
Journey Beyond Full Abstraction
Exploring Robust Property Preservation for Secure Compilation

Carmine Abate1 Roberto Blanco1 Deepak Garg2 Cătălin Hriţcu1 Marco Patrignani3,4 Jérémy Thibault1

1Inria Paris 2MPI-SWS 3Stanford University 4CISPA Helmholz Center for Information Security

Abstract—Good programming languages provide helpful ab-
stractions for writing secure code, but the security properties of
the source language are generally not preserved when compiling a
program and linking it with adversarial code in a low-level target
language (e.g., a library or a legacy application). Linked target
code that is compromised or malicious may, for instance, read and
write the compiled program’s data and code, jump to arbitrary
memory locations, or smash the stack, blatantly violating any
source-level abstraction. By contrast, a fully abstract compilation
chain protects source-level abstractions all the way down, ensur-
ing that linked adversarial target code cannot observe more about
the compiled program than what some linked source code could
about the source program. However, while research in this area
has so far focused on preserving observational equivalence, as
needed for achieving full abstraction, there is a much larger space
of security properties one can choose to preserve against linked
adversarial code. And the precise class of security properties one
chooses crucially impacts not only the supported security goals
and the strength of the attacker model, but also the kind of
protections a secure compilation chain has to introduce.

We are the first to thoroughly explore a large space of formal
secure compilation criteria based on robust property preserva-
tion, i.e., the preservation of properties satisfied against arbitrary
adversarial contexts. We study robustly preserving various classes
of trace properties such as safety, of hyperproperties such as
noninterference, and of relational hyperproperties such as trace
equivalence. This leads to many new secure compilation criteria,
some of which are easier to practically achieve and prove than
full abstraction, and some of which provide strictly stronger
security guarantees. For each of the studied criteria we pro-
pose an equivalent “property-free” characterization that clarifies
which proof techniques apply. For relational properties and
hyperproperties, which relate the behaviors of multiple programs,
our formal definitions of the property classes themselves are
novel. We order our criteria by their relative strength and show
several collapses and separation results. Finally, we adapt existing
proof techniques to show that even the strongest of our secure
compilation criteria, the robust preservation of all relational
hyperproperties, is achievable for a simple translation from a
statically typed to a dynamically typed language.

1 Introduction
Good programming languages provide helpful abstractions for

writing secure code. Even in unsafe low-level languages like

C, safe programs have structured control flow and obey the

procedure call and return discipline. Languages such as Java,

C#, ML, Haskell, or Rust provide type and memory safety

for all programs and additional abstractions such as modules

and interfaces. Languages for efficient cryptography such as

qhasm [16], Jasmin [9], and Low� [61] enforce a “constant-

time” coding discipline to rule out certain side-channel attacks.

Finally, verification languages such as Coq and F� [61, 70]

provide abstractions such as dependent types, logical pre- and

postconditions, and tracking side-effects, e.g., distinguishing

pure from stateful computations. Such abstractions make rea-

soning about security more tractable and have, for instance,

enabled developing high-assurance libraries in areas such as

cryptography [9, 26, 34, 77].

However, such abstractions are not enforced all the way

down by mainstream compilation chains. The security prop-

erties a program satisfies in the source language are generally

not preserved when compiling the program and linking it

with adversarial target code. High-assurance cryptographic

libraries, for instance, get linked into real applications such as

web browsers [19, 34] and web servers, which include millions

of lines of legacy C/C++ code. Even if the abstractions of

the source language ensure that the API of a TLS library

cannot leak the server’s private key [26], such guarantees

are completely lost when compiling the library and linking

it into a C/C++ application that can get compromised via

a buffer overflow, simply allowing the adversary to read the

private key from memory [31]. A compromised or malicious

application that links in a high-assurance library can easily

read and write its data and code, jump to arbitrary memory

locations, or smash the stack, blatantly violating any source-

level abstraction and breaking any security guarantee obtained

by source-level reasoning.

An idea that has been gaining increasing traction recently

is that it should be possible to build secure compilation chains

that protect source-level abstractions even against linked ad-

versarial target code, which is generally represented by target

language contexts. Research in this area has so far focused on

achieving full abstraction [2, 3, 5, 6, 7, 28, 37, 42, 44, 56,

59, 60], whose security-relevant direction ensures that even

an adversarial target context cannot observe more about the

compiled program than some source context could about the

source program. In order to achieve full abstraction, the vari-

ous parts of the secure compilation chain—including, e.g., the

compiler, linker, loader, runtime, system, and hardware—have

to work together to provide enough protection to the compiled

program, so that whenever two programs are observationally
equivalent in the source language (i.e., no source context can

distinguish them), the two programs obtained by compiling

them are observationally equivalent in the target language (i.e.,

256

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Carmine Abate. Under license to IEEE.
DOI 10.1109/CSF.2019.00025

no target context can distinguish them).

Observational equivalences are, however, not the only class

of security properties one may want to robustly preserve,

i.e., preserve against arbitrary adversarial contexts. One could

instead be interested in robustly preserving, for instance,

classes of trace properties such as safety [50] or liveness [10],

or of hyperproperties [24] such as hypersafety, including

variants of noninterference [11, 38, 53, 64, 76], which cover

data confidentiality and integrity. However, full abstraction is

generally not strong enough on its own to imply the robust

preservation of any of these properties (as we show in §5, and

as was also argued by others [57]). At the same time, the kind

of protections one has to put in place for achieving full abstrac-

tion seem like overkill if all one wants is to robustly preserve

safety or hypersafety. Indeed, it is significantly harder to hide

the differences between two programs that are observationally

equivalent but otherwise arbitrary, than to protect the internal

invariants and the secret data of a single program. Thus, a

secure compilation chain for robust safety or hypersafety can

likely be more efficient than one for observational equivalence.

Moreover, hiding the differences between two observationally

equivalent programs is hopeless in the presence of any side-

channels, while robustly preserving safety is not a problem

and even robustly preserving noninterference seems possible

in specific scenarios [14]. Finally, even when efficiency is not a

concern (e.g., when security is enforced by static restrictions

on target contexts [1, 6, 7, 56]), proving full abstraction is

notoriously challenging even for simple languages, and con-

jectures have survived for decades before being settled [29].

Convinced that there is no “one-size-fits-all” criterion for

secure interoperability with linked target code, we explore,

for the first time, a large space of secure compilation criteria

based on robust property preservation. Some of the criteria

we introduce are strictly stronger than full abstraction and,

moreover, immediately imply the robust preservation of well-

studied property classes such as safety and hypersafety. Other

criteria we introduce seem easier to practically achieve and

prove than full abstraction. In general, the richer the class of

security properties one tries to robustly preserve, the harder

efficient enforcement becomes, so the best one can hope for

is to strike a pragmatic balance between security and efficiency

that matches each application domain.

For informing such difficult design decisions, we explore

robustly preserving classes of trace properties (§2), of hy-

perproperties (§3), and of relational hyperproperties (§4). All

these property notions are phrased in terms of execution traces,

which for us are (finite or infinite) sequences of events such as

inputs from and outputs to an external environment [48, 51].

Trace properties such as safety [50] restrict what happens

along individual program traces, while hyperproperties [24]

such as noninterference generalize this to predicates over

multiple traces of a program. In this work we generalize

this further to a new class we call relational hyperproperties,

which relate the traces of different programs. An example of

relational hyperproperty is trace equivalence, which requires

that two programs produce the same set of traces. We work

out many interesting subclasses that are also novel, such as

relational trace properties, which relate individual traces of

multiple programs. For instance, “On every input, program A’s

output is less than program B’s” is a relational trace property.

We order the secure compilation criteria we introduce

by their relative strength as illustrated by the partial order

in Figure 1. In this Hasse diagram edges represent logical

implication from higher criteria to lower ones, so the higher a

criterion is, the harder it is to achieve and prove. Intuitively,

the criteria based on the robust preservation of trace properties

(in the yellow area) only require sandboxing the context (i.e.,

linked adversarial code) and protecting the internal invariants

of the program from it, i.e., only data integrity. The criteria

based on hyperproperties (in the red area) require additionally

hiding the data of the program from the context, i.e., data
confidentiality. Finally, the criteria based on relational hyper-

properties (in the blue area) require additionally hiding the

code of the program from the context, i.e., code confidentiality.

While most implications in the diagram follow directly from

the inclusion between the property classes [24], strict inclusion

between property classes does not imply strict implication

between criteria. Robustly preserving two distinct property

classes can in fact lead to equivalent criteria, as happens in

general for hyperliveness and hyperproperties (§3.5) and, in

the presence of source-level reflection or internal nondetermin-

ism, for many criteria involving hyperproperties and relational

hyperproperties (§4.5). To show the absence of more collapses,

we also prove various separation results, for instance that

Robust Safety Property Preservation (RSP) is strictly weaker

than Robust Trace Property Preservation (RTP). For this, we

design (counterexample) compilation chains that satisfy the

weaker criterion but not the stronger one.

For each introduced secure compilation criterion we also

discovered an equivalent “property-free” characterization that

is generally better tailored for proofs and that provides im-

portant insights into what kind of techniques one can use

to prove the criterion. For instance, for proving RSP and

RTP we can produce a different source context to explain

each attack trace, while for proving stronger criteria such as

Robust Hyperproperty Preservation (RHP) we have to produce

a single source context that works for any attack trace.

We also formally study the relation between our new

security criteria and full abstraction (§5) proxied by the

robust preservation of trace equivalence (RTEP), which

in determinate languages—i.e., languages without internal

nondeterminism—was shown to coincide with observational

equivalence [21, 33]. In one direction, RTEP follows uncondi-

tionally from Robust 2-relational Hyperproperty Preservation,

which is one of our stronger criteria. However, if the source

and target languages are determinate and we make some mild

extra assumptions (such as input totality [36, 75]) RTEP
follows even from the weaker Robust 2-relational relaXed
safety Preservation (R2rXP). Here, the challenge was iden-

tifying these extra assumptions and showing that they are

sufficient to establish RTEP. In the other direction, we adapt a

counterexample proposed by Patrignani and Garg [57] to show

257

Robust Relational Hyperproperty
Preservation (RrHP)

Robust K-Relational Hyperproperty
Preservation (RKrHP)

Robust 2-Relational Hyperproperty
Preservation (R2rHP)

Robust Relational Property
Preservation (RrTP)

Robust K-Relational Property
Preservation (RKrTP)

Robust 2-Relational Property
Preservation (R2rTP)

Robust Relational relaXed safety
Preservation (RrXP)

Robust Finite-Relational relaXed
safety Preservation (RFrXP)

Robust K-Relational relaXed
safety Preservation (RKrXP)

Robust 2-Relational relaXed
safety Preservation (R2rXP)

Robust Relational Safety
Preservation (RrSP)

Robust Finite-Relational
Safety Preservation (RFrSP)

Robust K-Relational Safety
Preservation (RKrSP)

Robust 2-Relational Safety
Preservation (R2rSP)

Robust Hyperproperty
Preservation (RHP)

Robust Subset-Closed Hyperproperty
Preservation (RSCHP)

Robust K-Subset-Closed Hyperproperty
Preservation (RKSCHP)

Robust 2-Subset-Closed Hyperproperty
Preservation (R2SCHP)

Robust Trace Property Preservation (RTP)

Robust Hypersafety Preservation (RHSP)

Robust K-Hypersafety Preservation (RKHSP)

Robust 2-Hypersafety Preservation (R2HSP)

Robust Safety Property Preservation (RSP)Robust Dense Property Preservation (RDP)

Robust Trace Equivalence
Preservation (RTEP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

+ determinacy

Robust Relational Hyperproperty
Preservation (RrHP)

Robust K-Relational Hyperproperty
Preservation (RKrHP)

Robust 2-Relational Hyperproperty
Preservation (R2rHP)

Robust Relational Property
Preservation (RrTP)

Robust K-Relational Property
Preservation (RKrTP)

Robust 2-Relational Property
Preservation (R2rTP)

Robust Relational relaXed safety
Preservation (RrXP)

Robust Finite-Relational relaXed
safety Preservation (RFrXP)

Robust K-Relational relaXed
safety Preservation (RKrXP)

Robust 2-Relational relaXed
safety Preservation (R2rXP)

Robust Relational Safety
Preservation (RrSP)

Robust Finite-Relational
Safety Preservation (RFrSP)

Robust K-Relational Safety
Preservation (RKrSP)

Robust 2-Relational Safety
Preservation (R2rSP)

Robust Trace Equivalence
Preservation (RTEP)

+ determinacy

R
el

at
io

n
al

H
y

p
er

p
ro

p
er

ti
es

C
ri

te
ri

a
(§

4
)

Robust Hyperproperty
Preservation (RHP)

Robust Subset-Closed Hyperproperty
Preservation (RSCHP)

Robust K-Subset-Closed Hyperproperty
Preservation (RKSCHP)

Robust 2-Subset-Closed Hyperproperty
Preservation (R2SCHP)

Robust Hypersafety Preservation (RHSP)

Robust K-Hypersafety Preservation (RKHSP)

Robust 2-Hypersafety Preservation (R2HSP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

H
y

p
er

p
ro

p
er

ti
es

C
ri

te
ri

a
(§

3
)

Robust Trace Property Preservation (RTP)

Robust Safety Property Preservation (RSP)Robust Dense Property Preservation (RDP)

T
ra

ce
P

ro
p

er
ti

es
C

ri
te

ri
a

(§
2

)

Fig. 1: Partial order with the secure compilation criteria studied in this paper. Criteria higher in the diagram imply the lower

ones to which they are connected by edges. Criteria based on trace properties are grouped in a yellow area, those based on

hyperproperties are in a red area, and those based on relational hyperproperties are in a blue area. Criteria with an italics name
preserve a single property that belongs to the class they are connected to; the dotted edge requires an additional determinacy

assumption. Finally, each edge with a thick arrow denotes a strict implication that we have proved as a separation result.

that RTEP (and thus full abstraction), even in conjunction with

compositional compiler correctness, does not imply even the

weakest of our criteria, RSP, RDP, and RTINIP.

Finally, we show that two proof techniques originally de-

veloped for full abstraction can be readily adapted to prove

our new secure compilation criteria (§6). First, we use a

“universal embedding” [56] to prove that the strongest of our

secure compilation criteria, Robust Relational Hyperproperty

Preservation (RrHP), is achievable for a simple translation

from a statically typed to a dynamically typed first-order

language with first-order functions and I/O. Second, we use

the same simple translation to illustrate that for proving Robust
Finite-relational relaXed safety Preservation (RFrXP) we can

employ a “trace-based back-translation” [43, 59], a slightly

less powerful but more generic technique that we extend to

back-translate a finite set of finite execution prefixes into a

source context. This second technique is applicable to all

criteria implied by RFrXP, which includes robust preservation

of safety, of hypersafety, and in a determinate setting also of

trace (and thus observational) equivalence.

In summary, our paper makes five contributions:

C1. We phrase the formal security guarantees obtained by

protecting compiled programs from adversarial contexts in

terms of robustly preserving classes of properties. We are

the first to explore a large space of security criteria based

on this idea, including criteria that provide strictly stronger

security guarantees than full abstraction, and also criteria that

are easier to practically achieve and prove, which is important

for building more realistic secure compilation chains.

C2. We carefully study each new secure compilation criterion

and the non-trivial relations between them. For each criterion

we propose a property-free characterization that clarifies which

proof techniques apply. For relating the criteria, we order them

by their relative strength, show several interesting collapses,

and prove several challenging separation results.

C3. We introduce relational properties and hyperproperties,

which are new property classes of independent interest, even

outside of secure compilation.

C4. We formally study the relation between our security

criteria and full abstraction. In one direction, we show that

determinacy is enough for robustly preserving classes of rela-

tional properties and hyperproperties to imply preservation of

observational equivalence. In the other direction, we show that,

even when assuming compiler correctness, full abstraction

does not imply even our weakest criteria.

C5. We show that two existing proof techniques originally

developed for full abstraction can be readily adapted to our

new criteria, which is important since good proof techniques

are difficult to find in this space [56, 60].

The paper closes with discussions of related (§7) and future

work (§8). The online appendix at https://arxiv.org/abs/
1807.04603 contains omitted technical details. Many of the

258

theorems formally or informally mentioned in the paper were

also mechanized in the Coq proof assistant and are marked

with ; this development has around 4400 lines of code and

is available at https://github.com/secure-compilation/
exploring-robust-property-preservation

2 Robustly Preserving Trace Properties
In this section we look at robustly preserving classes of trace
properties, and first study the robust preservation of all trace

properties and its relation to correct compilation (§2.1). We

then look at robustly preserving safety properties (§2.2), which

are the trace properties that can be falsified by a finite trace

prefix (e.g., a program never performs a certain dangerous

system call). These criteria are grouped in the Trace Properties

yellow area in Figure 1. We also carefully studied the robust

preservation of liveness properties, but it turns out that the

very definition of liveness is highly dependent on the specifics

of the program execution traces, which makes that part more

technical. For saving space and avoiding a technical detour, we

relegate to the appendix the details of our CompCert-inspired

trace model, as well as the part about liveness.

2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this paper,

the RTP criterion below is a generic property of an arbitrary

compilation chain, which includes a source and a target lan-

guage, each with a notion of partial programs (P) and contexts

(C) that can be linked together to produce whole programs

(C[P]), and each with a trace-producing semantics for whole

programs (C[P] ��� t). The sets of partial programs and of

contexts of the source and target languages are unconstrained

parameters of our secure compilation criteria; our criteria make

no assumptions about their structure, or whether the program

or the context gets control initially once linked and executed

(e.g., the context could be an application that embeds a library

program or the context could be a library that is embedded

into an application program).1 The traces produced by the

source and target semantics2 are arbitrary for RTP, but for

RSP we have to consider traces with a specific structure

(finite or infinite sequences of events drawn from an arbitrary

set). Intuitively, traces capture the interaction between a whole

program and its external environment, including for instance

user input, output to a terminal, network communication,

system calls, etc. [48, 51]. As opposed to a context, which

is just a piece of a program, the environment’s behavior is not

(and often cannot be) modeled by the programming language,

beyond the (often nondeterministic) interaction events that we

store in the trace. Finally, a compilation chain includes a

1One limitation of our formal setup, is that for simplicity we assume that
any partial program can be linked with any context, irrespective of their
interfaces (e.g., types or specs). One can extend our criteria to take interfaces
into account, as we illustrate in the appendix for the example in §6.

2In this paper we assume for simplicity that traces are exactly the same
in both the source and target language, as is also the case in the CompCert
verified C compiler [51]. We hope to lift this restriction in the future (§8).

compiler: the compilation of a partial source program P is

a partial target program we write P↓.3
The responsibility of enforcing secure compilation does not

have to rest just with the compiler, but may be freely shared

by various parts of the compilation chain. In particular, to

help enforce security, the target-level linker could disallow

linking with a suspicious context (e.g., one that is not well-

typed [1, 6, 7, 56]) or could always allow linking but introduce

protection barriers between the program and the context (e.g.,

by instrumenting the program [28, 56] or the context [4, 72,

73] to introduce dynamic checks). Similarly, the semantics of

the target language can include various protection mechanisms

(e.g., processes with different virtual address spaces [62], pro-

tected enclaves [59], capabilities [23, 68, 74], etc.). Finally, the

compiler might have to refrain from aggressive optimizations

that would break security [14, 30, 67]. Our secure compilation

criteria are agnostic to the concrete enforcement mechanism

used by the compilation chain to protect the compiled program

from the adversarial target context.

Trace properties are defined simply as sets of allowed

traces [50]. A whole program C[P] satisfies a trace property π
when the set of traces produced by C[P] is included in the set

π or, formally, {t | C[P] ��� t} ⊆ π. More interestingly, we

say that a partial program P robustly satisfies [39, 49, 71]

a trace property π when P linked with any (adversarial)

context C satisfies π. Armed with this, Robust Trace Property
Preservation (RTP) is defined as the preservation of robust

satisfaction of all trace properties. So if a partial source

program P robustly satisfies a trace property π ∈ 2Trace (wrt.

all source contexts) then its compilation P↓ must also robustly

satisfy π (wrt. all target contexts). If we unfold all intermediate

definitions, a compilation chain satisfies RTP iff:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P]��� t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]��� t⇒ t ∈ π)

This definition directly captures which properties (specifi-

cally, all trace properties) of the source are robustly preserved

by the compilation chain. However, in order to prove that a

compilation chain satisfies RTP we propose an equivalent ()

“property-free” characterization, which we call RTC (for

“RTP Characterization”):

RTC : ∀P. ∀CT. ∀t. CT [P↓]��� t⇒∃CS.CS [P]��� t

RTC requires that, given a compiled program P↓ and a target

context CT which together produce an attack trace t, we can

generate a source context CS that causes trace t to be produced

by P. When proving that a compilation chain satisfies RTC we

can pick a different context CS for each t and, in fact, try to

construct CS from trace t or from the execution CT [P↓]��� t.
We present similar property-free characterizations for each

of our criteria (Figure 1). However, for criteria stronger than

RTP, a single context CS will have to work for more than

one trace. In general, the shape of the property-free character-

3For easier reading, we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black, italic font generically
for elements of either language.

259

ization explains what information can be used to produce the

source context CS when proving a compilation chain secure.

Relation to compiler correctness RTC is similar to “back-

ward simulation” (TC), a standard compiler correctness crite-

rion [51]. Let W denote a whole program.

TC : ∀W. ∀t. W↓��� t⇒W��� t

Maybe slightly less known is that this property-free character-

ization of correct compilation also has an equivalent property-

full characterization as the preservation of all trace properties:

TP : ∀π ∈ 2Trace. ∀W.

(∀t.W��� t⇒ t ∈ π)⇒ (∀t. W↓��� t⇒ t ∈ π)

The major difference compared to RTP is that TP only

preserves the trace properties of whole programs and does

not consider adversaries. In contrast, RTP allows linking a

compiled partial program with arbitrary target contexts and

protects the program so that all robustly satisfied trace proper-

ties are preserved. In general, RTP and TP are incomparable.

However, RTP strictly implies TP when whole programs (W)

are a subset of partial programs (P) and, additionally, the

semantics of whole programs is independent of any linked

context (i.e., ∀W t C. W ��� t ⇐⇒ C[W] ��� t, which

happens, intuitively, when the whole program starts execution

and, being whole, never calls into the context).

More compositional criteria for compiler correctness have

also been proposed [45, 55]. At a minimum such criteria

allow linking with contexts that are the compilation of source

contexts [45], which can be formalized as follows:

SCC : ∀P. ∀CS. ∀t. CS↓ [P↓]��� t⇒ CS [P]��� t

More permissive criteria allow linking with any target context

that behaves like some source context [55], which in our

setting can be written as:

CCC : ∀P CT CS t. CT≈CS ∧CT [P↓]��� t⇒ CS [P]��� t

Here ≈ relates equivalent partial programs in the target and the

source, and could, for instance, be instantiated with a cross-

language logical relation [6, 55]. RTP is incomparable to SCC
and CCC. On the one hand, RTP allows linking with arbitrary
target-level contexts, which is not allowed by SCC and CCC,

and requires inserting strong protection barriers. On the other

hand, in RTP all source-level reasoning has to be done with

respect to an arbitrary source context, while with SCC and

CCC one can reason about a known source context.

2.2 Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure

compilation because it is easier to achieve and prove than most

criteria of Figure 1, while still being quite expressive [39, 71].

Recall that a trace property is a safety property if, within

any (possibly infinite) trace that violates the property, there

exists a finite “bad prefix” that violates it. We write m ≤ t
for the prefix relation between a finite trace prefix m and a

trace t. Using this we define safety properties in the usual

way [10, 50, 66]:

Safety � {π ∈ 2Trace | ∀t �∈ π. ∃m ≤ t. ∀t′ ≥ m. t′ �∈ π}
The definition of RSP simply restricts the preservation of

robust satisfaction from all trace properties in RTP to only

safety properties; otherwise the definition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P]��� t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]��� t⇒ t ∈ π)

One might wonder how safety properties can be robustly
satisfied in the source, given that execution traces can contain

events emitted not just by the partial program but also by the

adversarial context, which could trivially emit “bad events”

and, hence, violate any safety property. A first alternative is

for the semantics of the source language to simply prevent

the context from producing any events, maybe other than

termination, or, at least, prevent the context from producing

any events the safety properties of interest consider bad. The

compilation chain has then to “sandbox” the context to restrict

the events it can produce [72, 73]. A second alternative is

for the source semantics to record enough information in the

trace so that one can determine the origin of each event—the

partial program or the context. Then, safety properties in which

the context’s events are never bad can be robustly satisfied.

With this second alternative, the obtained global guarantees

are weaker, e.g., one cannot enforce that the whole program

never makes a dangerous system call, but only that the partial

program cannot be tricked by the context into making it.

The equivalent () property-free characterization for RSP
requires one to back-translate a program (P), a target context

(CT), and a finite bad trace prefix (CT [P↓] ��� m) into a

source context (CS) producing the same finite trace prefix (m)

in the source (CS [P]��� m):

RSC : ∀P. ∀CT. ∀m. CT [P↓]��� m⇒ ∃CS.CS [P]��� m

Syntactically, the only change with respect to RTC is the

switch from whole traces t to finite trace prefixes m. As for

RTC, we can pick a different context CS for each execution

CT [P↓] ��� m. (In our formalization we define W ��� m
generically as ∃t≥m. W ��� t.) The fact that for RSC these

are finite execution prefixes can significantly simplify the back-

translation into source contexts (as we show in §6.4).

It is trivially true that RTP implies RSP, since the former

robustly preserves all trace properties while the latter only

robustly preserves safety properties. We have also proved that

RTP strictly implies RSP.

Theorem 2.1. RTP⇒ RSP, but RSP �⇒ RTP

Proof sketch. As explained above, RTP ⇒ RSP is trivial.

Showing strictness requires constructing a counterexample

compilation chain to the reverse implication. We take any

target language that can produce infinite traces. We take the

source language to be a variant of the target with the same

partial programs, but where we extend whole programs and

contexts with a bound on the number of events they can

produce before being terminated. Compilation simply erases

260

this bound. This compilation chain satisfies RSP (equivalently,

RSC) but not RTP. To show that it satisfies RSC, we simply

back-translate a target context CT and a finite trace prefix m to

a source context (CT, length(m)) that uses the length of m as

the allowed bound, so this context can still produce m in the

source without being prematurely terminated. However, this

compilation chain does not satisfy RTP, since in the source

all executions are finite and, hence, no infinite target trace can

be simulated by any source context.

3 Robustly Preserving Hyperproperties
So far, we have studied the robust preservation of trace prop-

erties, which are properties of individual traces of a program.

In this section we generalize this to hyperproperties, which are

properties of multiple traces of a program [24]. A well-known

hyperproperty is noninterference [11, 38, 53, 76], which usu-

ally requires considering two traces of a program that differ

on secret inputs. Another hyperproperty is bounded mean re-

sponse time over all executions. We study robust preservation

of many subclasses of hyperproperties: all hyperproperties

(§3.1), subset-closed hyperproperties (§3.2), hypersafety and

K-hypersafety (§3.3), and hyperliveness (§3.5). These criteria

are in the red area in Figure 1.

3.1 Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are

sets of sets of traces [24]. We call the set of traces of a whole

program W the behavior of W : Behav (W) = {t | W ��� t}.
A hyperproperty is a set of allowed behaviors. Program W
satisfies hyperproperty H if the behavior of W is a member

of H , i.e., Behav (W) ∈ H , or, equivalently, {t | W ��� t} ∈
H . Contrast this to W satisfying trace property π, which

holds if the behavior of W is a subset of the set π, i.e.,

Behav (W) ⊆ π, or, equivalently, ∀t. W ��� t ⇒ t ∈ π.

So while a trace property determines whether each individual

trace of a program should be allowed or not, a hyperproperty

determines whether the set of traces of a program, its behavior,

should be allowed or not. For instance, the trace property

π123 = {t1, t2, t3} is satisfied by programs with behaviors

such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3}, but a program

with behavior {t1, t4} does not satisfy π123. A hyperproperty

like H1+23 = {{t1}, {t2, t3}} is satisfied only by programs

with behavior {t1} or with behavior {t2, t3}. A program with

behavior {t2} does not satisfy H1+23, so hyperproperties can

express that if some traces (e.g., t2) are possible then some

other traces (e.g., t3) should also be possible. A program

with behavior {t1, t2, t3} also does not satisfy H1+23, so

hyperproperties can express that if some traces (e.g., t2 and

t3) are possible then some other traces (e.g., t1) should not

be possible. Finally, trace properties can be easily lifted to

hyperproperties: A trace property π becomes the hyperproperty

[π] = 2π , the powerset of π.

We say that a partial program P robustly satisfies a hy-

perproperty H if it satisfies H for any context C. Given this

we define RHP as the preservation of robust satisfaction of

arbitrary hyperproperties:

RHP : ∀H ∈ 22
Trace

. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent () characterization of RHP is RHC :

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]���t ⇐⇒ CS [P]���t

This requires that, for every partial program P and target

context CT, there is a (back-translated) source context CS

that perfectly preserves the set of traces of CT [P↓] when

linked to P. There are two differences from RTP: (1) the

∃CS and ∀t quantifiers are swapped, so the back-translated

CS must work for all traces t, and (2) the implication in

RTC (⇒) became a two-way implication in RHC (⇐⇒),

so compilation has to perfectly preserve the set of traces. In

particular the compiler cannot refine behavior (remove traces),

e.g., it cannot implement nondeterministic scheduling via a

deterministic scheduler.

In the following subsections we study restrictions of RHP to

various subclasses of hyperproperties. To prevent duplication

we define RHP(X) to be the robust satisfaction of a class X
of hyperproperties (so RHP above is simply RHP(22

Trace
)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

3.2 Robust Subset-Closed Hyperproperty Preservation
(RSCHP)

If one restricts robust preservation to only subset-closed hy-

perproperties then refinement of behavior is again allowed.

A hyperproperty H is subset-closed, written H∈SC, if for

any two behaviors b1⊆b2, if b2∈H then b1∈H . For instance,

the lifting [π] of any trace property π is subset-closed,

but the hyperproperty H1+23 above is not. It can be made

subset-closed by allowing all smaller behaviors: HSC
1+23 =

{∅, {t1}, {t2}, {t3}, {t2, t3}} is subset-closed.
Robust Subset-Closed Hyperproperty Preservation

(RSCHP) is simply defined as RHP(SC). The equivalent ()

property-free characterization of RSCHC simply gives up the

⇐ direction of RHC:

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]��� t⇒ CS [P]��� t

The most interesting subclass of subset-closed hyperproper-

ties is hypersafety, which we discuss next. The appendix also

studies K-subset-closed hyperproperties [52], which can be

seen as generalizing K-hypersafety below.

3.3 Robust Hypersafety Preservation (RHSP)
Hypersafety is a generalization of safety that is very important

in practice, since several important notions of noninterference

are hypersafety, such as termination-insensitive noninterfer-

ence [11, 35, 64], observational determinism [53, 63, 76], and

nonmalleable information flow [20].
According to Alpern and Schneider [10], the “bad thing”

that a safety property disallows must be finitely observable

261

and irremediable. For safety the “bad thing” is a finite trace

prefix that cannot be extended to any trace satisfying the

safety property. For hypersafety, Clarkson and Schneider [24]

generalize the “bad thing” to a finite set of finite trace

prefixes that they call an observation, drawn from the set

Obs = 2FinPref
Fin , which denotes the set of all finite subsets

of finite prefixes. They then lift the prefix relation to sets:

an observation o ∈ Obs is a prefix of a behavior b ∈ 2Trace,

written o≤b, if ∀m ∈ o. ∃t ∈ b. m≤t. Finally, they define

hypersafety analogously to safety, but the domains involved

include an extra level of sets:

Hypersafety�{H | ∀b�∈H. (∃o∈Obs. o≤b∧ (∀b′≥o. b′ �∈H))}
Here the “bad thing” is an observation o that cannot be

extended to a behavior b′ satisfying the hypersafety prop-

erty H . We use this to define Robust Hypersafety Preserva-
tion (RHSP) as RHP(Hypersafety) and propose the following

equivalent () characterization for it:

RHSC : ∀P. ∀CT. ∀o ∈ Obs.

o ≤ Behav (CT [P↓])⇒ ∃CS. o ≤ Behav (CS [P])

This says that to prove RHSP one needs to be able to back-

translate a partial program P, a context CT, and a prefix o of

the behavior of CT [P↓], to a source context CS so that the

behavior of CS [P] extends o. It is possible to use the finite set

of finite executions corresponding to observation o to drive

this back-translation (as we do in §6.4).

For hypersafety the involved observations are finite sets but

their cardinality is otherwise unrestricted. In practice though,

most hypersafety properties can be falsified by very small

sets: counterexamples to termination-insensitive noninterfer-

ence [11, 35, 64] and observational determinism [53, 63, 76]

are observations containing 2 finite prefixes, while counterex-

amples to nonmalleable information flow [20] are observations

containing 4 finite prefixes. To account for this, Clarkson and

Schneider [24] introduce K-hypersafety as a restriction of

hypersafety to observations of a fixed cardinality K. Given

ObsK = 2FinPref
Fin(K) , the set of observations with cardinality K, all

definitions and results above can be ported to K-hypersafety

by simply replacing Obs with ObsK . Specifically, we denote

by RKHSP the criterion RHP(K-Hypersafety).

The set of lifted safety properties, {[π] | π ∈ Safety}, is pre-

cisely the same as 1-hypersafety, since the counterexample for

them is a single finite prefix. For a more interesting example,

termination-insensitive noninterference (TINI) [11, 35, 64] can

be defined as follows in our setting:

TINI � {b | ∀t1 t2∈b. (t1 terminating ∧ t2 terminating

∧ pub-inputs(t1)=pub-inputs(t2))

⇒ pub-events(t1)=pub-events(t2)}
This requires that trace events are either inputs or outputs,

each of them associated with a security level: public or

secret. TINI ensures that for any two terminating traces of

the program behavior for which the two sequences of public

inputs are the same, the two sequences of public events—

inputs and outputs—are also the same. TINI is 2-hypersafety,

since b �∈ TINI implies that there exist finite traces t1 and t2
that agree on the public inputs but not on all public events,

so we can simply take o = {t1, t2}. Since the traces in o
are already terminated, any extension b′ of o can only add

extra traces, i.e., {t1, t2} ⊆ b′, so b′ �∈ TINI as needed to

conclude that TINI is in 2-hypersafety. In Figure 1, we write

Robust Termination-Insensitive Noninterference Preservation
(RTINIP) for RHP({TINI}).

3.4 Separation Between Properties and Hyperproperties

Enforcing RHSP is strictly more demanding than enforcing

RSP. Because even R2HSP (robust 2-hypersafety preserva-

tion) implies RTINIP, a compilation chain satisfying R2HSP
has to make sure that a target-level context cannot infer more

information about the internal data of P↓ than a source context

could infer about the data of P. By contrast, a RSP compilation

chain can allow arbitrary reads of P↓’s internal data, even if

P’s data is private at the source level. Intuitively, for proving

RSC, the source context produced by back-translation can

guess any secret P↓ receives in the single considered execu-

tion, but for R2HSP the single source context needs to work

for two different executions, potentially with two different

secrets, so guessing is no longer an option. We use this idea

to prove a more general separation result RTP �⇒ RTINIP, by

exhibiting a toy compilation chain in which private variables

are readable in the target language, but not in source.

Theorem 3.1. RTP �⇒ RTINIP

This implies a strict separation between all criteria based

on hyperproperties (the red area in Figure 1, having RTINIP
as the bottom) and all the ones based on trace properties (the

yellow area in Figure 1 having RTP as the top).

Using a more complex counterexample involving a system

of K linear equations, we have also shown that, for any K,

robust preservation of K-hypersafety, does not imply robust

preservation of (K+1)-hypersafety.

Theorem 3.2. ∀K. RKHSP �⇒ R(K+1)HSP

3.5 Where Is Robust Hyperliveness Preservation?

Robust Hyperliveness Preservation (RHLP) does not appear

in Figure 1, because it is provably equivalent to RHP (or,

equivalently, RHC). We define RHLP as RHP(Hyperliveness)
for the following standard definition of Hyperliveness [24]:

Hyperliveness � {H | ∀o ∈ Obs. ∃b≥o. b ∈ H}
The proof that RHLP implies RHC () involves showing that

{b | b�=Behav (CT [P↓])}, the hyperproperty allowing all be-

haviors other than Behav (CT [P↓]), is hyperliveness. Another

way to obtain this result is from the fact that, as in previous

models [10], each hyperproperty can be decomposed as the

intersection of two hyperliveness properties. This collapse of

preserving hyperliveness and preserving all hyperproperties

happens irrespective of the adversarial contexts.

262

4 Robustly Preserving Relational
Hyperproperties

Trace properties and hyperproperties are predicates on the

behavior of a single program. However, we may be interested

in showing that compilation robustly preserves relations be-

tween the behaviors of two or more programs. For example,

suppose we optimize a partial source program P1 to P2 such

that P2 runs faster than P1 in any source context. We may

want compilation to preserve this “runs faster than” relation
between the two program behaviors against arbitrary target

contexts. Similarly, in any source context, the behaviors of

P1 and P2 may be equal and we may want the compiler to

preserve such trace equivalence [12, 25] in arbitrary target

contexts. This last criterion, which we call Robust Trace Equiv-
alence Preservation (RTEP) in Figure 1, is interesting because

in various determinate settings [21, 33] it coincides with

preserving observational equivalence, the security-relevant part

of full abstraction (see §5).

In this section, we study the robust preservation of such

relational hyperproperties and several interesting subclasses,

still relating the behaviors of multiple programs. Unlike hy-

perproperties and trace properties, relational hyperproperties

have not been defined as a general concept in the literature,

so even their definitions are new. We describe relational

hyperproperties and their robust preservation in §4.1, then look

at subclasses induced by what we call relational properties
(§4.2) and relational safety properties (§4.3). The appendix

presents a few other subclasses. The corresponding secure

compilation criteria are grouped in the blue area in Figure 1. In

§4.4 we show that, in general, none of these relational criteria

are implied by any non-relational criterion (from §2 and §3),

while in §4.5 we show two specific situations in which most

relational criteria collapse to non-relational ones.

4.1 Relational Hyperproperty Preservation (RrHP)

We define a relational hyperproperty as a predicate (relation)

on a sequence of behaviors of some length. A sequence

of programs of the same length is then said to have the

relational hyperproperty if their behaviors collectively satisfy

the predicate. Depending on the arity of the predicate, we

get different subclasses of relational hyperproperties. For arity

1, the resulting subclass describes relations on the behavior

of individual programs, which coincides with hyperproperties

(§3). For arity 2, the resulting subclass consists of relations on

the behaviors of two programs. Both examples described at the

beginning of this section lie in this subclass. This generalizes

to any finite arity K (predicates on behaviors of K programs),

and to the infinite arity.

Next, we define the robust preservation of these subclasses.

For arity 2, robust 2-relational hyperproperty preservation,

R2rHP, is defined as follows:

R2rHP : ∀R ∈ 2(Behavs
2). ∀P1 P2.

(∀CS. (Behav (CS [P1]), Behav (CS [P2])) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), Behav (CT [P2↓])) ∈ R)

R2rHP says that for any binary relation R on behaviors of

programs, if the behaviors of P1 and P2 satisfy R in every

source context, then so do the behaviors of P1↓ and P2↓
in every target context. In other words, a compiler satisfies

R2rHP iff it preserves any relation between pairs of program

behaviors that hold in all contexts. In particular, such a

compilation chain preserves trace equivalence in all contexts

(i.e., RTEP), which we obtain by instantiating R with equality

in the above definition (). If execution time is recorded on

program traces, then such a compilation chain also preserves

relations like “the average execution time of P1 across all

inputs is no more than the average execution time of P2 across

all inputs” and “P1 runs faster than P2 on all inputs” (i.e.,

P1 is an improvement of P2). This last property can also be

described as a relational predicate on pairs of traces (rather

than behaviors); we return to this point in §4.2.

R2rHP has an equivalent () property-free variant that does

not mention relations R:

R2rHC : ∀P1 P2 CT.∃CS. Behav (CT [P1↓])=Behav (CS [P1])

∧ Behav (CT [P2↓])=Behav (CS [P2])

R2rHC is a generalization of RHC from §3.1, but now the

same source context CS has to simulate the behaviors of two
target programs, CT [P1↓] and CT [P2↓].
R2rHP generalizes to any finite arity K in the obvious

way, yielding RKrHP. Finally, this also generalizes to the

infinite arity. We call this Robust Relational Hyperproperty
Preservation (RrHP):

RrHP : ∀R ∈ 2(Behavs
ω). ∀P1, ..,PK, ...

(∀CS. (Behav (CS [P1]), .., Behav (CS [PK]), ..) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), .., Behav (CS [PK↓]), ..) ∈ R)

RrHP is the strongest criterion we study and, hence, it is

the highest point in Figure 1. This includes robustly preserving

predicates on all programs of the language, although we have

not yet found practical uses for this. More interestingly, RrHP
has a very natural equivalent property-free characterization,

RrHC, requiring for every target context CT, a source context

CS that can simulate the behavior of CT for any program:

RrHC : ∀CT. ∃CS. ∀P. Behav (CT [P↓])=Behav (CS [P])

It is instructive to compare the property-free characteriza-

tions of the preservation of robust trace properties (RTC),

hyperproperties (RHC), and relational hyperproperties (RrHC).

In RTC, the source context CS may depend on the target

context CT, the source program P and a given trace t. In

RHC, CS may depend only on CT and P. In RrHC, CS

may depend only on CT. This directly reflects the increasing

expressive power of trace properties, hyperproperties, and

relational hyperproperties, as predicates on traces, behaviors

(set of traces), and sequences of behaviors, respectively.

4.2 Relational Trace Property Preservation (RrTP)

Relational (trace) properties are the subclass of relational

hyperproperties that are fully characterized by relations on

individual traces of multiple programs. For example, the

263

relation “P1 runs faster than P2 on every input” is a 2-ary

relational property characterized by pairs of traces, one from

P1 and the other from P2, which either differ in the input

or where the execution time in P1’s trace is less than that

in P2’s trace. Formally, relational properties of arity K are a

subclass of relational hyperproperties of the same arity. A K-

ary relational hyperproperty is a relational (trace) property if

there is a K-ary relation R on traces such that P1, .., PK are

related by the relational hyperproperty iff (t1, . . . , tk)∈R for

any t1∈Behav (P1), . . . , tk∈Behav (PK). Next, we define the

robust preservation of relational properties of different arities.

For arity 1, this coincides with RTP from §2.1. For arity 2,

we define Robust 2-relational Property Preservation:

R2rTP : ∀R ∈ 2(Trace2). ∀P1 P2.(∀CS t1 t2. (CS [P1]��� t1 ∧ CS [P2]��� t2)⇒ (t1,t2)∈R
)⇒(∀CT t1 t2. (CT [P1↓]���t1 ∧CT [P2↓]���t2)⇒ (t1,t2)∈R
)

R2rTP is weaker than its relational hyperproperty counterpart,

R2rHP (§4.1): Unlike R2rHP, R2rTP does not imply the

robust preservation of relations like “the average execution

time of P1 across all inputs is no more than the average

execution time of P2 across all inputs” (a relation between

average execution times of P1 and P2 cannot be characterized

by any relation between individual traces of P1 and P2).

R2rTP also has an equivalent () characterization:

R2rTC : ∀P1 P2 CT t1 t2.

(CT [P1↓]��� t1 ∧ CT [P2↓]��� t2)⇒
∃CS. (CS [P1]��� t1 ∧ CS [P2]��� t2)

Establishing R2rTC requires constructing a source context CS

that can simultaneously simulate a given trace of CT [P1↓]
and a given trace of CT [P2↓]. R2rTP generalizes from arity

2 to any finite arity K (yielding RKrTP) and the infinite one

(yielding RrTP) in the obvious way.

4.3 Robust Relational Safety Preservation (RrSP)

Relational safety properties are a natural generalization of

safety and hypersafety properties to multiple programs, and

an important subclass of relational trace properties. Several

interesting relational trace properties are actually relational

safety properties. For instance, if we restrict the earlier rela-

tional trace property “P1 runs faster than P2 on all inputs” to

terminating programs it becomes a relational safety property,

characterized by pairs of bad terminating prefixes, where

both prefixes have the same input, and the left prefix shows

termination no earlier than the right prefix.

Formally, a relation R ∈ 2(TraceK) is K-relational safety
if for every K “bad” traces (t1, . . . , tK) �∈ R, there exist K
“bad” finite prefixes m1, . . . ,mk such that ∀i. mi ≤ ti, and

any K traces (t′1, . . . , t
′
K) pointwise extending m1, . . . ,mk are

also not in the relation, i.e., ∀i. mi ≤ t′i implies (t′1, . . . , t
′
K) �∈

R. Then, Robust 2-relational Safety Preservation (R2rSP) is

simply defined by restricting R2rTP to only 2-relational safety

properties. The equivalent () property-free characterization

for R2rSP is the following:

R2rSC : ∀P1 P2 CT m1 m2.

(CT [P1↓]� m1 ∧ CT [P2↓]� m2)⇒
∃CS. (CS [P1]� m1 ∧ CS [P2]� m2)

The only difference from the stronger R2rTC (§4.2) is

between considering full traces and only finite prefixes. Again,

R2rSP generalizes to any finite arity K (yielding RKrSP) and

the infinite one (yielding RrSP) in the obvious way.

4.4 Separation Between Relational and Non-Relational
Relational (hyper)properties (§4.1, §4.2) and hyperproperties

(§3) are different but both have a “relational” nature: relational

(hyper)properties are relations on the behaviors or traces of

multiple programs, while hyperproperties are relations on

multiple traces of the same program. So one may wonder

whether there is any case in which the robust preservation
of a class of relational (hyper)properties is equivalent to that

of a class of hyperproperties. Could a compiler that robustly

preserves all hyperproperties (RHP, §3.1) also robustly pre-

serves at least some class of 2-relational (hyper)properties?

In §4.5 we show special cases in which this is indeed the

case, while here we now show that in general RHP does not

imply the robust preservation of any subclass of relational

properties that we have described so far (except, of course,

relational properties of arity 1, that are just hyperproperties).

Since RHP is the strongest non-relational robust preservation

criterion that we study, this also means that no non-relational

robust preservation criterion implies any relational robust

preservation criterion in Figure 1. So, all edges from relational

to non-relational criteria in Figure 1 are strict implications.

To prove this, we build a compilation chain satisfying RHP,

but not R2rSP, the weakest relational criterion in Figure 1.

Theorem 4.1. RHP �⇒ R2rSP

Proof sketch. Consider a source language that lacks code

introspection, and a target language that is exactly the same,

but additionally has a primitive with which the context can

read the code of the compiled program as data [69]. Consider

the trivial compiler that is syntactically the identity. It is clear

that this compiler satisfies RHP since the added operation of

code introspection offers no advantage to the context when

we consider properties of a single program, as is the case

in RHP. More precisely, in establishing RHC, the property-

free characterization of RHP, given a target context CT and a

program P, we can construct a simulating source context CS

by modifying CT to hard-code P wherever CT performs code

introspection. This works as CS can depend on P in RHC.

Now consider two programs that differ only in some dead

code, that both read a value from the context and write it

back verbatim to the output. These two programs satisfy the

relational safety property “the outputs of the two programs

are equal” in any source context. However, there is a trivial

target context that causes the compiled programs to break this

relational property. This context reads the code of the program

it is linked to, and provides 1 as input if it happens to be the

264

first of our two programs and 2 otherwise. Consequently, in

this target context, the two programs produce outputs 1 and 2
and do not have this relational safety property in all contexts.

Hence, this compiler does not satisfy R2rSP. Technically, the

trick of hard-coding the program in CS no longer works since

there are two different programs here.

This proof provides a fundamental insight: To robustly pre-

serve any subclass of relational (hyper)properties, compilation

must ensure that target contexts cannot learn anything about

the syntactic program they interact with beyond what source

contexts can also learn. When the target language is low-level,

hiding code attributes can be difficult: it may require padding

the code segment of the compiled program to a fixed size, and

cleaning or hiding any code-layout-dependent data like code

pointers from memory and registers when passing control to

the context. These complex protections are not necessary for

any non-relational preservation criteria (even RHP), but are

already known to be necessary for fully abstract compilation

to low-level code [44, 46, 59]. They can also be trivially

circumvented if the context has access to any side-channels,

e.g., it can measure time via a different thread. In fact, in

such settings trying to hide the source code can be seen as

a hopeless attempt at “security through obscurity”, which is

widely rejected by cryptographers since the early days [47].

4.5 Composing Contexts Using Full Reflection or
Internal Nondeterminism in the Source Language

The proof of the previous separation theorem strongly relies

on the absence of code introspection in the source language.

However, if source contexts can obtain complete intrinsic

information about the programs they are linked with, then RHP
implies R2rHP. Such “full reflection” facilities are available

in languages such as Lisp [69] and Smalltalk. For proving this

collapse we inspect the alternative characterizations, RHC and

R2rHC. The main difference between these two criteria, as

explained in §4.1, is that the source context CS obtained by

R2rHC depends on two, possibly distinct programs P1 and P2

and a target context CT, while every possible source context

obtained by RHC depends on one single program. Hence, by

applying RHC once for P1 and once for P2, with the same

context CT, we obtain two source contexts CS1 and CS2 that

are a priori unrelated. Without further hypotheses, one cannot

show R2rHC. However, with full reflection we can define a

source context C′
S that behaves exactly like CS1 when linked

with P1, and like CS2 otherwise. We can use this construction

to show not only that RHP implies R2rHP, but also that

robust preservation of each class of finite-relational properties

collapses to the corresponding hyperproperty-based criterion:

Theorem 4.2. If the source language has full reflection then

RHP⇒RKrHP, RSCHP⇒RKrTP, and R2HSP⇒RFrSP.

One may wonder whether some other condition exists

that makes robust preservation of relational hyperproperty

classes collapse even to the corresponding trace-property-
based criteria (§2). This is indeed the case when the source

language has an internal nondeterministic choice operator ⊕,

such that the behavior of P1 ⊕ P2 is at least the union of

the behaviors of P1 and P2. Such an operator is standard

in process calculi [65]. To illustrate this we show that RTC
implies R2rTC. Note that R2rTC produces a source context

CS that depends on a target context, two source programs P1

and P2 and two, possibly incomparable, traces t1 and t2. RTC
produces a context depending only on a single trace of a single

source program. We can apply RTC twice: once for t1 and

P1 obtaining CS1 and once for t2 and P2 obtaining CS2 . To

prove R2rTC we need to build a source context that over-

approximates the behaviors of both CS1 and CS2 . This context

can be CS1 ⊕ CS2 . Hence, in this setting RTC (RTP) implies

R2rTC (R2rTP). This result generalizes to any finite arity.

Theorem 4.3. If the source language has an internal nonde-

terministic choice operator on contexts then RTP⇒ RKrTP,

RSCHP⇒ RFrSCHP, and RSP⇒ RFrSP.

Notice that since contexts are finite objects, the techniques

above only produce collapses in cases where finitely many

source contexts need to be composed. Criteria relying on

infinite-arity relations such as RrHP and RrTP are thus not

impacted by these collapses. The appendix has more details

and collapsed variants of Figure 1.

5 Where Is Full Abstraction?
Full abstraction—the preservation and reflection of observa-

tional equivalence—is a well-studied criterion for secure com-

pilation (§7). The security-relevant direction of full abstraction

is Observational Equivalence Preservation (OEP) [28, 60]:

OEP : ∀P1 P2. P1 ≈ P2 ⇒ P1↓ ≈ P2↓
One natural question is how OEP relates to our criteria of

robust preservation.

Here we answer this question for languages without in-

ternal nondeterminism. In such determinate [33, 51] settings

observational equivalence coincides with trace equivalence in

all contexts [21, 33] and, hence, OEP coincides with robust

trace-equivalence preservation (RTEP). As explained in §4.1,

it is obvious that RTEP is an instance of R2rHP, obtained by

choosing equality as the relation R. However, for determinate

languages with input totality [36, 75] (if the program accepts

one input value, it has to also accept any other input value) we

have proved that even the weaker R2rTP implies RTEP ().

This proof also requires that if a whole program can produce

every finite prefix of an infinite trace then it can also produce

the complete trace, but we have showed that this holds for the

infinite traces produced in a standard way by any determinate

small-step semantics. Under these assumptions, we have in

fact proved that RTEP follows from the even weaker Robust
2-relational relaXed safety Preservation (R2rXP). The class

2-relational relaXed safety is a variant of 2-relational Safety
from §4.3; with this relaxed variant “bad” prefixes x1 and x2

are allowed to end with silent divergence (denoted as XPref):

R ∈ 2-relational relaXed safety ⇐⇒
∀(t1, t2) �∈R. ∃x1 x2∈XPref . ∀t′1≥x1 t

′
2≥x2. (t

′
1, t

′
2) �∈R

265

Theorem 5.1. Assuming a determinate source language and a

determinate and input total small-step semantics for the target

language, R2rXP⇒ RTEP.

In the other direction, we adapt an existing counterexam-

ple [57] to show that RTEP (and, hence, for determinate

languages also OEP) does not imply RSP or any of the criteria

above it in Figure 1. Fundamentally, RTEP only requires

preserving equivalence of behavior. Consequently, an RTEP
compiler can insert code that violates any security property, as

long as it doesn’t alter these equivalences [57]. Worse, even

when the RTEP compiler is also required to be correct (i.e.,

TP, SCC, and CCC from §2.1), the compiled program only

needs to properly deal with interactions with target contexts

that behave like source ones, and can behave insecurely when

interacting with target contexts that have no source equivalent.

Theorem 5.2. There exists a compiler between two determin-

istic languages that satisfies RTEP, TP, SCC, and CCC, but

that does not satisfy RSP.

Proof. Consider a source language where a partial program

receives a natural number or boolean from the context, and

produces a number output, which is the only event. We

compile to a restricted language that only has numbers by

mapping booleans true and false to 0 and 1 respectively. The

compiler’s only interesting aspect is that it translates a source

function P = f(x:Bool) �→ e that inputs booleans to P↓ =
f(x:Nat) �→if x<2 then e↓ else if x<3 then f(x) else 42.

The compiled function checks if its input is a valid boolean (0
or 1). If so, it executes e↓. Otherwise, it behaves insecurely,

silently diverging on input 2 and outputting 42 on inputs 3 or

more. This compiler does not satisfy RSP since the source

program f(x:Bool)�→0 robustly satisfies the safety property

“never output 42”, but the program’s compilation does not.

On the other hand, it is easy to see that this compiler is

correct since a compiled program behaves exactly like its

source counterpart on correct inputs. It is also easily seen

to satisfy RTEP, since the additional behaviors added by the

compiler (silently diverging on input 2 and outputting 42 on

inputs 3 or more) are independent of the source code (they

only depend on the type), so these cannot be used by any

target context to distinguish two compiled programs.

In the appendix, we use the same counterexample compila-

tion chain to also show that RTEP does not imply the robust

preservation of (our variant of) liveness properties. We also

use a simple extension of this compilation chain to show that

RTEP does not imply RTINIP either. The idea is similar: we

add a secret external input to the languages and when receiving

an out of bounds argument the compiled code simply leaks the

secret input, which breaks RTINIP, but not RTEP.

6 Proof Techniques for RrHP and RFrXP

This section demonstrates that the criteria we introduce can

be proved by adapting existing back-translation techniques.

We introduce a statically typed source language and a similar

dynamically typed target one (§6.1), as well as a simple

translation between the two (§6.2). We then describe the

essence of two very different secure compilation proofs for

this compilation chain, both based on techniques originally

developed for showing fully abstract compilation. The first

proof shows (a typed variant of) RrHP (§6.3), the strongest

criterion from Figure 1, using a context-based back-translation,

which provides a “universal embedding” of a target con-

text into a source context [56]. The second proof shows

a slightly weaker criterion, Robust Finite-relational relaXed
safety Preservation (RFrXP; §6.4), but which is still very

useful, as it implies robust preservation of arbitrary safety and

hypersafety properties as well as RTEP. This second proof

relies on a trace-based back-translation [43, 59], extended

to produce a context from a finite set of finite execution

prefixes. These finiteness restrictions are offset by a more

generic proof technique that only depends on the context-

program interaction (e.g., calls and returns), while ignoring

all other language details. For space reasons, we leave the

details of the proofs for the appendix.

6.1 Source and Target Languages
The two languages we consider are simple first-order lan-

guages with named procedures and boolean and natural values.

The source language Lτ is typed while the target language Lu

is untyped. A program in either language is a collection of

function definitions, each function body is a pure expression

that can perform comparison and natural operations (⊕),

conditional branching, recursive calls, and use let-in bindings.

Expressions can also read naturals from the environment and

write naturals to the environment, both of which generate trace

events. Lu has all the features of Lτ and adds a primitive

e has τ to dynamically check whether an expression e has

type τ . A context C can call functions and perform general

computation on the returned values, but it cannot directly gen-

erate read and write e events, as those are security-sensitive.

Since contexts are single expressions, we disallow callbacks

from the program to the context: thus calls go from context

to program, and returns from program to context.

Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ �→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x : τ = e in e | if e then e else e

| call f e | read | write e | fail
Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f

Functions F ::= f(x) �→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x = e in e | if e then e else e

| call f e | read | write e | fail | e has τ

Labels λ ::= ε | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

266

Each language has a standard small-step operational seman-

tics (omitted for brevity), as well as a big-step trace semantics

(Ω��� α, as in previous sections). The initial state of a program

P plugged into a context C is denoted as P � C and the

behavior of such a program is the set of traces that can be

produced by the semantics:

Behav (C[P]) = {α | P � C��� α}
6.2 Compiler
The compiler ·↓ takes programs of Lτ and generates programs

of Lu, by replacing static type annotations with dynamic type

checks of function arguments upon function invocation:

I1, · · · , Im;F1, · · · ,Fn↓ = I1↓, · · · , Im↓; F1↓, · · · , Fn↓
f : τ → τ ′

⏐� = f

f(x : τ) : τ ′ �→
ret e

⏐⏐⏐⏐� =

(
f(x) �→ret if x has τ↓

then e↓ else fail

)

Nat↓ = Nat Bool↓ = Bool

true↓ = true false↓ = false

n↓ = n x↓ = x

e⊕ e′
⏐� = e↓ ⊕ e′

⏐� e ≥ e′
⏐� = e↓ ≥ e′

⏐�
read↓ = read write e↓ = write e↓

call f e↓ = call f e↓
let x : τ=e

in e′

⏐⏐⏐⏐� =
let x=e↓
in e′

⏐� if e then e′

else e′′

⏐⏐⏐⏐� =
if e↓ then e′

⏐�
else e′′

⏐�
6.3 Proof of RrHP by Context-Based Back-Translation
To prove that ·↓ attains RrHP, we need a way to back-translate

target contexts into source contexts. To this end we use a

universal embedding, a technique previously proposed for

proving fully abstract compilation [56]. The back-translation

needs to generate a source context that respects source-level

constraints; in this case, the resulting source context must

be well-typed. To ensure this, we use Nat as an universal
back-translation type in the produced source contexts. The

intuition of the back-translation is that it will encode true as

0, false as 1 and an arbitrary natural number n as n+ 2. Based

on this encoding, we translate values between regular source

types and the back-translation type. Specifically, we define the

following shorthand for the back-translation: injectτ (e) takes

an expression e of type τ and returns an expression of back-

translation type; extractτ (e) takes an expression e of the back-

translation type and returns an expression of type τ .

injectNat(e) = e+ 2

injectBool(e) = if e then 1 else 0

extractNat(e) =
(
let x=e in if x ≥ 2 then x− 2 else fail

)
extractBool(e) =

(
let x=e in if x ≥ 2 then fail

else if x+ 1 ≥ 2 then true else false

)

injectτ (e) never incurs runtime errors, but extractτ (e) may.

This mimics the ability of target contexts to write ill-typed

code (e.g., 3+ true) which we must be able to back-translate

and whose semantics we must preserve (see Example 6.1).

Concretely, the back-translation is defined inductively on

the structure of target contexts:

true↑ = 1 false↑ = 0 n↑ = n+ 2 x↑ = x

e ≥ e′
�⏐ = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e
′�⏐)

in injectBool(x1 ≥ x2)

e⊕ e′
�⏐ = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e
′�⏐)

in injectNat(x1⊕ x2)

let x=e in e′
�⏐ = let x : Nat=e↑ in e′

�⏐(
if e then

e′ else e′′

)�⏐⏐⏐⏐ = if extractBool(e↑) then e′
�⏐ else e′′

�⏐
e has Bool↑ = let x : Nat=e↑ in if x ≥ 2 then 0 else 1

e has Nat↑ = let x : Nat=e↑ in if x ≥ 2 then 1 else 0

call f e↑ = injectτ ′(call f extractτ (e↑))
if f : τ → τ ′ ∈ I

fail↑ = fail

Example 6.1 (Back-Translation). Through the back-

translation of two simple target contexts we explain why ·↑
is correct and why it needs inject· and extract·.

Consider the context C1 = 3 ∗ 5, which reduces to 15 irre-

spective of the program it links against. The back-translation

must intuitively ensure that C1↑ reduces to 17, which is the

back-translation of 15. If we unfold the definition of C1↑ we

have the following (given that 3↑=5 and 5↑=7):

let x1 : Nat=extractNat(5)

in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)
By examining the code of extractNat we see that in both

cases it will just perform a subtraction by 2, turning 5 and

7 respectively into 3 and 5. So after some reduction steps

we arrive at the following term: injectNat(3 ∗ 5). The inner

multiplication then returns 15 and its injection returns 17,

which is also the result of 15↑.
Let us now consider a different context, C2 = false+ 3.

We know that no matter what program links against it, it will

reduce to fail. Its statically well-typed back-translation is:

let x1 : Nat=extractNat(0)

in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)
By looking at its code we can see that the execution of

extractNat(0) will indeed result in fail, which is what we want

and expect, as that is precisely the back-translation of fail. �

The RrHP proof for this compilation chain uses a simple

logical relation that includes cases for both terms of source

type (intuitively used for compiler correctness) and for terms

of back-translation type [28, 56].

267

6.4 Proof of RFrXP by Trace-Based Back-Translation
Proving that this simple compilation chain attains RFrXC does

not require back-translating a target context, as we only need

to build a source context that can reproduce a finite set of

finite trace prefixes, but that is not necessarily equivalent to

the original target context. We describe this back-translation

on an example leaving again details to the online appendix.

Example 6.2 (Back-Translation of Traces). Consider the fol-

lowing two programs:

P1 = (f(x:Nat) : Nat �→ ret x, g(x:Nat) : Bool �→ ret true)

P2 = (f(x:Nat) : Nat �→ ret read, g(x:Nat) : Bool �→ ret true)

Their compiled counterparts are almost identical, with the

only addition of dynamic type checks on function arguments:

P1↓ = f(x) �→ ret (if x has Nat then x else fail),

g(x) �→ ret (if x has Nat then true else fail)

P2↓ = f(x) �→ ret (if x has Nat then read else fail),

g(x) �→ ret (if x has Nat then true else fail)

Now, consider the following target context:

C = let x1=call f 5

in if x1 ≥ 5 then call g (x1) else call g (false)

The two programs plugged into this context can generate

(at least) the following traces (where ⇓ indicates termination

and ⊥ indicates failure):

C[P1↓]��� ⇓ C[P2↓]��� read 5;⇓ C[P2↓]��� read 0;⊥
In the execution of C[P1↓], the program executes completely

and terminates, producing no side effects. In the first execution

of C[P2↓], the program reads 5, and the then branch of the

context’s conditional is executed. In the second execution of

C[P2↓], the program reads 0, the else branch of the context’s

conditional is executed and the program fails in g after

detecting a type error.

These traces alone are not enough to construct a source

context since they do not record information about the control

flow of program executions, specifically on which function

produces which input or output. To recover this information

we enrich execution prefixes with information about calls

(from context to program) and returns (from program to

context). The enriched rules on calls and returns now generate

events to model these control flows. If a call or return occurs

internally within the program, no trace event is generated

since they are not relevant for back-translating the context.

The revised semantics is almost identical to the original, and

allows exactly the same program executions, only producing

more informative traces. Hence, the original execution can be

enriched in a valid way for the new semantics.

Labels λ ::= · · · | β Interactions β ::= call f v | ret v

The traces produced by the compiled programs plugged into

the context become:

C[P1↓]��� call f 5; ret 5; call g 5; ret true;⇓
C[P2↓]��� call f 5; read 5; ret 5; call g 5; ret true;⇓

C[P2↓]��� call f 5; read 0; ret 0; call g false;⊥
In our languages, reads and writes can only be performed

by programs, while the context only performs a sequence of

calls to the program, possibly performing some computation

and branching on return values. Thus, the role of the back-

translated source is to perform the appropriate calls to the

program, depending of the values returned. The inner workings

of the programs, that is inputs, outputs, and internal calls

and returns, are not a concern of the back-translation and

are obtained through compiler correctness. Furthermore, the

context is shared by all executions, but each execution has its

own program. Hence, since I/O occurs only in the program,

the only source of variation among all executions come from

the program.

From this, one can conclude that the context is a deter-

ministic expression, calling the program, and branching on

the returned values. This can be seen in the way traces are

organized: ignoring the I/O, the traces form a tree (Figure 2, on

the left). This tree can be translated to a source context using

nested conditionals as depicted below (Figure 2, on the right,

dotted lines indicated what the back-translation generates for

each action in the tree). When additional branches are missing

(e.g., there is no third trace that analyzes the first return or

no second trace that analyses the second return on the left

execution), the back-translation inserts fail in the code – they

are dead code branches (marked with a **).

call f 5

ret 5

call g 5

ret true

⇓

ret 0

call g false

⊥

let x=call f 5

in if x == 5

then let y=call g 5 in

if y == true then 0

else fail

else if x == 0

then fail else fail

**

Fig. 2: Example of a back-translation of traces.

To prove RFrXP we show correctness of the back-

translation, which ensures that the back-translated source

context produces exactly the original non-informative traces.

This is, however, not completely true of informative traces

(that track calls and returns). Since calling g with a boolean

is ill-typed, our back-translation shifts the failure from the

program to the context, so the picture links call g false action

to a fail. The call is never executed at the source level. �

7 Related Work
Full Abstraction was originally used as a criterion for

secure compilation in the seminal work of Abadi [1] and

has since received a lot of attention [60]. Abadi [1] and,

later, Kennedy [46] identified failures of full abstraction in the

Java to JVM and C# to CIL compilers, some of which were

fixed, but also others for which fixing was deemed too costly

compared to the perceived practical security gain. Abadi et al.

268

[3] proved full abstraction of secure channel implementations

using cryptography, but to prevent network traffic attacks they

had to introduce noise in their translation, which in practice

would consume network bandwidth. Ahmed et al. [6, 7, 56]

proved the full abstraction of type-preserving compiler passes

for simple functional languages. Abadi and Plotkin [2] and

Jagadeesan et al. [42] expressed the protection provided by

address space layout randomization as a probabilistic variant

of full abstraction. Fournet et al. [37] devised a fully abstract

compiler from a subset of ML to JavaScript. Patrignani et

al. [59] studied fully abstract compilation to machine code,

starting from single modules written in simple, idealized

object-oriented and functional languages and targeting a hard-

ware isolation mechanism similar to Intel’s SGX [41].

Until recently, most formal work on secure interoperability

with linked target code was focused only on fully abstract

compilation. The goal of our work is to explore a diverse

set of secure compilation criteria, some of them formally

stronger than (the interesting direction of) full abstraction

at least in various determinate settings, and thus potentially

harder to achieve and prove, some of them apparently easier

to achieve and prove than full abstraction, but most of them

not directly comparable to full abstraction. This exploration

clarifies the trade-off between security guarantees and efficient

enforcement for secure compilation: On one extreme, RTP
robustly preserves only trace properties, but does not require

enforcing confidentiality; on the other extreme, robustly pre-

serving relational properties gives very strong guarantees, but

requires enforcing that both the private data and the code of

a program remain hidden from the context, which is often

much harder to achieve. The best criterion to apply depends

on the application domain, but our framework can be used

to address interesting design questions such as the following:

(1) What secure compilation criterion, when violated, would
the developers of practical compilers be willing to fix at least
in principle? The work of Kennedy [46] indicates that fully

abstract compilation is not such a good answer to this question,

and we wonder whether RTP or RHP could be better answers.

(2) What secure compilation criterion would the translations of
Abadi et al. [3] still satisfy if they did not introduce (inefficient)
noise to prevent network traffic analysis? Abadi et al. [3]

explicitly leave this problem open in their paper, and we

believe one answer could be RTP, since it does not require

preserving any confidentiality.

We also hope that our work can help eliminate common

misconceptions about the security guarantees provided (or not)

by full abstraction. For instance, Fournet et al. [37] illustrate

the difficulty of achieving security for JavaScript code using

a simple example policy that (1) restricts message sending

to only correct URLs and (2) prevents leaking certain secret

data. Then they go on to prove full abstraction apparently in

the hope of preventing contexts from violating such policies.

However, part (1) of this policy is a safety property and part

(2) is hypersafety, and as we showed in §4.5 fully abstract

compilation does not imply the robust preservation of such

properties. In contrast, proving RHSP would directly imply

this, without putting any artificial restrictions on code intro-

spection, which are unnecessarily required by full abstraction.

Unfortunately, this is not the only work in the literature that

uses full abstraction even when it is not the right hammer.

Development of RSP Two pieces of concurrent work have

examined more carefully how to attain and prove one of

the weakest of our criteria, RSP (§2.2). Patrignani and Garg

[58] show RSP for compilers from simple sequential and

concurrent languages to capabilities [74]. They observe that if

the source language has a verification system for robust safety

and compilation is limited to verified programs, then RSP can

be established without directly resorting to back-translation.

(This observation has also been made independently by Dave

Swasey in private communication to us.) Abate et al. [4] aim

at devising secure compilation chains for protecting mutually

distrustful components written in an unsafe language like C.

They show that by moving away from the full abstraction

variant used in earlier work [44] to a variant of our RSP
criterion from §2.2, they can support a more realistic model

of dynamic component compromise, while at the same time

obtaining a criterion that is easier to achieve and prove than

full abstraction.

Hypersafety Preservation The high-level idea of specify-

ing secure compilation as the preservation of properties and

hyperproperties goes back to the work of Patrignani and

Garg [57]. However, that work’s technical development is

limited to one criterion—the preservation of finite prefixes of

program traces by compilation. Superficially, this is similar to

one of our criteria, RHSP, but there are several differences

even from RHSP. First, Patrignani and Garg [57] do not

consider adversarial contexts explicitly. This might suffice for

their setting of closed reactive programs, where traces are

inherently fully abstract (so considering the adversarial context

is irrelevant), but not in general. Second, they are interested in

designing a criterion that accommodates specific fail-safe like

mechanisms for low-level enforcement, so the preservation of

hypersafety properties is not perfect, and one has to show,

for every relevant property, that the criterion is meaningful.

However, Patrignani and Garg [57] consider translations of

trace symbols induced by compilation, an extension that would

also be interesting for our criteria (§8).

Proof techniques New et al. [56] present a back-translation

technique based on a universal type embedding in the source

for the purpose of proving full abstraction of translations

from typed to untyped languages. In §6.3 we adapted the

same technique to show RrHP for a simple translation from

a statically typed to a dynamically typed language with first-

order functions and I/O. Devriese et al. [28] show that even

when a precise universal type does not exist in the source,

one can use an approximate embedding that only works for

a certain number of execution steps. They illustrate such an

approximate back-translation by proving full abstraction for a

compiler from the simply-typed to the untyped λ-calculus.
Jeffrey and Rathke [43] introduced a “trace-based” back-

translation technique. They were interested in proving full

269

abstraction for so-called trace semantics. This technique was

then adapted to show full abstraction of compilation chains to

low-level target languages [59]. In §6.4, we showed how these

trace-based techniques can be extended to prove all the criteria

below RFrXP in Figure 1, which includes robust preservation

of safety, of noninterference, and in a determinate setting also

of observational equivalence.

While many other proof techniques have been previously

proposed [2, 3, 7, 37, 42], proofs of full abstraction remain

notoriously difficult, even for simple translations, with appar-

ently simple conjectures surviving for decades before being

finally settled [29]. It will be interesting to investigate which

existing full abstraction techniques can be repurposed to show

the stronger criteria from Figure 1. For instance, it will be

interesting to determine the strongest criterion from Figure 1

for which an approximate back-translation [28] can be used.

Source-level verification of robust satisfaction While this

paper studies the preservation of robust properties in compi-

lation chains, formally verifying that a partial source program

robustly satisfies a specification is a challenging problem too.

So far, most of the research has focused on techniques for

proving observational equivalence [25, 43] or trace equiv-

alence [12, 21]. Robust satisfaction of trace properties has

been model checked for systems modeled by nondetermin-

istic Moore machines and properties specified by branching

temporal logic [49]. Robust safety, the robust satisfaction of

safety properties, was studied for the analysis of security

protocols [39], and more recently for compositional verifica-

tion [71]. Verifying the robust satisfaction of relational hyper-

properties beyond observational equivalence and trace equiva-

lence seems to be an open research problem. For addressing it,

one can hopefully take inspiration in extensions of relational

Hoare logic [15] for dealing with cryptographic adversaries

represented as procedures parameterized by oracles [13].

Other Kinds of Secure Compilation In this paper we

investigated the various kinds of security guarantees one can

obtain from a compilation chain that protects the compiled

program against linked adversarial low-level code. While this

is an instance of secure compilation [8], this emerging area

is much broader. Since there are many ways in which a

compilation chain can be “more secure”, there are also many

different notions of secure compilation, with different security

goals and attacker models. A class secure compilation chains

is aimed at providing a “safer” semantics for unsafe low-

level languages like C and C++, for instance ensuring memory

safety [22, 32, 54]. Other secure compilation work is targeted

at closing down side-channels: for instance by preserving

the secret independence guarantees of the source code [14],

or making sure that the code erasing secrets is not simply

optimized away by the unaware compilers [17, 27, 30, 67].

Closer to our work is the work on building compartmentalizing

compilation chains [4, 18, 40, 74] for unsafe languages like C

and C++. In particular, as mentioned above, Abate et al. [4]

have recently showed how RSP can be extended to express the

security guarantees obtained by protecting mutually distrustful

components against each other.

8 Conclusion and Future Work
This paper proposes a foundation for secure interoperability

with linked target code by exploring many different criteria

based on robust property preservation (Figure 1). Yet the

road to building practical secure compilation chains achieving

any of these criteria remains long and challenging. Even

for RSP, scaling up to realistic programming languages and

efficiently enforcing protection of the compiled program with-

out restrictions on the linked context is challenging [4, 58].

For R2HSP the problem is even harder, because one also

needs to protect the secrecy of the program’s data, which is

especially challenging in a realistic model in which the context

can observe side-channels like timing. Here, an RTINIP-like

property might be the best one can hope for in practice.

In this paper we assumed for simplicity that traces are

exactly the same in both the source and target language, and

while this assumption is currently true for other work like

CompCert [51] as well, it is a restriction nonetheless. We plan

to lift this restriction in the future.

Acknowledgments
We are grateful to Akram El-Korashy, Arthur Azevedo de Amorim,

Ştefan Ciobâcă, Dominique Devriese, Guido Martínez, Marco

Stronati, Dave Swasey, Éric Tanter, and the anonymous reviewers

for their valuable feedback and in many cases also for participating

in various discussions. This work was in part supported by the

ERC under ERC Starting Grant SECOMP (715753), by the German

Federal Ministry of Education and Research (BMBF) through funding

for the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762),

and by DARPA grant SSITH/HOPE (FA8650-15-C-7558).

References
[1] M. Abadi. Protection in programming-language translations. Secure

Internet Programming. 1999.
[2] M. Abadi and G. D. Plotkin. On protection by layout randomization.

ACM TISSEC, 15(2), 2012.
[3] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of

channel abstractions. Information and Computation, 174(1), 2002.
[4] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini,

C. Hriţcu, T. Laurent, B. C. Pierce, M. Stronati, and A. Tolmach. When
good components go bad: Formally secure compilation despite dynamic
compromise. CCS. 2018.

[5] P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation to
modern processors. CSF. 2012.

[6] A. Ahmed. Verified compilers for a multi-language world. SNAPL.
2015.

[7] A. Ahmed and M. Blume. An equivalence-preserving CPS translation
via multi-language semantics. ICFP. 2011.

[8] A. Ahmed, D. Garg, C. Hriţcu, and F. Piessens. Secure Compilation
(Dagstuhl Seminar 18201). Dagstuhl Reports, 8(5), 2018.

[9] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub. Jasmin: High-
assurance and high-speed cryptography. CCS. 2017.

[10] B. Alpern and F. B. Schneider. Defining liveness. IPL, 21(4), 1985.
[11] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive

noninterference leaks more than just a bit. ESORICS. 2008.
[12] D. Baelde, S. Delaune, and L. Hirschi. A reduced semantics for deciding

trace equivalence. LMCS, 13(2), 2017.

270

[13] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.
EasyCrypt: A tutorial. In FOSAD 2012/2013. 2013.

[14] G. Barthe, B. Grégoire, and V. Laporte. Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time”.
CSF. 2018.

[15] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. POPL. 2004.

[16] D. Bernstein. Writing high-speed software. http://cr.yp.to/qhasm.html.
[17] F. Besson, A. Dang, and T. Jensen. Securing compilation against

memory probing. PLAS. 2018.
[18] F. Besson, S. Blazy, A. Dang, T. Jensen, and P. Wilke. Compiling

sandboxes: Formally verified software fault isolation. In ESOP, 2019.
[19] B. Beurdouche, K. Bhargavan, F. Kiefer, J. Protzenko, E. Rescorla,

T. Taubert, M. Thomson, and J.-K. Zinzindohoue. HACL* in Mozilla
Firefox: Formal methods and high assurance applications for the web.
Real World Crypto Symposium, 2018.

[20] E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable information
flow control. CCS. 2017.

[21] V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based
properties using constraint solving. TCS, 492, 2013.

[22] D. Chisnall, C. Rothwell, R. N. M. Watson, J. Woodruff, M. Vadera,
S. W. Moore, M. Roe, B. Davis, and P. G. Neumann. Beyond the
PDP-11: Architectural support for a memory-safe C abstract machine.
ASPLOS. 2015.

[23] D. Chisnall, B. Davis, K. Gudka, D. Brazdil, A. Joannou, J. Woodruff,
A. T. Markettos, J. E. Maste, R. Norton, S. D. Son, M. Roe, S. W.
Moore, P. G. Neumann, B. Laurie, and R. N. M. Watson. CHERI JNI:
sinking the Java security model into the C. ASPLOS. 2017.

[24] M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 18(6), 2010.
[25] S. Delaune and L. Hirschi. A survey of symbolic methods for establish-

ing equivalence-based properties in cryptographic protocols. JLAMP,
87, 2017.

[26] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue.
Implementing and proving the TLS 1.3 record layer. S&P. 2017.

[27] C. Deng and K. S. Namjoshi. Securing a compiler transformation.
FMSD, 53(2), 2018.

[28] D. Devriese, M. Patrignani, and F. Piessens. Fully-abstract compilation
by approximate back-translation. POPL, 2016.

[29] D. Devriese, M. Patrignani, and F. Piessens. Parametricity versus the
universal type. PACMPL, 2(POPL), 2018.

[30] V. D’Silva, M. Payer, and D. X. Song. The correctness-security gap in
compiler optimization. S&P Workshops. 2015.

[31] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter
of Heartbleed. IMC. 2014.

[32] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi. Checked C: Making C
safe by extension. SecDev, 2018.

[33] J. Engelfriet. Determinacy implies (observation equivalence = trace
equivalence). TCS, 36, 1985.

[34] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple
high-level code for cryptographic arithmetic – with proofs, without
compromises. S&P, 2019.

[35] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2),
1974.

[36] R. Focardi and R. Gorrieri. A taxonomy of security properties for
process algebras. JCS, 3(1), 1995.

[37] C. Fournet, N. Swamy, J. Chen, P.-É. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. POPL. 2013.

[38] J. A. Goguen and J. Meseguer. Security policies and security models.
S&P, 1982.

[39] A. D. Gordon and A. Jeffrey. Types and effects for asymmetric
cryptographic protocols. JCS, 12(3-4), 2004.

[40] K. Gudka, R. N. M. Watson, J. Anderson, D. Chisnall, B. Davis,
B. Laurie, I. Marinos, P. G. Neumann, and A. Richardson. Clean
application compartmentalization with SOAAP. CCS. 2015.

[41] Intel. Software guard extensions (SGX) programming reference, 2014.
[42] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via

layout randomization. CSF. 2011.
[43] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a

core Java language. ESOP. 2005.
[44] Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, B. Eng, and B. C.

Pierce. Beyond good and evil: Formalizing the security guarantees of
compartmentalizing compilation. CSF, 2016.

[45] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight
verification of separate compilation. POPL, 2016.

[46] A. Kennedy. Securing the .NET programming model. Theoretical
Computer Science, 364(3), 2006.

[47] A. Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, IX, 1883.

[48] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a
verified implementation of ML. POPL. 2014.

[49] O. Kupferman and M. Y. Vardi. Robust satisfaction. CONCUR, 1999.
[50] L. Lamport and F. B. Schneider. Formal foundation for specification and

verification. In Distributed Systems: Methods and Tools for Specification,
An Advanced Course, 1984.

[51] X. Leroy. Formal verification of a realistic compiler. CACM, 52(7),
2009.

[52] I. Mastroeni and M. Pasqua. Verifying bounded subset-closed hyper-
properties. SAS. Springer, 2018.

[53] J. McLean. Proving noninterference and functional correctness using
traces. Journal of Computer Security, 1(1), 1992.

[54] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Everything you
want to know about pointer-based checking. SNAPL. 2015.

[55] G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis.
Pilsner: a compositionally verified compiler for a higher-order imperative
language. ICFP. 2015.

[56] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation
via universal embedding. ICFP, 2016.

[57] M. Patrignani and D. Garg. Secure compilation and hyperproperty
preservation. CSF. 2017.

[58] M. Patrignani and D. Garg. Robustly safe compilation. ESOP, 2019.
[59] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and

F. Piessens. Secure compilation to protected module architectures.
TOPLAS, 2015.

[60] M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches to secure
compilation: A survey of fully abstract compilation and related work.
ACM Computing Surveys, 2019.

[61] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy. Verified low-level programming
embedded in F*. PACMPL, 1(ICFP), 2017.

[62] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation.
In 12th USENIX Security Symposium. 2003.

[63] A. W. Roscoe. CSP and determinism in security modelling. S&P. 1995.
[64] A. Sabelfeld and D. Sands. A PER model of secure information flow

in sequential programs. HOSC, 14(1), 2001.
[65] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory of mobile

processes. Cambridge University Press, 2001.
[66] F. Schneider. On Concurrent Programming. Texts in Computer Science.

Springer New York, 1997.
[67] L. Simon, D. Chisnall, and R. J. Anderson. What you get is what you

C: Controlling side effects in mainstream C compilers. EuroS&P. 2018.
[68] L. Skorstengaard, D. Devriese, and L. Birkedal. StkTokens: enforcing

well-bracketed control flow and stack encapsulation using linear capa-
bilities. PACMPL, 3(POPL), 2019.

[69] B. C. Smith. Reflection and semantics in Lisp. POPL. 1984.
[70] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,

S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin. Dependent types and multi-
monadic effects in F*. POPL. 2016.

[71] D. Swasey, D. Garg, and D. Dreyer. Robust and compositional
verification of object capability patterns. PACMPL, 1(OOPSLA), 2017.

[72] G. Tan. Principles and implementation techniques of software-based
fault isolation. FTSEC, 1(3), 2017.

[73] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. SOSP, 1993.

[74] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. An-
derson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera. CHERI: A hybrid
capability-system architecture for scalable software compartmentaliza-
tion. S&P. 2015.

[75] A. Zakinthinos and E. S. Lee. A general theory of security properties.
S&P. 1997.

[76] S. Zdancewic and A. C. Myers. Observational determinism for concur-
rent program security. CSFW. 2003.

[77] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.
HACL*: A verified modern cryptographic library. CCS, 2017.

271

