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Abstract—Being the most widely used and comprehensive
standard for hardware security modules, cryptographic tokens
and smart cards, PKCS#11 has been the subject of academic
study for years. PKCS#11 provides a key store that is separate
from the application, so that, ideally, an application never sees
a key in the clear. Again and again, researchers have pointed
out the need for an import/export mechanism that ensures the
integrity of the permissions associated to a key. With version
2.40, for the first time, the standard included authenticated
deterministic encryption schemes. The interface to this operation
is insecure, however, so that an application can get the key in
the clear, subverting the purpose of using a hardware security
module.

This work proposes a formal model for the secure use of
authenticated deterministic encryption in PKCS#11, including
concrete API changes to allow for secure policies to be im-
plemented. Owing to the authenticated encryption mechanism,
the policy we propose provides more functionality than any
policy proposed so far and can be implemented without access
to a random number generator. Our results cover modes of
operation that rely on unique initialisation vectors (IVs), like
GCM or CCM, but also modes that generate synthetic IVs. We
furthermore provide a proof for the deduction soundness of our
modelling of deterministic encryption in Böhl et. al.’s composable
deduction soundness framework.

I. INTRODUCTION

PKCS#11 is one of the Public-Key Cryptography Standards
and was defined by RSA Security in 1994. By now, it is the

most prevalent standard for operating hardware security mod-

ules (HSM), but also smart cards and cryptographic libraries.

It defines an API intended to separate usage and storage of

cryptographic secrets so that application code can only access

these secrets indirectly, via handles. The hope is that HSMs

provide a higher level of security than the multi-purpose ma-

chines running the respective application. This is reasonable:

HSMs are designed for security and have less functionality

and therefore a smaller attack surface, making them easier to

secure. Consequently, PKCS#11 is used throughout the public-

key infrastructure and the banking network.

In contrast to this stated goal, raising the level of secu-

rity, many versions and configurations of PKCS#11 allow

for attacks on the logical level [9, 13, 18, 10]. Here, a

perfectly valid chain of commands leads to the exposure of

sensitive key material to the application, defeating the purpose

of separating the (possibly vulnerable) application from the

(supposedly secure) hardware implementation — and thus

defeating their purpose. Formal methods have been used to

identify configurations that are secure [18, 10, 29]. In this

context, a configuration or policy refers to a specification of the

device’s behaviour that implements a subset of the standard,

e.g., PKCS#11 with the restriction that all keys generated must

have a certain attribute set. In order to be secure, the two

most functional secure policies [10, 29] either have to limit

the ability to transfer keys between devices [29] or have some

keys degrade in functionality after transfer, i.e., after transfer,

they cannot be used for operations that were permitted prior

to transfer [10]. Recent versions of PKCS#11 have adopted

various security extensions (e.g., wrapping/unwrapping tem-

plates, ‘wrap-with-trusted’), but none of these improve upon

this lack of functionality. Fundamentally, the problem is that

the export mechanism for keys (key wrapping, i.e., encrypting

a key with another key) does not provide a way to authenticate

the attributes or the role that a key should be imported with.

Authenticated encryption with associated data (AEAD) pro-

vides a solution to this problem [37]. AEAD was not available

in 1994, when PKCS#11 was invented. Academic develop-

ment started around 2000 [25], standardisation followed suit

in 2004 [19]. With version 2.40, support for two AEAD

schemes was finally added to the set of supported algorithms

in PKCS#11, but as Steel pointed out [45], the interface

that v2.40 provides allows for a two-time pad attack. The

application is able to set the initialisation vector (IV). If it

chooses to use the same IV twice, wrapping can be used to

decrypt and obtain keys in the clear. Figure 1 depicts why this

attack works. Both GCM and CCM are based on CTR-mode.

If we leave out the computation of the message authentication

tag, it is easy to see that any cyphertext can be decrypted

by XORing it with the keystream that is deterministically

generated from the IV. Requesting an encryption with the same

IV is essentially a decryption without the authenticity check.

This attack demonstrates that the mere support of AEAD

schemes is not enough, a suitable interface needs to be

provided, too. Unfortunately, this is not a trivial task. As keys

can be present on several devices at the same time, each device

individually needs to ensure that, globally, an IV is not used

twice. Hence in this paper, we tackle the following questions:

I How can we guarantee global uniqueness even on devices

that lack a random number generator (RNG)?

II Using authenticated encryption, is it possible to create

a secure PKCS#11 configuration that is strictly more

powerful than those proposed so far?
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Fig. 1: Example on key extraction using CTR-mode. By

supplying the same IV twice, the attacker can wrap a key

and then encrypt the resulting wrapping, again using the same

IV. This leads to the leakage of the key.

Contributions: The contributions of this paper can be sum-

marized as follows:

1) We answer (I) and affirm (II) by proposing a secure

PKCS#11 configuration that uses authenticated encryp-

tion.

2) We formally verify this proposal in the symbolic model

and provide custom heuristics that allow for automated

proof generation. These results apply to the previously

proposed modes of operation GCM and CCM.

3) We put forward a deduction soundness [8] result, which

is a necessary condition for computational soundness. It

justifies the symbolic abstraction of AEAD and is of inde-

pendent interest for protocol verification. Besides AEAD,

it also supports hash functions, public-key cryptography,

digital signatures and MAC.

4) The PKCS#11 technical committee considered SIV

mode [41] as an alternative to GCM/CCM as it does

not require an initialisation vector [44]. We derive a

construction to obtain an AEAD scheme out of SIV

mode (in fact, any deterministic authenticated encryption

scheme). This construction cancels out if we use it in a

particular way. With only slight syntactical modification

to our model we can thus derive a similar policy for

SIV mode while reusing the deduction soundness result,

model and heuristics.

II. PKCS#11

PKCS#11 provides applications an interface to crypto-

graphic implementations ranging from cryptographic libraries

to smart cards and HSMs. Once an application establishes a

session to a device (slot in PKCS#11 parlance), it identifies

as a Security Officer (SO), or a normal user. The SO may

initialise a slot and set a PIN for the normal user. Only if

this PIN is set, the normal user can login. As we consider the

case where the application or the host computer are malicious,

we will abstract away from this and assume the attacker has

complete control over a session.

PKCS#11 exposes so-called objects, e.g., keys and certifi-

cates, to the user or attacker. They are referred to indirectly,

via handles. Handles do not reveal any information about the

object they refer to. Objects have attributes, some of which are

specific to their type (e.g., public keys of type CKK RSA have a

public exponent). Some however, are general for all keys, and

control how they can be used. E.g.:

‚ CKA SENSITIVE marks keys that ought not to be read out in

the clear.

‚ CKA DECRYPT marks keys that can be used to decrypt

cyphertexts.

‚ CKA WRAP marks wrapping keys: If C WrapKey is given

two handles, and the first has CKA WRAP, it uses the key

referred to by the first to encrypt the second. Wrapping

is used to export keys. Additional constraints apply to the

attributes associated to the second key, but we omit them

for simplicity. To import, the function C UnwrapKey takes

a handle and a wrapping (the cyphertext resulting from

C WrapKey), decrypts the latter with the key referred to by

the handle, stores the results and returns a handle to the

newly generated object.

Typically, a given implementation supports only some of the

functionality specified by PKCS#11, first, because the standard

is extensive and contains many legacy algorithms, but also

because the full standard is insecure. Clulow’s attack provides

a nice and concise example [13]:

1) A key is generated and marked CKA SENSITIVE, CKA DECRYPT

and CKA WRAP.

2) The key is used to wrap itself, obtaining an encryption

of itself.

3) The key is used to decrypt the wrapping from the previous

step, obtaining the key in the clear.

This attack and others have prompted vendors to limit

the functionality offered by their respective implementations,

which are often dubbed configurations or policies. Some

vendors introduced proprietary functionality, e.g., marking

CKA DECRYPT and CKA WRAP as conflicting, but even those were

prone to attacks [10]. With version 2.20, wrapping and un-

wrapping templates were introduced to control what keys

can be wrapped, and what attributes objects created via

unwrapping can obtain. While this mechanism provides more

flexibility, it does not improve the expressiveness of policies

– these templates can essentially be hard-coded in the device.

In effect, two secure configurations were discovered that are

incomparable to each other, but more or equally functional to

the others found so far [10, 29].

The fundamental problem is that a wrapping does not con-

tain authenticated information about the role of the key prior

to the wrapping, i.e., its intended use. Hence, if it is possible

to wrap two keys that have different roles, it is not clear which

attributes a (re-)imported key should obtain upon unwrapping
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— it could originate from a key with either role. For instance,

the first of the two most functional policies [10] allows for two

different roles to be wrapped, but to be secure, the attributes

obtained upon unwrapping provide less capabilities than either

role — the keys ‘degrade’. The second of them [29] allows

only keys of a single role specific role to be wrapped.

Before OASIS took over standardisation from RSA Security

in 2012, RSA drafted, but never published, version 2.30.

Based on this draft, OASIS published version 2.40 in 2015,

introducing support for AEAD schemes. AEAD schemes can

be used for wrapping, which finally provides a way of au-

thenticating a key’s attributes upon wrapping. Unfortunately,

the API requires the user to set the initialization vector,

which allows for a simple attack where some vector is used

twice [45]. The security of the schemes supported (AES-CCM

and AES-GCM) relies on the uniqueness of the initialisation

vector, hence the upcoming standard 3.00 is planned to support

device-internal nonce generation for encryption/decryption.

The present work was motivated by the drafting of the

standard. We announced our results on the OASIS PKCS#11

mailing list and stressed the need to support device-internal

nonce generation for wrapping and encryption [17]. Assuming

that support for this is present in v3.00, our policy provides a

template for the secure use of PKCS#11. The current version

at time of writing is version 2.40 with errata 01 [33]. The most

recent proposal for PKCS#11 v3.00 is working draft 5 [34].

III. POLICY

Our policy implements three central ideas: a key-hierarchy,

globally unique counters and authentication of handles.

Key-hierarchy: keys are created with a given level, i.e., a

natural number, and may only be used to wrap and unwrap

keys of a lower level. If we extend this to payload data,

we can assign level 1 to payload and level 2 to encryption

keys that cannot wrap. Ergo, wrapping keys must have level

3 or higher. When wrapping a key, we authenticate the level

of the enclosed key with the encryption. Upon unwrapping,

this level is restored. To be consistent with that, decryption

only succeeds if the cyphertext is authentic w.r.t. level 1. This

already prevents Clulow’s attack, as wrappings will never be

decrypted, since whatever level the wrapping key was created

with must be larger or equal to three.

Globally unique counters: The deduction soundness result

that we will present in Section VII holds only for protocols that

guarantee that AEADs are created with a unique initialisation

vector. This is necessary, as otherwise, for counter-mode based

schemes like GCM and CCM, key-wrapping can immediately

be used to decrypt. The simplest way to ensure this is to

choose the IV randomly, however, many low-cost devices

do not have a random number generator. We thus describe

a secure low-cost alternative that is slightly more involved.

We require each device to have a unique device identifier at

initialisation time, e.g., a serial number with a unique vendor

id. For every encryption, a running counter is increased, so that

the combination of this unique public value and the running

counter is unique in the network. Hence, even if a key is shared

between two devices, the initialisation vector remains unique.

Practically, this combination can be a simple concatenation: if

the serial number and the counter have 64 bit, they match the

blocksize of AES. For an HSM that can run 10M encryptions

per second, it would take about 60’000 years to repeat a

counter. In terms of the soundness of our deduction rules, any

other way of combining those is sound, as long as it provides

an injective mapping into the set of initialisation vectors (or

is indistinguishable from one).

Authentication of handles: The third novelty to our policy

is the authentication of handles. Usually, handles are assigned

through a running counter or are simply the memory address

where the key is physically stored. If a key is exported to

another device, it most likely receives a new handle. Instead,

we chose a unique handle at key-generation time, and ensure

that, no matter on which device, this handle always resolves

to the same key. We call this property handle integrity.

We discus the relevant parts of PKCS#11 in the follow-up.

Table I gives an overview, see [34, Table 30] for the full list.

A. Object-management

The main security goal is to keep keys secret from the

possibly malicious host. Hence, for the operation of the

device, we disallow direct key imports via C CreateObject.

Nevertheless, in order to import keys via C UnwrapKey, at

least one key must be shared initially. A common practice

is to have the security officer (SO) set up shared keys using

C CreateObject. Thus this function may only be used by the

SO, which we assume happens only during setup or in an

otherwise safe environment and only with trusted PKCS#11

tokens, i.e., tokens implementing our policy by vendors that

guarantee the uniqueness of their unique device identifiers.

As the key-hierarchy is static, so are the attributes. We thus

disable the function C SetAttributeValue altogether.

We allow the user to inspect the device using functions

like C GetObjectSize and C FindObjects and its siblings. As the

adversary has full control, this information is redundant to

him and w.l.o.g., we omit them from our model. Similar for

C DestroyObject. As our model assumed no limit on space for

storing keys, any attack using it can be transformed into an

attack that does not delete objects.

B. Key-management

In our policy, normal users can create new objects via

C GenerateKey, C GenerateKeyPair, C DeriveKey or C UnwrapKey.

C GenerateKey and C GenerateKeyPair create a new symmetric

or asymmetric key, C DeriveKey derives a new key from an

existing one, and C UnwrapKey decrypts a wrapping, i.e., an

AEAD that was output by C WrapKey, and imports its content.

We thus consider these four functions plus C WrapKey the key-

management core of PKCS#11.

C GenerateKey and C GenerateKeyPair: Keys are generated

and then stored with a level and a universally unique handle.

The level is provided by the user by setting the attribute

parameter CK ATTRIBUTE PTR. The handle can be chosen ran-

domly from a sufficiently large space or using any another
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function description rule comment

Object management functions
C CreateObject creates an object (4) only by SO during setup
C GetObjectSize, C GetAttributeValue gather information about object — not useful to adversary
C FindObjects˚ find objects — not useful to adversary
C CopyObject creates a copy of an object — not useful to adversary (in this configuration)
C DestroyObject destroys an object — not useful to adversary
C SetAttributeValue modifies object’s attribute — forbidden by policy

Key-management functions
C GenerateKey generates a secret key (3) generated with level l and universally unique handle h
C DeriveKey derives a key from a base key (9) base keys and derived keys must have level 2, key-

derivation needs random salt, universally unique handle
h

C GenerateKeyPair generates a public / private key
pair

— always level 2; asymm. wrapping keys permits ‘Trojan
wrapped key attack’, thus not modelled (only key-
usage)

C WrapKey wraps (encrypts) a key (7) wrapping key must have larger level than argument key;
internal IV generation (e.g., like C EncryptMessage);
authenticate level and handle as additional data

C UnwrapKey unwraps (decrypts) a key and
stores it

(8) level and handle of new key have to match additional
authenticated data

Key-usage functions
C Encrypt encrypts single-part data (5) require l “ 2, internal IV generation
C Decrypt decrypts single-part data (6) require l “ 2
message digest, signature, MAC, RNG etc. — require l “ 2, not modelled (only key-usage)

TABLE I: PKCS#11 operations for object and key management, and corresponding rules in our modelling (cf. Section V).

technique/mechanism for creating universally unique identi-

fier [36]. This ensures handle integrity without central co-

ordination. The details of the precise encoding from levels

to CK ATTRIBUTE PTR are not important, but the token has to

enforce that the level is correctly encoded. In general, the

level can be represented using a vendor-specific PKCS#11

attribute that encodes this number in an integer. If there is

a suitable upper bound, these levels can also be encoded in

standard PKCS#11 attributes, e.g., if the bound is 4, the values

of CKA WRAP and CKA ENCRYPT can be used to encode a binary

representation of each level between 1 and 4. As wrapping

with asymmetric keys is fundamentally flawed (asymmetric

wrapping keys can be used to inject keys whose values

are known to the attacker [13]), asymmetric key generation

(C GenerateKeyPair) is restricted to keys of level 2. We hence

consider asymmetric encryption keys only for key-usage.

C DeriveKey creates a new key object from a base key. As

there is no AEAD scheme in the PKCS#11v2.40 cryptographic

mechanism specification that can be used for both wrap/un-

wrap and key derivation [35, Section 2.11], any key that may

be used for key-derivation has level 2 and may only be used to

derive keys of level 2. Similar to C GenerateKey, a universally

unique handle is created.

C WrapKey creates an authenticated encryption of a key and

includes its level and handle as additional authenticated data.

This makes sure that keys are reimported with precisely the

same attributes. This is not possible with PKCS#11 prior to

v2.40, due to the lack of support for AEAD. Note, how-

ever, that, even for v2.40, this requires a modification to

its specification or a new interface: PKCS#11 v2.40 spec-

ifies the initialisation vector to be set from the outside,

leading to the aforementioned two-time pad attack. While

an implementation may very well ignore the supplied IV

and choose it internally, by specification, the function output

contains only the cyphertext, not the IV. This is problematic,

as it means that the interface cannot be easily changed to

communicate the internally generated IV without breaking

backwards compatibility. For encryption, the current PKCS#11

v3.00 draft solves this by introducing a new interface for

encryption, C EncryptMessage, specifically to support internal

nonce-generation for AEAD schemes. C EncryptMessage has

an additional parameter that can be used to output the IV.

In the current draft, there is no equivalent for key-wrapping.

We encourage the inclusion of a similar mechanism for key-

wrapping in the base specification and making internal IV

generation the default for authenticated wrapping. Considering

the adaptation of C EncryptMessage, we deem this a realistic

proposal. Moreover, internal nonce-generation follows from

the FIPS requirement on GCM: ‘The probability that the

authenticated encryption function ever [across all instances]

will be invoked with the same IV and the same key on two

(or more) distinct sets of input data shall be no greater than

2´32.’ [19, 4]

C UnwrapKey decrypts a wrapping, verifies its authenticity and

stores the decryption as a new key. It takes the following

parameters: the handle of the wrapping key, an attribute

template specifying the attributes that the newly generated

object should obtain, and a handle for this newly generated

object. The initialisation vector is supplied as the mechanism

parameter. Our policy is to reject any handle and any template

that do not match the authenticated handle and level.1 In

1 In addition, we recommend checking that the authenticated level is smaller
than the wrapping key’s level to provide resilience against key compromise.
Our model, however, does not consider key compromise.
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contrast to previous policies, it is thus not possible to reimport

a key on the same device under different handles — there is

no need to, as all instances of a key are guaranteed to have

the same attributes. Thread-safe implementations should thus

check if the requested handle is present on the device before

unwrapping, relying on locks only to synchronize concurrent

unwrap, key-generation and key-derivation actions.

C. Key-usage

PKCS#11 supports a variety of functions for creating mes-

sage digests, signatures, MACs or random numbers. All of

these operate on payload data, hence, we impose that the keys

must have level 2. We impose no further restrictions beyond

PKCS#11’s standard requirements, e.g., MACs can only be

computed with MACing keys, etc.

For AEAD encryption and decryption specifically, we re-

quire that the authenticated header contains the level l “ 1 (for

payload data). This prohibits encryptions to be confused with

wrappings and thus ‘trojan key’ attacks [13], where unwrap-

ping injects dishonest key material into the store. The same

policy applies to encryption for multi-part data (C EncryptInit,

C EncryptUpdate and C EncryptFinal), however, our model only

covers encryption and decryption for single-part data.

Similar to prior work [18, 22, 10, 20], we will only

model key-usage functions that could possibly interfere with

key-management, i.e., symmetric encryption and decryption,

as indicated by Clulow’s attack. Keys that do not support

encryption can, by the standard, not be used to create or

import wrappings, and hence do not interact with the key-

management. By our policy, asymmetric encryption falls into

the same category. Extending the model to cover non-key-

management operations is straight-forward, but unlikely to

lead to new insights with respect to the security of policies.

D. Limitations

The policy we propose is based on a static key-hierarchy:

This reduces the flexibility when setting up keys. Similarly, a

popular best practice for HSMs is to disallow the modification

of attributes for all users but the SO.

To benefit from handle authentication, existing applications

have to be modified to make use of this feature by validating

the authenticity of the handle provided. In current applications,

objects are identified by a user-specified attribute CKA LABEL.

C FindObjects is used to obtain all handles associated to objects

that have a specified label and these handles are used without

further validation. Instead, the handle should be specified (in

place of the label) to identify keys. Practically, however, this is

not always possible, as handles are implementation-dependent

and cannot always be chosen freely. Furthermore, this requires

a modification of the application. In the following, we discuss

a workaround for both issues. The handle (in the sense of our

policy) could be stored within the attribute CKA LABEL. Handle

authenticity then pertains to this attribute, which can now be

used to identify keys. The advantage is that applications using

the previously described method for identifying keys would

not require changes. The downside is that this label can neither

be set nor modified by the user or SO, but is instead chosen

according to the policy upon object creation.

IV. PRELIMINARIES

Our analysis takes place in an abstract model of cryptogra-

phy with an active, Dolev-Yao adversary. The idea is that all

implementations are considered participants in a protocol. As

the adversary is active and has access to all of them, he can

send arbitrary commands to them and combine their outputs.

This represents a network where all hosts are under adversarial

control. We analyzed this model with Tamarin [43], a protocol

verifier with support for (stateful) security protocols.

Terms and equational theories: Cryptographic messages are

represented by a term algebra over public names PN , fresh

names FN and variables V . Let Σ be a signature, i.e., a set

of function symbols, each with an arity. We write f{n when

function symbol f is of arity n, e.g., pair{2 is a function

symbol for pairs. Let Terms be the set of terms built over

Σ, PN , FN and V , e.g., pairpt, t1q P Terms, which we will

abbreviate xt, t1y.
Equality is defined by means of an equational theory E,

i.e., a finite set of equations between terms. E induces a

binary relation “E that is closed under application of function

symbols, bijective renaming of names and substitution of

variables by terms.

Example 1. Our model employs the following equational
theory. Unary function symbols fst and snd model projection
on pairs:

fstpxx, yyq “ x sndpxx, yyq “ y

Hence fstpsndpxx, xy, zyyqq “E y. We use true{0 to model
a constant truth value. We model AEAD using senc{4, which
expects a key, an initialisation vector, some authentication data
and a message. The following equations apply:

sdecpk, iv , h, sencpk, iv , h,mqq “ m

sdecSucpk, iv , h, sencpk, iv , h,mqq “ truepq
getHeaderpsencpk, iv , h,mqq “ h

getIVpsencpk, iv , h,mqq “ iv

We use the two-ary function symbol Y# to model multiset
union. Written in infix notation, the following equations for
associativity and commutativity apply:

xY# py Y# zq “ pxY# yq Y# z xY# y “ py Y# xq
This function symbol is built into Tamarin. We will use it to
model natural numbers. We also include a symbol kdf{2 for
key-derivation, without any equations.

Multiset Rewriting: In the Tamarin protocol prover, the

protocol itself, its state and its behavior are modeled using

a multiset of facts and rewriting rules operating on this set.

The state of the system is a multiset of ground facts G, where a

fact F pt1, ..., tkq of arity k is ground if all k terms t1, ..., tk are

ground. Further, there are predefined fact symbols for special

purposes. The state of the adversary’s knowledge is encoded
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using the fact symbol !K. Freshness information is denoted

with the fact symbol Fr and messages on the network are

represented by In and Out. Multiset rewriting rules are denoted

by l ŕ a sÑ r, where l is the premise, r is the conclusion

and a labels so-called actions. Linear facts used in the premise

are consumed by the transition rule. An exclamation mark in

front of a fact symbol indicates that it is persistent and can

be consumed arbitrarily often. For example, freshness Fr is a

linear fact, whereas adversarial knowledge !K is a permanent

fact.

Example 2. To express, e.g., a key hierarchy or a counter, we
need to identify natural numbers. We can model them using
Tamarin’s built-in support for multisets: a multiset with n
elements 1 P PN represents n. The following two rules ensure
that terms t for which a fact !Natptq or action IsNatptq exists
are always multisets consisting only of 1 P PN .

ŕ IsNatp1q sÑ!Natp1q (1)

!Natpnq ŕ IsNatpnY# 1q sÑ!NatpnY# 1q (2)

Intuitively, we say that a rewriting step is possible if all

facts in l are in the current state S. In the resulting state, all

linear facts from l are removed and all facts in r are added.

We will formulate this intuition in the following, but need

some preliminaries first. We use lfacts and pfacts to denote

the linear, respectively, the permanent facts in a set, set to turn

a multiset into a set and mset to turn a set into a multiset.

We mark the multiset equivalents of the subset relation, set

difference and set union with a # superscript, i.e. Ă#, z#
and Y#.

We define a labeled transition relation ÑMĂ G#ˆP pGqˆ
G#, where G# denotes a multiset of ground facts and M
denotes a set of ground instantiations of multiset rules, as

follows:

l ŕ a sÑ r PM lfactsplq Ă# S pfactsplq Ă setpSq
S

setpaqÝÝÝÝÑM pSz#lfactsplqq Y# t r u#
Consider, e.g., the following application of (2):

t !Natp1q u# IsNatp1Y#1qÝÝÝÝÝÝÝÝÑ t !Natp1q, !Natp1Y# 1q u#.
Using the labelled transition relation, we can define executions

of some model M as a set of traces:

tpA1, . . . , Anq | DS1, . . . , Sn P G#. H A1ÑM . . .
AnÑM Sn

^ @i ‰ j. @x. Si`1z#Si “ tFrpxqu
ùñ Sj`1z#Sj ‰ tFrpxquu

Combining the previous transition with an application (1),

we obtain the trace pIsNatp1q, IsNatp1 Y# 1qq. The side

condition ensures that fresh variables are instantiated with

unique fresh names.

Tamarin combines a user-defined set of rules describing the

protocol itself with the builtin rules for message deduction

MD depicted in Figure 2. They represent a standard Dolev-

Yao attacker who obtains knowledge (!Kq by eavesdropping on

Outpxq ŕ sÑ !Kpxq
Frpx : freshq ŕ sÑ !Kpx : freshq

ŕ sÑ !Kpx : pubq
!Kpx1q, . . . , !Kpxkq ŕ sÑ !Kpfpx1, . . . , xkqq

!Kpxq ŕ Kpxq sÑ Inpxq

Fig. 2: The set of rules MD.

the network (Out), creating fresh names, or by using public

values. This knowledge can be combined by applying function

symbols f{k. Known terms can be sent to the network.

V. FORMAL MODELLING

We present the multiset rewrite rules used to formalise the

policy described in Section III and Table I.

Devices: At any time, a new device can be introduced to

the network. This device has a fresh identifier dev , and its

device counter is initialised to 1 P PN , representing the natural

number 1. Previous work [10, 18, 29] abstracted all PKCS#11

devices in the network with a single store. As we want to tackle

the problem of locally generating network-wide unique IVs,

we need to capture the absence of a secure channel between

these devices, and thus model them individually.

Frpdevq, !Natp1q ŕ DCtrIspdev ,1 11q sÑ
!Dpdevq,DCtrpdev , 1q

Each device (!Dpdevq), obtains a fresh identifier (Frpdevq),
which links it to the initial counter value (DCtrpdev , 1q).
The action DCtrIs is used in the lemma counter mono (cf.

Section VI) to refer to this counter and show each counter

is monotonically increasing.

Key-generation: When a new key is created, it is stored

along with its level, a freshly chosen handle and a natu-

ral number l on the store of dev , represented by the fact

!Storepdev , h, k , lq. The rules from Example 2 are part of

our model and ensure that l represents a natural number. The

handle and the level of the key are handed out to the adversary

(Outpxh, lyq).

!Dpdevq, !Natplq,Frpkq,Frphq
ŕ CreateKph, k , lq,StoreKpdev , h, k , lq sÑ

!Storepdev , h, k , lq,Outpxh, lyq (3)

The action CreateK marks the creation of a key along with

its level and attribute. It is referenced by lemma key int conf

to say that keys imported via unwrapping were honestly

generated at an earlier point (i.e., no trojan keys can exist).

StoreK, by contrast, marks that a key is added to the store,

which includes import via unwrap and key-derivation.

A second rule additionally contains !Dpdev 1q in the premise

and !Storepdev 1, h, k , lq in the conclusion and is used to model
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a trusted set-up phase where a common key is established on

two devices.

¨ ¨ ¨ , !Dpdev 1q ŕ ¨ ¨ ¨ ,StoreKpdev 1, h, k , lq sÑ
¨ ¨ ¨ , !Storepdev 1, h, k , lq (4)

Note that devices only need to produce fresh names during

key-generation. Hence, w.l.o.g., a device without RNG is

represented by an adversary that chooses to never employ an

instance of the key-generation rule where dev is instantiated

to this device. Devices without RNG exist and are useful:

lightweight authentication tokens can, e.g., obtain a master

key via a trusted set-up, and subsequently import keys via

unwrapping.

Encryption and decryption of payload data: Encryption

(C Encrypt) expects some payload m and encrypts it with the

authenticated header affirming the level as 1 (payload data)

and, for uniformity, an empty handle value ε P PN . For

simplicity, the handle h is not required as an explicit input

– the adversary chooses the appropriate instantiation of this

handle anyway. We set the initialisation vector to xdev , ctry,
which, as we will show, ensures the network-wide uniqueness

of the IV.

!Natpctr Y# 1q, !Dpdevq, !Storepdev , h, k , lq,
DCtrpdev , ctrq, Inpmq ŕ UseKpdev , h, k , lq,

DCtrIspdev , ctr Y# 1q, IVpxdev , ctryq sÑ
DCtrpdev , ctr Y# 1q,Outpsencpk , xdev , ctry, x1, εy,mq (5)

As before, DCtrIs records the new counter value

(DCtrpdev , ctr Y# 1q) to ensure monotonicity. IV marks the

use of the IV. The lemma uniqueness IV will ensure that no

two instances of this action have the same value, which is a

cryptographic requirement for AEAD schemes. Finally, UseK
marks the use of a key with the handle and level that were

assumed. Lemma key usage will ensure that any key used

was created or imported with exactly this handle and level.

Decryption (C Decrypt) verifies that the authenticated tag

is x1, εy. Let iv “ getIVpcq, t “ getHeaderpcq and m “
sdecpk , iv , t, cq in

!Dpdevq, !Storepdev , h, k , lq, Inpcq
ŕ UseKpdev , h, k , lq,Decryptpmq,

IsTruepsdecSucpk , iv , t, cqq,Eqpt, x1, εyq sÑ
Outpmq (6)

Again, UseK tracks the use of the key. Decryptpmq will be

used in the lemma origin to state that any knowledge obtained

by the output message m was known by the adversary before

invoking decryption.

We use the action IsTrue to check whether the decryption

was successful: every lemma ϕ presented in the next section

is verified w.r.t. the subset of traces for which the condition

α ¨̈“ p@ a, i.IsTruepaq@i ùñ a “E truepqq2
2F@i denotes that action F appears at position i in the trace.

holds true. This is achieved by showing α ùñ ϕ on

the entire set of traces. For every trace where the term

sdecSucpk , iv , t, cq is unequal to truepq (modulo E), the

property is trivially true and thus the property is valid iff

α holds for all traces that adhere to the restriction. Tamarin

conveniently allows specifying several so-called restrictions α,

which apply to all lemmas in this way.

Key-wrapping: Wrapping proceeds in the same vein. A

key on the device (!Storepdev , hw, kw, lwq) can be used to

encrypt another key (!Storepdev , he, ke, leq). Again, let iv “
xdev , ctry.

!Natpctr Y# 1q, !Dpdevq, !Storepdev , hw, kw, lwq,
!Storepdev , he, ke, leq,DCtrpdev , ctrq
ŕ UseKpdev , hw, kw, lwq,DCtrIspdev , ctr Y# 1q,

IVpivq, Ltpel, wlq sÑ
DCtrpdev , ctr Y# 1q,Outpsencpkw, iv , xle, hey, keqq (7)

The output sencpkw, iv , xle, hey, keq constitutes the wrap-

ping of ke under kw with additional authenticated data xle, hey
for the previous handle and level of ke on device dev . Again,

UseK, DCtrIs and IV track the state of keys, counters and the

IV iv “ xdev , ctry. Similar to IsTrue, the action Lt ensures

the wrapped key has a lower level than the wrapping key

by imposing another restriction on traces: for every action

Ltpa, bq, there is a non-empty a1 such that a Y# a1 “ b, i.e.,

a represents a (strictly) smaller number than b. This avoids

key-cycles.

Unwrapping: To unwrap (C UnwrapKey), a device is called

with a handle to a wrapping key (i.e., a key of level ě 3) and

an authenticated encryption c. It decrypts c, and stores the

resulting key along with the authenticated handle and level

for future use (!Storepdev , he, ke, leq). Let iv “ getIVpcq, t “
xle, hey “ getHeaderpcq and ke “ sdecpk , iv , t, cq in

!Natpleq, !Dpdevq, !Storepdev , h, k , lq, Inpcq
ŕ UseKpdev , h, k , lq, ImportKpdev , he, ke, leq,Neqple, 1q,

StoreKpdev , he, ke, leq, IsTruepsdecSucpk , iv , t, cqq sÑ
!Storepdev , he, ke, leq (8)

As before, UseK marks the use of the wrapping key

and StoreK their addition to the store. IsTrue ensures that

sdecSucpk , iv , t, cq “E truepq. ImportK marks that the key

contained in the wrapping has been imported, and not created.

It will be referred to by lemma key int conf (cf. Section VI)

to say that any key imported by wrapping was once created

on some device.

By our deduction soundness result, the cyphertext c in our

model contains the authenticated header and IV in the clear.

Hence it represents the ‘raw’ cyphertext, as well as the other

parameters supplied to C Unwrap.

Key-derivation: Key-derivation (C DeriveKey) is restricted to

key-usage keys, i.e., keys of level 2. Recall that we omitted

pure key-usage like MACs from the model, except for AEAD

encryption and decryption. We therefore model key-derivation

with AEAD base keys to represent derivation from other keys
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of level 2. The Fr-facts in the premise model the generation

of a globally unique handle, as well as a random salt r, which

is used to derive the new key as kdfpk , rq. Let two “ 1Y# 1
in

!Dpdevq, !Storepdev , h, k , twoq,Frprq,Frph 1q
ŕ UseKpdev , h, k , twoq,StoreKpdev , h 1, kdfpk , rq, twoq,
CreateKph 1, kdfpk , rq, twoq sÑ
!Storepdev , h 1, kdfpk , rq, twoq (9)

As before, UseK marks the use of the key k . Similar to key-

generation, this rule is marked with StoreK (as the derived key

is added to the store of dev ), as well as CreateK (as the key

kdfpk, rq is created).

VI. RESULTS FOR AES-GCM/CCM

The stated purpose of PKCS#11 is to separate secret data

from untrusted code accessing the interface. Hence our main

goal is to ensure that no key generated on the device can

leak to the adversary. Nevertheless, there are two additional

integrity properties that we consider important, but that have

been largely overlooked by prior work. First, the integrity of

the keys themselves: each key on the device was created on

some honest device; it is not possible to import trojan keys.

Second, the integrity of the mapping from handles to keys:

each key, on whichever device it may be placed, will always

have the same level and the same handle. The latter property

is a new feature of our policy that is meant to ensure that

no attacker can confuse an honest application into using an

insecure or deprecated key by altering the assignment from

handles to keys.

We verify these properties using two helping lemmas (see

Table II). These lemmas were stated manually, but proven

automatically. The first one (origin), establishes that any

knowledge obtained through decryption was available before-

hand, and that all keys imported via wrapping were either

originally created on some device, or was otherwise known

by the adversary before. The first conjunct of origin prunes

cases where decryption is used to derive a term of arbi-

trary form from an encryption. Intuitively, when Tamarin’s

backward search algorithm is trying to prove that a certain

term cannot be deduced, e.g., a key stored on the device, it

considers all rules that have a matching Out-fact. The rule

for decryption (6) by itself could output any term t, as long

as c “ sencpk, iv, x1, εy, tq is input, and thus known to the

adversary. This c itself could come from rule (6), which,

without origin, creates a loop. This conjunct establishes that

the content of the cyphertext must have been known prior to

using the decryption rule. As knowledge facts are permanent,

the application of rule (6) is superfluous if !Kptq is already

present, and thus this step can be pruned. The second conjunct

can be used to either establish the freshness of keys (both rules

containing CreateKpkq have the premise Frpkq), or to pinpoint

an earlier leak of a key, which helps in the inductive steps of

many of the follow-up lemmas.

The second helping lemma (counter monotonicity) estab-

lishes that on each device, the counter is monotonically

increasing. Proving it is just a matter of considering all pairs

of rules where the action DCtrIs occurs, but when applied, it

readily entails the relationship between any two counter-values

once their temporal relation can be established.

With these lemmas in place, we show: First (key usage),

that all keys that are used by an honest token were put in

the store either by unwrapping (8), by key-derivation (9) or

by key-generation (3); and that the attribute and handle remain

unchanged. Second (key int conf, first conjunct), if they were

created by unwrapping, they were previously generated by

key-generation or key-derivation with the same attribute and

handle, but possibly on a different device. Together, this

means that all keys that are used were honestly generated, and

that throughout their use, they are associated with the same

attributes and handle. Third (key int conf, second conjunct),

all keys are confidential: it is not possible for any key that

was created on the device to be deduced by the adversary. In

Tamarin, this is expressed by referring to the action !K in the

message deduction rule for adversarial output (see Figure 2):

the adversary cannot output a key created on some device.

Fourth, whenever a key is added to the store on any device,

it is associated with the same level and handle.

Finally, the deduction soundness result in the next section

comes with a proof obligation for the protocol: whenever a

term sencpk, iv , h,mq is output, the tuple pk, iv , hq needs

to be unique. Lemma uniqueness IV establishes the stronger

property that iv itself is distinct within all such terms.

All these lemmas can be shown automatically using a cus-

tom heuristic that prioritizes goals relevant to IV generation.

We report the number of proof steps and the verification time

per lemma in Table II. Both were measured on a 3.1 GHz

Intel Core i7 with 16GB RAM. A full proof took about four

minutes. As we present a new policy of PKCS#11 with new

features, we cannot compare the verification time with previ-

ous efforts. The closest work to ours also used Tamarin and

reported a runtime of half an hour on a dedicated computation

server [29]. The structure of the proof, in particular the choice

of the helping lemmas and their order, follows the structure in

this paper, albeit adapted to our model. We thus feel confident

that our helping lemmas and heuristics can be reused for other

policies that guarantee key and attribute integrity.

VII. JUSTIFYING THE SYMBOLIC ABSTRACTION

Symbolic models in the literature that include symmetric

encryption usually imply authenticity of the cyphertext. In

the cryptographic setting, this is called non-malleability. They

do, however, not account for the choice of the IV. This

is reasonable, as in most cases, this choice is part of the

encryption scheme itself, and not a protocol task. For the

configuration we discussed in the last section, however, IV

generation is part of the protocol itself and hence cannot be

abstracted away.

We thus provide some justification for the equational theory

we use to model AEAD, which was introduced in Example 1,
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dep. lemma description steps seconds

origin Any messages obtained by decryption were encrypted before and all keys imported via unwrapping
were either created on the device or known to the adversary at some point. p!Dpmq@i ùñ
Dj.!Kpmq@j ^ j ă iq ^ pImportKpdev , h, k , lq@i ùñ pDj.CreateKph, k , lq@i ^ j ă
iq _ Dj1.!Kpkq@j1 ^ j1 ă iq.

1597 72

counter mono The device counter is monotonically increasing. DCtrIspd, cq@i ^ DCtrIspd, c1q@j ^ i ă j ùñ
Dz.c1 “E z ` c.

1880 77

uniqueness IV No IV is used twice, no matter on which device. IVptq@i^ IVptq@j ùñ i “ j. 8 16
key usage All keys that are used were created by unwrapping, key-derivation or key-generation.

UseKpd, h, k, lq@i ùñ Dj.StoreKpd, h, k, lq@j ^ j ă i.
78 17

key int conf All keys are created on some device (ImportKpd, h, k, lq@i ùñ Dj.CreateKph, k, lq ^ j ă i) and
are never known (�pCreateKph, k, lq@i^Kpkq@jq).

428 45

key level handle Keys always retain the level and handle they were created with. StoreKpd, h, k, lq@i ^
StoreKpd1, h1, k, l1q@j ùñ l “E l1 ^ h “E h1.

170 21

TABLE II: Proof lemmas and their dependencies. We use F@i to denote that an action F appears at position i in a trace. For

brevity, unbound variables are to be read as universally quantified.

by showing a necessary, but not sufficient, condition for the

soundness of the symbolic attacker. As we will see, we have

to impose a condition on the protocol. Luckily, this condition

can be proven to hold using Tamarin.

Formal models rely on an abstract representation of cryp-

tography for efficient tool support. The relationship between

results in this formal model and the complexity-theoretic

model of cryptography was first established by Abadi and

Rogaway [1] under the name of computational soundness.

Computational soundness says that each attack that occurs

with non-negligible probability in the computational model

is represented in the symbolic model. It thus ensures that the

symbolic model and the semantics of the protocol calculus

are adequate models of the cryptographic primitives and the

behaviour of the protocol parties.

Rather than extending the existing body of work with an

additional computational soundness result for a small set

of primitives, we opted to extend the deduction soundness

framework [16] by Cortier and Warinschi. The distinguishing

feature of this framework is that it allows for the composition

of deduction soundness results for different primitives. As

PKCS#11 covers many different cryptographic primitives this

is a very useful feature. The downside is that deduction

soundness does not guarantee computational soundness. The

research question of defining a composable framework for

computational soundness is still open, thus we opted for

extending Böhl et. al.’s deduction soundness result [8] at the

expense of a weaker guarantee. Their result includes public

key encryption, secret key encryption, signatures, MACs,

hashes3 and also public data structures. All these primitives

are supported by PKCS#11, and thus it is very attractive to use

this model and be able to reason about higher-level protocols

building on our PKCS#11 configuration.

We extend Böhl et. al.’s result with deterministic authenti-

cated encryption, so we can reason about schemes like AES-

GCM and AES-CCM as supported by PKCS#11. We can

only sketch the result here, and refer to Appendix C and

Appendix D, as well as the long version [17] for the details.

3PKCS#11 supports a SHA-1-based key-derivation mechanism.

We keep the notation minimal in this section and use Böhl

et. al.’s notation in the appendices.

Cryptographic requirements: We introduce a cryptographic

security notion, DAE-N security, which is a version of DAE

security [40, Definition 1], modified to give the adversary

access to the IV. DAE [40] security is logically equivalent

to AEAD security [38] and formalises the confidentiality and

authenticity for AEAD. Our modification, DAE-N security,

differs from DAE security [40] in that oracles can be called

with arbitrary IVs, as long as they do not repeat.4

Definition 1 (Deterministic Authenticated Encryption with

IVs). Let Π “ pGen,Enc,Decq be an IV-based authenticated
encryption scheme that can handle an associated header. That
means: Given IV space S, associated data 5 space HAD and
message M, the encryption algorithm Enc takes as input a
key k

$ÐÝ Genp1ηq, an IV n P S, a string of associated data
H , with H P HAD and a message m with m PM. It returns
a cyphertext c “ Encpk, n,H,mq with c P M. Decryption
takes a key k

$ÐÝ Genp1ηq, an IV n P S, a string of associated
data H , with H P HAD and a cyphertext c with c P M as
input and returns m with m PMY tKu.

The DAE-N-advantage of an attacker A with access to two
oracles (the first called left-hand, the second called right-
hand) in Π is defined

Advdae´n
Π pAq “ |PrrAOEnc

k p¨,¨,¨q,ODec
k p¨,¨,¨q “ 1s

´ PrrA$p¨,¨,¨q,Kp¨,¨,¨q “ 1s|
where k

$ÐÝ Genp1ηq and OEnc
k p¨, ¨, ¨q and ODec

k p¨, ¨, ¨q denote
an encryption oracle and a decryption oracle, respectively.
Further, let $p¨, ¨, ¨q be an algorithm returning a random
bitstring c with c P M and Kp¨, ¨, ¨q an algorithm always
returning K.

4DAE-N security can also be seen as a weaker version of Rogaway’s
notion of misuse-resistant AE (MRAE) security [40, Definition 5]. GCM and
CCM mode provide AEAD security and thus DAE-N security, but not MRAE
security. If used appropriately, SIV mode provides both MRAE and DAE-N
security.

5In the context of our work header, additional data and associated data
are interchangeable terms.
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The adversary may not repeat an IV in a left-query and may
not ask a right-query pH, IV, Y q if some previous left-query
pH, IV,Xq returned Y . (MRAE security defines Advmrae just
the same, but restricts the adversary to not repeat a left-query
and may not ask a right-query pH, IV, Y q if some previous
left-query pH, IV,Xq returned Y .)

A scheme Π is DAE-N secure iff, for all ppt algorithms A,

Advdae´n
Π pAq ď neglpηq

for a negligible function neglpq and a security parameter η.

AEAD security [39] has been proven for CCM by Jonn-

son [24] and for GCM by McGrew and Viega [32]. In

Appendix A, we show that this implies DAE-N security.

Symbolic model and deduction relation: We represent the

equations in Example 1 in the deduction soundness framework

as a typed symbolic model and deduction relation $ between

a set of terms the adversary knows, and a term the adversary

can deduce from this set. A term is deducible if it can

be constructed from other deducible terms or obtained by

applying decryption and similar operations. In our case, the

symbolic model consists of a two randomized function klc
and klh, representing AEAD key generation, an encryption

function E with four arguments, and a function conS that

transforms terms into IVs. The superscript l marks kc and

kh as randomized, as opposed to E and conS which are

deterministic. Both kc and kh are implemented in an identical

way, but different symbols are used to mark keys that may be

corrupted initially, and keys that shall not be revealed. This is

ensured by the protocol conditions below. We use kx to make

statements that hold for both kh and kc.6

For each l, klx represents a different, randomly chosen key.

The types make sure that the first argument to encryption is

always a key and that the second is an IV. The other two

arguments, the authenticated information and the message, can

be arbitrary terms. The deduction relation is defined by the

following four rules:

klxpq conSpnq H m

Epklxpq, conSpnq, H,mq
Epklxpq, conSpnq, H,mq

conSpnq

Epklxpq, conSpnq, H,mq
H

Epklcpq, conSpnq, H,mq
m

From top left to bottom right, they allow (a) the attacker to

construct encryptions if he knows all inputs, (b) to extract

the IV, (c) to extract the authentication information and (d)

to deduce the message if the key may be corrupted initially.

The protocol conditions in the following paragraph ensure that

the adversary only learns keys that are initially corrupted, and

hence (d) correctly represents the first equation in Example 1,

as w.l.o.g., the symbolic adversary corrupts all keys klc from

the start.

6There is a similar distinction for E that we gloss over here, but is explained
in detail in Appendix B in the full version [17].

Implementation: An implementation consist of a Turing

machine that computes each function symbol, a length function

that for each term predicts the length its corresponding bit-

string has, an interpretation function that defines how bitstrings

are interpreted as terms and a valid predicate that restricts the

operations an attacker can perform. The latter is used to define

protocol conditions. These are necessary for soundness results

that have only standard assumptions on the cryptographic

primitives, as the following example illustrates. It is well

known that IND-CCA security does not guarantee anything in

the presence of key-cycles [3]. Hence soundness can only hold

if the deduction soundness attacker (and thus the protocol) is

restricted to not produce them. Alternatively, stronger notions

of security such as key-dependent message security can be

used. There is a trade-off between protocol conditions and

requirements on the cryptographic algorithms.
In our case, the Turing machine implementation is con-

structed using a DAE-N secure encryption scheme and an

injective function that maps the bitstring representation of any

terms in S into the IV space. For GCM and CCM, e.g., this can

be a simple concatenation if we can guarantee that all terms

in S can be represented in 32 bit. Our result is parametric in

this S. We define the bitstring representation of an encryption

to contain the authenticated information and the IV in the

clear. The length function and the interpretation function are

straight-forward. (See Appendix E in the full version [17] for

details.)
The validity predicate enforces the following protocol con-

ditions (paraphrased for simplicity):

1) AEAD keys kl can only occur in the first position of an

E-term or in an initial corruption query.

2) No n in Epkl, conSpnq, H,mq occurs twice for the same

l.
3) Whenever conSptq appears in some term, t P S.

Proof overview: Due to its size (about 15 pages), we need

to refer to the full version [17] for the proof, but will outline

its structure here. We show deduction soundness in a stepwise

proof over four games, starting from the deduction soundness

game. This game is used to state that an adversary can never

generate a bitstring that can be parsed to a term that he should

not be able to deduce according to $. In this game, the

adversary interacts with an oracle that gives him access to the

bitstring representation of terms of his choice. In the first step,

it is shown that terms only collide with negligible probability.

In the second, cyphertexts under honest keys are replaced with

random bitstrings. In the third, the winning condition is made

stricter by adding a rule to the deduction system that allows the

adversary to generate honest cyphertexts — any adversary that

can distinguish between the deduction soundness game with

or without this rule is able to break the authentication property

of the scheme. In the fourth and final step, it is shown that

the modified deduction system is compatible with Cortier and

Warinschi’s notion of composability.
At this point, the model is not yet suited for key-wrapping,

as keys can only appear at key positions and thus not be en-

crypted. Böhl et. al.’s framework handles this in an additional
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step. Function symbols carry an annotation to mark some

of their input positions as forgetful; in our case, the fourth

position of E. We show that a forgetful implementation, i.e.,

an implementation that substitutes each input at a forgetful

function with a random bitstring of the same length, is also

deduction sound. This allows us to relax the first condition of

the validity predicate:

1) AEAD keys kl can only occur in an initial corruption

query, in the first position of an E-term, or as a subterm of

a forgetful position of a function symbol that we compose

with (but not E itself).

The last disjunct implicitly excludes key-cycles: by compos-

ing our AEAD model and implementation MAEAD with (a

renamed version) of itself, M 1
AEAD , keys of MAEAD can

encrypt keys of M 1
AEAD , but not vice versa.

Relation to our model: Our model has to make sure that for

all possible traces, all three conditions of the validity predicate

hold. The first condition can be checked syntactically: keys

are indeed only output within encryptions terms, where they

occur at position one or four. The only use at the fourth

position is in the rule for key-wrapping.7 There, key-cycles

are avoided by means of the restriction Ltpel ,wlq. The lemma

key level handle ensures that the level associated to each

key is always the same. We can hence iteratively apply the

compositionality result for all keys of level 1, 1` 1, etc.; the

restriction associated to Lt makes sure that keys in the fourth

position are always of lower level than the key at position one.

As a side-effect, however, the dynamic corruption of en-

cryption keys is not guaranteed to be deduction sound. This is

unfortunate, because the policy we propose implements a key-

hierarchy to limit the potential damage due to wrapping keys

that leak, e.g. due to side-channel attacks or brute-forcing.

Consequently, we refrained from formalising this property,

as the soundness of a model that includes dynamic cor-

ruption cannot be guaranteed. There is an existing proposal

that permits computational soundness without such protocol

restrictions [5] that applies to a hybrid encryption scheme

based on CBC-mode and an arbitrary MAC [46]. We leave

extending these results and investigating the resistance against

key-leakage to future work.

The second condition requires the protocol to make sure

each IV is only used once per key, for all protocol traces.

This is guaranteed by the lemma uniqueness IV, which can be

verified using Tamarin.

The third restriction can be checked syntactically, if we

fix an implementation of conS . For instance, we can set S
to the set of terms xt1, t2y such that t1 has a suitable type

for device ids, e.g., t0, 1u32 and t2 represents t1, . . . , 232u.
We then define the implementation of conS to decode their

bitstring representation and concatenate them.

Limitations of deduction soundness: We stress that deduc-

tion soundness is only a necessary criterion for computational

soundness, as it only argues about the term representation and

7The payload in the rule for encryption (5) is guaranteed to not be a key
by lemma key int conf.

dep. lemma steps seconds

origin 2087 103
counter mono 1880 79
uniqueness IV 8 16
key usage 86 18
key int conf 443 46
key level handle 170 22

TABLE III: Results for SIV mode.

h m

Fk1 Ek2

csiv

h m

Fk1 Ek2

csiv

Fig. 3: SIV encryption (left) and decryption (right).

the deduction relation, but not the process representation. Our

symbolic results do not necessarily carry over to the computa-

tional model. However, it was helpful in determining the valid-

ity conditions. Cortier and Warinschi point out that, in addition

to deduction soundness, a so-called commutation property is

necessary to establish computational soundness [16]. It is not

known how to do this in a modular manner.

Roughly speaking, deduction soundness by itself talks about

secrecy, not integrity. We opted for deduction soundness

because of the composability it offers. How to obtain compos-

ability and computational soundness at the same time remains

an interesting open question but we consider this question out

of the scope of this paper.

VIII. RESULTS FOR SIV

As we have pointed out before, user-provided IVs constitute

a considerable attack vector. An alternative to generating IVs

internally is to get rid of them altogether. Rogaway proposed

a construction where the initialisation vector is synthesised

from the authenticated information and the message using a

hash function [41] (see Figure 3).

We can readily apply the deduction soundness result to

SIV mode, if we apply the construction sketched in Figure 4.

As Rogaway showed, this construction can turn SIV mode

into a MRAE secure scheme [41, Section 7], which implies

DAE-N security. Interestingly, the construction effectively van-

ishes if either iv or h are always set to the empty string ε. We

can therefore argue about SIV mode by slightly modifying our

model so that the fourth position of senc{4, i.e., the authenti-

cated information, is always set to ε. As concatenation cancels

out, SIV by itself is a valid cryptographic implementation and

the existing deduction soundness result applies. We must still

ensure uniqueness of iv , so we include the device identifier and

counter in the header. Finally, we thus verify all lemmas from
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Fig. 4: DAE-N/MRAE secure scheme from SIV mode.

Section VI in 284 seconds overall (see Table III for details).

SIV mode was considered for inclusion in PKCS#11 v3.0 [44],

but as of now, it is not supported [35].

IX. RELATED WORK

The search for logical attacks on security APIs goes back to

Longley and Rigby [31] and Bond and Anderson [9]. There is

a huge body of work specifically on PKCS#11 [10, 14, 18], but

there have also been academic proposals for new APIs [28, 15,

27]. While attacks were often a driving factor, a lot of effort

was directed towards finding configurations that are secure,

i.e., that preserve secrecy of keys.

There are three major approaches to the analysis of

PKCS#11 configurations. The first is using program verifi-

cation techniques, but this was not automated and therefore

has largely been discarded [20, 21]. The second approach is

using security type-checking on the implementation, e.g., C-

code [12] or a domain-specific language [2]. This technique

was used to show secrecy of keys against a Dolev-Yao attacker,

but the type-system needs to be modified to reflect new

cryptographic primitives like AEAD encryption. With the third

approach, adoption of new primitives is easier. Here, protocol

verification techniques are used. Essentially, the security to-

ken is the only participant in a protocol, and the API-level

adversary is represented by the network attacker. Early results

were based on model-checking [18] and thus limited to a fixed

number of keys, but under certain assumptions, the soundness

for an unbounded number of keys can be established [22].

The high degree of automation even allows for automated

attack reconstruction [10]. More flexibility can be achieved

by using protocol verification tools in the unbounded model,

as existing results for the soundness of a bounded model do

not apply if the API itself is modified, e.g., by introduction

of stronger cryptographic primitives [29]. To our knowledge,

the two most functional yet secure configurations that were

discovered either have keys that lose functionality on wrapping

and reimporting [10] or do not allow to export wrapping

keys [10, 29].

In contrast to finding configuration which are secure against

logical attacks, cryptographic security proofs for Security

APIs [27, 11] achieve stronger guarantees, but have not been

automated so far. Even though some results retain compatibil-

ity with PKCS#11 [42], their focus is on secure design, not

identification of secure configurations. Furthermore, following

cryptographic necessity, the proposed design forbids that keys

may be used for more than one purpose, e.g., the keys

used for wrapping and encryption need to be separated by

design, in contrast to the policy identified here. While this is

cryptographic good practice, PKCS#11 policies often provide

this functionality to allow for more flexibility in HSM-based

protocols.

The idea of relating symbolic abstractions to cryptographic

security notions goes back to Abadi and Rogaway’s in-

troduction of computational soundness [1]. Various results

established the soundness of symmetric encryption [6], sig-

natures [7], and hash function [23], just to name a few.

Most results exclude key-cycles [6], however, it is possible

to overcome this limitation by strengthening the cryptographic

requirements [3] or the Dolev-Yao attacker [30]. A priori, these

results do not compose, hence Cortier and Warinschi proposed

deduction soundness [16] as a framework that allows for some

amount of composability. Subsequent work in this framework

covered most cryptographic primitives present in PKCS#11,

including MACs, hashes, signatures, symmetric and public key

encryption [8]. To be sure that we handle device-internal nonce

generation correctly, we introduce deterministic authenticated

encryption with associated data to this framework.

X. CONCLUSION

We summarize our suggestions for PKCS#11 version 3.0

and other Security APIs and point out challenges in the

protocol verification approach.

The addition of AEAD schemes to PKCS#11 has shown

great potential for functional and secure key-management poli-

cies. It is vital that HSMs can guarantee network-wide unique

IVs, thus this should be mandated for key-wrapping. The cur-

rent interface does not provide this IV in the function output,

which is making a device-internal generation impossible or at

least unnecessarily complicated. The attributes attached to a

key should be authenticated with the wrapping, and AES keys

should either be usable for wrapping and unwrapping, or for

encryption and decryption. In contrast to previous policies,

the authenticity of a key’s attribute is guaranteed and thus

both encryption and wrapping keys can be wrapped. While we

proposed this policy for PKCS#11, it is also compatible with

the Key Management Interoperability Protocol (KMIP) [26],

an independent standard for key-management that is also

governed by OASIS. KMIP allows for (but does not default to)

authenticating attributes when exporting and importing keys.

It provides support for the GCM and CCM modes of operation

as well as internal IV generation.

Our approach was based on protocol verification, which was

flexible enough to handle the introduction of new primitives,

however, finding the correct equations and protocol conditions

is not easy. Despite the huge body of work in computational

soundness, there was no result that gave an answer right away.

No computational soundness results covers the range of cryp-

tographic primitives supported by PKCS#11. While Böhl’s

deduction soundness result does, thanks to its composability,
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it provides weaker guarantees. We thus encourage future

research to consolidate existing knowledge on computational

soundness and to facilitate the adoption of new primitives

by investigating the composability of computationally sound

cryptographic primitives.
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APPENDIX

A. AEAD security implies DAE-N security

We now want to show that for “AE with AD” schemes

that are secure considering privacy and authenticity as defined

above, it holds that those schemes are also DAE-N secure.

Lemma 1 (AEAD security [40, Proposition 8]). Let Π =
(Gen,Enc,Dec) be a authenticated encryption with associ-
ated data with AD space HAD, IV space N and message space
M[38]. Let A be an adversary with access to two oracles.
Suppose A runs in time � and asks qL queries to its left oracle,
these totaling uL bits, and asks qR queries to its right oracle,
these totaling uR bits. Then there exist adversaries D and F
such that

Advdae´n
Π pAq ď AdvprivΠ pDq ` qR AdvauthΠ pF q

where D runs in time �OpuL ` uRq and asks qL queries
totaling uL bits, and F runs in time � + O(uL`uR), asking
at most qL left-queries and one right-query, these totaling at
most ul ` uR bits.

Proof. This proof is exactly the proof of [40, Proposition 8],

however, instead of the modified syntax for deterministic

authenticity/privacy, the original syntax [38] needs to be

employed, i.e., the oracles take a third input for the IV, hence

Op¨, ¨q is replaced by Op¨, ¨, ¨q for every oracle. Both definitions

restrict the adversary to not query the same IV twice.

B. Deduction soundness of AEAD schemes

The advantage of deduction soundness is that it is relatively

easy to extend. Böhl, Cortier, and Warinschi [8] already added

public datastructures, public key encryption, signatures, secret

key encryption, MACs and hashes to their framework. Our

contribution to this will be, to extend the framework with

authenticated encryption schemes with associated data.

We will define a symbolic model MAEAD and a correspond-

ing implementation IAEAD. Then we will show that for any

symbolic model M which is composable with MAEAD (see
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Section B.4 in the full version [17] ) and implementation

I where I is a deduction sound implementation of M, it

holds that the composition I Y IAEAD is a deduction sound

implementation of M YMAEAD if I is composable with

IAEAD.

To achieve this, we will use the notion of DAE-N security

(Definition 1) and rewrite the definition in a game-like way to

fit into the syntax of our computational model.

Listing 1: DAE-N game

DAE -N(Gen, Enc, Dec)
A (η):

b
$ÐÝ t0, 1u

oracles := H
on request "new oracle" do

let r
$ÐÝ t0, 1uη

let k := Gen(1η, r)
oracles.add(k)
let ciphersk := H
send k to A

on request "OEnc
k pn,H,mq" do

if k R oracles then
send K to A

else
if b == 0 then

let c’:= Enck(n, H, m)

let c
$ÐÝ t0, 1u|c1|

ciphersk.add((c, m))
send c to A

else
send Enck(n, H, m) to A

on request "ODec
k pn,H, cq" do

if k R oracles then
send K to A

else
if b == 0 then

if (c, m) P ciphersk

for some m
then

send m to A
else

send K to A
else

send Deck(n, H, m) to A

on request "guess b’" do
if b == b’ then

return 1
else

return 0

Intuitively, the adversary A which now plays DAE-N game

still tries to distinguish whether he interacts with real oracles

or with some fake oracles. Concretely, a bit b is chosen at

random in the beginning of the game, which decides whether

the adversary gets a response from a real oracle (if b = 1)

or from a fake oracle (if b = 0). If the adversary is able to

send a request ”guess b1” (and b1 ““ b) with a probability

significantly higher than 1
2 , he can break DAE-N security

of the encryption scheme. Note that we additionally added

a random input parameter r to the key generation algorithm

to clarify that all oracles use a different source of randomness.

C. Symbolic model

At first we define the symbolic model MAEAD “
pTAEAD,ďAEAD,ΣAEAD,DAEADq:

Signature ΣAEAD::

kx : τkx

AEAD

conS : J Ñ τnAEAD

Ex : τkx

AEAD ˆ τnAEAD ˆJˆJ Ñ τ cipherAEAD

are the featured function symbols, with x P th, cu and S being

a set of possible nonces.

The randomized function kh returns honest keys while kc
returns corrupted keys.

The deterministic function conS maps an arbitrary input value

to a nonce from the set S.

The deterministic function Eh returns an honest cyphertext

using an honest key, a nonce, and two additional arbitrary

values as input.

The only difference of Ec to Eh is that Ec uses some corrupted

key as input and returns a corrupted cyphertext.

Set of types TAEAD:

TAEAD “ tJ, τkx

AEAD, τnAEAD, τ cipherAEADu
Sub type relation ďAEAD: All types introduced above are

direct sub types of the base type J.

Deduction System DAEAD::

klxpq conSpnq H m

Exp klxpq, conSpnq, H,mq
Exp klxpq, conSpnq, H,mq

conSpnq

Exp klxpq, conSpnq, H,mq
H

Ecp klcpq, conSpnq, H,mq
m

D. Implementation

In Appendix E in the full version [17], we pro-

vide a concrete implementation IAEAD “ pMAEAD,
�¨�AEAD, lenAEAD, openAEAD, validAEADq for authenti-
cated encryption schemes with associated data. The im-

plementation uses some DAE-N secure authenticated se-

cret key encryption scheme ΠDAEN “ pDAEN.Gen,
DAEN.Enc,DAEN.Decq. ΠDAEN additionally is collision

free by construction since a collision would break the authen-

ticity of the encryption scheme. Due to lack of space, we will

only give the validity predicate here. It is defined on a fixed

set of bitstrings S1 Ă t0, 1u˚, which we will later require

to correspond to a specified set of terms used to derive IVs,

and an arbitrary injective and efficiently computable function

ι : S1 Ñ �τNAEAD�.

The validAEAD predicate: The validAEAD predicate is

dependent on a set of terms S that specifies which terms

can be turned into IVs by ι. As the IV space is typically

finite (e.g. for GCM mode), and ι is injective, S needs to be

restricted, too. Our result is parametric in S, S1 and ι. We

may define S as a subset of the set of terms that is defined by
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composition, e.g., to derive S from a transparent model. We

therefore fix some model M “ pT ,ď,Σ, Dq and its deduction

sound implementation I to compose with, such that M and

I are composable with MAEAD and IAEAD regarding the

requirements from Section B.4 in the full version [17]. We then

choose S Ă TermspΣY ΣAEAD, T Y TAEAD,ď Y ďAEADq
such that any bitstring representation for any term t P S is in

S1.
Formally, for any A and any a parameterized transparent

symbolic model Mtranpνq with a corresponding parame-

terized implementation Itranpνq such that Mtranpνq and

Itranpνq are composable with MYMAEAD and IYIAEAD

regarding the requirements from Section B.4 in the full ver-

sion [17] for ν being send by the adversary A, we require

that for the library L at any moment in any instance of the

deduction soundness game

DSpMYMAEADqYMtranpνq,pIYIAEADqYItranpνqpηq
it holds that @s1.L�s1� P S ðñ s1 P S1.

For an appropriately chosen S, we can now define

validAEAD as follows:

1q We demand that the trace T starts with exactly one init

query ”init T,H” where at least one of them could be

an empty list.

2q The adversary is not allowed to use Ex in the the init

query.

3q iq For the query ”init T,H” it should hold that:

˚ the function symbol kc should only occur in a term

klcpq P T .

˚ the function symbol kh should only occur in a term

klhpq P H .

iiq For each label l of klx, l should be unique in T YH .

iiiq Whenever klxpq occurs in a generate query, klxpq must

have occurred in the init query before.

ivq Except generation, klxpq should only occur in Ex as its

first argument.

This rules guarantee that all keys are generated in the

init query.

4q No tuple of pconSpnq, H,mq occurs twice in some trace

T. In other words, we demand that for every term

Expklxpq, conSpnq, H,mq pconSpnq, H,mq is different

in each ”init T,H”, ”generate t” or ”sgenerate

t” queries. (For all terms Expklxpq, conSpnq, H,mq,
Expklxpq, conSpn1q, H 1,m1q P T it has to hold that

pconSpnq, H,mq ­“ pconSpn1q, H 1,m1q.
5) For each term conSpnq, n P S.

These rules guarantee that all keys which may be used by the

adversary are generated in the init query. They also guarantee

that the adversary has to decide which keys are corrupted and

which keys are honest during initialization, because we only

allow static corruption of keys. Furthermore, to prevent key

cycles, keys are only allowed to be used for encryption and

decryption. At last, the rules guarantee the freshness of the

used nonces.

For all parse and generate requests of the adversary on

the trace T all validAEAD conditions must be fulfilled.
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