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Abstract—Information-flow control (IFC) enforcing languages
can provide high assurance that software does not leak infor-
mation or allow an attacker to influence critical systems. IFC
hardware description languages have also been used to design
secure circuits that eliminate timing channels. However, there
remains a gap between IFC hardware and software; these two
components are built independently with no abstraction for how
to compose their security guarantees. This paper presents a
proposal for an instruction set architecture (ISA) that can provide
the appropriate abstraction for joining hardware and software
IFC mechanisms. Our ISA describes a RISC-V processor that
tracks information-flow labels at run time and uses these labels
to eliminate or mitigate timing channels. To make the ISA more
practical, it allows constrained downgrading of information; it
permits trading off security for performance; and still offers
control primitives such as system calls. We prove timing-sensitive
noninterference modulo downgrading and nonmalleability for
programs executing our ISA. This involves novel restrictions on
the mutability of labels beyond previous dynamic IFC systems.
Furthermore, we define specific security conditions which correct
hardware can implement to provide software-level security and
sketch how such hardware may be designed and verified.

I. INTRODUCTION

While timing channels have been well known to the security

community for decades, recent hardware-based exploits attest

that these vulnerabilities remain unsolved problems. For ex-

ample, the Spectre, Meltdown, and Foreshadow attacks allow

unprivileged processes to learn secrets by timing memory

accesses [1]–[3]. The sophisticated security mechanisms pro-

vided by these modern processors—privilege rings, memory

management units, and software guard extensions [4]—are

completely undermined by uncontrolled timing behaviors.

Current processors are not timing-safe.

The hardware-security community has investigated how

to eliminate timing channels from circuit implementations,

but these are not panaceas. Hardware description languages

(HDLs) such as SecVerilog [5] and Caisson [6] provide timing-

sensitive noninterference. They ensure that the time at which

“public” state is updated does not depend on any “secret”

state. While they do provide useful primitives for implement-

ing secure processors, these languages are not sufficient for

executing timing-safe software in a real-world setting. They

can preclude necessary operations (such as modifying security

labels at run time) and limit software’s ability to specify

security policies by baking those policies into the hardware.

In practice, software needs the ability to make application-

level policy decisions while still benefiting from the timing-

sensitive guarantees of security-focused HDLs. On the other

hand, more complex instantiations of secure processors lack

proofs that their ISAs enforce a meaningful security condition.

The Hyperflow processor [7], for instance, allows bounded

software modification of the “context label”, but no ISA-level

security condition gives guidance on how safe this is.

Software attempts to eliminate timing channels have had

some success but ultimately are not comprehensive, instead

targeting empirically known sources of timing variation. For

example, compilers for cryptographic computation [8]–[10]

help to mitigate side channels but are fundamentally incom-

plete, since they only model well known sources of timing

variation such as branching and caching. To fully remove

timing channels, a new interface is needed to constrain how

hardware state influences timing and which software instruc-

tions might leak information [11], [12].

The missing link between these hardware and software

approaches is an Instruction Set Architecture (ISA) with an

explicit abstraction for the influence of the machine state on

timing. With such an ISA, strong timing-sensitive security

conditions could be proved about software, relying on the

guarantees made by hardware.

As a straw man, a software–hardware contract might ensure

that all instructions with secret operands execute in constant

time. In fact, existing techniques for securely implementing

cryptography implicitly assume such a contract. However,

constant time inevitably means worst-case time, in general, so

such a contract has daunting implications for the performance

of memory operations. We argue that this kind of contract

is unnecessarily restrictive. It is not necessary that such

instructions take constant time; it is only necessary that the

time taken does not leak information.

This paper presents an ISA design that can be the interface

connecting high-level timing-sensitive software abstractions to

low-level timing-safe processor implementations. Our ISA is

based on information flow control (IFC), which means our

software–hardware contract is a set of IFC properties, rather

than a prescriptive set of implementation behaviors such as

forcing certain instructions to take constant time. Because the

interface is based on IFC, it is possible to formally prove that

only permitted information affects timing.

Our ISA design includes features to avoid being overly

restrictive, as IFC systems often are [13]. To this end, it
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includes downgrading operations that allow software to en-

dorse untrusted inputs and to declassify secret data. We also

allow software to specify its own timing security policy, which

permits trading off timing-channel protection for performance.

Both of these features are limited so that they cannot be abused

by attackers to undermine the security guarantees of well-

behaved programs. We additionally include security primitives

that are required to implement a practical operating system.

These instructions are analogous to traditional system calls, but

they are designed to prevent unexpected information leakage.

The ISA in this paper tackles these goals with novel

constructs and stronger formal security assurance:

• The ISA dynamically enforces timing-sensitive nonmal-

leable information flow [14], while also preventing im-

plicit flows created by checking mutable labels.

• The ISA allows software to control the level of timing-

channel protection. The ISA can be used to eliminate

timing channels, mitigate timing channels with bounded

information leak using predictive mitigation [11], or

enforce nonmalleable information flow control without

timing channel protection.

• The ISA also includes novel instructions for implement-

ing privilege changes to emulate the functionality of

system calls while maintaining nonmalleability.

• The ISA is accompanied by formal, proved security

guarantees for programs implemented with it.

• We also formally specify security conditions with which

hardware implementations must comply to ensure secu-

rity of the ISA.

The paper proceeds as follows. Section II presents back-

ground on security labels and our attacker model. Section III

sketches our approach to controlling timing channels. Sections

IV and V formalize the ISA and discuss its novel features in

detail. In Section VI, we discuss the security conditions as-

sumed of the hardware and the practical challenges in realizing

those policies with modern HDLs. Section VII presents the

security results for this ISA and brief sketches of their proofs.

Section VIII uses example code to demonstrate use of the ISA.

In Section IX we discuss related work and we discuss future

work in Section X.

II. BACKGROUND

Our ISA both extends the RISC-V ISA1 [15] with new

instructions and modifies the semantics of existing instruc-

tions. RISC-V has instructions for computing on data, moving

data to and from memory, and for changing program control

flow. Architectural state refers to any storage location that

is explicitly accessible or modifiable by software, including

the 32 general-purpose registers, the program counter and all

memory locations. Our extension modifies all architectural

state to be associated with a security label. All other hardware

state is considered microarchitectural and affects only the

performance of software but not its functional behavior.

1Our approach is not specific to RISC-V and could be adapted for use in
other instruction sets.

(i, c)→ � c

(i, c)← � i

l1 � l2
�⇔ (l←1 � l←2 ) ∧ (l→2 � l→1 )

l1 � l2 � ((l→2 � l→2 ), (l
←
1 � l←2 ))

l1 � l2 � ((l→2 � l→2 ), (l
←
1 � l←2 ))

�
���
��(i, c) � (c, i)

Fig. 1. Security lattice operators

The complete RISC-V ISA has many Control Status Regis-

ters (CSRs) which are considered architectural, but for brevity

we omit most of them from our formalization. These CSRs

should in principle also each have their own security labels.

A. Security Labels

As in most IFC systems, our security labels form a lattice

that supports a “flows to” relation �, a lattice join � and a

lattice meet �. We use the phrase “more restrictive” to refer to

labels higher in the lattice ordering (e.g. a � b means “b is at

least as restrictive as a”). Figure 1 defines useful and mostly

standard notation for label reference and manipulation. The

label lattice is a product of two other lattices, one for integrity

(trustworthiness of data) and one for confidentiality (secrecy

of data), so a lattice element is a pair (i, c). For generality, we

represent the two component lattices abstractly, but we restrict

them to be dual lattices over the same carrier set. That is, the

ordering � is reversed for the integrity and confidentiality

components of the label lattice. The reflection operator �
���
�� ,

used for controlled downgrading, swaps the two components

of a lattice element.

An illustrative instantiation of this lattice is for the com-

ponent lattice elements to represent principals. For instance,

component b could represent both Bob’s integrity (data written

by Bob) and Bob’s confidentiality (data readable by Bob),

where Bob is a user of the system. Bob’s data can flow to

anywhere that has a label at least as confidential and no more

trusted than b. Suppose there is a principal � that is least in

the integrity ordering (meaning that it is trusted by everyone)

and greatest in the confidentiality ordering; conversely, ⊥ is

highest in the integrity ordering (meaning that it is untrusted)

and least in confidentiality. Then data labeled (�, b) flows to

the label (b,�) because in integrity we have � � b and in

confidentiality, b � �.

B. Downgrading

Downgrading is the act of lowering the label of data in

the lattice, violating the normal direction of information flow

expressed by the lattice ordering. While downgrading greatly

improves expressibility, it is important to constrain it, so

that an attacker cannot leverage the downgrading mechanism

to extract more secrets or modify more trusted state than

the application developer intended. Our ISA enforces non-

malleability, a form of constrained downgrading, defined by
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Cecchetti et al. [14]. Nonmalleability guarantees both robust
declassification and its dual transparent endorsement, which

respectively constrain the downgrading of confidentiality and

integrity.

We define compromised labels to represent exactly the

set of labels that can never be safely downgraded under

nonmalleability.

Definition 1 (Compromised Labels). A label is compromised
if it is not as trusted as it is secret:

l 	� �
���
��(l)

Intuitively, compromised data contains secret information

but has been modified by an attacker or other low integrity

source. Allowing such data to be downgraded opens up the

possibility of “confused deputy” style attacks, where trusted

code that executes downgrades can be tricked into downgrad-

ing arbitrary data.

C. Attackers

We represent attackers by the maximal integrity iA with

which they can act and a minimal confidentiality cA that

they cannot observe. This is equivalent to typical attacker

definitions which use a maximal confidentiality cM the attacker

can observe. Since we assume a finite lattice, we can translate

cM to cA as follows:

Ls = {l | l 	� cM}

cA ≡
∨

ls∈Ls

ls

cA represents the disjunction of all labels which cM is not

allowed to read, and therefore defines the minimal confiden-

tiality that they cannot observe.

It is convenient to summarize the attacker as a single label

A = (iA, cA). As depicted in Figure 2, the components cA and

iA define upward-closed sets of secret and untrusted labels:

S = {l | cA � l}
U = {l | iA � l}

The sets of public (P) and trusted (T ) labels are simply any

labels not in S or U , respectively. Attackers can only read

public data and can only write to untrusted data.

a) Fair Attacks: Similar to prior work on robust declassi-

fication [16], our security guarantees hold against fair attacks,

where high secrecy and high integrity information are only

protected from attackers that do not already know those secrets

or are not already highly trusted. In this work, fair attacks are

defined as those where A represents a compromised label:

Definition 2 (Fair Attacker). Attacker A = (iA, cA) is a fair

attacker if and only if A is a compromised label.

Since a given attacker may be partly trusted with respect to

integrity and confidentiality, the label A is not a fixed, known

label. Rather, we consider the system to be secure if it is secure

against all possible fair attackers A.

co
nfid

ent
iali
ty

integrity

(iA, cA)

pu
blic

sec
ret

trusted

untrusted

⊑

i
A

c A

Fig. 2. A 2-D slice of the combined confidentiality and integrity lattice. The
red section represents all compromised labels. The dotted lines represent valid
boundaries specifying a particular attacker model and dividing the lattice into
quadrants. The intersection of these lines must be a compromised label, but
need not be the same in each component lattice.

Our earlier Bob example can illustrate why this definition

eliminates unfair attackers. In a security lattice including the

orderings (�,⊥) � (b, b) � (⊥,�), consider the attacker

with Bob’s integrity who is only allowed to read fully public

data: A = (b, b).2 A is not a fair attacker: it is as trusted as

Bob (and can therefore impersonate him) but is not supposed

to learn any of Bob’s secrets. Essentially, this A would

model Bob attacking himself. Our security condition does not

prevent Bob from mistakenly releasing his own data to the

public; it prevents untrusted attackers from doing so and from

manipulating Bob into doing so for them.

b) Other Assumptions: We assume a strong attacker

that may observe the wall-clock time at which writes to

public locations occur, and not just the ordering of writes.

This observational power corresponds to a colocated attacker-

controlled process that can race on memory accesses and has

access to wall-clock time. Defending against such a strong

attacker is preferable since it makes the security assurance

correspondingly stronger.

Since our ISA implements a dynamic IFC system, attackers

can observe the labels of data through the success or failure of

run-time checks [17]. For example, if secret (S) is used (either

directly or implicitly through branching ) to label another piece

of data (D) as secret, then an attacker may learn information

about S when their attempt to read D fails. The ISA does not

include instructions for explicitly reading labels and therefore

we assume attackers cannot directly read label values.

III. CONTROLLING TIMING CHANNELS

Here we present high level examples of where timing

channels arise and how we approach mitigating them. Figure 3

contains RISC-V code with a simple microarchitectural timing

channel: a secret-dependent load causing cache interference.

In this example, s0 is a secret value; a0 and a1 are public

information. In modern processors, lw (“load word”) is not

2Note that this label is not compromised since (b, b) � (b, b)
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# s0: secret int, a0: public int[], a1: public int
add s1, a0, s0 # s1 = &(a0[s0])
lw s2, 0(s1) # s2 = *s1
lw a1, 0(a0) # a1 = a0[0]

Fig. 3. Meltdown-style timing channel via microarchitectural state

# l0,l1,l2: public-untrusted int
# h1,h2: secret-trusted int
# secret: secret-trusted boolean
l0 = l1
if (secret): h1 = l1; else: h1 = l2;
l0 = 1

Fig. 4. Untrusted inputs causing secrets to leak via timing

a constant-time operation; its duration depends primarily on

the address being accessed and other microarchitectural state

(notably the cache). In this case, the address depends on s0, a

secret offset into array a0. Loading the data at address s1 also

causes some region of the a0 array to be placed in cache. If

this region happens to be close to the beginning of the array,

the second lw experiences a cache hit and executes quickly.

In this way, an attacker who can observe how long it takes to

load public information learns some secret information. This

vulnerability reflects the core information transfer mechanism

of the Meltdown attack [2].

In our ISA, software specifies a timing label, an upper bound

on what information may influence instruction completion

timing. If the program in Figure 3 executed with a secret

timing label, then it would have the same unsatisfactory

timing guarantees as current software. However, if the timing

label were set to public, then only public information could

influence how long any instruction took and the latency of the

second lw will not reveal any information about s0. Obviously,

software running at a low timing label may not benefit from all

possible performance optimizations, but it does not explicitly

require hardware to take worst-case time.

Figure 4 represents a different kind of timing channel,

where an attacker can determine information about secrets by

observing how long secret-dependent operations take. In this

example, the attacker primes the cache by loading a public

value, l1. Then, by observing when l0 is updated, they can

infer whether or not the memory read operation in between

was a cache-hit or miss. If it was a hit, this implies that the

true branch was taken, since l1 was already cached.

The problem here is related to the interaction of low in-

tegrity state with high confidentiality computation; a cache that

has been tainted with an attacker’s state should not be allowed

to influence the duration of secret operations. We incorporate

this idea into our upcall instruction, which allows software

to execute in a secret context for a predetermined amount of

time. Critically, low integrity attackers cannot upcall their

way into learning secrets nor can they influence how trusted

code execute their upcalls. By considering the relationship

between integrity and confidentiality, we can allow programs

similar to Figure 4 to execute safely, while disallowing variants

that might leak information through timing.

IV. FORMALIZING THE ISA

A. Definitions and Model

In this section we present an abridged semantics for our

ISA. First, we introduce the model for our semantics and some

notational definitions. We represent our ISA as a small-step

operational semantics on configurations.

Definition 3 (Configurations). A processor configuration rep-
resents the current state of the processor, encompassing both
architecturally visible state and microarchitectural state.

SW registers/memory M : Int → Int
SW label mappings L : Int → Lbl

opaque HW state μ : Name → Lbl
program counter and label pc : PC = Int× Lbl

cycle counter and label t : T = Int× Lbl
call stack CS : List(PC×T)

processor configuration C : 〈CS ,M,L, μ, pc, t〉
For simplicity, we represent both registers and DRAM as a

single mapping M , in which registers are located at special

addresses. Addresses are drawn from Int, a set of finite-size

integers.3 Name is a set of variable names, which can refer

to locations but are not directly representable as values. Lbl
is the set of labels representable in our lattice. For clarity,

we abbreviate full configurations as Ci, where subscript i on

elements disambiguates between source configurations (e.g.

M1 is the software memory of configuration C1). Additionally,

we use pcv to refer to the value of the pc and pcl to refer to

its label. The same convention is used for t.
In order to reason about the security label of a given piece

of state in the processor, we define various conventions for

looking up label values and converting integers to labels.

Definition 4 (Label lookup). Both architectural state and
microarchitectural state are tagged with security labels. These
functions describe how to determine the value of a location’s
label, where i ∈ Int, and n ∈ Name.

Interpret i as a Lbl value γ(i)
Label of location i L(i)

Label of n Γ(C)(n)

Γ is a function parameterized on processor state. This

function is defined statically for a given implementation of

the hardware at design time. This parameterization allows the

label of any location to depend on software-specified values

and/or other run-time microarchitectural state.

B. Operational Semantics

We present this ISA as a small-step operational semantics,

factored into two semantics: a partial semantics specified by

software instructions and an opaque hardware semantics that

3The size of this range (for example, 32 or 64 bits) is architecture-specific.
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TABLE I
MODIFIED SEMANTICS FOR STANDARD RISC-V INSTRUCTIONS

Insn Type Restrictions Behavior
COMPUTE pcl � L(rs1) � L(rs2) � L(rd) M ′ = M [rd �→ Rs1 ⊗Rs2]
LOAD pcl � L(rs1) � L(M(Rs1)) � L(rd) M ′ = M [rd �→M(Rs1)]
STORE pcl � L(rs1) � L(rd) � L(M(Rs1)) M ′ = M [M(Rs1) �→ Rd]
BRANCH L(rs1) � L(rs2) � pcl pc′ = (Rs1 ⊗Rs2)?imm : pc + 4
JUMP L(rs1) � pcl pc′ = Rs1

ALL PC L(M(pcv)) � pcl ∧ pcl � �
���
��(pcl) applies to all instructions

ALL T tl � �
���
��(tl) ∧ pcl � tl applies to all instructions

GR � 〈CS ,M,L, μ, pc, t〉 −→ 〈CS ′,M ′, L′, μ′, pc′, t′〉

EXECUTE
GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M ′, L′, pc′, t′l〉 GR � 〈CS ,M,L, μ, pc, t〉 −→μ 〈μ′, t′v〉

GR � 〈CS ,M,L, μ, pc, t〉 −→ 〈CS ′,M ′, L′, μ′, pc′, t′〉

STALL
〈CS ,M,L, μ, pc, t〉 −→μ 〈μ′, t′v〉

GR � 〈CS ,M,L, μ, pc, t〉 −→ 〈CS ,M,L, μ′, pc, (t′v, tl)〉

Fig. 5. Complete CPU operational semantics. These rules defer to semantics which describe how architectural state is modified (−→A) and which describe
how microarchitectural state is modified (−→μ).

describes the behavior of microarchitectural state. Figure 5

shows the complete operational semantics for a CPU and how,

in any given time step, the CPU can update architectural state

(by taking a −→A transition) or “stall” (from the perspective

of software) by updating only microarchitectural state. While

we provide the explicit semantics for −→A (see Figure 7), the

semantics for −→μ are intentionally left unspecified because

they are implementation-dependent. The architectural seman-

tics (−→A) do not depend upon the current state of μ since

μ should not, by definition, influence the behavior of software

(beyond timing). Instead, we define a set of properties that

the transition function −→μ must satisfy. It is these properties

that allows the ISA to offer security guarantees that current

architectures lack.

Table I provides an abridged definition of instruction re-

strictions (also referred to as “label checks”) and behavior for

pre-existing RISC-V instructions. For abbreviation purposes,

the notation rx represents the index of a register specified

by an instruction. To refer to the contents of the register, we

write Rx, a shorthand for M(rx), the contents of the special

memory location which holds that register. The symbol ⊗
represents some arithmetic or relational operator appropriate

to the instruction in question.

In general, the restrictions on instructions prevent state with

high security labels from influencing state with low security

labels. If the restrictions for a given rule cannot be met, the

instruction becomes a “no-op” that increments pcv but has no

other effects. No-ops avoid leaking information through the

enforcement of label checks. However, for certain errors, it

is safe to jump to a special program counter, errorpc, while

retaining the current pcl and tl. One such error is violation of

the ALL PC rule, which can safely cause the program to jump

to errorpc without breaking noninterference. The full list of

these errors is specified in the technical report [18]. At this

point, any error-handling program may execute (for example,

to signal termination), as long as it obeys the restrictions

on normal execution. To a public observer, a program that

produces an error with a secret pc label therefore appears

equivalent to a correctly operating program.

The COMPUTE, LOAD/STORE and BRANCH restrictions are

straightforward; they ensure that instruction operands and

the pc must flow to the destination register. The BRANCH

restrictions prevent implicit flows.

The ALL PC restriction ensures that the instruction being

executed is at least as trusted and public as the pc itself. This

constraint prevents a trusted or public program from reading

instructions from secret or untrusted memory. Additionally,

ALL PC maintains the invariant that a program may execute

only if it has an uncompromised pc. We note in Section V

that keeping the pc uncompromised is required to prevent call

gates from breaking nonmalleability.

The ALL T restriction ensures that the timing label is

uncompromised and is at least as restrictive as the pc label.

We summarize these restrictions as a validity condition:

ISVALID(pcl, tl) � (pcl � tl)∧(pcl � �
���
��(pcl))∧(tl � �

���
��(tl))

Intuitively, it would be difficult to implement any reasonable

hardware that did not guarantee this condition. In any case

where the pc label was more restrictive, the duration of the

instruction would have to be independent of the instruction

performed! This is obviously impractical for real systems,

and the restriction allows us to mostly reason about pcl when

proving security conditions.
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if (s):
upgrade(ts, UNTRUSTED)

else:
skip

tp := ts

Fig. 6. Leaking secrets via an integrity upgrade. Execution is successful
exactly when s is false.

C. Label Mutation

Figure 7 gives the operational semantics for instructions that

modify label state or that raise or lower privilege.4 Label-

mutation instructions modify the labels of memory locations. It

is well known that flow-sensitive monitors, including this ISA5,

can leak information by modifying labels if mutation is not

appropriately limited [17], [19]. Since our approach involves

no extra static information about the executing software, we

implement the no-sensitive-upgrade (NSU) policy [20]. The

NSU policy dynamically prevents leaks by requiring that the

pcl can flow to both the original label and the final label of

the data.

However, this restriction does not eliminate all information

leakage caused by label mutation. Consider the example in

Figure 6. In this case, the label change is inside a secret

context, which requires that the pc is secret and trusted.

Register ts is secret and trusted and the upgrade makes it

secret and untrusted. The label pcl flows to both the original

and final labels of ts, so the aforementioned rule is satisfied.

Nevertheless, the final assignment (which occurs in a public

context) to tp will succeed in the case where s is false and fail

otherwise since ts now represents untrustworthy information.

Additionally, since label arguments themselves are labeled

memory locations, we require that the label of those arguments

flows to pcl. For example, the instruction dwnlbl x3, x6

means: “Downgrade the label of register x3 to the label

represented by the value stored in register x6”. If the label

of x6 itself were secret, using it to change the label of x3 in

a public context could allow an observer to learn about the

content of x6. If the label of a location whose content is used

as a label does not flow to pcl, then the instruction becomes

a no-op to prevent this kind of leakage.

We introduce additional restrictions on both upgrade and

downgrade rules to prevent similar kinds of information leak-

age; these rules differ from each other in order to be more

permissive.

a) Upgrading: The predicate UPLBL(pcl, l, l
′) ex-

presses the NSU check for upgrading label l to label l′ in

the context pcl:

UPLBL(pcl, l, l
′) � (pcl � l � l′) ∧ (l′ � �

���
��(pcl))

4The Rsn notation refers to RISC-V style register addresses; instruction-
size limitations require that the real encoding differ slightly from this notation,
but it is semantically equivalent.

5Although this ISA is flow-sensitive, it does not have floating labels [19],
and therefore labels must be explicitly changed by software instructions.

The intuition here is that we need an upper bound for the

final label to prevent it from moving to a new quadrant in the

lattice. UPLBL deviates from the original NSU definition by

adding the constraint l′ � �
���
��(pcl). This prevents programs from

creating untrustworthy information in secret contexts and vice

versa. For the program in Figure 6, the uplbl instruction fails

the UPLBL test, preventing the offending label modification.

Unfortunately, this still leaks the value of s since the program

only fails when s is true. The key insight for handling this

case is that the failure happens while the pc is still in a high

context, so measures can be taken to prevent a low context

from observing the failure. We discuss this leakage in further

detail below (Section IV-D).

b) Downgrading: There are two different cases to con-

sider when downgrading label l to l′: l′ � l and l′ 	� l.
For the first case, the predicate DWNLBL(pcl, l, l

′) expresses

the existing nonmalleable information flow restrictions when

downgrading label l to label l′ in the context pcl.

DWNLBL(pcl, l, l
′) � (pcl � l′) ∧ (l′ � l) ∧ (l � �

���
��(l))

The other case is the general form of downgrading, which we

model as first executing a downgrade from l to l� l′, followed

by an upgrade to l′. As one might expect, this essentially

combines the restrictions from those other cases:

RELBL(pcl, l, l
′) � (pcl � l � l′)∧ (l � �

���
��(l))∧ (l′ � �

���
��(pcl))

This check implies the original nonmalleability restrictions,6

which means it is no more permissive. In the cases where

l � l′ and l′ � l, the check reduces to UPLBL and DWNLBL,

respectively.

D. Raising context labels

The upcall/upret instruction pair introduces primitives

for controlling timing channels while branching on secret or

untrusted values. The upcall instruction allows a process

to enter a more restricted context with a higher pcl and tl,
while pushing the current pcl and tl to a call stack. In the

new context, the program cannot write to low outputs, but its

execution timing can be influenced by high hardware state.

However, returning from this context reveals timing informa-

tion about the duration of the subprogram. This problem can

be seen in the higher-level program shown in Figure 8. The

low adversary is allowed to observe the time of completion for

the while block, since it can observe the timing of the writes

to public_val. However, the duration of this block depends

upon secret values. This example shows a more general version

of the label-checking termination channel from Figure 6.

To control timing channels, upcall instructions are given

an absolute end time and an ending program counter as

arguments. Once the end time is reached, the processor steps

to the end pcv . The instruction arguments are saved onto

a hardware call stack along with the caller’s pcl and tl.
Intuitively, this semantics preserves noninterference because

6In our setting, their requirement would roughly translate to the conditions:
l � l′ � �

���
��(pcl � l) and pcl � l′.

277



GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M ′, L′, pc′, tl〉

l = L(rd) l′ = γ(Rs1) RELBL(pcl, l, l
′) L(rs1) � pcl L′ = L[rd �→ l′]

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L′, (pcv + 4, pcl), tl〉
DWNLBL

l = L(rd) l′ = γ(Rs1) UPLBL(pcl, l, l
′) L(rs1) � pcl L′ = L[rd �→ l′]

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L′, (pcv + 4, pcl), tl〉
UPLBL

¬INUPCALL
pc′l = γ(Rs1) t′l = γ(Rs2) ISVALID(pc′l, t

′
l) L(rs1) � L(rs2) � L(rs3) � L(rd) � pcl pcl � tl � pc′l � t′l

endpc = Rs3 endt = abs(Rd) + tv CS ′[head ] = ((endpc, pcl), (endt , tl)) CS ′[tail] = CS

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (pcv + 4, pc′l), t
′
l〉

UPCALL

INUPCALL ((endpc, pc′l), (endt , t
′
l)) = CS [head ] tv 	= endt

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, pc, tl〉
UPRET-NOP

INUPCALL ((endpc, pc′l), (endt , t
′
l)) = CS [head ] CS ′ = CS [tail] tv = endt

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (endpc, pc′l), t
′
l〉

DWN-DONE

∅ = CS [head ] endpc = pcv + 4 CS ′[head ] = ((endpc, pcl), (null, tl))
CS ′[tail] = CS (pc′, t′l) = GR(Rs1) ISVALID(pc′l, t

′
l) L(rs1) � pcl pc′l � t′l � pcl

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, pc′, t′l〉
DWNCALL

((pc′v, pc′l), (null, t
′
l)) = CS [head ] pcl � tl � pc′l � t′l CS ′ = CS [tail]

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ′,M,L, (pc′v, pc′l), t
′
l〉

DWNRET

pc′l = γ(Rs1) t′l = γ(Rs2) pcl � pc′l tl � t′l ISVALID(pc′l, t
′
l) L(rs1) � L(rs2) � pcl

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, (pcv + 4, pc′l), t
′
l〉

RAISELBL

¬INUPCALL
GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, (pcv + 4, pcl), tl〉

OTHER ERROR

INUPCALL

GR � 〈CS ,M,L, pc, t〉 −→A 〈CS ,M,L, pc, tl〉
UPRET ERROR

Fig. 7. Operational semantics for downgrading and label-mutating instructions given a call-gate registry GR.

public_val = 0
while (secret_1 < secret_2):
# do some slow computation
secret_1++

public_val = 1

Fig. 8. Secrets may be learned from the timing of the write to public_val.

the subprogram cannot modify memory locations or labels in

a way that changes low observations. Since the completion of

the upcall is determined purely from information of at most

the level pcl, no termination channel influences subsequent

program steps.

In general, this simple approach will be difficult to use in

practice because it requires programmers or compilers to know

impractically cycle-accurate durations of program segments.

However, it does have a use case for running untrusted

functions. The upcall instruction can be used to create a

low-integrity sandbox that executes until the provided timeout

expires.

a) Using upcalls for timing mitigation: To support a

more flexible programming model, we also expose a generic

interface for handling returns from high contexts via an excep-

tion. When the timer completes, if the current instruction is not

an upret, the configuration steps to a known exception handler
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pcv .7 Furthermore, when a label check fails inside of an upcall,

the program simply stalls (i.e., steps to a new configuration

where no architectural state has changed). Whichever of these

conditions causes the exception is recorded in a status register

(implemented as a CSR), with the high label of the upcall. In

Figure 7, we use the INUPCALL check to specify whether

or not a configuration is inside of an upcall by inspecting the

head of the call stack. If INUPCALL is true, then the error

can be handled normally, otherwise it should be squashed and

the program should stall.

INUPCALL �
(((endpc, pc′l), (endt , t

′
l)) = CS [head ])

∧ (pc′l � pcl ∧ t′l � tl)

With this primitive, the timing mitigation algorithms de-

scribed in prior work [11], [21] can be implemented, enforc-

ing bounded leakage on information from the high context.

We note that this information release is still nonmalleable;

both robust declassification and transparent endorsement are

maintained under these mitigation mechanisms. Importantly,

our restrictions prevent attackers from exploiting mitigation to

exfiltrate arbitrary data.
Checking whether or not a high context subprogram failed

due to violating the label check restrictions also represents

a nonmalleable information release. The data in the status

register can be declassified or endorsed to reveal whether or

not a label check caused the subprogram to fail. Revealing

this information violates the termination sensitivity of the

subprogram noninterference. Although the subprogram cannot

modify any low state, information is transferred via termina-

tion.
b) Further upcall restrictions: upcall and dwncall in-

structions may not be executed inside an upcall. Intuitively,

a dwncall (which lowers pcl) would allow a process to

produce public outputs while still inside the upcall, leaking

information about its timing and progress. As mentioned, the

arguments to the upcall instruction must also themselves

be labeled such that they flow to the current pcl. Without

this requirement, secret or untrusted information could still

influence the duration of the subprogram.
c) Permanently raising context labels: In addition to the

upcall instruction, the pcl and tl can be raised by simply

writing to them (they are implemented as CSRs). In order to

preserve noninterference, the labels can only be raised in this

way. Once raised, a program can only lower its context labels

by executing a dwncall instruction. This limits the possible

leakages caused by the program to outputs produced by the

set of trusted functions which it is allowed to call. We discuss

this further in the next section.

E. Lowering context labels
The dwncall/dwnret instructions allow programs to call

into more-public and more-trusted contexts via call gates.

7Termination behavior can be configured on a per-program basis; it is only
required that the configuration is completed using only information that is
low relative to the program’s original pcl.

Call gates are essentially labeled functions that have been

pre-registered by a public–trusted entity. The call-gate registry

is effectively a read-only function lookup table.8 A call gate

registration contains a pc and tl; using a dwncall instruction

sets the current pc and tl to the gate’s values while pushing the

prior values onto a call stack. These instructions provide hard-

ware support for the privilege escalation features described

in prior work on security and information flow. In particular,

they closely resemble the primitives required to implement

gates from the Multics and HiStar operating systems [22],

[23]. In those systems, gates were used respectively to call

known functions with higher privileges than the caller, and to

implement synchronous RPC.

F. Exceptions and Asynchrony

We do not include exception configuration or handling in

our ISA formalism or formal security proof. In this section, we

describe how one could incorporate these features into our ISA

without compromising its security conditions. All exceptions

have a triggering condition and an exception program counter
(epc) that points to the interrupt service routine (ISR)9.

Trigger conditions can be specific to an ISA-extension or

architecture and are often defined by the hardware. The epc

is programmed by software and stored in a CSR. There are

additional exception masking CSRs which software can use

to suppress the trigger conditions. In general, in order for an

exception to fire, the security label of all trigger conditions

(including masks) must flow to the current pcl; otherwise, an

attacker process may learn that an exception fired and deduce

some secret related to its cause. For arithmetic exceptions

such as integer overflow or divide-by-zero, this implies that

the instruction operands flow to the current pcl; if they don’t,

the exception must be suppressed. The label of the pc while

the ISR is actually handling the exception must also be lower

bounded by all trigger inputs and the label of the epc register

itself. In this way, if an exception trigger condition is secret,

its handler must be executing in a secret context and cannot

produce public outputs.

We believe the primary complications involved in inte-

grating exception handling into such an ISA are as follows.

First, it is not always clear how to label exception triggers.

For example, should an incoming network packet signal be

labeled public or could the timing of packet arrival give an

attacker information about co-resident processes? Likely, this

choice should be programmable by software depending on

the threat model. Secondly, depending upon how hardware

state is labeled, asynchronous exceptions (such as timers and

incoming network packets) may be frequently dropped or

delayed. In order to account for this, the processor and ISA

may need to be modified to support batched handling of

exceptions along predetermined schedules within the CPU

itself. Additionally, it may be difficult to limit the number

8Using rules similar to the uplbl instruction, call gate entries can also be
made more secret or less trusted without violating noninterference.

9This is not the same as the RISC-V epc CSR, we are paraphrasing the
exception handling mechanism for clarity.
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of actual hardware signals that contribute to exception trigger

conditions in real implementations. For example, Van Bulck

et al. [24] found that Intel SGX implementations allowed the

currently executing instruction to complete before handling

certain exceptions. Waiting for instruction completion means

that most control signals in the CPU would influence the

exception trigger conditions. It is not always possible to

immediately transfer control to the ISR without waiting for

some state to clear in the CPU, and thus it may be challenging

to implement practical exceptions that execute in contexts that

have low confidentiality or high integrity.

V. ISA DESIGN DISCUSSION

Here we highlight some salient points of our design and

compare and contrast with other language-based IFC systems.

Compromised contexts and data undermine nonmalleabil-
ity: The original nonmalleability paper [14] identified restric-

tions on downgrading that are equivalent to our observation

that compromised labels cannot be downgraded to public

or trusted status. We additionally notice that executing in a

compromised context can unsafely leak information through

timing. Specifically, this can violate the non-occlusion princi-

ple of declassification described by Sabelfeld and Sands [25].

Consider the scenario where upcall operations implement

predictive mitigation, and therefore enforce nonmalleability

(rather than noninterference). Allowing a process to raise its

pcl and/or tl to a compromised level is unsound because it

implicitly allows that process to declassify arbitrary data. With

our restrictions, observing the duration of this subprogram

leaks only the caller’s secrets and is therefore robust; other-

wise any information could be implicitly declassified via this

channel.

Software can control how much information it leaks
through timing channels: Our ISA provides strong guarantees

with respect to timing. As long as a program keeps its

timing label low and executes fully low-deterministic upcalls,

it leaks no information through its timing behavior. However,

programs are not strictly bound by these restrictions. By

explicitly exposing the pcl, tl and upcall timing to software,

we grant programs the ability to weaken these restrictions

gracefully to suit their needs. This provides important flexi-

bility for situations where our threat model is overly strong or

when application-specific data may only require probabilistic

guarantees about timing consistency.

Limitations of Our ISA: While our ISA has strong

security guarantees and important security primitives, there is

much room for future research. First of all, our timing label

mechanism does provide a bound on which information may

be implicitly leaked through timing channels. However, this

is a coarse-grained approach that could potentially leak any
information below the timing label. This behavior is unlike

the dwnlbl instruction, which explicitly denotes the memory

location to be downgraded. Our ISA also does not incorpo-

rate explicit timing into any instructions other than upcall.

While this lack of explicitness is beneficial for remaining

implementation-agnostic, it does not give guidance on how

to implement secure and efficient hardware. Yu et al. [26]

describe an ISA which focuses on this performance aspect,

by exposing more microarchitectural information in their ISA.

Future secure ISAs and ISA extensions must be designed

with both of these goals in mind, potentially leading to new

semantics or completely novel timing-aware instructions.

Finally, our work only targets the single core subset of

the RISC-V ISA and does not provide guidance on how

to address multicore communication and interference. This

realm of interconnected computing devices communicating via

shared memory and coherence networks introduces many more

opportunities for timing interference and side channel com-

munication. Investigating this problem requires a significant

further effort in analyzing the semantics of existing memory

models, microarchitectural coherency guarantees and how to

efficiently incorporate IFC labels into these protocols.

VI. HARDWARE SEMANTICS AND PROPERTIES

As mentioned earlier, an actual hardware implementation

of this ISA will be a circuit which not only implements the

software-visible semantics but which refines the full CPU

semantics. We now discuss properties of a hardware imple-

mentation that are sufficient to guarantee the ISA-level security

conditions. Additionally, we discuss the implications of these

properties on hardware implementations and comment on what

techniques may be utilized to verifiably construct hardware

with said properties.

Property 1 (Deterministic Execution). For any configuration
C, and for all i ∈ {1, 2}

C −→μ 〈μi, tvi〉 =⇒ ((μ1 = μ2) ∧ (tv1 = tv2))

∧
C −→ Ci =⇒ C1 = C2

The operational semantics for the transition function on

microarchitectural states must be deterministic. Furthermore,

we assume that the full semantics which determines when to

stall the processor is also deterministic.

We believe that this property can also be relaxed to allow

for sources of nondeterminism (such as changes in clock fre-

quencies, random number generators, etc.) as long as this non-

determinism is truly generated by noise or other public/trusted

factors. Defining exactly what factors are public/trusted is a

complex decision related to particular threat models and is out

of scope for this paper.

Property 2 (Single-Step Machine Noninterference). Given a
set of low labels in the security lattice, L,

∀C, i ∈ {1, 2}.
(C1 =L C2) ∧ (Ci −→ C ′i)

=⇒ ((μ′1 =L μ′2) ∧ (t′v1 =L t′v2)).

The hardware implementation must enforce a timing-

sensitive noninterference condition for microarchitectural state

for all transitions. With this definition, the label of t effectively
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bounds which hardware state may affect the timing of opera-

tions (including the decision to stall or not stall computation).

The above property also implies that −→μ enforces timing-

sensitive noninterference on μ and t. Note that this noninter-

ference condition only applies for microarchitectural state, not

architectural state. The architectural state may be downgraded

using the downgrade instructions in our ISA.

Property 3 (Computability of Label Lookups).

∃Γ, ∀C, n ∈ dom(μ),Γ(C)(n) is computable

Property 3 has so far been an implicit assumption. The

function Γ is parameterized on all of the configuration state;

it represents a function that must be computed at run time

and therefore must be implemented in the microarchitecture.

In combination with Property 2, this implies that the process

of looking up microarchitectural labels does not violate nonin-

terference [27]. It also implies that, after a configuration step

C −→ C ′, Γ determines low equivalence by evaluating labels

of μ using C ′, not C (we formalize low equivalence further

in Section VII).

Intuitively, the above properties suggest that there is

no hardware-level information flow which violates timing-

sensitive noninterference except for flows that are explicitly

induced by software instructions. For instance, declassifying

a secret memory location, loc, with a dwnlbl instruction

can only declassify microarchitectural state that specifically

represents loc’s data. Section VII discusses the ISA-level

security properties that we can obtain, given these hardware

properties, in more detail.

A. Implications for Hardware Implementations

Property 1 can be easily satisfied, for the most part, as

processors are typically implemented as deterministic digital

circuits. While some features require a notion of nondetermin-

ism (such as random number generators or external sensor in-

puts), these can be modeled as the I/O to a deterministic digital

circuit. In the design, one must label and build deterministic

circuitry used to process these values (e.g. a buffer containing

input packets from the network) but the non-determinism of

the outside system has no direct impact on the security of the

processor itself. As discussed in Section IV-F, this may lead to

different low-level behaviors and performance characteristics

in real implementations.

Furthermore, even features with somewhat unpredictable

behavior can be modeled deterministically as long as their

inputs are deterministic. For example, DVFS [28] modulates

clock frequency during execution and can change the wall-

clock time of code execution. However, if those modulation

decisions are made via a digital circuit and their inputs

are deterministic, we can model DVFS as software-visible

architectural state and guarantee that its use does not violate

our security conditions.

Property 2 requires a processor to be designed to remove

timing channels through its microarchitecture. A recent pub-

lication [7] shows that such a tagged processor with strong

control for microarchitectural timing channels and potentially

reasonable overheads is feasible. Yu et al. [26] have also shown

recently that it is feasible to build a modern CPU with specu-

lation, out-of-order execution and other microarchitectural op-

timizations while enforcing probabilistic-noninterference [29].

These results provide evidence that it is possible to build effi-

cient secure hardware, with the appropriate ISA abstractions.

Property 3 suggests that processor microarchitecture needs

to be designed in a way that allows the security label of

microarchitectural state to be determined. This property can

be achieved by either statically labeling hardware modules

at design time or by adding hardware tags to track runtime

labels. Recursively, these tags are also microarchitectural state

and their labels must also be computable. Therefore, real

implementations will use both of these techniques (static vs.

dynamic labels) since Γ is only computable if it eventually

reaches a fixed point.

Our ISA provides hardware designers with the flexibility

to choose how to realize timing-sensitive noninterference.

For example, in order to remove cache timing channels, a

processor designer may: statically partition a cache; dedicate a

cache to one security level and flush it when the security level

is lowered; bypass the cache; or even introduce scratchpad

memory with a fixed latency, etc.

B. Enforcing Timing-Sensitive Noninterference in Hardware

For strong security assurance, we ideally want to formally

enforce the properties needed for a secure hardware imple-

mentation. There exist several efforts to develop security-

annotated Hardware Description Languages (HDL) that can

provide timing-sensitive noninterference guarantees, similar to

the one we specify here [5], [30], [31]. Previous studies show

that these security-annotated HDLs can be used to express

realistic security policies and implement complex circuits that

satisfy them [6], [7], [32], [33].

The primary challenge with proving Property 2 by using

secure HDLs is that these languages do not have separate

notions of “architectural” and “microarchitectural” state; the

entire circuit is represented as a single state machine. Phrased

another way, hardware and software are concerned with differ-

ent definitions of observability; in the hardware description, all

state is considered observable, even though software can only

directly observe architectural state. This disconnect makes

proving a hardware implementation correct challenging for a

few specific reasons.

First, it is impossible to prove that an implementation that

supports ISA-level downgrading provides microarchitectural

noninterference. Any implementation of our ISA must contain

downgrades at the HDL level, which correspond to those

required to implement downgrading instructions. However,

the noninterference guarantees provided by these HDLs are

completely obviated by including downgrades; they cannot

ensure that the information being downgraded is limited only

to architectural state.

A second issue with proving hardware implementations

secure is the difference in label equivalence models. We
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assume that an attacker cannot read the value of a secret label,

but can observe the fact that the label is secret. In the hardware,

any location which stores a label value must itself be labeled.

Given the attacker model above, it is unclear how to write

down the label of this location. If we label it as public, then

the HDL will allow us to define hardware that leaks the values

of secret labels to attackers. If we label it as secret, then the

HDL will conservatively disallow some safe label checking

operations.

We believe that these problems may be solved by ap-

plying prior techniques for verifying CPU correctness (such

as Pipecheck and RTLCheck [34], [35]). Moreover, these

approaches could be augmented with formal verification tools

specifically designed for IFC. For instance, Nickel [36] is a

framework for proving noninterference that uses application

specific definitions of observational equivalence. Investigating

how to utilize these approaches to prove microarchitectural

noninterference while supporting software-level downgrading

and notions of observability is an interesting open research

question.

VII. ISA SECURITY PROPERTIES

This section describes some of the security properties of

this ISA and their performance and usability tradeoffs.

a) Low Equivalence: We start by formalizing the

low equivalence of configurations, relative to a set of low

labels, L. This models the ability of an observer who can

only differentiate between low states; two low-equivalent

configurations appear identical to a “low observer”. First, we

define an equivalence operator on label mappings to formalize

our notion that attackers cannot observe exact label values.

Definition 5 (Label Lookup Domain Equivalence). For an

attacker inducing label sets P , S , U , and T

L1 ≈ L2 ⇐⇒ ∀n ∈ dom(L).

(L1(n) ∈ P ⇐⇒ L2(n) ∈ P) ∧
(L1(n) ∈ T ⇐⇒ L2(n) ∈ T )

We define the ≈ relation on the labels of microarchitecture
similarly.

Figure 9 shows the definition of low equivalence for all

configuration components. We assume that L,M, μ and Γ
are total functions so that domain equality is implicit. The

requirements of low equivalence explicitly require that “label

lookups” for both architectural and microarchitectural state

return equivalent but not equal values for high labels. Call

stack low equivalence requires that all entries with low pcl
are in the same position in the stack and are themselves low-

equivalent. By construction, all low entries must be at the head

of the stack10 so it is sufficient to check that the low prefixes

of each call stack are equivalent.

10This is enforced by preventing dwncalls while inside of an upcall.

Definition 6 (Call Stack Prefix Low Equivalence).

CS 1 �LCS 2 ⇐⇒
(1) CS1 = ∅ ∧ ∀(pci, ti) ∈ CS 2, pc

i ∈ H
or

(2) CS 2 = ∅ ∧ ∀(pci, ti) ∈ CS 1, pc
i ∈ H

or

(3) CS 1[head] = (pc1, t1) =L (pc2, t2) = CS 2[head]

∧ CS 1[tail] �L CS 2[tail]

b) Security Guarantees: All of the theorems in this sec-

tion have full proofs which can be found in the accompanying

technical report [18]. First, we show that executing programs

that do not contain downgrade or call gate instructions preserve

noninterference.

We use the term valid configurations to refer to configura-

tions that were initialized with reasonable values. Specifically,

the configurations satisfy the ALL PC and ALL T requirements

and the initial call stacks are empty.

Theorem 1 (Noninterference Modulo Downgrading and Call

Gates).
For any two valid configurations, C1 and C2 and any low

set of labels, L, where no instruction is a dwnlbl, upcall, or
dwncall:

(Ci −→∗ C
′
i) ∧ (C1 =L C2) =⇒ C

′
1 =L C

′
2

where −→∗ is the reflexive, transitive closure of −→.

The proof is a straightforward structural induction on the

operational semantics of the processor. By assuming Property

2, essentially all of the work in this proof requires proving

noninterference of the −→A semantics.

We next extend Theorem 1 to prove noninterference even

when using upcall instructions.

Theorem 2 (Noninterference Modulo Downgrading).
For any two valid configurations, C1 and C2, and any low

set of labels, L, where no instruction is a dwnlbl or dwncall.

(Ci −→∗ C ′i) ∧ (C1 =L C2) =⇒ C ′1 =L C ′2

In the scenario covered by Theorem 1, once the pcl was

high, it could never be lowered again. That makes the nonin-

terference proof trivial but also limits functionality. To prove

Theorem 2, we show that all operational steps taken while

an upcall is on the call stack can be modeled as a single

operational step to low-equivalent configurations. We can show

this since the end configuration of the upcall is predetermined

by low-equivalent state and high pcs are noninterfering (i.e.

programs executing with a high pc cannot modify any low

visible state).

Note that while this theorem is termination-sensitive , it

is not timing-sensitive. In the case where tl 	� pcl, attackers

may make observations about high state based on the timing

of writes to low state. We present a corollary that provides

timing sensitivity.
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pc1 =L pc2 ⇐⇒ ((pcl1 ∧ pcl2) 	∈ L) ∨ (pc1 = pc2)

t1 =L t2 ⇐⇒ ((tl1 ∧ tl2) 	∈ L) ∨ (t1 = t2)

L1 =L L2 ⇐⇒ (L1 ≈ L2) ∧ (∀j ∈ dom(L). L(j) ∈ L =⇒ L1(j) = L2(j))

M1 =L M2 ⇐⇒ (L1 ≈ L2) ∧ (∀j ∈ dom(M). L(j) ∈ L =⇒ M1(j) =M2(j))

μ1 =L μ2 ⇐⇒ (Γ(C1) ≈ Γ(C2)) ∧ (∀n ∈ dom(μ). Γ(C)(n) ∈ L =⇒ μ1(n) = μ2(n))

CS 1 =L CS 2 ⇐⇒ CS 1 �L CS 2

C1 =L C2 ⇐⇒ (pc1 =L pc2) ∧ (t1 =L t2) ∧ (M1 =L M2) ∧ (μ1 =L μ2) ∧ (CS 1 =L CS 2)

Fig. 9. Low Equivalence of Configuration Components, relative to “low” labels, L.

Corollary 1 (Timing-Sensitive Noninterference Modulo

Downgrading).
If (pcl ∈ L =⇒ tl ∈ L) for all intermediate configurations

and upcall regions have fixed durations, then Theorem 2
provides timing sensitivity.

This corollary ensures that any time that low writes are

possible, the attacker will observe them occurring at the same

time. Furthermore, the duration of high call gates will be

determined by low information.

As defined in Section II, nonmalleability is essentially

defined as maintaining both robust declassification and trans-

parent endorsement. Even with no syntactic restrictions (unlike

the prior theorems) our ISA enforces nonmalleability.

Theorem 3 (Nonmalleable Information Flow). For attacker
induced high label sets S and U and their respective com-
plements, P and T and valid configurations, ∀{s, u} ∈
{1, 2}, Csu

((Csu −→ C ′su) ∧ (C1u =P C2u) ∧ (Cs1 =T Cs2))

=⇒
((C ′11 =P C ′21 =⇒ C ′12 =P C ′22)

∧
(C ′11 =T C ′12 =⇒ C ′21 =T C ′22))

Assuming Theorem 2, we only need to reason about instruc-

tions which violate information flow: dwncall and uplbl. The

key restrictions which provide nonmalleability are those that

prevent the pcl or tl from becoming compromised and the

restriction that compromised data is never downgraded.

VIII. PROGRAM EXAMPLES

We now describe examples of how to use our ISA features

in practical scenarios.

AES is a well known encryption algorithm which does not

require the program to branch on any secrets [37]. Instead,

AES uses a public lookup table indexed by computation

involving both the secret key and public input. This behav-

ior of executing secret-dependent memory accesses makes it

susceptible to a number of timing-channel attacks [38]–[42],

some of which are similar to the vulnerability in Figure 3.

Figure 10 is a toy version if this AES-style lookup table ac-

cess in our ISA. Without mitigation techniques, the execution

# PCLBL = TLBL = (TRUSTED, PUBLIC)
# L(key) = L(s0) = (TRUSTED, SECRET)
# L(in0) = (TRUSTED, PUBLIC)
upcall est, ST, ST, enc_end
----------------------------
# PCLBL = (T,S), TLBL = (T,S)
andi in0, in0, MASK
xor s0, key, in0
lw s0, 0(s0) # (a)
andi s0, in0, mask
lw s0, 0(s0) # (b)
declreg s0, PUBLIC
upret
----------------------------
enc_end:

Fig. 10. Mitigated AES.

of the second load (b) could be faster if it accesses the same

cache line from (a). Similarly, another program may also infer

the value of the secret through cache contention.

One existing software-based mitigation technique for pre-

venting this cache timing channel is to preload the entire

lookup table ahead of time [43]. Preloading allows a cache

implementation to fill its entries with useful data based only

on public addresses. However, this approach is not guaranteed

to be secure on normal hardware; if a cache were too small

to contain the entire table (or evicted entries for any other

reason), it is possible that some lookups would trigger misses,

thereby leaking information with an unexpectedly slow dura-

tion for certain keys. Other efforts to eliminate these problems

with AES still rely on the assumption that certain instructions

are constant-time [44].

Our ISA enables software to control microarchitectural

timing channels in a principled manner. On hardware im-

plementing our ISA, the secret-dependent loads in Figure

10 cannot affect public microarchitectural state and therefore

cannot leak secret information through memory contention.

Additionally, the strategy of preloading the cache can still

improve performance on some implementations. One potential

CPU implementation might maintain private and public cache

partitions. During the preload phase, public and trusted code

fills up the public cache partition with some or all of the

AES table. During the encryption phase, secret code can read
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# PCLBL = TLBL = (PUBLIC, UNTRUSTED)
# L(guess) = (PUBLIC, UNTRUSTED)
# L(pass) = (SECRET, TRUSTED)
dwncall check_pass
===============================
# PCLBL = TLBL = (PUBLIC, TRUSTED)
check_pass:
endoreg guess, TRUSTED
upcall est, ST, ST, end_check

-------------------------------
# PCLBL = TLBL = (SECRET, TRUSTED)
beq guess, pass, success
li res 0
upret

success:
li res 1
upret

-------------------------------
end_check:
declreg res, PUBLIC
dwnret

Fig. 11. Password checking in the proposed ISA.

those entries but cannot modify them, instead making updates

only to the private cache partition. This implementation would

allow for a more secure and efficient AES execution. Never-

theless, the duration of the entire execution could leak some

information about the secret key; this example also shows how

software can use an upcall instruction to obscure that duration

by providing an explicit end time (via the est argument in the

example’s upcall).

A. Password Checker

In this example, we show how to implement a nonmalleable

password checker which can be called by untrusted users with

the dwncall instruction. The code for this checker is shown

in Figure 11. This program starts in a public and untrusted

context, which would be typical for an unauthenticated user.

The untrusted user generates their guess and puts it into the

register called guess. Then they use the dwncall instruction

to call the check_pass function and gain high integrity. This

is analogous to executing a system call in a typical operating

system, where the user program is linked with trusted libraries

and jumps into that code.

Once the check_pass function has started, it must endorse

the user’s guess, since a trusted pc cannot branch on low

integrity data. In order to compare the secret password value

with the guess, the program executes an upcall instruction to

enter a timing-mitigated region. Inside that region, the program

computes either a 1 or 0 based on whether or not the guess

was right or wrong, and then returns. Finally, at the end of the

check_pass function, the result is declassified to public and

the call gate exits back to the untrusted context.

If an untrusted user were to execute the check_pass func-

tion like a normal function call, their attempts to endorse

their own guess and upcall into a secret and trusted state

would both fail. This example illustrates the nonmalleability

guarantees and how trusted system code can be resident in the

system but only accessible via call gates.

IX. RELATED WORK

a) Software Information Flow Control: Software-based

IFC has been applied in many settings with the goal of

eliminating timing channels [11], [17], [45]–[50]. Kashyap

et al. [48] discuss various software strategies for enforcing

timing-sensitive noninterference. In particular, they focus on

using lattice scheduling to ensure that the ordering of vis-

ible events does not leak secret information. Parsec [46]

is a language for concurrent programming which, given a

race-freedom analysis, ensures observational determinism, a

noninterference condition for concurrent programs. Bedford

et al. [17] have also shown how a hybrid IFC system can

provide progress-sensitive noninterference, a weaker condition

than timing sensitivity; it does not leak information based on

which sets of outputs a program successfully produces. Secure

multi-execution, where a program is executed multiple times

at varying security levels, has also been used to prove timing-

sensitive noninterference [50]. LIO [47] is a Haskell-based

language extension for mitigating both external and internal

channels through the use of monadic computation and IFC.

Of the aforementioned systems, only LIO handles external

timing channels. Like our ISA, LIO provides a dynamic

semantics for enforcing noninterference but lacks features such

as downgrading and integrity tracking.11 Additionally, it is a

high-level language which requires a software runtime for its

security, making it unsuitable as an ISA description.

b) Hardware-level information flow control: IFC tech-

niques have also been used to build timing-safe hardware.

While not focused on timing, Suh et al. [52] showed that pro-

cessors could implement efficient information flow tracking.

Caisson and Sapper [6], [33] provided a nested state machine

abstraction for circuit design and proved that hardware built

using those tools enforced timing-sensitive noninterference.

More expressive HDLs that provide similar security guarantees

have also been developed using dependent types [30], [53].

The Hyperflow processor [7] is a fully-featured implementa-

tion of a RISC-V CPU developed using these techniques.

c) Secure ISAs: While many of the above HW IFC

systems presented CPUs and ISAs, they were focused on se-

curity guarantees about the circuits. None of them have proved

security results for programs executing on top of their example

abstractions. Ge et al. [12] have defined a set of properties

they argue post-Spectre ISAs (called aISAs) must enforce to

provide efficient, timing-sensitive security. These properties

primarily focus on prescribing how an operating system can

interact with the hardware to provide timing security. They

refer to concrete mechanisms such as hardware partitioning

and time multiplexing rather than the security properties that

these mechanisms should aim to enforce. Our ISA provides

more fundamental guarantees than those suggested in their

11Follow-up work (e.g., [19], [51]) addresses some of these features.
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work, but real implementations of our ISA would likely exhibit

many of the properties they list.

Yu et al. [26] have built an ISA extension for “oblivious

computing” and have proved probabilistic noninterference

results. They have also built and measured the performance

of a speculative, out-of-order processor using this ISA and

demonstrated its performance improvements over more con-

servative techniques. Their ISA treats security as an optional

component which software may opt-in to by labeling instruc-

tion operands as public or secret. This is promising evidence

of the practicality of efficient microarchitectures for secure

ISAs.

The work of Zhang et al. [11] on language-based timing

mitigation defines a software–hardware contract based on

“write labels” and “read labels” that almost directly parallel

our pcl and tl. However, that contract requires well-typed

programs that correctly specify write and read labels; the

hardware itself is not assumed to enforce any restrictions on

how these labels change over time. Furthermore, our ISA

considers both confidentiality and integrity while enforcing

nonmalleable downgrading. We do not require a fully trusted

entity to perform timing mitigation: any upcall caller can

implement their own mitigation algorithm in their own context.

d) OS-level information flow control: Asbestos [54] and

HiStar [23] are two well known IFC operating systems. They

do not assure timing safety. However, HiStar’s notion of gates
informed our call gate mechanism, but the restrictions on gates

and the security guarantees differ from ours. NickelOS [36]

has been recently developed using intransitive noninterference,

which allows more flexible security policies than traditional

IFC. However, NickelOS is not timing-sensitive and focuses

on information flow exposed through OS APIs.

X. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an ISA that defines a

contract between software and hardware that defines how

information may or may not affect the timing of instruc-

tions. Importantly, it provides timing safety without requiring

that instructions explicitly execute in worst-case time. As

a byproduct, our proofs delineate conditions that hardware

should satisfy, thus providing guidance to hardware designers.

We foresee many avenues for further research in the domain

of timing secure ISAs. Modeling more ISA features such as ex-

ceptions, memory models, and other concurrency mechanisms

can provide evidence toward the practicality of this approach

to ISA design. Furthermore, it will help expose more potential

side channels that exist throughout the complex environment

of multicore processors.

Given this foundation, we can develop new instructions or

instruction semantics that expose different timing characteris-

tics, such as fixed-latency scratchpad memory [55] or other

“obvlivious” computation [26]. Experimenting with these new

ideas in the context of a nonmalleable ISA can also ensure

that the security guarantees hold end to end.

The largest open question is how to formally verify that

hardware implementations satisfy the properties defined in

Section VI, allowing us to connect security guarantees of

high-level languages and verified operating systems to the

actual behavior of the underlying hardware. We think there

are many opportunities to improve existing secure HDLs for

finer grained downgrading (of both data and time), and to

adapt hardware functional verification techniques to prove IFC

properties of processors.
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