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Abstract—Flow-sensitive labels used by dynamic enforcement
mechanisms might themselves encode sensitive information,
which can leak. Metalabels, employed to represent the sensitivity
of labels, exhibit the same problem. This paper derives a new
family of enforcers—k-Enf , for 2 ≤ k ≤ ∞—that uses label
chains, where each label defines the sensitivity of its predecessor.
These enforcers satisfy Block-safe Noninterference (BNI), which
proscribes leaks from observing variables, label chains, and
blocked executions. Theorems in this paper characterize where
longer label chains can improve the permissiveness of dynamic en-
forcement mechanisms that satisfy BNI. These theorems depend
on semantic attributes—k-precise, k-varying, and k-dependent—
of such mechanisms, as well as on initialization, threat model,
and lattice size.

Index Terms—label chain, dynamic information flow control,
permissiveness

I. INTRODUCTION

Dynamic enforcement mechanisms (which might involve

static analysis) for information flow control employ tags

containing labels to represent the sensitivity1 of what variables

store. These labels can be flow-sensitive, meaning that they

change when a value with different sensitivity is assigned

to the tagged variable during program execution. Sensitive

information might influence which assignments execute and,

consequently, determine how and when the flow-sensitive label

tagging a variable changes. So flow-sensitive labels can depend

on sensitive information.

Inspecting or directly observing flow-sensitive labels might

itself leak sensitive information [20]. Consider a program

if m > 0 then w := h else w := l end (1)

Suppose w is tagged with a flow-sensitive label, but the other

variables, are tagged with fixed labels2, which do not change

during execution: l is tagged with fixed label L (i.e., low),

m with M (i.e., medium), and h with H (i.e., high), where

L � M � H holds.
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1In this paper, sensitivity refers to confidentiality level.
2Note that variables with fixed labels can model sources or sinks of

information.

(i) If m > 0 holds, then information flows explicitly from h
to w and implicitly from m (in m > 0) to w. When (1)

terminates, w should be tagged with flow-sensitive label

H, because H is at least as restrictive as the label H that

tags h and the label M that tags m.

(ii) If m �> 0 holds, then w should be tagged with flow-

sensitive label M when (1) terminates, because M is at

least as restrictive as the labels that tag l and m.

So, the flow-sensitive label tagging w depends on whether

m > 0 holds. Information about m, which is sensitive, leaks

to observers that can learn that label.

Blocking an execution based on flow-sensitive labels might

leak sensitive information, too. Consider (1), extended with

two assignments:

if m > 0 then w := h else w := l end;

m := w; l := 1
(2)

(i) If m > 0 holds, then m := w should be blocked

to prevent information tagged H and stored in w from

flowing to m, which is tagged with fixed label M;

assignment l := 1 is not reached.

(ii) If m �> 0 holds, then m := w does not need to be blocked

(because w stores information tagged M). Assignment

l := 1 will execute.

Depending on whether m := w is blocked, principals monitor-

ing variable l (which is tagged L) either do or do not observe

value 1 being assigned to l. The decision to block m := w
depends on the flow-sensitive label of w, which depends on

sensitive information m > 0. So m > 0 is leaked if observers

can detect that m := w is blocked.3

To prevent such leaks, metalabels (e.g., [6]) might be

introduced to represent the sensitivity of information encoded

in flow-sensitive labels. For example, the metalabel for w in

(2) would be M, corresponding to the sensitivity of information

encoded in the flow-sensitive label tagging w. Only principals

authorized to read information allowed by the metalabel (i.e.,

M) would be allowed to observe the label of w. The metalabel

that tags w would also capture the sensitivity of the decision

to execute m := w and reach l := 1. To prevent the implicit

3In fact, an arbitrary number of bits can be leaked through blocking
executions [2].
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flow of that information (which is tagged with M) to variable

l (tagged L), assignment l := 1 must not be executed.

Since metalabels are flow-sensitive, they too could en-

code sensitive information that might leak to observers. It is

tempting to employ meta-meta labels to prevent those leaks.

However, flow-sensitive meta-meta labels might then leak. We

seem to need a label chain associated with each variable: a

label �1, metalabel �2, meta-meta label �3, etc.

This paper introduces and analyzes dynamic enforcement

mechanisms that employ label chains of arbitrary length. These

mechanisms protect against a threat model where principals

observe updates to variables and to elements of label chains—

attackers thus co-resident with the program being executed.

We start by formalizing label chains (§II) and defining en-

forcers (§III). We next (§IV) extend block-safe noninterference

(BNI) [22] to stipulate that sensitive information does not

leak to observers of variables and label chains. BNI extends

termination insensitive noninterference (TINI) [38] in order

to proscribe leaks to principals that can observe variables and

label chains along normally terminated and blocked traces.

Enforcer∞-Enf is derived (§V); it uses label chains of infinite

length to enforce BNI. A family k-Enf of enforcers use finite

label chains to approximate the infinite label chains of∞-Enf .

Our k-Enf enforcers also are shown (§VI) to satisfy BNI.

A loss of permissiveness could result when shorter label

chains approximate longer ones. In particular, with a shorter la-

bel chain, execution of some program might be blocked sooner

or fewer principals might be allowed to observe elements in a

label chain—either brings a loss of permissiveness. This paper

formally characterizes the relationship between permissiveness

and storage overhead of label chains having different lengths.

We present theorems that relate label chain length and per-

missiveness for k-Enf enforcers (§VII) as well as for other

enforcers (§VIII) that satisfy BNI. The relationships between

permissiveness and storage overhead depend on initialization,

threat model, size of the lattice, as well as, on certain semantic

attributes of enforcement mechanisms: k-precise, k-varying,

and k-dependent.
Our theorems show that approximating longer label chains

with shorter ones can harm permissiveness. Specifically, we

show:

– For k-Enf enforcers, if flexible variables initially store

information associated with given label chains, then ap-

proximating these label chains with shorter ones causes

fewer principals to read chain elements, leading to a

permissiveness loss.

– For other enforcers, if flexible variables initially store no

information, then the generated label chains cannot be

shortened without a permissiveness loss; an example in

§VIII illustrates.

– An enforcer that uses only one label for each variable

blocks some executions sooner than an enforcer that

uses two labels for each variable. This blocking harms

permissiveness: principals will make fewer observations

in the blocked execution. But, when labels are drawn from

a 2-level lattice, associating variables with only one label

does not harm permissiveness.

In summary, we are identifying conditions under which longer

label chains are useful. Moreover, our conditions apply even if

labels are not first-class entities in the provided programming

language but instead are internal to an enforcement mecha-

nism.

II. LABEL CHAINS

Each variable x in a program will be associated with a pos-

sibly infinite label chain 〈�1, �2, . . . , �i, �i+1, . . .〉, where label

�1 specifies sensitivity for the value stored in x and label �i+1

specifies sensitivity for �i. Of course, actual implementation

of label chains may only use finite space. Labels come from

a possibly infinite underlying lattice L = 〈L, �, �〉 with

bottom element ⊥. For4 �, �′ ∈ L, if � � �′ holds, then �′ is at
least as restrictive as �, signifying that information is allowed

to flow from data tagged with � to data tagged with �′.
Every principal p is assigned a fixed label � that signifies

p can read variables and labels whose sensitivity is at most �.
Thus, if variable x is tagged with �′ and p is assigned label �,
then p is allowed to read x iff �′ � � holds.

Unless a label chain 〈. . . , �i, �i+1, . . .〉 is monotonically
decreasing—�i+1 � �i for i ≥ 1— then sensitive information

can be leaked. Here is why. Consider a variable x having

non-monotonically decreasing label chain 〈L,H, . . .〉, where

L � H. Principals assigned label L are authorized to read the

value in x. When read access to x succeeds, these principals

conclude that the label of x is L. Thus, success in reading x
leaks to a principal assigned L information about the label of

x—even though label chain 〈L,H, . . .〉 defines the sensitivity

of that label to be H. Such leaks cannot occur in monotonically

decreasing label chains.

Label chains are implemented by sequencing individual

labels stored in a memory M . Domain dom(M) of a memory

M includes:

– Variables that store (say) integers (ν ∈ Z). Lower case

letters (e.g., a,w, x, h,m, l) denote variables. M(x) is the

integer stored in variable x by M . Let Var be the set of

variables. Constants (e.g., 1, 2, 3) are a subset of Var
whose values are fixed.

– Tags that store labels (� ∈ L) representing sensitivity.

The label for x is stored at tag T (x) in M ; its value

is M(T (x)). Some tags store labels representing the

sensitivity of other tags. The label for T i(x) is stored in

tag T (T i(x)), for i ≥ 1. We say value v when referring

to either a label or an integer.

– Auxiliaries that store additional information needed by an

enforcement mechanism (e.g., a stack to track implicit

flows in nested if commands). The names of auxiliaries

are μ1, μ2, etc.

Tags and auxiliaries are called metadata. A possibly infinite

label chain 〈T (q), T 2(q), . . . , T i(q), . . .〉 will be associated

with each identifier q that is either a variable or a tag (but

4When L = 〈L, �, �〉, we write � ∈ L to assert that � ∈ L holds.
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not an auxiliary). For convenience, we define T 0(q) � q and

T i+1(q) � T (T i(q)). We also may write T i(q) instead of

M(T i(q)) for that value in memory M if there will be no

ambiguity (e.g., T i(q) � �, T i(q) � T j(q′)). We require:

∀i ≥ 1: T i(q)∈dom(M) ⇒ T i−1(q)∈dom(M).

The mappings defined by M and T i extend from identifiers

to expressions (of variables or tags) e⊕ e′ in the usual way:

M(e⊕ e′) � M(e)⊕M(e′) (3)

T i(e⊕ e′) � T i(e) � T i(e′), for i ≥ 1. (4)

Variables are categorized according to whether their label

chains may change during execution. For a flexible variable

w, the entire associated label chain might be updated when a

value is assigned to w. So, the label chain of flexible variable

w is flow-sensitive. For an anchor variable a, the label stored

in T (a) remains fixed throughout execution, and the remaining

elements of the label chain satisfy:

M(T i(a)) = ⊥ for any T i(a) ∈ dom(M) with i > 1. (5)

This form of chain is sensible for an anchor variable because

T (a) is declared in the program text and thus that label can be

considered public (i.e., T 2(a) is ⊥) when execution starts. No

other information can be encoded in T (a) during execution

because T (a) remains fixed. So, T (a) ought to be considered

public during execution, too. The requirement that label chains

be monotonically decreasing then leads to (5). A constant ν
is a special case of an anchor variable:

M(T i(ν)) = ⊥, for any T i(ν) ∈ dom(M) with i ≥ 1. (6)

III. ENFORCERS

Execution of a command C on a memory M can be repre-

sented by a trace τ , which is a potentially infinite sequence

〈C1,M1〉 → 〈C2,M2〉 → . . .→ 〈Cn,Mn〉 → . . .

with C1 = C. A state 〈Ci,Mi〉 gives the command Ci that

will next be executed and gives a memory Mi to be used in

that execution. A sequence τ ′ of states is considered a subtrace
of τ iff τ = . . .→ τ ′ → . . .. We write |τ | to denote the length

of τ and τ [i] to denote the ith state in τ for 1 ≤ i ≤ |τ |. We

also write 〈C,M〉 =0 〈C ′,M ′〉 to denote that two states agree

on the command and the values in variables:

– C = C ′,
– dom(M)∩Var = dom(M ′)∩Var , and

– ∀x∈dom(M)∩Var : M(x) = M ′(x).
A set of operational semantics rules is employed to formally

define traces. This paper uses a while-language (Figure 1)

with operational semantics rules R (Figure 2). Notice, R does

not reference metadata. Notation M [x �→ν] in ASGNA and ASGNF

defines a memory that equals M except x is mapped to ν.

Conditional delimiter exit in rules for IF1, IF2, WL1, and WL2

marks the end of conditional commands (similar to [31], [33]).

When execution of the corresponding taken branch completes,

(Constants) ν ∈ Z

(Anchor variables) a, x ∈ VarA
(Flexible variables) w, x ∈ VarF
(Expressions) e ::= ν | x | e1 ⊕ e2
(Commands) C ::= skip | x := e | C1;C2 |

if e then C1 else C2 end |
while e do C end

Fig. 1. Syntax

(SKIP) 〈skip,M〉 → 〈stop,M〉

(ASGNA)
ν = M(e)

〈a := e,M〉 → 〈stop,M [a 	→ ν]〉

(ASGNF)
ν = M(e)

〈w := e,M〉 → 〈stop,M [w 	→ ν]〉

(IF1)
M(e) 
= 0

〈if e then C1 else C2 end,M〉 → 〈C1; exit,M〉

(IF2)
M(e) = 0

〈if e then C1 else C2 end,M〉 → 〈C2; exit,M〉

(WL1)
M(e) 
= 0

〈while e do C end,M〉 →
〈C;while e do C end; exit,M〉

(WL2)
M(e) = 0

〈while e do C end,M〉 → 〈exit,M〉
(EXIT) 〈exit,M〉 → 〈stop,M〉

(SEQ1)
〈C1,M〉 → 〈stop,M ′〉
〈C1;C2,M〉 → 〈C2,M

′〉

(SEQ2)
〈C1,M〉 → 〈C′

1,M
′〉 C′

1 
= stop

〈C1;C2,M〉 → 〈C′
1;C2,M

′〉

Fig. 2. Structural Operational Semantics R

rule EXIT is triggered.5 Notice that Ci in a state 〈Ci,Mi〉 can be

a command C as defined in Figure 1, a termination delimiter

such as stop, or a command involving a conditional delimiter

exit.

The rules comprising R define a function traceR(C,M)
that maps a command C and a memory M to the trace

that represents the entire execution of C started with initial

memory M . For traceR(C,M) to be well-defined, M should

be healthy for C denoted M |= H(C) and formalized as

follows.

Definition 1 (Healthy memory for C). Define

M |= H(C) � ∀x∈Var : (x ∈ C ⇒ x ∈ dom(M))

∧ (x ∈ dom(M)⇒M(x) ∈ Z)

where x∈C indicates that x∈Var appears in C.

By definition, if traceR(C,M) is finite, then it ends with

normal termination state 〈stop,M ′〉.
5For a while command, the number of times EXIT is triggered equals the

number of times rules WL1 and WL2 are invoked for this command.
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Executing command C on memory M under the auspices of

an enforcer E leads to a trace τ = traceE(C,M). Memories

in states of traceE(C,M) are expected to store, among

other identifiers, metadata employed by E. In particular, these

memories should store label chains of size nE ≥ 1 and a set

AuxE of auxiliaries, as characterized by:

Definition 2 (Healthy memory for E, L, and C). A memory M
is healthy for enforcer E, lattice L, and command C denoted
by M |= H(E,L, C), iff

– M |= H(C),
– for each variable x, dom(M) includes exactly nE tags

comprising a label chain, where all tags are mapped to
lattice L:

∀x ∈dom(M)∩Var :
(∀1 ≤ i ≤ nE : T

i(x) ∈ dom(M) ∧M(T i(x)) ∈ L)
∧ (∀i > nE : T

i(x) �∈ dom(M))

– dom(M) contains requisite auxiliaries AuxE:

∀μ ∈ AuxE : μ ∈ dom(M)

– flexible variables in M have monotonically decreasing
label chains,

– anchor variables in M have label chains satisfying (5),
and

– constants in M have label chains satisfying (6).

Notice, if M |= H(E,L, C) and x ∈ dom(M), then sensi-

tivity TnE+1(x) of last element TnE (x) does not belong to

dom(M), and thus, TnE+1(x) is not defined.

An enforcer is also accompanied by mapping InitE from

auxiliaries in AuxE to initial values. Initial memories should

satisfy this mapping.

Definition 3 (Initially healthy memory for E, L, and C). A
memory M is defined to be initially healthy for enforcer E,
lattice L, and command C denoted M |= H0(E,L, C) iff:

– M |= H(E,L, C), and
– auxiliaries AuxE are initialized according to InitE:

∀μ ∈ AuxE : M(μ) = InitE(μ).

We expect that traces traceE(C,M) will satisfy some

policy P of interest, where E blocks traces if needed to satisfy

P . So, a trace τ = traceE(C,M) may end with blocked state
〈block,M ′〉; omitting the blocked state from τ and projecting

only commands and variables should yield a trace prefix of

traceR(C,M).

Definition 4 (Trace prefix).

τ � τ ′ � |τ |≤|τ ′| ∧ l= |τ | ∧ (∀1≤ i<l: τ [i] =0 τ ′[i])

∧ (¬blk(τ) ∧ |τ | <∞ ⇒ τ [l] =0 τ ′[l]))

where blk(τ) holds iff τ ends with a blocked state.

We now can give the formal definition for the enforcers E
being considered in this paper.

Definition 5 (Enforcer). E � 〈traceE , nE ,AuxE , InitE〉 is
an enforcer on R if traceE satisfies the following reasonable
conditions:

(E0) (∀C,M : traceE(C,M) � traceR(C,M))

(E1) Trace traceE(C,M) is defined when M |= H0(E,L, C)
holds.

(E2) For a memory Mi in any state of traceE(C,M), condi-
tion Mi |= H(E,L, C) holds.

(E3) E updates the label chain of a flexible variable w only
in performing an assignment to w, or at exit for a
conditional command whose branches (taken or untaken)
contain an assignment to w.6

We say that E is an enforcer on R for P , if the image of

function traceE , which is a set of traces, satisfies P .

IV. THREAT MODELS AND BNI

a) Observations: Our threat model has principals ob-

serving updates to identifiers. When an assignment to a

flexible variable w is executed, each element in set O(w) �
{w, T (w), . . . , T i(w), . . .} is updated. When an assignment to

an anchor variable a is executed, only O(a) � {a} is updated.

A principal p assigned label � observes updates to variables

and tags q, where T (q) is in the domain of a memory M and

M(T (q)) � � holds. A similar threat model is used in [5].

Principals do not observe updates to an identifier q when

T (q) �∈ dom(M) holds, because q then is not covered by the

security policy to be enforced. That implies principals do not

observe updates to the last element of a label chain. Also, a

principal p assigned � might be allowed to observe updates

to an identifier T j(q) (i.e., T j+1(q) � �) but p might not be

allowed to observe updates to a preceding identifier T i(q) (i.e.,

T i+1(q) �� �) for 0 ≤ i < j, due to monotonically decreasing

label chains.

We now formalize the observation available to a principal

p assigned label � when an assignment executes. Define the

projection M |S� of a memory M with respect to label � and a

set S of identifiers:

M |S� � {〈q,M(q)〉 | q∈S ∧ T (q)∈dom(M) ∧ M(T (q))��}

If an assignment to a variable x is performed and memory

M results, then observation M |O(x)
� is generated to p. Notice,

M |O(x)
� can be empty.

A sequence of observations is generated along with a trace

when assignments are performed.

6More formally, if 〈C1;C2,M1〉 ∗→ 〈C′
1;C2,M2〉 is a subtrace of

traceE(C,M), where C1 is a subcommand of C, and if “w := e”�∈ C1

holds for a flexible variable w, then the following should hold:

(∀i ≥ 1: T i(w)∈dom(M1) ⇒ M1(T
i(w)) = M2(T

i(w)))

Note, a conditional delimiter (e.g., exit) is not considered a subcommand of
C.
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Definition 6 (Sequence of observations). Given a trace τ , de-
fine τ |S� to be sequence θ = Θ1 ⇀ . . . ⇀ Θn of observations
involving identifiers in set S and having sensitivity at most �:

ε|S� � ε 〈C,M〉|S� � ε

(〈C,M〉 → 〈C ′,M ′〉 → τ)|S� �{
M ′|O(x)∩S

� ⇀ (〈C ′,M ′〉 → τ)|S� , if C is “x := e;C ′”
(〈C ′,M ′〉 → τ)|S� , otherwise

When S = {T i(x) | 0 ≤ i ≤ k ∧ x ∈ Var}, we

abbreviate τ |S� by τ |k� . We write θ =obs θ′ to specify equality

of sequences of observations with empty observations omitted,

since θ and θ′ are then equivalent for principals.

This strong threat model produces observations for both

variables and tags. But observations are not generated when

identifiers are updated at execution points other than assign-

ments to variables (e.g., no observation is generated when

a conditional delimiter exit is executed). This is because

enforcers may differ about whether these other updates are

performed. And those differences would make comparison of

observations (employed in §VII) problematic.

b) Block-safe Noninterference: Block-safe Noninterfer-

ence (BNI) is a form of noninterference [16] that incorporates

observations on tags and considers all finite traces—normally

terminated and blocked by the enforcement mechanism. For-

mally, BNI stipulates that if two finite traces of the same

command agree on initial values whose sensitivity is at most

�, then observations (involving variables and tags) visible to

a principal assigned label � should be the same. We define

k-BNI for k ≥ 0 for settings where observations are limited

to variables and tags T 0, T 1, . . . , T k. Note M |� abbreviates

M |dom(M)
� .

Definition 7 (k-BNI).

k-BNI(E,L, C) � (∀� ∈ L: ∀M,M ′:
M |= H0(E,L, C)

∧M ′ |= H0(E,L, C)

∧M |� = M ′|�
∧ τ = traceE(C,M) is finite

∧ τ ′ = traceE(C,M
′) is finite

⇒ τ |k� =obs τ ′|k� )
If k-BNI(E,L, C) holds for every C, then E enforces k-

BNI(L).7 If for all k ≥ 0 and L, enforcer E satisfies k-

BNI(L), then we say that E enforces BNI. Notice that, by

definition, k-BNI ignores observations generated by infinite

traces. k-BNI could be strengthened to handle such observa-

tions by in addition requiring that τ |k� in Definition 7 be a

prefix of τ ′|k� when τ ′ is infinite. Such a strengthening of

Definition 7 does not affect the theory presented in this paper.

0-BNI is stronger than TINI enforced by [3], [10], [12],

[14], [26]. TINI concerns normally terminated executions but

does not consider finite traces that correspond to blocked

7Notice that if E satisfies (k + 1)-BNI(L), then E satisfies k-BNI(L).

executions. So TINI ignores traces that become blocked by

the enforcement mechanism and thereby leak sensitive infor-

mation. 0-BNI considers all finite traces. So, an enforcement

mechanism that satisfies 0-BNI will satisfy TINI, too. But, an

enforcement mechanism that satisfies TINI might not satisfy 0-

BNI. An example is the enforcement mechanism that executes

program (2) as outlined by (i) and (ii) given below that

example in §I. This mechanism satisfies TINI, but it does

not satisfy 0-BNI because the value of m is leaked. Notice

that 0-BNI is equivalent to TINI (extended with observations

along traces), when no enforcer is being employed during

program execution (i.e., E is the trivial enforcer that accepts

all commands).

0-BNI is weaker than the natural extension of termination
sensitive noninterference (TSNI) [37] for generating obser-

vations throughout traces. TSNI considers infinite and finite

traces (terminated normally as well as blocked), but because

0-BNI ignores infinite traces, 0-BNI allows leaks through

termination channels that already exist in a program (due to

non-terminating while-loops) [15].

We chose to study 0-BNI, so we could focus on leaks

introduced by the enforcer itself. The enforcement techniques

of the next section prevent those leaks. Moreover, they can

be extended to enforce TSNI (e.g., would leak through non-

terminating while-loops) using techniques similar to those

given in [6].

V. ENFORCER ∞-Enf

We use familiar insights about information flow to formu-

late an enforcer ∞-Enf that uses infinite label chains (i.e.,

n∞-Enf = ∞) to enforce BNI for programs written in the

programming language of Figure 1. We later derive from

∞-Enf the k-Enf family of enforcers that use finite label

chains.

A. Updating Label Chains of Flexible Variables

When assignment w := e executes in isolation, the value of

e flows explicitly to flexible variable w. So, w should be at

least as sensitive as e. Therefore, just prior to the assignment,

∞-Enf updates tag T (w) with T (e). But with that update,

the value of T (e) flows explicitly to T (w), so ∞-Enf also

must update tag T 2(w) with T 2(e). Repeating the argument,

we conclude that when executing w := e, enforcer ∞-Enf
should update tag T i(w) with T i(e), for i ≥ 0.

Information can also flow implicitly from the context of an

assignment to the target variable of that assignment. Context

ctx of a command C is a set of boolean expressions that

includes all guards involved in determining that C should be

reached. If C appears in the body of a conditional command

having guard e, then e belongs to the context of C. For

example, consider:

if x > 0 then w := w′ else w := w′′ end (7)

Here, context ctx of w := w′ and w := w′′ is {x > 0}.
Notice, if T i(w′) �= T i(w′′) holds prior to (7) for some i ≥ 0,

then the value in T i(w) after the if command depends on ctx .
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Context ctx is prevented from leaking through T i(w) if we

require that T (ctx ) � T i+1(w) holds, where T (ctx ) is the

sensitivity of ctx .

In general, for q a flexible variable or a tag, if q is assigned

the value of e (for e an expression of variables or tags), then

information can flow explicitly from e to q and implicitly from

ctx to q. Thus, sensitivity T (q) of q should be updated to

T (e) � T (ctx ). But, this update might also require updating

T i(q) for i ≥ 1. UT (q, e, ctx ) below describes tag updates

triggered by q being updated with e in context ctx :

UT (q, e, ctx ) � T (q) := T (e) � T (ctx );

UT (T (q), T (e) � T (ctx ), ctx )

For w := e in context ctx , UT (w, e, ctx) expands to8

∀i ≥ 1: T i(w) := T i(e) � T (ctx ). (8)

Here, universal quantifier ∀ denotes simultaneous update of

infinitely many identifiers. So, enforcer ∞-Enf will produce

a new label chain for w; each label in that chain is computed

according to (8).

B. Preventing Leaks through Anchor Variables

Prior to executing a := e for an anchor variable a, an

enforcer checks a block condition Ga:=e. If Ga:=e holds, then

the explicit and implicit flows to a in a := e do not constitute

leaks; if Ga:=e does not hold, then execution blocks.

But blocking execution might cause implicit flow of sen-

sitive information, as seen with (2). We avoid this flow by

generalizing the definition of ctx to include block conditions

that could have already been checked. This generalization is

consistent with the role of ctx : execution of a := e and of any

command that might follow is conditioned on whether Ga:=e

holds. If execution of C depends on Ga:=e being true, then

Ga:=e belongs to the context ctx of C.

We now show how to construct Ga:=e for an assignment

a := e in context ctx . The value of e explicitly flows to a. So,

a should be at least as sensitive as e: T (e) � T (a). Because

execution of a := e depends on Ga:=e, the context of a := e is

ctx ∪{Ga:=e}. Information flows implicitly from this context

to a. Variable a should thus be at least as sensitive as T (ctx ∪
{Ga:=e}). We thus require T (ctx )�T (Ga:=e) � T (a). So, for

Ga:=e to hold, both T (e) � T (a) and T (ctx ) � T (Ga:=e) �
T (a) should hold. We conclude

Ga:=e ⇒ (T (e) � T (a) ∧ T (ctx ) � T (Ga:=e) � T (a))

or equivalently

Ga:=e ⇒ (T (e) � T (ctx ) � T (Ga:=e) � T (a)) . (9)

One possible solution for Ga:=e in (9) is:

Ga:=e � (T (e) � T (ctx ) � T (a)). (10)

8This expansion uses the fact that the label chain associated with ctx is
monotonically decreasing: T i+1(ctx) � T i(ctx).

To verify that (10) is a solution, first compute sensitivity:

T (Ga:=e) = T ( T (e) � T (ctx ) � T (a) )

= T 2(e) � T 2(ctx ) � T 2(a) {due to (4)}
= T 2(e) � T 2(ctx ) � ⊥ {T 2(a) = ⊥}
= T 2(e) � T 2(ctx ) {� � ⊥ = �} (11)

Substituting T 2(e) � T 2(ctx ) for T (Ga:=e), substituting

T (e) � T (ctx ) � T (a) for Ga:=e in (9), and noticing that

T 2(e) � T 2(ctx ) � T (e) � T (ctx ) (due to monotonically

decreasing label chains), equation (9) becomes equivalent to

a true statement, which is what we needed to verify solution

(10).

Ga:=e in (10) is used by all dynamic flow sensitive enforce-

ment mechanisms we know. But, we seem to be the first to

present it as a solution of (9).

C. Operational Semantics for ∞-Enf

Enforcer ∞-Enf uses (i) UT (see (8)) for deducing label

chains and (ii) Ga:=e (see (10)) for blocking possibly unsafe

assignments. UT and Ga:=e mention tags for variables and

sensitivity T (ctx ) of the context but do not need ctx , T 2(ctx ),
T 3(ctx ), etc. T (ctx ) is the join of the sensitivity of each guard

and each block condition that determines the reachability of a

command. ∞-Enf uses auxiliaries to maintain T (ctx ):

– cc (conditional context) keeps track of the sensitivity of

the guards in all conditional commands that encapsulate

the next command to be executed, and

– bc (blocking context) keeps track of the sensitivity of

information revealed by block conditions that might in-

fluence reachability of the next command executed.

So, Aux∞-Enf = {cc, bc}. We now show how T (ctx ) is

defined in terms of cc and bc.

Auxiliary bc is a tag that (conservatively) stores a label at

least as restrictive as the sensitivity of all block conditions

that could have already been evaluated. Any observation after

assignment a := e reveals information about Ga:=e and about

context ctx in which Ga:=e is evaluated. So, whenever a block

condition Ga:=e is checked,∞-Enf updates bc with T (Ga:=e)
and T (ctx ):

bc := T (Ga:=e) � T (ctx ). (12)

From (11) and monotonicity of label chains (i.e., T 2(ctx ) �
T (ctx )), we then get

bc := T 2(e) � T (ctx ) (13)

which is equivalent to (12). No block condition has been

evaluated before execution starts, so bc is initialized to ⊥:

Init∞-Enf (bc) = ⊥.

Auxiliary cc is implemented in ∞-Enf using a stack.

Whenever execution enters a conditional command, the sensi-

tivity of the corresponding guard is pushed onto cc; upon exit

the top element of cc is popped. �cc� will denote the join of

all labels in cc. At the beginning of execution, no conditional

command has been entered, so cc is initialized to the empty

stack ε with �ε� � ⊥. So, we have Init∞-Enf (cc) = ε.

356



(SKIP) 〈skip,M〉 → 〈stop,M〉

(ASGNA)

v = M(e)
Ga:=e � = M(T 2(e)) �M(�cc
) �M(bc)

〈a := e,M〉 → 〈stop,M [a 	→ v, bc 	→ �]〉

(ASGNAFAIL)

v = M(e)
¬Ga:=e � = M(T 2(e)) �M(�cc
) �M(bc)

〈a := e,M〉 → 〈block,M [bc 	→ �]〉

(ASGNF)

v0 = M(e)

∀i ≥ 1: vi = M(T i(e)) �M(�cc
) �M(bc)

〈w := e,M〉 → 〈stop,M [∀i ≥ 0:T i(w) 	→ vi]〉

Ga:=e is M(T (e)) �M(�cc
) �M(bc) � M(T (a))

Fig. 3. Operational semantics for skip and assignments.

Putting all together, sensitivity T (ctx ) is �cc� � bc. Sub-

stituting �cc� � bc for T (ctx ) in (10), block condition Ga:=e

becomes:

T (e) � �cc� � bc � T (a). (14)

Substituting �cc� � bc for T (ctx ) in (13), the update of bc
becomes:

bc := T 2(e) � �cc� � bc. (15)

So, Ga:=e and the update of bc have now been expressed in

terms of tags and auxiliaries that ∞-Enf uses.

Rule ASGNA in Figure 3 uses (14) and (15). If Ga:=e does not

hold, then rule ASGNAFAIL is triggered. Notice that in ASGNAFAIL,

bc is updated with a label representing the sensitivity of the

context in which execution is blocked. That label in bc dictates

which principals are allowed to learn why an execution ended

(i.e., due to a block versus due to a stop) without sensitive

information leaking.

In Figure 3, Rule ASGNF for assignment w := e to flexible

variable w implements (8), given T (ctx ) = �cc� � bc. So, the

label chain of w is updated as follows:

∀i ≥ 1: T i(w) := T i(e) � �cc� � bc.

Rules for conditional commands are given in Figure 4. They

adopt techniques employed by other dynamic enforcement

mechanisms (e.g., [14]) to update auxiliary cc and handle

implicit flows to variables and metadata that could have

been updated in untaken branches. When execution reaches

a conditional command C, tuple 〈�,W,A〉 is pushed onto

cc (writing M(cc).push(〈�,W,A〉)); when execution exits C,

tuple 〈�,W,A〉 is popped. Here we define the elements of tuple

〈�,W,A〉.
– Element � is the sensitivity of the guard e of conditional

command C. Including � in cc while taken branch Ct of

C is executed signifies that the sensitivity of the context

of Ct is the result of augmenting the sensitivity of the

context of C with the sensitivity of guard e.

– Element W is set targetFlex (Cu) of target flexible

variables in untaken branch Cu of C. If w ∈ W , then

(IF1)

M(e) 
= 0
W = targetFlex (C2) A = targetAnchor(C2)

cc′ = M(cc).push(〈M(T (e)), W, A〉)
〈if e then C1 else C2 end,M〉 → 〈C1; exit,M [cc 	→ cc′]〉

(IF2)

M(e) = 0
W = targetFlex (C1) A = targetAnchor(C1)

cc′ = M(cc).push(〈M(T (e)), W, A〉)
〈if e then C1 else C2 end,M〉 → 〈C2; exit,M [cc 	→ cc′]〉

(WL1)
M(e) 
= 0 cc′ = M(cc).push(〈M(T (e)), ∅, ∅〉)

〈while e do C end,M〉 →
〈C;while e do C end; exit,M [cc 	→ cc′]〉

(WL2)

M(e) = 0
W = targetFlex (C ) A = targetAnchor(C)

cc′ = M(cc).push(〈M(T (e)), W, A〉)
〈while e do C end,M〉 → 〈exit,M [cc 	→ cc′]〉

(EXIT)

bc′ =

{
M(bc) �M(�cc
), if M(cc).top.A 
= ∅
M(bc), otherwise

M ′ = U(M,M(cc).top.W ) cc′ = cc.pop

〈exit,M〉 → 〈stop,M ′[cc 	→ cc′, bc 	→ bc′]〉

U(M,W ) �
M [ ∀w∈W : ∀i ≥ 1: T i(w) 	→ M(T i(w)) �M(�cc
) �M(bc)]

Fig. 4. Operational semantics for conditional commands.

T i(w) for i ≥ 0 could have been updated if Cu were

executed. To capture implicit flow from the context of Cu

to T i(w), when execution exits C, sensitivity T i+1(w)
is augmented with the sensitivity of the context of Cu,

which is the same as the context of Ct.

– Element A is set targetAnchor(Cu) of all anchor vari-

ables in untaken branch Cu. If A is not empty and if Cu

would have been executed, then a block condition could

have been evaluated, possibly causing that execution to

be blocked. So, reachability of a command following C
might be influenced by whether Cu has been executed,

and thus, it might be influenced by the context of Cu. So,

when execution exits C, auxiliary bc is augmented with

the sensitivity of the context of Cu (which is the same

as the context of Ct).

Figure 5 gives rules for executing sequences of commands.

Rule SEQF asserts that execution stops once an assignment is

blocked.

Given a lattice L, a command C, and a memory M initially

healthy for ∞-Enf , L, and C, function trace∞-Enf (C,M) is

defined by the operational semantics presented in Figures 3,

4, and 5. We prove the following Theorem in [23].

Theorem 1. ∞-Enf is an enforcer on R for BNI.

Here is how ∞-Enf handles program (2).

– If m > 0 holds, then rule IF1 is invoked. Having

T (m > 0) = M, W = {w}, and A = ∅, causes triple
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(SEQ1)
〈C1,M〉 → 〈stop,M ′〉
〈C1;C2,M〉 → 〈C2,M

′〉

(SEQ2)
〈C1,M〉 → 〈C′

1,M
′〉 C′

1 
∈ {stop,block}
〈C1;C2,M〉 → 〈C′

1;C2,M
′〉

(SEQF)
〈C1,M〉 → 〈block,M ′〉

〈C1;C2,M〉 → 〈block,M ′〉
Fig. 5. Operational semantics for sequences

〈M, {w}, ∅〉 to be pushed onto conditional context cc,
which was empty. To execute taken branch w := h, rule

ASGNF is invoked, which causes w to be associated with

label chain 〈H,M,M, . . .〉. Before execution exits the if -

statement, rule EXIT is invoked, leaving the label chain of

w unchanged and restoring cc to the empty stack. Rule

ASGNAFAIL is then invoked for assignment m := w, because

T (m) is not as restrictive as T (w). So, execution blocks

without assigning w to m.

– If m > 0 does not hold, then w is associated with label

chain 〈M,M,M, . . .〉 at the end of the if -statement. Rule

ASGNA is then invoked for assignment m := w, which

sets blocking context bc to M. Because bc = M holds,

ASGNAFAIL is invoked for assignment l := 1, and thus,

execution blocks before performing the update.

Notice that principals assigned label L do not observe any

updates to variables and elements of label chains. So, the leak

of m (as described in §I) is prevented when (2) is executed

with ∞-Enf .

VI. ENFORCER k-Enf

An enforcer that uses infinite label chains cannot always

be implemented with finite memory. But an infinite label

chain can be approximated by a finite label chain. First notice

that infinite label chain Ω = 〈�1, . . . , �k, �k+1, �k+2, . . .〉 is

conservatively approximated by infinite label chain Ω′ =
〈�1, . . . , �k, �k, �k, . . .〉, where kth label �k is infinitely re-

peated. It is a conservative approximation, because if Ω′ allows

a principal p assigned label � to observe the ith element of

Ω′, then Ω allows p to observe the ith element of Ω, too

(but not vice versa). This is because Ω and Ω′ agree up to

the kth element and, for i ≥ k, the ith element in Ω′ is at

least as restrictive as the corresponding element in Ω due to

monotonically decreasing label chains: �k+1 � �k, �k+2 � �k,

etc. Finite label chain with m ≥ 0:

Ω′′ = 〈�1, . . . , �k, �k, . . . , �k︸ ︷︷ ︸
m

〉

also is a conservative approximation for Ω′ (recall no observa-

tion is allowed for identifiers whose sensitivity is not defined).

Consequently, an infinite label chain Ω can be approximated

by finite label chain Ω′′.
We employ such finite approximations to derive enforcer

k-Enf from ∞-Enf . Enforcer k-Enf uses the operational

semantics rules of ∞-Enf to compute up to the kth tag.

(ASGNF)

v0 = M(e)

∀1 ≤ i ≤ k: vi = M(T i(e)) �M(�cc
) �M(bc)

〈w := e,M〉 → 〈stop,M [∀i :0 ≤ i ≤ k :T i(w) 	→ vi]〉
U(M,W ) �

M [ ∀w∈W : ∀i :1 ≤ i ≤ k:

T i(w) 	→ M(T i(w)) �M(�cc
) �M(bc)].

Fig. 6. Modified rules for k-Enf

Because rule ASGNA mentions T 2(x), we require k ≥ 2.

In ∞-Enf , only ASGNF and function U refers to T i(x) for

i > 2. So in k-Enf rule ASGNF and function U are modified to

compute labels only for the first k tags. See Figure 6 for the

revised rule.

Enforcer k-Enf generates observations for updates up to

the kth tag. To generate an observation about an update to the

kth tag, k-Enf conservatively approximates the sensitivity of

element T k(x) to be itself. So, k-Enf actually is using label

chains of length nk-Enf = k+1 and it conservatively approx-

imates an infinite label chain Ω = 〈�1, . . . , �k, �k+1, �k+2, . . .〉
that would have been computed by ∞-Enf with finite label

chain Ω′′ = 〈�1, . . . , �k, �k〉.
Similar to ∞-Enf , enforcer k-Enf has Auxk-Enf =

{cc, bc}, Initk-Enf (cc) = ε, and Initk-Enf (bc) = ⊥. We prove

the following theorem in [23].

Theorem 2. k-Enf is an enforcer on R for k-BNI(L), for any
lattice L and k ≥ 2.

VII. PERMISSIVENESS OF k-Enf VERSUS CHAIN LENGTH

Approximation by shorter label chains has a penalty: per-

missiveness. The details however are not straightforward.

For k-Enf enforcers, the penalty of shorter label chains

will depend on the threat model and on assumptions about

initialization. This section gives theorems to characterize that

trade-off. And in the next section, we examine other classes

of enforcers.

An enforcer E′ is at least as permissive as an enforcer E
if, for all executions of each command, E′ emits observations

involving at least as many identifiers as E. This comparison

involves deciding whether identifiers (i.e., variables and tags)

that appear in a sequence θ of observations produced by E,

also appear in a sequence θ′ produced by E′. To formalize

this, we define θ � θ′:

θ � θ′ �
|θ| ≤ |θ′| ∧ (∀i: 1 ≤ i ≤ |θ|: dom(θ[i]) ⊆ dom(θ′[i]))

where θ[i] is the ith observation in sequence θ. Relation �
does not depend on values being stored in variables because

enforcers E and E′ are required to compute the same values

while executing the same command.

We compare permissiveness of enforcers relative to an

underlying lattice and some identifiers of interest. We start the

comparison with pairs of memories that satisfy an initialization

condition, such as equality on initial values and label chains.
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Definition 8 (At least as permissive as). Define an enforcer E′

to be at least as permissive as an enforcer E for initialization
condition ρ, underlying lattice L, and identifiers up to the kth
tag (i.e., T k) with k ≥ 0:

E ≤k,L
ρ E′ �

∀C,M,M ′: ρ(M,M ′)
∧M |= H0(E,L, C) ∧M ′ |= H0(E

′,L, C)

⇒ (∀� ∈ L: traceE(C,M)|k� � traceE′(C,M ′)|k� )

(16)

Notice, the consequent in definition (16) holds iff labels

deduced by E are at least as restrictive as labels deduced by

E′. Relation ≤k,L
ρ is a preorder (i.e., reflexive and transitive

relation) on enforcers.

For convenience, we introduce abbreviations:

– E <k,L
ρ E′ � E ≤k,L

ρ E′ ∧ E′ �≤k,L
ρ E

– E ∼=k,L
ρ E′ � E ≤k,L

ρ E′ ∧ E′ ≤k,L
ρ E

Notice that from (16) we can prove that if ρ⇒ ρ′, then

E ≤k,L
ρ′ E′ ⇒ E ≤k,L

ρ E′. (17)

Also, if k ≤ k′, then E ≤k′,L
ρ E′ ⇒ E ≤k,L

ρ E′.
We now examine how lengths of label chains relate to the

permissiveness of enforcers by comparing the permissiveness

of enforcers k-Enf and (k + 1)-Enf for k ≥ 2. To perform

this comparison, the initial memories considered by k-Enf
and (k + 1)-Enf for executing a command should agree on

values in variables and on labels in tags, up to the kth. Define

M |k � {〈T i(x),M(T i(x))〉 | 0 ≤ i ≤ k

∧ x ∈ Var ∧ T i(x) ∈ dom(M)}
The desired initialization condition then is:

ρk(M,M ′) � M |k = M ′|k

Thus, initialization condition ρk allows a flexible variable w
to be initially associated with label chains, where �k+1 � �k:

– Ω = 〈�1, �2, . . . , �k−1, �k, �k+1, �k+1〉 by (k + 1)-Enf ,

– Ω′ = 〈�1, �2, . . . , �k−1, �k, �k〉 by k-Enf .

We say that Ω exhibits a (k+1)-decrease because T k+1(w) �
T k(w). Notice that for a label chain to exhibit a (k + 1)-
decrease, the labels should belong to a lattice with at least one

non-bottom element. Here, Ω′ is a conservative approximation

of Ω.

Consequently, whenever (k + 1)-Enf initially associates

flexible variable w with a label chain Ω that exhibits a (k+1)-
decrease, enforcer k-Enf is forced by initialization condition

ρk to use conservative approximation Ω′ for Ω. So, as we

prove in [23], (k + 1)-Enf is strictly more permissive than

k-Enf .

Theorem 3. k-Enf <k,L
ρk

(k + 1)-Enf , for k ≥ 2 and any
lattice L with at least one non-bottom element.

Thus, longer label chains offer increased permissiveness for

the k-Enf family of enforcers, because they allow more

principals to observe elements of these label chains. Moreover,

we conclude by transitivity that k-Enf <k,L
ρk

∞-Enf , for any

k ≥ 2.
There are cases where flexible variables initially store

no information, and thus, they are initially associated with

bottom-label chains (i.e., 〈⊥, . . . ,⊥〉). We say memory M
is conventionally initialized when for set VarF of flexible

variables

αc(M) � ∀w∈VarF : ∀i ≥ 1:

T i(w)∈dom(M)⇒M(T i(w)) = ⊥.
We also define initialization condition

c(M,M ′) � αc(M) ∧ ρ1(M,M ′)

which implies that two memories are conventionally initialized

and agree on values in anchor variables and on the first labels

of these anchor variables.
A result analogous to Theorem 3 does not hold when

<k,L
ρk

is replaced with <k,L
c . With initialization condition c,

label chains longer than two elements do not enhance the

permissiveness of k-Enf . This is because, for initialization

condition c, enforcer k-Enf produces label chains where the

second element is always repeated9 (e.g., 〈H,M,M, . . . ,M〉)
due to the conservative update of label chains of flexible

variable induced by rules ASGNF in Figure 3 and EXIT in Figure

4. There, all elements of label chains of the involved flexible

variables are updated with the same label (i.e., the sensitivity

of the context). We prove the following theorem in [23].

Theorem 4. k-Enf ∼=k,L
c (k + 1)-Enf for any lattice L and

k ≥ 2.

Threat model specifics affect the permissiveness of longer

label chains, too. Consider a weakened threat model that

allows observations of updates to variables but not to tags.

This model characterizes attackers that are co-resident with

program execution and can access the memory modified by the

target program. Label chains here are assumed to be stored in a

protected memory that only the enforcer can access. Enforcers

here would be expected to satisfy 0-BNI. Enforcer k-Enf
satisfies k-BNI. So, k-Enf satisfies 0-BNI, because 0-BNI is

implied by k-BNI.
Under the weakened threat model, permissiveness of our

enforcers is compared using relation ≤0,L
ρk

, where superscript

0 indicates that only observations involving variables are

considered for the comparison. Theorem 3 does not apply,

because relation <k,L
ρk

considers observations up to the kth

tag (due to superscript k) where k ≥ 2. But we do have the

following Theorem, which is proved in [23].

Theorem 5. k-Enf ∼=0,L
ρk

(k + 1)-Enf for any lattice L and
k ≥ 2.

Because c ⇒ ρk holds, property (17) and Theorem 5 gives

k-Enf ∼=0,L
c (k + 1)-Enf for any lattice L and k ≥ 2. So,

under the weakened threat model and for both initialization

conditions (i.e, ρk and c), the permissiveness of k-Enf does

not improve by using label chains of length greater than two.

9See Lemma 11 in [23].
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Initialization Condition

ρk c

Threat Model
Strong � x
Weak x x

Fig. 7. � indicates enhanced permissiveness from label chains with more than
two elements; x indicates no permissiveness gains for our family of k-Enf
enforcers with k ≥ 2.

Figure 7 summarizes the results presented in this section.

These results apply only to k-Enf . Thus, Theorems 4 and 5

do not preclude other enforcers (e.g., optimizations of k-Enf
enforcers) where longer label chains increase permissiveness.

VIII. OTHER ENFORCERS

We now relate permissiveness with label chain length for

enforcers other than k-Enf . Here longer label chains might

increase permissiveness. But the results depend on the threat

model, lattice size, and certain semantic properties of en-

forcers: k-precise, k-varying, and k-dependent.

A. In the Strong Threat Model

Longer label chains are useful for an enforcer E under

the strong threat model provided there are executions of

commands for which E produces label chains whose elements

(i) are not redundant—they are not a function of other

elements in the same label chain, and

(ii) capture the real sensitivity of the elements they tag rather

than conservatively approximating it.

Label chains that can be used as evidence for properties (i) and

(ii) are characterized below as being k-varying and k-precise.

Notice that k-varying label chains cannot exist when L has

only one element.

Definition 9 (k-varying). Label chains 〈�1, �2, . . . , �k〉 and
〈�′1, �′2, . . . , �′k〉 with labels from lattice L, are defined to be
k-varying for k ≥ 2 iff

(∀i: 1 ≤ i < k: �i = �′i) ∧ �k �= �′k.

Definition 10 (k-precise). Consider an enforcer E, lattice L,
command C, and conventionally initialized memory M such
that M |= H0(E,L, C). Assume trace τ = traceE(C,M)
produces label chain prefix Ω = 〈�1, . . . , �n〉 at some state
τ [j] after an assignment to a flexible variable w:

∃1 < j ≤ |τ |: ∃w ∈ VarF :

τ [j − 1] = 〈w := e;Cr,Mw〉 ∧ τ [j] = 〈Cr,Mr〉 ∧
∀i: 1 ≤ i ≤ n: T i(w) ∈ dom(Mr) ∧ Mr(T

i(w)) = �i.

Label chain Ω is k-precise (for 1≤ k ≤ n) at τ [j] when for
each enforcer E′:

if
– E′ satisfies (k − 1)-BNI(L), and
– E ≤k−1,L

c E′,
then
– trace τ ′ = traceE′(C,M ′) with M ′ |= H0(E

′,L, C) and
c(M,M ′) produces label chain 〈�1, . . . , �k〉 at τ ′[j].

So, if Ω is k-precise, then any enforcer E′ that satisfies (k−1)-
BNI(L) and is at least as permissive as E (i.e., E ≤k−1,L

c E′)
will produce (at the same execution point) the same first k
elements that appear in Ω. Consequently, the first k elements

of Ω capture the real sensitivity of the elements they tag.

For brevity, we say that E produces some k-precise k-
varying label chains with elements in L iff there exist com-

mands C,C ′ whose executions produce label chains Ω,Ω′

such that:

– Ω is k-precise at the ith state of traceE(C,M), for some

i and M with M |= H0(E,L, C),
– Ω′ is k-precise at the jth state of traceE(C

′,M ′), for

some j and M ′ with M ′ |= H0(E,L, C ′),
– Ω and Ω′ are k-varying.

Longer label chains can offer increased permissiveness

for an enforcer E, under the strong threat model, provided

E produces some k-precise k-varying label chains. To see

this, compare such an enforcer E with an enforcer E′ that

approximates the kth element of each label chain as a function

of the previous elements instead of performing, for example,

an analysis of the code.

Definition 11 ((k − 1)-dependent label chains). E′ produces
(k − 1)-dependent label chains for k − 1 ≥ 1 iff E′ is an
enforcer and for some function fE′ :

∀x: ∀i: k−1 < i < nE′ : T i(x) = fE′(T (x), . . . , T k−1(x))

For example, k-Enf produces k-dependent label chains, be-

cause k-Enf uses fk-Enf (T (x), . . . , T
k(x)) � T k(x) for com-

puting T k+1(x). Notice, if an enforcer E′ produces (k − 1)-
dependent label chains, then that mechanism cannot produce

k-varying label chains.

An enforcer E′ that produces (k−1)-dependent label chains

cannot both satisfy (k− 1)-BNI and be at least as permissive

as E, which produces some k-precise k-varying label chains:

Assume for contradiction that E′ satisfies (k − 1)-BNI and

is at least as permissive as E. Because the k-varying label

chains produced by E are k-precise, E′ should then produce

the same k-varying label chains. But, we previously saw that

if an enforcer E′ produces k-varying label chains, then E′

does not produce (k − 1)-dependent label chains, which is a

contradiction. A detailed proof of Theorem 6 is found in [23].

Theorem 6. For a lattice L, for an enforcer E that satisfies
(k − 1)-BNI(L), with k ≥ 2, and produces some k-precise k-
varying label chains with elements in L, and for an enforcer
E′ that produces (k − 1)-dependent label chains,

(i) if E ≤k−1,L
c E′, then E′ does not satisfy (k−1)-BNI(L),

(ii) E and L exist.

For an enforcer E′ that uses label chains of length k − 1
(i.e., produces (k − 1)-dependent label chains), Theorem 6

implies that E′ cannot be at least as permissive as an enforcer

E that uses label chains of length k. So, in contrast to Theorem

4, which stipulates that k-Enf does not benefit from longer

label chains under conventional initialization, enforcer E in

Theorem 6 does benefit.
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Theorem 6 (ii) asserts that such an enforcer E and lattice

L exist. So, it is always possible to define, for each k > 1, an

enforcer E that can produce k-precise k-varying label chains

when executing some command C. Notice, k-Enf cannot

produce k-precise k-varying label chains.

Witness E and L for Theorem 6 (ii): In the Appendix, we

describe k-Eopt , which is an enforcer that satisfies (k−1)-BNI

and produces some k-precise k-varying label chains during the

execution of a certain command C. C involves sequences of

assignments and if commands whose branches contain only

one assignment. Such if commands will be called simple.

We construct k-Eopt by optimizing k-Enf for deducing k-

precise k-varying labels during the execution of such C. The

optimization is based on the following observation: ignoring

context, if T i(w) = ⊥ at the end of both branches of a simple

if command, then, at the end of that if command, T i+1(w)
does not need to be updated with the sensitivity T (e) of the

guard of that if command. This optimization enables k-Eopt
to produce some k-precise k-varying label chains.

As Theorem 6 stipulates, any mechanism that approximates

the third label by repeating the second label in the label chain

(i.e., produces 2-dependent label chains) loses permissiveness

against 3-Eopt (which can produce 3-precise 3-varying label

chains). Example program (1)

if m > 0 then w := h else w := l end

illustrates. Assume anchor variable m is associated with label

chain 〈M, L, L〉, anchor variable h is associated with 〈H, L, L〉,
anchor variable l is associated with 〈L, L, L〉, and l �= h holds.

Without considering context m > 0, flexible variable w would

be associated either with 〈H, L, L〉 (due to w := h) or with

〈L, L, L〉 (due to w := l), when execution of one of these

assignments ends. Here, only w and T (w) reveal information

about guard m > 0. So, at the end of the if -statement, only

T (w) and T 2(w) should be augmented with T (m) = M. Thus,

if m > 0 holds, then 3-Eopt associates w with 〈H,M, L〉 at

the end of the if -statement. Otherwise, 3-Eopt associates w
with 〈M,M, L〉 at the end of the if -statement.

Notice that, starting from a common initialization, label

chain 〈H,M, L〉 that 3-Eopt produces for w (when m > 0
holds) has a the second label that is not repeated. Instead,

the third label in that chain is strictly less restrictive than the

second label. However, 2-Enf (which actually computes the

first two elements in a label chains and approximates the third

element by repeating the second one) would have associated

w with 〈H,M,M〉 when m > 0 holds. Thus, the label chain

deduced by 3-Eopt (which actually computes the first three

elements in a label chains) for w is strictly more permissive

than the label chain deduced by 2-Enf . So, this examples

shows the usefulness of computing label chains with at least

3 elements. The Appendix extends this example to show the

usefulness of label chains with at least k elements, for all

k > 3.

B. In the Weakened Threat Model

In the weakened threat model, label chains of length two

can offer enhanced permissiveness compared to label chains

of length one: the metalabel enables the decision to block

assignment commands to be more permissive. (Previous the-

orems concerned label chains with at least two elements).

To illustrate, it suffices to consider anchor-tailed commands,

which are a sequence C;C ′ of commands where C does

not involve any assignment to anchor variables and C ′ is a

sequence of assignments to anchor variables.

Let GE
a:=e denote the condition used by an enforcer E

for blocking an assignment a := e to anchor variable a
when execution reaches state 〈a := e;C ′,M ′〉 in a trace

traceE(C,M). Boolean expression GE
a:=e is satisfied in a

memory M ′ according to

M ′(GE
a:=e) ⇔ 〈a := e;C ′,M ′〉 → 〈C ′,M ′′〉

is a subtrace of traceE(C,M).

For assignment a := e in an anchor-tailed command, GE
a:=e

may depend on label chains of variables in

• assignment a := e itself (to capture explicit flows), and

• the context of that assignment (to capture implicit flows).

By definition of anchor-tailed commands, such an assign-

ment is not encapsulated in any conditional command, but

it may follow other assignments to anchor variables. So,

the context of a := e only references variables mentioned

in assignments to anchor variables that precede a := e.

Let Va:=e denote the above set of variables. Then GE
a:=e will

be characterized by:

Definition 12 (k-dependent condition). GE
a:=e is a k-

dependent condition for a := e in an anchor-tailed command
iff GE

a:=e depends at most on the first k elements of the label
chains of variables in Va:=e

GE
a:=e = fE({T i(x) | x ∈ Va:=e ∧ 1 ≤ i ≤ k}),

for some function fE .

For example, 2-Enf uses 2-dependent Ga:=e.

We now show how the second label in a label chain makes

the decision to block assignment commands more permissive.

Theorem 7, which is proved in [23], states that if an enforcer

E uses 1-dependent GE
a:=e, then E cannot both satisfy 0-

BNI and be at least as permissive as 2-Enf . Here is why. E
does not compute the sensitivity of labels referenced by block

condition GE
a:=e and thus E does not compute the sensitivity

of the information conveyed by its decision to block a certain

assignment a := e. In an effort to satisfy 0-BNI and prevent

leaking sensitive information, E must decide always to block

a := e, even though in some executions that assignment is

safe and allowed by 2-Enf .

Theorem 7. For an enforcer E and lattice L3 �
〈{L,M,H}, �, �〉, if GE

a:=e is 1-dependent and 2-Enf
≤0,L3

c E, then E does not satisfy 0-BNI(L3).
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Thus, enforcer E that uses label chains of length one (i.e.,

GE
a:=e is 1-dependent) cannot be at least as permissive as

2-Enf , which uses label chains of length two (i.e., Ga:=e is 2-

dependent). So, for the weakened threat model, permissiveness

can be improved when using two (instead of one) labels for

each variable.

Since most dynamic enforcement mechanisms proposed in

the past satisfy TINI, we might wonder whether Theorem

7 still holds when 0-BNI is replaced by TINI. Under the

weakened threat model, there are enforcers (e.g., EH,L in

the next section) that use 1-dependent GE
a:=e, are at least as

permissive as 2-Enf and do satisfy TINI. So, Theorem 7 does

not hold when 0-BNI is replaced by TINI.

Familiar Two-level Lattice: Some authors use a two-level

lattice L2 � 〈{L,H}, �, �〉 with L � H, believing that their

results will extend to arbitrary lattices. In this section, we give

a result for L2 that does not hold for more complex lattices.

Thus, generalizing from L2 to arbitrary lattices is not always

a sound proposition.

Consider L2 with the weakened threat model. Previous work

[22] proposed a flow-sensitive enforcement mechanism that

uses only one label per variable. We denote that enforcement

mechanism by EH,L, which is derived from k-Enf by asso-

ciating each variable with only one tag. Figure 8 shows the

modified rules for EH,L. We prove below (Theorem 8) that

Ga:=e defined in Figure 8 is 1-dependent.

EH,L ensures that the sensitivity of each tag T (w) is always

L, so there is no need to explicitly keep track of T 2(w).
The only way to encode information tagged with H in T (w)
is if T (w) is updated with different labels in a conditional

command that has a guard tagged with H. But, if the sensitivity

of the guard is H, then due to function U in Figure 8, tag T (w)
will always be updated to H at the end of that conditional

command, because M(�cc�) = H. So, T (w) will reveal no

information about the value of that sensitive guard. Thus, the

sensitivity of T (w) is L.

Define function traceEH,L
(C,M) to map command C and

memory M with M |= H0(EH,L,L, C) to the entire trace

that starts with state 〈C,M〉. We have nEH,L
= 1, AuxEH,L

=
{cc, bc}, InitEH,L

(cc) = ε, and InitEH,L
(bc) = ⊥.

Theorem 7 does not hold when L3 is replaced with L2 if E
is EH,L. Instead, Theorem 8 below holds; it states that EH,L

satisfies 0-BNI and is strictly more permissive than 2-Enf only

when L2 is used.

Theorem 8. Enforcer EH,L uses 1-dependent Ga:=e, satisfies
0-BNI(L2), and satisfies 2-Enf <0,L2

c EH,L.

So Theorem 8, which is proved in [23], contradicts expecta-

tions that longer label chains can offer increased permissive-

ness. Moreover, this theorem is an example where a result

expressed in terms of L2 does not necessarily generalize for

arbitrary lattices.

Notice, though, that EH,L does not satisfy 0-BNI for arbi-

trary lattices. For example, consider (2), which employs L3.

Based on rules in Figure 8 and rules IF, SEQ in §V-C, EH,L

executes (2) as described in (i) and (ii) in §I. So, executing

(ASGNA)
v = M(e) Ga:=e � = M(�cc
) �M(bc)

〈a := e,M〉 → 〈stop,M [a 	→ v, bc 	→ �]〉

(ASGNAFAIL)
v = M(e) ¬Ga:=e � = M(�cc
) �M(bc)

〈a := e,M〉 → 〈block,M [bc 	→ �]〉

(ASGNF)
v0 = M(e) v1 = M(T (e)) �M(�cc
) �M(bc)

〈w := e,M〉 → 〈stop,M [w 	→ v0, T (w) 	→ v1]〉

U(M,W ) � M [ ∀w∈W : T (w) 	→ T (w) �M(�cc
) �M(bc)]

Ga:=e is M(T (e)) �M(�cc
) �M(bc) � M(T (a))

Fig. 8. Modified rules for EH,L

Label Chain Length
Greater than 1 Greater than 2

Threat Model
Strong � �

Weak (L3) � ?
Weak (L2) x x

Fig. 9. � indicates where labels chains with length greater than the one
indicated in the corresponding column can provide enhanced permissiveness; x
indicates where longer label chains do not enhance permissiveness; ? indicates
an open question.

(2) under EH,L leaks sensitive m > 0 to principals observing

nonsensitive variable l, and thus, 0-BNI is not satisfied. EH,L

thus illustrates that an enforcer designed to enforce two-level

lattices cannot necessarily enforce arbitrary lattices.

Figure 9 summarizes the results presented in this section.

We do not have a proof but we conjecture that label chains

with more than two elements do not improve permissiveness

for lattices with more than two elements under the weakened

threat model.

IX. RELATED WORK

Dynamic Enforcement Mechanisms and Leaks: The for-

malization of dynamic information flow enforcement mecha-

nisms dates back to Bell and LaPadula [8]. The community

realized early that dynamic enforcement mechanisms for in-

formation flow control might introduce leaks not present in

the program itself. Denning [30], for instance, explains that

blocking an execution and reporting the underlying violation

might leak sensitive information. Denning also gives examples

where flow-sensitive labels generated by dynamic enforcement

mechanisms violate TINI. Our k-Enf enforcers do not report

the reason an execution terminates for exactly this reason.

Also they ensure that information is not leaked by observing

flow-sensitive labels during normally terminated or blocked

executions.

Label Chains of Length One: Most dynamic enforcement

mechanisms use label chains of length one. Purely dynamic
enforcement mechanisms that analyze only code that is exe-

cuted and employ no-sensitive-upgrade (NSU) or permissive-
upgrade (PU) (e.g., [3], [4], [10], [19], [34]) satisfy TINI

but not BNI, because they leak sensitive information when

blocking an execution. In particular, NSU and PU are shown
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in [4, Figure 1] to block execution depending on values of

high confidentiality. There, BNI is not satisfied because the

final output of low confidentiality will be observed depending

on a value of high confidentiality. Other hybrid flow-sensitive

enforcement mechanisms (e.g., [14], [27]), which employ

some static analysis during execution, do not satisfy BNI,

either, because observations of blocked traces might only

be a strict prefix of those generated by normally terminated

traces, whereas BNI requires equality. There are enforcement

mechanisms (e.g., [1], [7]) that satisfy BNI, but they either

handle only L2 or lose permissiveness by tagging variables

with the same labels at the end of conditional commands

independent of which branch is actually taken. We are not

aware of an enforcement mechanism that uses label chains of

length one, enforces labels from an arbitrary lattice, satisfies

BNI, and is at least as permissive as 2-Enf . We are also not

aware of an enforcement mechanism that uses label chains

of length one, enforces L2, satisfies BNI, and is at least as

permissive as EH,L.

Label Chains of Length Two: Certain dynamic enforce-

ment mechanisms use label chains of length two. Buiras et

al. [12] propose a purely dynamic enforcement mechanism

that employs fixed metalabels to capture implicit flows caused

by conditional commands. The purely dynamic enforcement

mechanism in [12] causes insecure executions to diverge

instead of blocking. By enforcing only TINI, no security

guarantee is given for executions that are forced to diverge

(because TINI considers only finite traces).

Bedford et al. [6] use label chains where the second element

is flow sensitive. That hybrid enforcement mechanism enforces

TSNI on programs written in a while-language that supports

references. The enforcement mechanism uses 2-dependent

label chains and, therefore, Theorem 6 implies that this en-

forcement mechanism is not more permissive than an enforcer

that produces 3-precise 3-varying label chains (e.g., 3-Eopt).
Unbounded Label Chains: Some enforcement mecha-

nisms support label chains of unbounded length. Zheng et al.

[39] employ dependent types to tag a label with another label,

thus forming chains of labels. Their approach can express a

label recursively tagging itself, which can be seen as infinitely

repeating the last label of a chain. Examples presented in [39]

employ label chains of up to two elements (e.g., 〈�,⊥〉 and

〈�, �〉), but the authors acknowledge [39, §3.3.2] that longer

chains are sensible but do not show—as we do in this paper—

that permissiveness can benefit from longer label chains. We

explained (§VII) why permissiveness can be lost when using

label chains of fixed length (instead of using longer label

chains).

The enforcement mechanism presented in Zheng et al. [39]

is mostly static, so it does not exhibit the kinds of leaks our

paper examines through flow sensitive labels and blocking

executions. Specifically, label chains in [39] are given as

input; they are not deduced by the enforcement mechanism.

Conditions on these labels are inlined by the programmer.

If the static analysis succeeds, then the program will satisfy

TINI. So, a type-correct program can be safely executed until

normal termination. Techniques presented in [39] involving

label chains have been implemented in Jif [28], [29]. We

believe that any framework that supports dependent types, such

as [13] and [25], is likely capable of expressing unbounded

label chains.

Actions Other than Blocking: Dynamic enforcement

mechanisms can take actions other than blocking when an

unsafe command is about to be executed. Enforcement mech-

anisms presented in [14] and [24], which handle L2, modify

or skip the execution of an unsafe command. Similar to [12],

the enforcement mechanism presented in [26] (which enforces

labels from L2) diverges when reaching an unsafe command.

Some enforcement mechanisms (e.g., [9], [17], [18], [35]) take

no action, because they only update labels on variables; they

do not perform any checks.

Certain purely dynamic enforcement mechanisms (e.g.,

[20], [36]) recover from exceptions caused by unsafe com-

mands. They enforce error sensitive noninterference, which

we believe is stronger than BNI. One technique they employ

is assigning the same labels to variables after conditional

commands, independent of the branch that is taken. Here, some

permissiveness might be lost against 2-Enf , which allows

labels on variables to depend on taken branches.

Comparing Enforcement Mechanisms: Russo et al. [32]

study trade-offs between static and dynamic security analysis.

They prove impossibility of a purely dynamic information-

flow monitor that satisfies TINI and accepts programs certified

by the Hunt and Sands classical flow-sensitive static analysis

[21]. They first define basic semantics that purely dynamic

information-flow monitor may extend. Then, they introduce

properties (i.e., not look ahead, not look aside) for the purely

dynamic enforcement mechanisms they consider. Their im-

possibility theorem has the same style as our Theorem 7: an

enforcement mechanism with the above properties cannot both

satisfy TINI and be at least as permissive as [21]. Our Theorem

6 instead compares permissiveness of any two enforcement

mechanisms that satisfy particular properties. And our permis-

siveness relation ≤k,L
ρ is more general than the one presented

in [32], because it is defined on any two enforcers and handles

arbitrary lattices (not just L2) and initialization conditions.

Bielova et al. [11] present a taxonomy of five representative

flow-sensitive information flow enforcement mechanisms (no-

sensitive-upgrade, permissive-upgrade, hybrid monitor, secure

multi-execution, and multiple facets), in terms of soundness,

precision, and transparency, which stipulates that enforcement

mechanisms do not alter the semantics of safe executions.

Termination-Aware Noninterference (TANI) is the soundness

goal, and it is expressed in terms of knowledge semantics.

If an enforcement mechanism diverges the execution of an

unsafe command satisfies TANI, then this mechanism does not

leak sensitive information by taking this action. The theoretical

framework considered in [11] assumes labels are taken from

L2. Also, it assumes that a terminating execution produces one

output, at the end, tagged L; if an execution diverges, no output

is produced. So, TANI guarantees that dynamic enforcement

mechanisms do not introduce leaks when it diverges executions
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in the framework of [11]. Our section VIII-B explains that

there is no danger these mechanisms could encode sensitive

information in the flow-sensitive labels, because the framework

in [11] is restricted to L2.
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〈C1; i-exit,M [cc 	→ cc′]〉

(IFS2)
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〈if e then C1 else C2 end,M〉 →
〈C2; i-exit,M [cc 	→ cc′]〉

(EXIT IFS)
cc′ = cc.pop

〈i-exit,M〉 →
〈stop,M [∀j: i<j≤k: T j(wi) 	→ ⊥, cc 	→ cc′]〉
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APPENDIX

A. Optimized Enforcer k-Eopt

We sketch the construction of k-Eopt . We add two rules for

if command (one for each truth value of the guard) to k-Enf .

These new rules apply to a simple if command. We add a

premise to the existing rules for if command, so that these

rules are triggered when this if command is not simple. The

new rules for simple if command augment the taken branch

with a new delimiter i-end, and we add one rule for i-end to

k-Enf ; this rule sets certain labels of label chains to ⊥. Notice,

there are programs where k-Eopt produces more permissive

label chains than those produced by k-Enf .

Figure 10 gives the rules for augmenting k-Enf in order to

obtain k-Eopt . Function isSimple(C,M, i) decides whether a

command C is simple:

(i) C is of the form

if a > 0 then wi := e else wi := n end

(ii) a is an anchor variable,

(iii) wi is a flexible variable,

(iv) i = 1 and M(T (e)) = ⊥, or

i > 1, M(T i−1(e)) �= ⊥, and M(T i(e)) = ⊥,

(v) n is a constant,

(vi) C is context-free (e.g., M(cc) = ε and M(bc) = ⊥).

Notice that if isSimple(C,M, i) holds, then

isSimple(C,M, j) does not hold for j �= i, due to (iv)

and monotonically decreasing label chains.

As an example, we show how k-Eopt deduces label chains

for the following simple if :

if m > 0 then w := h else w := 4 end (18)

where anchor variable m is associated with 〈M,⊥,⊥,⊥〉,
anchor variable h is associated with 〈H,⊥,⊥,⊥〉, and h �= 4.

Without considering the context (i.e., m > 0), flexible variable

w would be associated with either 〈H,⊥,⊥,⊥〉 (due to w :=
h) or 〈⊥,⊥,⊥,⊥〉 (due to w := 4), when execution of assign-

ments ends. Here, only w and T (w) reveal information about

guard m > 0. So, at the end of the conditional command, only

T (w) and T 2(w) should be updated with the sensitivity of the

context T (m) = M. Thus, if m > 0, then w is associated

with 〈H,M,⊥,⊥〉, at the end of the conditional command.

Otherwise, w is associated with 〈M,M,⊥,⊥〉. Notice that, in

both cases, the meta-meta label of w is strictly less restrictive

than its metalabel. So, using the metalabel to specify its own

sensitivity would be conservative. In particular, using rules

from k-Enf , w would be associated with 〈M,M,M,M〉 or

〈H,M,M,M〉 at the end of the execution. Consequently, k-Enf
deduces less permissive label chains than k-Eopt .

Consider now how k-Eopt produces label chains for the

following simple if :

if a > 0 then wi := e else wi := n end

where T (a) = A, T j(e) �= ⊥ for j < i, and T j(e) = ⊥ for

j ≥ i. Without considering the context, we have

∀j ≥ i: T j(wi) = ⊥
at the end of both branches. Only T j(wi), for j < i, reveal

information about guard a > 0. So, at the end of the

conditional command, only T j+1(wi), for j < i, should be

updated with T (a) = A. Thus, at the end of the conditional

command, we always have

∀j > i: T j(wi) = ⊥.
So, when execution exits a simple if command, T j(wi) can

be set to ⊥, for every j > i.
Consider now lattice L3 � 〈{H,M, L},�〉 with ⊥ = L �

M � H and the following program:

if m > 0 then w := h else w := 4 end;

if l > 0 then w′ := w else w := m end;

w′′ := w′

where l is anchor variable with T (l) = ⊥ and w′, w′′ are

flexible variables. If m �> 0 and l > 0, then w′′ is associated

with 〈M,M,⊥,⊥〉. If l �> 0, then w′′ is associated with

〈M,⊥,⊥,⊥〉. So, k-Eopt produces 2-precise 2-varying label

chains for the target variable w′′. Such an example can be

extended to show that k-Eopt can produce k-precise k-varying

label chains. See [23] for the proof.

For enforcer k-Eopt , we have nk-Eopt = k +
1, Auxk-Eopt = {cc, bc}, Initk-Eopt(cc) = ε, and

Initk-Eopt(bc) = ⊥. The soundness proof for k-Eopt can be

found in [23].

B. Producing useful label chains with length k ≥ 2

We use pgmk defined below to show how k-Eopt can

produce useful label chains with length k ≥ 2. In particular,
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we show that starting from a conventional initialization (i.e.,

flexible variables are initially associated with bottom label

chains 〈⊥,⊥, . . . ,⊥〉) k-Eopt can gradually produce label

chains such that

– an increasing number of elements are non-bottom,

– the non-bottom elements are not the same.

if a1 > 0 then w1 := 0 else w1 := 1 end;

z1 := w1;

if a2 > 0 then w2 := z1 else w2 := 2 end;

z2 := w2;

. . .

if ak−1 > 0 then wk−1 := zk−2 else wk−1 := k − 1 end;

zk−1 := wk−1;

if ak > 0 then wk := zk−1 else wk := k end;

zk := wk;

Here all wk and zk are flexible variables. Assume lattice Lk

of labels such that

�0 � �1 � �2 � . . . � �k � ⊥ (19)

Assume Lk consists only of ⊥, �j , for 0 ≤ j ≤ k. Assume

pgmk is executed with conventionally initialized memory M
under k-Eopt, where M(T (aj)) = �j , for 0 ≤ j ≤ k and

k ≥ 2.

(Z1) After the execution of z1 := w1, this is the possible

chain for flexible variable z1:

T (z1) T 2(z1) . . . T k(z1)
〈 �1 ⊥ . . . ⊥ 〉

(Z2) After the execution of z2 := w2, these are the possible

2 chains for z2:

T (z2) T 2(z2) T 3(z2) . . .
〈 �1 �2 ⊥ . . . 〉 a2 > 0
〈 �2 �2 ⊥ . . . 〉 a2 �> 0

(Z3) After the execution of z3 := w3, these are the possible
3 chains for z3:

T (z3) T 2(z3) T 3(z3) T 4(z3) . . .
〈 �1 �2 �3 ⊥ . . . 〉 a2 > 0 ∧ a3 > 0
〈 �2 �2 �3 ⊥ . . . 〉 a2 
> 0 ∧ a3 > 0
〈 �3 �3 �3 ⊥ . . . 〉 a3 
> 0

. . .

(Zj) After the execution of zj := wj , these are the possible j
chains for zj :

T T 2 T 3 . . . T j−1 T j T j+1. . .
〈�1 �2 �3 . . . �j−1 �j ⊥ . . . 〉 a2, a3, . . ., aj > 0
〈�2 �2 �3 . . . �j−1 �j ⊥ . . . 〉 a2 
> 0 ∧ a3, . . . , aj > 0
〈�3 �3 �3 . . . �j−1 �j ⊥ . . . 〉 a3 
> 0 ∧ a4, . . . , aj > 0
. . .
〈�j−1 �j−1 �j−1 . . . �j−1 �j ⊥ . . . 〉 aj−1 
> 0 ∧ aj > 0
〈�j �j �j . . . �j �j ⊥ . . . 〉 aj 
> 0

. . .

(Zk) After the execution of zk := wk, these are the possible
k chains for zi:

T T 2 T 3 . . . T k−1T k

〈�1 �2 �3 . . . �k−1 �k〉 a2 > 0 ∧ a3 > 0 ∧ . . . ∧ aj > 0
〈�2 �2 �3 . . . �k−1 �k〉 a2 
> 0 ∧ a3 > 0 ∧ . . . ∧ ak > 0
〈�3 �3 �3 . . . �k−1 �k〉 a3 
> 0 ∧ . . . ∧ ak > 0
. . .
〈�k−1 �k−1 �k−1 . . . �k−1 �k〉 ak−1 
> 0 ∧ ak > 0
〈�k �k �k . . . �k �k〉 ak 
> 0

Notice that for 0 ≤ j ≤ k and k ≥ 2, the label chains that

k-Eopt produced for flexible variable zj start with j non-

bottom elements. Also, the non-bottom elements of the first

label chain for zj :

〈�1, �2, �3, . . . , �j−1, �j ,⊥, . . . 〉
are strictly monotonically decreasing:

�1 � �2 � �3 � . . . � �j−1 � �j

due to hypothesis (19). In [23], we prove that the label chains

presented in (Z1) − (Zk) are the only possible chains that

k-Eopt produces for variables zj and that they are k-precise.
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