces,

since we only repeat one of the traces in trace set. The

procedure of extending an observation table from arity kL
to a larger arity k is given in Algorithm 1. The function

extend is defined as follows: For a tuple (t1, . . . , tkL) ∈ ΣkL ,
extend(t1, . . . , tkL , k′) = (t1, . . . , tkL , . . . , tk′), where ti =
tkL for all kL < i ≤ k′.

Algorithm 1 EXTEND

Input Observation Table O = (S,E,Δ) over ΣkL , k′ > kL
Output Observation table O′ over Σk

′

1: O′ = (S′, E′,Δ′) = ({ε}, {ε}, {((ε, ε),Δ(ε, ε))})
2: for s ∈ S do
3: S′ = S′ ∪ {extend(s, k′)}
4: end for
5: for e ∈ E do
6: E′ = E′ ∪ {extend(e, k′)}
7: end for
8: fill Δ′ for (S′ ∪ S′ ·Σk′) ·E′ using Membership queries

9: return O′.

Lemma 11. Let O = (S,E,Δ) be an observation table over
an alphabet Σk

′
for some k′ ∈ N. Let O′ = (S′, E′,Δ′) be the

observation table obtained by applying EXTEND (Algorithm 1)
to O for some k′′ > k′. Then, |row(S)| = |row(S′)|.

Proof. Prove by contradiction. Assume |row(S)| �= |row(S′)|.
We only treat one direction the other direction can be proven

equivalently. Let |row(S)| > |row(S′)|, i.e., there exist s, t ∈
S and e ∈ E such that the following (in-)equalities hold

Δ(s, e) �= Δ(t, e)

Δ(extendk′′(s), extendk′′(e)) =
Δ(extendk′′(t), extendk′′(e)).

W.l.o.g., let Δ(extendk′′(t), extendk′′(e)) �= Δ(t, e), i.e., the
result of a membership queries for extendk′′(t · e) and t · e
differ. Since extendk′′ does not alter the represented set of

words, such words s, t, and e cannot exist. A contradiction to

our assumption.

Using the lemmas above, we are now able to prove the

termination of L∗
Hyper .

Theorem 12. L∗
Hyper terminates after at most n equivalence

queries, where n is the size of the minimal deterministic tight
permutation-complete k-bad-prefix automaton for S.

26



E. Complexity of L∗
Hyper

In the last section we showed that for a minimal-adequate

teacher, L∗
Hyper terminates after at most n equivalence queries,

where n is the size of the minimal bad-prefix automaton for the

target k-safety hyperproperty S. Preceding every equivalence

query, the learner checks the consistency and closedness of

the observation table, and after the equivalence check the

learner may need to check the permutation-completeness of

the conjectured automaton or extend the observation table to

a higher arity, and then amend the observation table with a

new counterexample.

After each operation, the number of rows in the observation

table is increased by at least one, but cannot increase beyond

n, as we have shown in Lemma 7. This means that we can

perform at most n many of these operations.

For L∗, Angluin showed that the learning algorithm is

polynomial in n and in the length of the largest returned

counterexample. This complexity also holds for L∗
Hyper . The

runtime of L∗
Hyper also depends on the goal arity k. The run-

time complexity in k can be derived by studying the runtime

of the procedures for checking permutation-completeness and

extending the observation table

Lemma 13. [3] Checking the observation table for consis-
tency and closedness can be done in time polynomial in the
size of the observation table.

The complexity of Algorithm 1 is given in the following

lemma.

Lemma 14. Extending an observation table over arity k to
an equivalent observation table of arity k′ > k can be done
in time polynomial in the size of the observation table and
exponential in k′.

Proof. This follows from the runtime of the procedure EX-

TEND, where we have to perform |S′∪S′ ·Σk′ |·E′ membership

queries. As |S′| = |S| and |E′| = |E|, the runtime of EXTEND

is polynomial in S and E and exponential in k′.

A k-bad-prefix automaton, that is not permutation-complete,

accepts one representation of every bad prefix but not every

representation of it. Algorithm 2 provides a procedure for de-

ciding permutation-completeness. For A = (Q,Σk
′
, q0, F, δ) a

k-bad-prefix automaton and ς : {1, . . . , k′} → {1, . . . , k′}, we
define Aς = (Q,Σk

′
, q0, F, δ

ς) where δς(s, (a1, . . . , ak′) =
δ(s, (aς(1), . . . , aς(k′))). If A is permutation-complete, then

L(Aς) ⊆ L(A) for every ς .

Lemma 15. Checking whether a k-bad-prefix automaton A is
permutation-complete for a k-safety hyperproperty S can be
done in time exponential in k and polynomial in A.

Building on Lemmas 13, 14 and 15 the overall complexity

of the algorithm L∗
Hyper is given by the following theorem.

Theorem 16 (Learning k-Bad-Prefix Automata). Provided a
minimal-adequate teacher, L∗

Hyper learns a minimal, determin-
istic, tight and permutation-complete bad-prefix automaton A

Algorithm 2 ISCOMPLETE

Input k-bad-prefix automaton A over Σk

Output A permutation-complete, or

w ∈ Σk s.t. w �∈ L(A)
1: for ς ∈ {1, . . . , k}{1,...,k} do
2: if L(Aς) �⊆ L(A) then
3: return w ∈ (L(Aς −A))
4: end if
5: end for
6: return Closed

for a k-safety property S over Σ in time polynomial in n
and m, where n is the size A, m is the length of the longest
counterexample provided, and in time exponential in k.

V. LEARNING AUTOMATA FOR HYPERLTL

The next natural step is to instantiate the L∗
Hyper framework

to learn automata for HYPERLTL. We dedicate this section

to instantiating the L∗
Hyper framework for learning minimal

permutation-complete automata for universally-safe HYPER-

LTL formulas.

Definition 8 (Universally-safe HYPERLTL formulas). A

universally-safe HYPERLTL formula ϕ is of the form

∀π1 . . . ∀πk.ψ, where ψ is a safety LTL formula.

In the following we show the complexity of deciding

membership and equivalence queries for universally-safe HY-

PERLTL formulas.

A. Deciding membership queries

Theorem 17. Let T be a set of traces, with each trace being
of length n, and let a universally-safe HYPERLTL formula
ϕ = ∀π1 . . . ∀πkT . ψ. The problem of deciding whether T is
a bad prefix for ϕ can be solved in time polynomial in n and
space polynomial in |ψ| and kT · log(|T |).
Proof. Deciding whether t ∈ Σ is a bad prefix for a safety

LTL formula ϕ can be done in space polynomial in |ϕ|
and time polynomial in |t| by guessing whether t allows an

accepting run in the Büchi automaton for ψ. If no such run is

found, then t is a bad prefix for ψ.
For a set T of traces of length n we need to check

whether one of the representations is a bad prefix for ϕ.
There are at most |T |kT many different representations for

T that can be encoded by log(|T |kT ) = O(kT · log(|T |)) bits.
Checking whether T is a bad prefix for ψ can be done in

space polynomial in kT · log(|T |) and in ψ, by guessing the

representation and applying the bad prefix check for ψ.

For the purpose of completeness, we present a second

algorithm solving membership queries symbolically. To this

end, we employ the decidability results of HYPERLTL [13].

In practice, the second algorithm is expected to outperform

the first one due to its dependence on SAT solving and the

efficiency of state-of-the-art SAT solvers.

27



Theorem 18. Let T = {t1, . . . , tn} be a set of finite
traces and let a universally-safe HYPERLTL formula ϕ =
∀π1 . . . ∀πkT . ψ. T is a bad prefix of ϕ if and only if the
following HYPERLTL formula is unsatisfiable:

ϕ′ := ∃π′
1 . . . ∃π′

n

∀π1 . . . ∀πkT . π′
1 ≥ t1 ∧ · · · ∧ π′

n ≥ tn ∧ ψ

Proof. (⇒) Let T = {t1, . . . tn} ⊆ Σ∗ be a bad prefix of ϕ.
Thus, for all T ′ ⊆ Σω with T ≤ T ′ it holds: T ′ �|= ϕ.
Therefore, no traces π′

1, . . . , π
′
n exist that satisfy ψ and

ϕ′ is unsatisfiable.

(⇐) Let T = {t1, . . . tn} ⊆ Σ∗ be a set of traces and let ϕ′

be unsatisfiable. We distinguish the following two cases:

1) ϕ is unsatisfiable:

Thus, no set of infinite traces can satisfy ϕ and T
is, like every other non-empty set of traces, a bad

prefix of ϕ.
2) ϕ is satisfiable:

Then, the conjunction of π′
1 ≥ t1 ∧ · · · ∧ π′

n ≥ tn
and ψ is unsatisfiable in the context of the given

quantifiers. Thus, there does not exists a set of traces

T ′ ⊆ Σω having n traces that extend t1, . . . , tn and

T ′ |= ϕ. Therefore, T satisfies the definition of a

bad prefix of ϕ.

According to the results in [13] and since ϕ′ is in the bounded

∃∗∀∗ fragment of HYPERLTL, Theorem 18 grants us an

algorithm deciding membership queries in space exponential

in |ϕ′| = n ·m · |Σ| + kt + |ϕ| where m is the length of the

traces in T .

B. Deciding equivalence queries

In this section, we focus on the resolution of equivalence

queries. Given an automaton A and a universally-safe HYPER-

LTL formula ϕ, to check whether A is a bad-prefix automaton

for ϕ we need to check that:

1) Every word accepted by A is a representation of a bad

prefix of ϕ.
2) The automaton A accepts a representation of a bad

prefix, for every set of traces violating ϕ.

The next theorem give an algorithms for deciding problem

(1). Problem (2) is solve in the theorem that follows.

Theorem 19. Given a universally-safe HYPERLTL formula
ϕ = ∀π1 . . . ∀πkT . ψ and a deterministic automaton A =
(Q,ΣkL , q0, F, δ). Checking whether every word w accepted
by A is a kL-representation of a bad prefix of ϕ can be
done in time polynomial in |A|, exponential in |ψ| and doubly
exponential in kT .

Proof. We transform ϕ into a HYPERLTL formula ϕ′ =
∀π1 . . . ∀πkT . ψ′(π1, . . . , πkT ) where

ψ′(π1, . . . , πkT ) =
∧

ς:{1,...,kT }→{1,...,kT }
ψ(πς(1), . . . , πς(kT ))

Note that the trace property described by ψ′ is permutation-

complete with respect to ΣkT , i.e., for all t ∈ (ΣkT )ω , it
holds t |=LTL ψ′ ⇔ ∅ |=unzip(t) ϕ where the LTL semantic is

adjusted such that aπi
holds if a holds in the i-th component.

The size of ϕ′ is exponential in kT and we can construct a

nondeterministic safety automaton Nϕ′ accepting all infinite

sequences that represent a set T of at most kT traces such that

T |= ϕ. The size of Nϕ′ is exponential in the size of ψ′ [14].
A and Nϕ′ are of different arities, i.e., we need to extend

A to kT Let A′ = (Q′, q′0,Σ
k, F ′, δ′) be an automaton,

we define the extension extend(A, k′) of A′ onto Σk
′
for

k′ > k as follows: extend(A, k′) = (Q′, q′0,Σ
k′ , F ′, δ′′) with

δ′(q, extend(s, k′)) = q′ iff δ(q, s) = q′ for q, q′ ∈ Q′ and
s ∈ Σk. In order to check whether A accepts any sequence

that does not represent a bad prefix, we then construct the

nondeterministic product automaton of extend(A, kT ) and

Nϕ′ , and check the emptiness of the product automaton.

In general, for a HYPERLTL formula ϕ = ∀π1 . . . ∀πkT . ψ
we can make the assumption that L∗

Hyper never constructs an

automaton for an arity larger than kT . With this assumption,

problem (2) can be solved by checking whether for every set

of traces T violating ϕ, if A accepts a representation of a

kL-bad prefix of T .

Theorem 20. Let ϕ = ∀π1 . . . ∀πkT . ψ be a universally-safe
HYPERLTL formula and let AL be a deterministic bad-prefix
automaton over ΣkL for some alphabet Σ. The problem of
deciding whether AL recognizes a kL-representation of a bad
prefix for every T �∈ L(ϕ) can be solved in time polynomial
in |AL|, exponential in |ψ|, and space exponential in kT .

Proof. For ϕ, we can construct a fine, nondeterministic k-bad-
prefix automaton Nϕ = (Qϕ,Σ

kT , q0,ϕ, Fϕ,Δϕ) for ψ on the

adapted alphabet over ΣkL in time exponential in |ψ| [10]. In
Theorem 4, we provided an equivalence check which solves

the above problem with respect to two deterministic k-bad-
prefix automata. However, since only one of the two automata

is complemented only AL has to be deterministic whereas Nϕ
can be nondeterministic as well. Then the complexity bound

follows from Theorem 4.

In case the equivalence does not hold, a counterexample

of minimal length can easily be produced in the size of

the cross-product automaton, similar to Theorem 19. This

counterexample can be reduced to minimal size by repeated

deleting of traces as long as the answer to membership with

it do not change. This takes linear time in kT in addition to

the complexity of membership queries.

VI. LEARNABILITY OF HYPERPROPERTIES

We conclude our study with an investigation of the land-

scape of learnable hyperproperties. We point out results regard-

ing the theoretical boundaries of learning trace properties, as

well as, hyperproperties. These findings do not directly affect

L∗
Hyper , proposed in the last section, but rather affect possible

future extensions.

28



We start with an elementary result regarding the class of

k-safety hyperproperties. This result even holds for 1-safety
hyperproperties, i.e., safety trace properties.

Theorem 21. Answering membership queries for safety lan-
guages is undecidable in general.

The previous theorem can be proved by a reduction to

the halting problem. Therefore, one constructs an undecidable

safety language. Membership for this language is undecidable.

Thus, the theorem follows. Since the class of 1-safety hyper-

properties is a equal to the set of safety languages [1], the

subsequent corollary immediately follows from Theorem 21.

Corollary 3. Membership queries for k-safety hyperproperties
are, in general, undecidable.

Despite the undecidability result, there are many important

classes of safety languages for which membership queries

are decidable. One important example is the class of safety

languages defined in LTL. Here the problem can be decided

by constructing the conjugation between the LTL formula

at hand and the given prefix, expressed in LTL. Afterwards

checking the satisfiability of the obtained formula decides

the membership [15]. In addition, equivalence queries for

the safety fragment of LTL can be decided: Let A be a

deterministic bad-prefix automaton and ψ an LTL formula.

We can construct a deterministic bad-prefix automaton Aψ
for ψ accepting all bad-prefixes of ψ [9]. A is a bad-prefix

automaton for ψ if A and Aψ accept the same language, which

can be easily checked. Hence, the decidability of queries of

safety languages defined in LTL is completely solved. Thus,

automated approaches using the learning of safety properties

in LTL are applicable, in general.

Looking at our learning framework for hypersafety proper-

ties expressed in HYPERLTL, it becomes of interest to ask, to

what extend queries can be decided? Regarding equivalence

queries for HYPERLTL, we obtain the following negative

result. The proof is independent of the representation model

for HYPERLTL.

Proposition 22. Equivalence queries are undecidable for the
full class of hyperproperties expressed in HYPERLTL.

Proof. Assume that we can decide membership and equiva-

lence queries for ϕ. Then, we can answer the satisfiability

of ϕ by asking whether ϕ ≡ False. This contradicts the

undecidability of HyperLTL-SAT [13].

Thus, it becomes important to consider subclasses of HY-

PERLTL, like the universal-safe HYPERLTL fragment. In or-

der to use such subclasses in automated learning environments,

it is necessary to decide whether a HYPERLTL formulas

is an element of this subclass. For LTL, the corresponding

question—whether a formula expresses a safety property—is

decidable [16]. It is even possible to decompose the formula

into its pure safety and liveness parts. Clarkson and Schneider

showed that such a separation into a pure hypersafety and a

pure hyperliveness part always exists for hyperproperties [1].

Thus, it looks promising that such a separation can be com-

puted. In the following theorem we reduce the satisfiability of

HYPERLTL to deciding whether a given HYPERLTL formula

describes a k-hypersafety property. Thus, according to the

undecidability result for the satisfiability of HYPERLTL, our

problem is undecidable [13].

Theorem 23. Whether a HYPERLTL formula ϕ expresses a
k-safety hyperproperty is undecidable in general.

Proof. We start by observing that every unsatisfiable HYPER-

LTL formula describes the hyperproperty L(ϕ) = ∅ and L(ϕ)
is k-safety for all k ∈ N.

Let ϕ = Q1π1. . . . Qnπn. ψ be HYPERLTL formula

over the alphabet Σ. We construct the formula ϕ′ =
Q1π1. . . . Qnπn. ψ ∧ � aπ1

over the alphabet Σ′ = Σ ∪̇ {a},
i.e., a �∈ Σ . We will prove that ϕ is unsatisfiable if and

only if L(ϕ′) expresses a k-safety hyperproperty. Therefore

we distinguish the following two cases:

• ϕ is unsatisfiable: ϕ′ is unsatisfiable as well. Thus, ϕ′ is
k-safety for any k ∈ N.

• ϕ is satisfiable: Let T ⊆ Σω be a set of traces such that

∅ |=T ϕ. Construct T ′ ⊆ Σ′ω T ′ = {t′ | ∃t ∈ T. t′ ≡Σ

t ∧ ∀i ∈ N. t′[i] |= a}. Since T |= ϕ and T ′ |= ∀π.aπ
it follows: T ′ |= ϕ′. Thus, ϕ′ is satisfiable and L(ϕ′)
is not a k-safety hyperproperty since the extra conjunct

enforces every or some trace, depending on Q1, to satisfy

eventually a, a liveness requirement.

The same proof provides that checking if a HYPERLTL

formula describes a safety hyperproperty is undecidable.

In contrast to the negative decidability results, we give a

decision procedure for deciding whether a formula is k-safe for
the important ∀-fragment of HYPERLTL. This, is a superset

of the universal-safe formulas.

Theorem 24. Let ϕ = ∀π1 . . . ∀πk. ψ be a HYPERLTL

formula. It is decidable if L(ϕ) is a k-safety hyperproperty,
in space polynomial in |ψ| and space exponential in k.

Proof. First, note that for HYPERLTL formulas in the ∀-
fragment, the described hyperproperty is safe if and only if it

is k-safe. By the definition of k-safety hyperproperties, L(ϕ)
is k-safe if and only if

∀T.
[
T �|= ϕ⇒

[
∃T ′ ≤ T. |T ′| ≤ k ∧ ∀T̃ ′ ≥ T ′. T̃ ′ �|= ϕ

]]

Our first claim is: ϕ is safe for all sets of size at most k if

and only if ϕ is safe.

(⇐) Let T be some set of traces that violates ϕ. There exists a
set T ′ ≤ T with |T ′| ≤ k and thus ϕ must reject every set

of traces extending T ′ including those of size k. Hence,
ϕ is safe for traces of size at most k.

(⇒) Let ϕ be k-safe for all sets of traces of size at most k.
Then, a set of traces violating ϕ must have a bad-prefix

T ′ of size at most k. Further, every set of traces extending

T has this prefix T ′ and thus ϕ is safety.

29



Further, we claim that ϕ is safe for a set of traces T of size

i if and only if the following formula is safe with respect to

LTL semantics:

ψi(π1, . . . , πi) :=
∧

ς:{1,...,k}→{1,...,i}
ψ(πς(1), . . . , πς(k))

We rephrase the foregoing claim as follows: for all m ≤ k
and T = {t1, . . . , tm}:

T |= ϕ if and only if (t1, . . . , tm) |= ψm

(⇒) Following the semantic of HYPERLTL T |= ϕ implies:

For all Π with Traces(Π) ⊆ T. Π |=∅ ψ. Thus,

(t1, . . . , tm) |= ψm(π1, . . . , πm).

(⇐) (t1, . . . , tm) |= ψm implies that for all ς : {1, . . . , k} →
{1, . . . ,m}: (tς(1), . . . , tς(k)) |= ψ(π1, . . . , πk). Hence,
for all trace assignments Π with Traces(Π) ⊆ T. Π |=∅
ψ. And thus by definition T |= ϕ.

Hence, it follows ϕ is safe for trace sets of size up to m if

and only if ψm is safe under the semantics of LTL. Therefore,

deciding whether ψk is reduced to checking LTL safety, which

can be computed in space polynomial in |ψk| [16]. The result

coincides with whether ϕ is a k-safety hyperproperty.

In the last two sections, we have shown that for HYPERLTL

formulas in the universal-safe fragment, we can both decide if

a given formula belongs to the fragment and decide member-

ship queries. For the safe hyperproperties in the ∀∗-fragment

of HYPERLTL, we can decide whether a formulas belongs to

the fragment, but the decidability of the queries is open. In

general, equivalence queries are undecidable.

VII. RELATED WORK

Most verification techniques for k-safety hyperproperties

are based on self-composition [17], [18]. Self-composition

enables the use of standard techniques for information flow

policy verification, such as program logics and model check-

ing. Automata-theoretic approaches for the verification of

information-flow policies include model checking algorithms,

such as for HYPERLTL [14], for Mantel’s Basic Security

Predicates BSPs [19], and for epistemic logics [20]. There are

also related algorithms for synthesis [21], satisfiability [13],

and monitoring [22]–[24]. Typically, these approaches rely on

automata constructions for trace properties. For example, in

automata-based HyperLTL monitoring [23], an automaton is

constructed for the underlying LTL formula over an indexed

set of atomic propositions. During monitoring, this automaton

is then applied to multiple combinations of the observed traces

by instantiating the indices in all necessary permutations.

None of these approaches define a canonical representation

for hyperproperties.

There is a rich body of work on learning from examples,

ranging from learning automata [3], [25], [26] to approaches

for specification mining on systems [6]–[8]. Further algorithms

have been presented for specification mining of information-

flow polices [27], [28]. Approaches for learning specifications

for monitoring malicious behavior were presented in [29]. Our

learning approach provides, to the best of our knowledge, the

first general framework for learning information-flow policies.

VIII. CONCLUSION

We have presented the first canonical representation for k-
safety-hyperproperties. We introduced automata for represent-

ing k-safety hyperproperties and gave algorithms for construct-

ing permutation-complete automata for such hyperproperties.

We also presented the learning framework L∗
Hyper that can

be used to learn minimal permutation-complete automata for

k-safety hyperproperties and gave an instantiation for HY-

PERLTL. The advantage of the algorithm is that it allows

us to interactively learn monitors for information-flow polices

and automatically construct efficient monitors from HYPER-

LTL specification. It further allows for the simplification

of manually specified k-safety-properties and for automatic

equivalence checks between hyperproperties.

As a natural next step, we plan to implement the learning

algorithm for HYPERLTL and investigate further classes of

HYPERLTL formulas beyond the universally-safe fragment.

Moreover, we plan on investigating further possible canonical

representations for k-safety hyperproperties. For example,

instead of looking for automata that accept the representations

of all bad prefixes up to the arity k, we can change the

definition of tightness to mean representations of only minimal

bad prefixes. One advantage of this definition is, that in the

case of HYPERLTL, we can skip the additional expensive

check that the conjecture automaton is vertically tight. This

however, comes with the trade off, that the learner now has

to extract minimal bad prefixes out of the counterexamples,

which adds exponential costs.

REFERENCES

[1] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[2] M. Y. Vardi, “Verification of concurrent programs: The automata-
theoretic framework,” in Annals of Pure and Applied Logic, 1987, pp.
167–176.

[3] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[4] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
assumptions for compositional verification,” in Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2003, Proceedings,
2003, pp. 331–346.

[5] B. Finkbeiner and H. Torfah, “Synthesizing skeletons for reactive sys-
tems,” in Automated Technology for Verification and Analysis, C. Artho,
A. Legay, and D. Peled, Eds. Cham: Springer International Publishing,
2016, pp. 271–286.

[6] A. van Lamsweerde and L. Willemet, “Inferring declarative requirements
specifications from operational scenarios,” IEEE Trans. Softw. Eng.,
vol. 24, no. 12, pp. 1089–1114, Dec. 1998. [Online]. Available:
https://doi.org/10.1109/32.738341

[7] A. Fern, S. Yoon, and R. Givan, “Learning domain-specific control
knowledge from random walks,” in Proceedings of the Fourteenth
International Conference on International Conference on Automated
Planning and Scheduling, ser. ICAPS’04. AAAI Press, 2004,
pp. 191–198. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3037008.3037033

30



[8] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke, “User guidance
for creating precise and accessible property specifications,” in
Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’06/FSE-14.
New York, NY, USA: ACM, 2006, pp. 208–218. [Online]. Available:
http://doi.acm.org/10.1145/1181775.1181801

[9] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Form. Methods Syst. Des., vol. 19, no. 3, pp. 291–314, Oct. 2001.

[10] O. Kupferman and R. Lampert, “On the construction of fine
automata for safety properties,” in Proceedings of the 4th International
Conference on Automated Technology for Verification and Analysis, ser.
ATVA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 110–124.
[Online]. Available: http://dx.doi.org/10.1007/11901914_11

[11] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[12] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[13] B. Finkbeiner and C. Hahn, “Deciding Hyperproperties,” in 27th Interna-
tional Conference on Concurrency Theory (CONCUR 2016), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 59. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp.
13:1–13:14.

[14] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model
checking hyperltl and hyperctl,” in Computer Aided Verification,
D. Kroening and C. S. Păsăreanu, Eds. Cham: Springer International
Publishing, 2015, pp. 30–48.

[15] J. Li, L. Zhang, G. Pu, M. Y. Vardi, and J. He, “Ltlf satisfiability check-
ing,” in ECAI, ser. Frontiers in Artificial Intelligence and Applications,
vol. 263. IOS Press, 2014, pp. 513–518.

[16] G. P. Maretic, M. T. Dashti, and D. A. Basin, “LTL is closed under
topological closure,” Inf. Process. Lett., vol. 114, no. 8, pp. 408–413,
2014.

[17] G. Barthe, P. R. D’argenio, and T. Rezk, “Secure information
flow by self-composition,” Mathematical. Structures in Comp. Sci.,
vol. 21, no. 6, pp. 1207–1252, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1017/S0960129511000193

[18] G. Barthe, J. M. Crespo, and C. Kunz, “Beyond 2-safety: Asymmetric
product programs for relational program verification,” in Logical Foun-
dations of Computer Science, S. Artemov and A. Nerode, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 29–43.

[19] D. D’Souza, R. Holla, K. R. Raghavendra, and B. Sprick, “Model-
checking trace-based information flow properties,” J. Comput. Secur.,
vol. 19, no. 1, pp. 101–138, Jan. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2590694.2590698

[20] M. Balliu, “Logics for information flow security:from specification to
verification,” Ph.D. dissertation, Royal Institute of Technology, Stock-
holm, Sweden, 2014.

[21] B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup, “Syn-
thesizing reactive systems from hyperproperties,” in Computer Aided
Verification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, pp. 289–306.

[22] S. Agrawal and B. Bonakdarpour, “Runtime verification of k-safety
hyperproperties in hyperltl,” in CSF. IEEE Computer Society, 2016,
pp. 239–252.

[23] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Monitoring hy-
perproperties,” in Runtime Verification - 17th International Conference,
RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, 2017,
pp. 190–207.

[24] C. Hahn, M. Stenger, and L. Tentrup, “Constraint-based monitoring
of hyperproperties,” in Tools and Algorithms for the Construction and
Analysis of Systems, T. Vojnar and L. Zhang, Eds. Cham: Springer
International Publishing, 2019, pp. 115–131.

[25] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
pp. 319–342, Apr. 1988. [Online]. Available: https://doi.org/10.1023/A:
1022821128753

[26] A. Farzan, Y.-F. Chen, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang,
“Extending automated compositional verification to the full class of
omega-regular languages,” in Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 2–17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792738

[27] L. Clapp, S. Anand, and A. Aiken, “Modelgen: Mining
explicit information flow specifications from concrete executions,”
in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York,
NY, USA: ACM, 2015, pp. 129–140. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771810

[28] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
Specification inference for explicit information flow problems,”
SIGPLAN Not., vol. 44, no. 6, pp. 75–86, Jun. 2009. [Online].
Available: http://doi.acm.org/10.1145/1543135.1542485

[29] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications
of malicious behavior,” in Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 5–14.
[Online]. Available: http://doi.acm.org/10.1145/1287624.1287628

31


