
Automated Verification of Accountability in
Security Protocols

Robert Künnemann, Ilkan Esiyok and Michael Backes
CISPA Helmholtz Center for Information Security

Saarland Informatics Campus

Abstract—Accountability is a recent paradigm in security pro-
tocol design which aims to eliminate traditional trust assumptions
on parties and hold them accountable for their misbehavior. It
is meant to establish trust in the first place and to recognize
and react if this trust is violated. In this work, we discuss a
protocol-agnostic definition of accountability: a protocol provides
accountability (w.r.t. some security property) if it can identify all
misbehaving parties, where misbehavior is defined as a deviation
from the protocol that causes a security violation.

We provide a mechanized method for the verification of
accountability and demonstrate its use for verification and attack
finding on various examples from the accountability and causal-
ity literature, including Certificate Transparency and Kroll’s
Accountable Algorithms protocol. We reach a high degree of
automation by expressing accountability in terms of a set of
trace properties and show their soundness and completeness.

I. INTRODUCTION

The security of many cryptographic protocols relies on

trust in some third parties. Accountability protocols seek to

establish and ensure this trust by deterrence, often by detecting

participants that behave dishonestly. Providing accountability

can thus strengthen existing properties in case formerly trusted

parties deviate, e.g, the tallying party in an electronic voting

protocol or the PKI in a key-exchange protocol. Examples of

protocols where accountability is relevant include Certificate

Transparency [35] to achieve accountability for the PKI, OCSP

stapling [33] to reach accountability for digital certificate

status requests in PKI and Accountable Algorithms [21], a

proposal for accountable computations performed by authori-

ties.

We regard accountability as a meta-property: given some

traditional security property ϕ, a protocol that provides ac-

countability for ϕ permits a specific party or the public to

determine whether a violation of ϕ occurred, and if that is

the case, which party or parties should be held accountable.

Accountability provides an incentive for ‘trusted’ parties to

remain honest, and allows other parties to react to possible

violations, e.g., by revocation or fault recovery. It can also be

used to build deterrence mechanisms.

For a long time, accountability in the security setting lacked

a protocol-independent definition. Generalized definitions and

algorithms have been proposed for distributed systems [17],

where a complete view of every component is available.

In the security setting, however, the problem of identifying

dishonest parties is much harder, as they might deviate from

the protocol in an invisible manner. In unpublished work,

Künnemann et al. [24] approach this problem using causal

reasoning. Instead of identifying all participants that, perhaps

invisibly, deviate from their specifications; they identify the

parties that cause a violation. Even if a limited part of the

communication is available, cryptographic mechanisms such

as digital signatures, commitments and zero-knowledge proofs

can be used to leave traces that can be causally related to the

violation, e.g., a transmission of a secret.

In this paper, we provide the first mechanized verification

technique for their approach, which was stated in a custom

process calculus in which several parties can choose individual

ways of misbehaving. First, we propose a variant of their

definition in what we call the single-adversary setting. In

this setting, a single adversary controls all dishonest parties.

This setting is used in almost all existing protocol verification

tools. This vastly simplifies the definition of accountability

and enables the use of off-the-shelf protocol verifiers. Second,

we give verification conditions implying accountability for

a specific counterfactual relation. This relation links what
actually happened to what could have happened, e.g., if only a

subset of parties had mounted an attack. Causation and, as we

will demonstrate, accountability depend on how this relation

is specified. We use these verification conditions and off-the-

shelf tools to automatically verify Certificate Transparency,

OCSP stapling and other protocols for accountability w.r.t. this

relation. However, more complex scenarios require specifying

more fine-grained counterfactual relations. We show for the

general case: this definition can be decomposed into several

trace properties and the decomposition is sound and complete.

For our case studies, the verification conditions consist of 7 to

31 such properties; most of them can be verified within tenths

of seconds. Third, we implement this verification method for

an extension of the applied-π calculus to provide a convenient

toolchain for the specification and verification of account-

ability protocols. We verify accountability or find attacks

on a) several toy examples that highlight the complexity of

accountability, b) an abstract modelling of the case where

accountability is achieved by maintaining a central audit log,

c) several examples from the causality literature, d) OCSP-

Stapling, e) Certificate Transparency and f) Accountable Al-
gorithms, a seminal protocol for accountable computations in

a real-world setting. We thus list our contributions as follows:

‚ a new definition of accountability in the single-adversary

setting (which is simpler than the previous definition [24]

397

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Robert Künnemann. Under license to IEEE.
DOI 10.1109/CSF.2019.00034

due to the single-adversary setting).

‚ a verification technique, based on a sound and complete

translation to a set of trace properties that is compatible

with a mature and stable toolchain for protocol verifica-

tion.

‚ a demonstration on several case studies, including two

fixes to Kroll’s Accountable Algorithms protocol, and a

machine-verified proof that both fixes entail accountabil-

ity for both participants.

II. ACCOUNTABILITY

To define accountability, we follow the intuition that a pro-

tocol provides accountability if it can always determine which

parties caused a security violation. In this sense, accountability

is a meta-property: we speak of accountability for violations

of ϕ. If no violation occurs, no party causes it; if no party

causes a violation, there is no violation. Hence accountability

w.r.t. ϕ implies verifiability of ϕ [27].

To reason about failures, i.e., violations of ϕ, our formalism

has to allow parties to deviate from the protocol. Each party

is either honest, i.e., it follows the behaviour prescribed by

the protocol, or it is dishonest, i.e., it may deviate from this

behaviour. Often there is a judging party, which is typically

trusted, i.e., it is always honest. A dishonest party is not neces-

sarily deviating, it might run a process that is indistinguishable

from its protocol behaviour. Hence it is impossible to detect

all dishonest parties.

In the security setting, parties cannot monitor each other

completely. Typically, they only receive messages addressed or

redirected to them. This includes the judging party. Therefore,

a deviating party A can send a secret to another deviating party

B and the judging party may not notice. Under these circum-

stances, identifying all deviating parties is also impossible.

Instead, we focus on identifying all parties causing the

violation of the security property ϕ. The protocols we consider

in this work are designed in a way the parties that are deviating

(and thus dishonest) will have to leave evidence in order to

cause security violations.

The definition we provide here is a simplified version of

an earlier, causality-based definition [24], adapted to a setting

where there is only a single adversary controlling all deviating

parties, or equivalently, where the deviating parties share all

the knowledge they obtain. Both definitions are based on

sufficient causation [12, 22]. The intuition is to capture all

parties for which the fact that they are deviating at all is

causing the violation. This may not only be a single party,

but also a set of parties. If two parties A, B collude against

a secret sharing scheme with a threshold of two and expose

some secret, the single party A would not be considered a

cause, but we would say that tA,Bu have jointly caused the

failure.

Assume a fixed finite set of parties A “ tA,B, . . .u.
Intuitively, the fact that a party or a set of parties S Ď A
are deviating is a cause for a violation iff:

SC1. A violation indeed occurred and S indeed deviated.

SC2. If all deviating parties, except the parties in S, behaved

honestly, the same violation would still occur.

SC3. S is minimal, i.e., SC1 and SC2 hold for no strict subset

of S.

The first condition is self-explanatory. The second formalizes

that the misbehaviour of the parties in S alone is sufficient to

disrupt the protocol. For the secret sharing scheme scenario

above, if the party A deviated alone, this would not cause

the exposure of the secret, so SC2 would not hold. tA,Bu,
however, would meet all of the conditions. SC2 reasons about

a scenario that is different from the events that actually took

place, which is called a counterfactual in causal reasoning. At

the end of this section, we will discuss different counterfactual
relations between the actual and the counterfactual course of

events. The third condition SC3 ensures minimality. It removes

parties that deviated, but whose deviations are not relevant to

the coming about of the violation.

Note that there can be more than one (joint) cause. If the

aforementioned protocol would run in two sessions, one in

which A and B colluded to expose the secret and another one

in which A and C colluded to expose a different secret, there

would be two causes, tA,Bu and tA,Cu, each individually

satisfying SC1 to SC3, each being an individual cause for the

failure. This nicely separates joint causes (A and B working

together; A and C working together) from independent causes

(the first collusion and the second collusion).

Intuitively, an accountability mechanism provides account-

ability for ϕ if it can always point out all S Ď A causing a

violation of ϕ, or H if there is no violation.
Need for trusted parties: Accountability protocols aim at

eliminating trust assumptions, yet they often require a trusted

judging party. But, if the judging party operates offline and

their judgement can be computed with public knowledge, then

any member of the public can replicate the judgement and

validate the result. The judging party is thus not a third party,

but the observer itself, who we assume can be trusted to follow

the protocol, i.e., not cheat herself.
Individually deviating parties vs. single adversary: Pro-

tocol verification tools usually consider a single adversary

representing both an intruder in the network and untrusted

parties. Typically, the attacker sends a corruption message

to these parties, they accordingly transmit their secrets to

the adversary. As messages are transmitted over an insecure

network, the adversary can then impersonate the parties with

their secrets. This is a sound over-approximation in case of

security properties like secrecy and authentication, as the

adversaries are stronger if they cooperate. It also simplifies

verification: a single adversary can be modelled in terms

of non-deterministic state transitions for message reception

(see, e.g., [2, Theorem 1]). Many protocol verification tools

operate in this way [36, 9, 11, 14]. We therefore focus on the

single-adversary setting, in order to exploit existing methods

for protocol verification and encourage the development of

accountability protocols. This is the main distinction between

our simplified definition of accountability and the earlier

definition [24]. Nevertheless, the philosophical difference be-

398

tween these two settings remains relevant for our analysis,

as it is based on causal reasoning about deviating parties.

In Section IX, we discuss the difference between these two

settings and elaborate on our current understanding of them.

Protocol accountability: Let a protocol P be defined in

some calculus, e.g., the applied-π calculus, and assume that

we can define the set of traces induced by the protocol,

denoted tracespP q. We also assume a counterfactual relation r
between an actual trace and a counterfactual trace. Depending

on the protocol, different counterfactual relations can capture

the desired granularity of a judgement. We will describe this

relation and give examples in the following section.

Given a trace t, a security property ϕ can be evaluated, e.g.,

t (ϕ iff ϕ is true for t, which we will sometimes abbreviate to

ϕptq. We assume that any trace t P tracespP q determines the

set of dishonest agents, i.e., those who received the corruption

message from the adversary and define corruptedptq Ď A to

be this set.

We can now define the a posteriori verdict (apv), which

specifies all subsets of A that are sufficient to cause �ϕ.

The task of an accountability protocol is to always compute

the apv, but without having full knowledge of what actually

happened, i.e., t.

Definition 1 (a posteriori verdict). Given an accountability
protocol P , a property ϕ, a trace t and a relation r, the
a posteriori verdict, which formalizes the set of parties causing
�ϕ, is defined as:

apvP,ϕ,rptq :“ tS | t (�ϕ and S minimal s.t.

Dt1 : rpt, t1q ^ corruptedpt1q “ S^ t1 (�ϕu.
Relation r is reflexive, transitive and rpt, t1q implies
corruptedpP, t1q Ď corruptedpP, tq.

Each set of parties S P apvP,ϕ,rptq is a sufficient cause for

an eventual violation, in the sense outlined at the beginning

of this section. The condition t (�ϕ ensures that indeed a

violation took place. If the parties in S did not deviate in t,
then S would not be minimal, hence SC1 holds. SC3 holds by

the minimality condition. The remaining conditions capture

SC2: t1 is a counterfactual trace w.r.t. t, a trace contrary to

what actually happened.1 In t1, only the parties in S may

deviate, which should suffice to derive a violation. We define

the relation r to constrain the set of counterfactual traces. At

the very least, the condition that corruptedpt1q Ď corruptedptq
should hold to guarantee that for any violating trace, a minimal

S is defined.2 We will discuss a few variants of r in the

following section.

For a given trace, the apv outputs a set of sufficient causes,

i.e., a set of sets of agents. We call this output as the verdict.

1Technically, the set of counterfactual traces includes t1 “ t, as r is reflex-
ive, and thus not every instance of t1 is, strictly speaking, a counterfactual.
For brevity, we prefer to nevertheless call t1 a counterfactual, despite this
imprecision.

2Consider r total, t with t (�ϕ and corruptedptq “ tAu and t1 with
t1 (�ϕ and corruptedpt1q “ tBu as a counterexample. Neither tAu nor
tBu would be minimal.

We also remark that apvP,ϕ,rptq “ H iff t (ϕ, i.e., an empty

verdict means the absence of a violation — there can be no

cause for an event that did not happen.

To abstract from the mechanism by which an accountability

protocol announces the purported set of causes for a violation

— this could range from a designated party computing them

to a public ledger that allows the public to compute it —

we introduce a verdict function from tracespP q Ñ 22
A

. An

accountability protocol is thus described by P and the verdict

function. We can now state accountability: a verdict function

provides accountability if it always computes the apv.

Definition 2 (accountability). A verdict function verdict :
tracespP q Ñ 22

A
provides a protocol P with accountability

for a property ϕ (w.r.t. r) if, for any trace t P tracespP q
verdictptq “ apvP,ϕ,rptq.

Example 1. Assume a protocol in which a centralized monitor
controls access to some resource, e.g., confidential patient
records. Rather than preventing exceptional access patterns,
e.g., requesting the file of another doctor’s patient, the requests
are allowed, but logged by the monitor. Accountability tends
to be preferable over prevention in such cases, e.g., in case of
emergencies.

The set of agents comprises doctors D1, D2 and the cen-
tralized monitor. The centralized monitor is trusted and effec-
tuates requests only if they are digitally signed. The security
property ϕ is true if no exceptional request was effectuated.
Per protocol, D1 and D2 never send exceptional requests,
however, if in trace t, the central adversary corrupts them
and learns their signing keys, he can act on their behalf and
sign exceptional requests. The set of dishonest parties contains
those corrupted by the adversary, corruptedptq “ tD1, D2u.
A verdict ttD1u, tD2uu indicates that both D1 and D2 de-
viated in a way that caused a violation, i.e., an exceptional
request was effectuated. If a third doctor D3 was also in the
protocol and it was corrupted D3 P corruptedptq, but never
signed any request, then it would not be involved in the apv
apvP,ϕ,rptq “ ttD1u, tD2uu. The apv for this protocol can
be computed by only taking the log into account: a verdict
function verdict , that operates on the monitor’s log, can be
defined to compose singleton verdicts for each party that
signed an exceptional request. This verdict function is easy
to implement, yet it provides the protocol with accountability
for ϕ because it computes apvP,ϕ,r correctly.

Counterfactual relation: The relation r in the definition of

the apv defines which counterfactual scenarios are deemed

relevant in SC2. While there is an agreement in the causality

literature that t1 cannot be chosen arbitrarily, there is no

agreement on how they should relate. We slightly change the

previous monitoring example and discuss why the relation is

important.

Example 2. Assume that the monitor supports a second
mechanism to handle requests. Here, a doctor D1 can also
sign his exceptional request and ask his chief of medicine

399

C to approve it. Assume in trace t, both D1 and C collude
and use this mechanism to effectuate an exceptional request,
violating ϕ. Intuitively, one would expect the apv, relying on
logs, to give the verdict ttD1, Cuu. However, D1 could have
used the first mechanism for this request. Hence, there is a
counterfactual trace t1 where only D1 is dishonest. If rpt, t1q,
then the more intuitive verdict ttD1, Cuu is not minimal, but
apvP,ϕ,rptq “ ttD1uu is minimal, shifting the blame to D1

alone. The intuitive response would be: ‘But that is not what
happened!’, which is precisely what r needs to capture.

We discuss three approaches for relating factual and coun-

terfactual traces:

‚ by control-flow: rcpt, t1q iff t and t1 have similar control-

flow. Several works in the causality literature relate traces

by their control-flow [12, 24, 26], requiring counterfac-

tuals to retain, to varying degree, the same control-flow.

See [25] for a detailed discussion about control flow in

Pearl’s influential causation framework. For simplicity,

the notion we present (cf. Section VII) captures only

the control-flow of trusted parties, i.e., parties guaranteed

to be never controlled by the adversary. In case of the

example, the control-flow of the trusted monitor would

distinguish these two mechanisms.

‚ by kind of violation: rkpt, t1q iff t and t1 describe the same

kind of violations. This approach is, e.g., used in criminal

law to solve causal problems where the classical ‘what-if‘

test fails, e.g., a person was poisoned, but shot before the

poison took effect. The classical test for causality (sine

qua non) gives unsatisfying results (without the shot, the

person would still have died), unless one describes the

causal event in more detail, i.e., by distinguishing death

from shooting from death from poisoning ([13, p. 188];

see also [31, p. 46]). For security protocols, the instance

of the violation could be characterized by the session, the

participating parties or other variables that are free in in

the security property ϕ (see Lowe [30]). This relation is

informal and depends on intuition, so it is not used in our

analysis.

‚ weakest relation according to Def. 1: rwpt, t1q ðñ
corruptedpP, t1q Ď corruptedpP, tq. This relation is

conceptually simple and suitable for many protocols in

which collusion is not an issue, i. e., verdicts contain only

singleton sets. Outside this class, it may give unintuitive

a posteriori verdicts in cases where t requires collusion,

but one of the colluding parties could mount a possibly

very different attack by themselves.

In Section III, we provide verification conditions for rw. In

Section IV, we provide more general verification conditions

that apply to arbitrary relations, as some scenarios require

more fine-grained analysis, and later we mechanize it for rc.

III. VERIFICATION CONDITIONS FOR rw

In this section, we define a set of verification conditions

parametric in a security property ϕ and a verdict function. If

TABLE I
VERIFICATION CONDITIONS for rw.

conditions formulae

Exhaustiveness (XH): @t. ω1ptq _ ¨ ¨ ¨ _ ωnptq
Exclusiveness (XC): @t, i, j. i ‰ j ùñ �pωiptq ^ ωjptqq
Sufficiency of each ωi @S P Vi. Dt.
s.t. Vi ‰ H (SFωi,ϕ,S): �ϕptq ^ corruptedptq “ S

Verifiability of each ωi @t. ωiptq ùñ
(Vωi,Vi

): pVi “ H ðñ ϕptqq
Minimality of each Vi @S P Vi @S1 Ĺ S
(Mϕ,Vi

): Et. �ϕptq ^ corruptedptq “ S1

Uniqueness of each Vi @t. ωiptq ùñ
(Uωi,Vi

):
Ť

SPVi
S Ď corruptedptq

Completeness of each Vi @S Ď Ť
S1PVi

S1 @j. Vj “ tSu ùñ
(CVi

): S P Vi.

(t is quantified over tracespP q)

these conditions are met, they provide a protocol with account-

ability for ϕ w.r.t. the weakest condition on counterfactuals

rwpt, t1q ¨̈“ corruptedpt1q Ď corruptedptq. Each of these

conditions is a trace property and can thus be verified by off-

the-shelf protocol verification tools. In our case studies, we

will use these verification conditions to verify accountability

properties for the Certificate Transparency protocol.

The main idea: we assume the verdict function is described

as a case distinction over a set of trace properties ω1 to ωn.

Any of these observations ωi is then assigned a verdict Vi.

Definition 3 (verification conditions). Let verdict be a verdict
function of form:

verdictptq “

$’’&
’’%
V1 if ω1ptq
...
Vn if ωnptq

and ϕ a predicate on traces. We define the verification condi-
tion γϕ,verdict as the conjunction of the formulae in Table I.

We briefly go over these conditions. The case distinction

needs to be exhaustive (XH) and exclusive (XC), because

verdict functions are total. For any observation ωi that leads

to a non-empty verdict, any set of parties S in this verdict

needs to be able to produce a violating trace on their own

(SFωi,ϕ,S). However, removing any element from S should

make it impossible to produce a violation (Mϕ,Vi
), due to the

minimality requirement in Def. 1. If an observation leads to

the empty verdict, it needs to imply the security property ϕ,

because accountability implies verifiability (Vωi,Vi). Whenever

an observation ωi is made, all parties that appear in the

ensuing verdict have necessarily been corrupted (Uωi,Vi
). This

ensures uniqueness; if there was a second sufficient and

minimal verdict, part of the verdict would correspond to a

trace that corrupts parties that do not appear in the verdict

(details in the proof of completeness, Appendix C in the full

version [23]). Finally, if there is a singleton verdict (e.g.,

400

Vj “ ttB,Cuu) containing only parties that appear in another

composite verdict (e.g., Vi “ ttA,Bu, tA,Cuu) then traces

that give the former are related to traces that give the latter

(where, at least, A, B and C were dishonest). Hence the

singleton verdict needs to be included. (CVi
).

We show these conditions sound and complete in Ap-

pendix C in the full version [23]. Practically, this means

that any counter-example to any lemma generated from these

conditions demonstrates an attack against accountability.

Example 3. Consider the centralized monitor from Exam-
ple 1, and, for simplicity, assume there is only one doctor
D. The verdict function gives V1 “ ttDuu if it logged an
action signed by D, if this action was effectuated and if
it was exceptional. Otherwise, it gives V2 “ H. To show
that his verdict function provides accountability for ϕ ¨̈“
no exceptional action was effectuated, one would show:
‚ the case distinction exhaustive and exclusive,
‚ that the attacker can effectuate an exceptional action if
D’s signing key is known (SFωi,ϕ,S),

‚ that the ‘otherwise’ condition (no exceptional action was
effectuated and signed by D) implies that no exceptional
action was effectuated by anyone (Vωi,Vi),

‚ that no exceptional action can be effectuated without
knowledge of D’s signing key (Mϕ,Vi), and

‚ that D’s signature on an exceptional action that was ef-
fectuated can only be obtained by corrupting D (Uωi,Vi

).
‚ Completeness (CVi): V1 is the only non-empty verdict.

IV. VERIFICATION CONDITIONS FOR ARBITRARY r

As outlined in Example 2, there are scenarios where a

more fine-grained analysis is necessary. These scenarios are

characterized by violations that can be provoked either by

a set of colluding parties or by a subset thereof, using a

different mechanism. Hence we provide a different and more

elaborate set of verification criteria (see Table II). They fall

into two categories: the first consists of trace properties that

again can be verified using off-the-shelf protocol verifiers.

The second relates the case distinction used to define the

verdict to the relation: in general, all traces that fall into the

same case should be related. The verification of the second

kind of conditions depends on the relation chosen and can

be conducted by hand. In a later section, we mechanize the

verification of these conditions for the relation rc specifically.

Hence our method is fully automated for this relation.

These verification criteria are sound and complete. (see

Appendix D in the full version [23]). This means that the

conjunction of all verification criteria is logically equivalent

to accountability and thus contradicts Datta et. al.’s view that

‘accountability depends on actual causation and it is not a trace

property’ [12].

Definition 4 (verification conditions). Let verdict be a verdict
function of the form from Definition 3 and ϕ be a predicate
on traces. We define the verification condition νϕ,verdict as the
conjunction of the formulae in Table II, where t and ti range
over tracespP q.

TABLE II
VERIFICATION CONDITIONS for arbitrary r.

conditions formulae

Exhaustiveness (XH): @t. ω1ptq _ ¨ ¨ ¨ _ ωnptq
Exclusiveness (XC): @t, i, j. i ‰ j ùñ �pωiptq ^ ωjptqq
Sufficiency for each ωi, Dt. ωiptq ^ �ϕptq
with singleton Vi “ tSu ^corruptedptq “ S
(SFSωi,ϕ,Vi“tSu):

Sufficiency for each ωi, @S. S P Vi ùñ
with |Vi| ě 2 Dj. Ri,j ^ Vj “ tSu
(SFRR,ωi,ϕ,|Vi|ě2):

Verifiability for each ωi, @t. ωiptq ùñ
(Vωi,Vi

): pVi “ H ðñ ϕptqq
Minimality, for @S1. S1 Ĺ S ùñ
singleton Vi “ tSu Et. ωiptq ^ corruptedptq “ S1
(Mϕ,Vi

):

Minimality, for ES,S1 P Vi S1 Ĺ S
composite Vi, |Vi| ě 2
(MR,|Vi|ě2):

Uniqueness of each Vi @t. ωiptq ùñ S Ď corruptedptq
with Vi “ tSu
(Uωi,Vi“tSu):

Completeness of |Vi| ě 2 @j, S. Ri,j ^ Vj “ tSu ùñ
(C|Vi|ě2): DS1. S1 P Vi ^ S Ď S1

Relation is lifting of r if Vi, Vj ‰ H then
(RLR,ωi,ωj ,Vi,Vj

): @t, t1. ωiptq ^ ωjpt1q
^Ri,j ðñ rpt, t1q

Relation is reflexive and @i, j. Vi is singleton
terminating on singleton ^Ri,i ^ pRi,j ùñ i “ jq
(RSR,Vi“tSu):

(t is quantified over tracespP q)

Again, we assume the verdict to be expressed as a case

distinction. This case distinction must be sufficiently fine-

grained to capture all relevant classes of counterfactuals, e.g.,

all ways the violation could come about in terms of r. We

distinguish between the empty verdict (meaning no violation

took place), singleton verdicts (tSu, where S itself is a set

of parties jointly causing a violation) and composite verdicts

(consisting of two or more elements, e.g., ttA,Bu, tA,Cuu if

A, B and C deviated, but A could have caused the violation

either jointly with B or with C). The main idea is that

the correctness of composite verdicts, e.g., ttA,Bu, tCuu,
follows from the correctness of the singleton verdicts they

are composed from, e.g., ttA,Buu and ttCuu, as long as all

traces that provoke the composite verdict relate to the singleton

verdict.

We assume the cases to be connected along these lines; all

cases resulting in an empty verdict have to guarantee ϕ to

hold (Vωi,Vi
). All cases resulting in singleton verdicts have

to imply that (a) a violation took place (Vωi,Vi), (b) that

the parties in the verdict alone can provoke this violation

(SFSωi,ϕ,Vi“tSu), (c) these parties need to be corrupted when-

ever this case matches (Mϕ,Vi
) and (d) that the verdict is

unique (Uωi,Vi“tSu).
Composite verdicts need to relate to singleton verdicts by

401

means of a lifting R of the relation r (RLR,ωi,ωj ,Vi,Vj
). For

each part of a composite verdict, R points to the singleton ver-

dicts for the same parties. Therefore, it needs to be terminating

on singleton cases (RSR,Vi“tSu). As R is a lifting of r and

reflexive (i.e., all traces in the same case are related to each

other, RSR,Vi“tSu), completeness, sufficiency and minimality

carry over from singleton cases to composite cases, as long as

all parts of of the composite verdict are covered by a singleton

verdict (SFRR,ωi,ϕ,|Vi|ě2), and, vice versa, all related singleton

verdicts are contained in the composite verdicts (C|Vi|ě2). In

this way, we can avoid the requirement that the composite

verdict itself needs to define the minimal set of parties needed

to provoke a violation, which would not be the case in most

of our case studies.3 Instead, we only need a simple syntactic

check (MR,|Vi|ě2) to ensure that the parts of a composite

verdict are not contradictory with regards to the minimality

of the apv. Consider, e.g., the composite verdict ttA,Bu, Au.
In summary, the key to these verification conditions is to

express equivalence classes w.r.t. r and relations between them

in the case distinction describing the verdict function.

Example 4. Consider the extended centralized monitor (Ex-
ample 2) and assume that the logged signature distinguishes
which mechanism was used to effectuate an action and that
only one action can be effectuated. Assume further a verdict
function that (a) outputs ttDuu if the monitor logged and
effectuated an exceptional action signed by D, (b) outputs
ttC,Duu if it logged and effectuated an exceptional action
signed by D and C, and (c) outputs H otherwise. Minimality
can only hold if case (a) and case (b) are not in the relation.
Hence RLR,ωi,ωj ,Vi,Vj

requires any trace falling into case (a)
to be unrelated from any trace falling in case (b). RSR,Vi“tSu
requires all traces leading to the observation in case (a) to
be related, and likewise for case (b). If we consider, e.g., the
monitor’s control flow rc, this can be shown automatically (cf.
Section VII). If we consider rk, it is essentially an axiom.

V. CALCULUS

Before we present our case studies, we will elaborate on

the protocol calculus in which they are stated. The calculus

we used is an extension of the well-known applied-π calcu-

lus [2]. In addition to the usual operators for concurrency,

replication, communication, and name creation, from applied-

π, this calculus (called SAPiC [20, 6]4) supports constructs for

accessing and updating an explicit global state, which is useful

for accountability protocols that rely on trusted third parties

retaining some state or a public ledger. Readers familiar with

the applied-π calculus can jump straight to Section V-B, where

the modelling of corruption is explained. The constructs for

state manipulation are marked in Figure 1.

We will now introduce the syntax and informally explain

the semantics of the calculus. For the formal semantics, please

refer to Appendix A.

3Compare with the minimality requirement in Table I in Def. 3.
4 Our results apply to both the original version of SAPiC and the extension

with reliable channels.

Terms and equational theories: Messages are modelled as

abstract terms. We define an order-sorted term algebra with

the sort msg and two incomparable subsorts pub and fresh
for two countably infinite sets of public names (PN) and fresh

names (FN). Furthermore, we assume a countably infinite set

of variables for each sort s, Vs. Let V be the union of the

set of variables for all sorts. We write u : s when the name

or variable u is of sort s. Let Σ be a signature, i.e., a set

of function symbols, each with an arity. We write f{n when

function symbol f is of arity n. There is a subset Σpriv Ď Σ
of private function symbols which cannot be applied by the

adversary. Let Terms be the set of well-sorted terms built over

Σ, PN , FN and V , and M be the subset containing only

ground terms, i.e., terms without variables.

Equality is defined by means of an equational theory E, i.e.,

a finite set of equations between terms inducing a binary rela-

tion “E that is closed under application of function symbols,

bijective renaming of names and substitution of variables by

terms of the same sort.

Example 5. We model digital signatures using symbols
tsig , verify , pk , sk , trueu Ă Σ with sk P Σpriv , and equation

verifypsigpm, skpiqq,m, pkpskpiqqq “ true.

For the remainder of the article, we will assume the

signature Σ and equational theory E to contain symbols

and equations for pairing and projection tx., .y, fst, sndu Ď
Σ and equations fstpxx, yyq “ x and sndpxx, yyq “
y are in E. We use xx1, x2, . . . , xny as a shortcut for

xx1, xx2, x. . . , xxn´1, xny . . .y. We suppose that functions be-

tween terms are interpreted modulo E, i.e., if x “E y then

fpxq “ fpyq.
Facts: We also assume an unsorted signature Σfact , disjoint

from Σ. The set of facts is defined as F :“ tF pt1, . . . , tkq |
ti P TermsΣ, F P Σfact of arity ku and used to annotate

protocol steps.

Sets, sequences, and multisets: We write Nn for the set

t1, . . . , nu. Given a set S, we denote the set of finite sequences

of elements from S, by S˚. Set membership modulo E is

denoted by PE and defined as e PE S iff De1 P S. e1 “E e.

ĂE , YE , and “E are defined for sets in a similar way.

Application of substitution is lifted to sets, sequences and

multisets as expected. By abuse of notation we sometimes

interpret sequences as sets or multisets; the applied operators

should make the implicit cast clear.

A. Syntax and informal semantics

0 denotes the terminal process. P | Q is the parallel

execution of processes P and Q and !P the replication of

P allowing an unbounded number of sessions in protocol

executions. P `Q denotes external non-deterministic choice,

i.e., if P or Q can reduce to a process P 1 or Q1, P `Q may

reduce to either. The construct νa;P binds the name a P FN
in P and models the generation of a fresh, random value. The

processes out(m,n); P and in(m,n); P represent the output,

respectively input, of message n on channel m. As opposed to

402

xP ,Qy ::= 0

| P | Q
| ! P
| νa : fresh; P
| out(m,n); P
| in(m,n); P
| if Pred then P [else Q]

| event F ; P
| P `Q (non-deterministic choice)
| insert m,n; P (inserts n at cell m)
| delete m; P (deletes content of m)
| lookup m as x in P [else Q]

| lock m; P
| unlock m; P

Fig. 1. Syntax (a P FN , x P V , m,n P Terms Pred P P , F P F).

classical
ap

p
lied

-π

S
A

P
iC

ad
d
itio

n
s

the applied pi calculus [2], SAPiC’s input construct performs

pattern matching instead of variable binding. If the channel is

left out, the public channel c is assumed, which is the case in

the majority of our examples. The process if Pred then P else
Q will execute P or Q, depending on whether Pred holds. For

example, if Pred “ equalpm,nq, and φequal “ x1 « x2, then

if equalpm,nq then P else Q will execute P if m “E n
and Q otherwise. (In the following, we will use m “ n as

a short-hand for equalpm,nq). The event construct is merely

used for annotating processes and will be useful for stating

security properties. For readability, we sometimes omit trailing

0 processes and else branches that consist of a 0 process.

The remaining constructs are used to manipulate state and

were introduced with SAPiC [20]. The construct insert m,n
binds the value n to a key m. Successive inserts overwrite this

binding, the delete m operation ‘undefines’ the binding. The

construct lookup m as x in P else Q allows for retrieving the

value associated to m, binding it to the variable x in P . If the

mapping is undefined for m, the process behaves as Q. The

lock and unlock constructs are used to gain or waive exclusive

access to a resource m, in the style of Dijkstra’s binary

semaphores: if a term m has been locked, any subsequent

attempt to lock m will be blocked until m has been unlocked.

This is essential for writing protocols where parallel processes

may read and update a common memory.

Example 6. The centralized monitor from Example 1 can be
modelled as follows. For NormalAct{0, we can model the
doctor’s role as follows:

D¨̈“inpa); if a = NormalAct then
outpxx1Do1, ay,signpx1Do1, ay,skp’D’))y).

The centralized monitor itself verifies the signature and logs
the access using the event construct. Note that it does not
check whether a constitutes a ‘normal’ action.

M¨̈“ pinpxm1 ¨̈“ x1Do1, ay,m1sy);
if verify pm1s,m1,pkpskp’D’)))=truep) then

event LogDpa);event Executepa))

To model these parties running arbitrarily many sessions in
parallel, we compose D and M to !D |!M .

As usual, the semantics are defined by means of a reduction

relation. A configuration c consists of the set of running

processes, the global store and more. By reducing some

process, it can transition into a configuration c1. This relation

is denoted c
FÝÑ c1, where the fact F denotes an event, e.g.,

LogDpaq, or the adversary sending a message m, in which

case F “ Kpmq.
An execution is a sequence of related configurations, i.e.,

c1
F1ÝÑ ¨ ¨ ¨ FnÝÝÑ cn`1 The sequence of non-empty facts Fi

defines the trace of an execution. Given a ground process

P , tracespP q is the set of traces that start from an initial

configuration c0 (no messages emitted yet, no open locks etc.).

To specify trace properties, SAPiC and the underlying

Tamarin prover [36] support a fragment of first-order logic

with atoms F@i (fact F is at position i in trace), i ă j
(position i precedes position j) and equality on positions and

terms (see. Appendix B for its formal definition). We write

t (ϕ if t satisfies a trace property ϕ.

B. Accountability protocols

A process by itself does not encode which of its sub-

processes represents which agent. Hence, for each agent A,

we assign a process PA. Furthermore, in order to model the

adversary taking control of agents, each agent needs to specify

a corruption procedure. At the least, this corruption procedure

outputs that agent’s secrets. In our calculus, these are the

free names (unbound by input or ν) in PA. To model other

capabilities obtained by corrupting an agent, e.g., database

access, we allow for an auxiliary process C 1A to be specified.

Definition 5 (accountability protocol). Assume a set of par-
ties A “ tA1, A2, . . . , Anu and T Ď A. An account-
ability protocol is a ground process of the following form:
ν�a; pPA1 | CA1 | ¨ ¨ ¨ | PAn | CAnq where CAi is
of form event CorruptpAiq; outp1c1, xa1, . . . , amyq;C 1Ai

and
ta1, . . . , amu Ď �a are the free names in PAi

if Ai R T , and 0
otherwise.

Example 7. The centralized monitor protocol from Exam-
ples 1 and 6 is an accountability process

D | pevent Corruptp1D1q; outpskp1D1qq |M.

Processes accessing the store can specify auxiliary processes

CAi
, as per default, SAPiC does not permit the adversary to

emit events or access the store. With these formal require-

ments, we can define the set of corrupted parties of a trace as

corruptedptq “ tA P A | CorruptpAq P tu.
The accountability mechanism is defined through the ac-

countability protocol itself and the verdict function. We require

the verdict function to be invariant w.r.t. E.

403

Example 8. The verdict function for the centralized monitor
protocol from Examples 1 and 6, which we sketched in
Example 3, can be specified as:

verdictptq “
#
ttDuu if t (ω1

H if t (ω2

for ω1 ¨̈“ Da, i, j.Executepaq@i ^ LogDpaq@j ^ a ‰
NormalAct and ω2 ¨̈“ �ω1. As only ttDuu is to be blamed
in this example, this verdict function achieves accountability
for

ϕ ¨̈“ @a1, i1. Executepa1q@i1 ùñ a “ NormalAct ,

even w.r.t. the weakest relation rw. This can be shown automat-
ically by verifying the verification conditions for rw (Def. 3),
i.e.:
‚ exhaustiveness and exclusiveness,
‚ sufficiency of ttDuu pSFω1,ϕ,ttDuuq: there is a trace t s.t.
t (Di.CorruptpDq@i ^ �p@j, a. Executepaq@j ùñ
a “ NormalActq, i.e., a corrupt D is able to execute an
exceptional action.

‚ verifiability w.r.t. ω1 (Vω1,V1): ω1 ùñ �ϕ, which holds
a priori.

‚ verifiability w.r.t. ω2 (Vω2,V2
): ω2 ùñ ϕ, i.e., the

absence of a log for an exceptional action means none
was effectuated.

‚ minimality of ttDuu (Mϕ,V1
): ϕ _ Di.CorruptpDq@i.

Unless D was corrupted, no exceptional action was
effectuated.

‚ uniqueness of ttDuu (Uω1,V1
): ωi ùñ

Di.CorruptpDq@i. An entry in the log blaming D
can only occur if D was actually corrupted.

VI. CASE STUDIES FOR rw

In this section and Section VIII, we demonstrate the fea-

sibility of our verification approach on various case studies

in different settings. We first concentrate on cases where

the weakest counterfactual relation rw is sufficient, including

practical examples like Certificate Transparency and OCSP-

Stapling.

We implemented our translation from accountability prop-

erties to conditions in SAPiC5, which provides support for

arbitrary relations (leaving the proofs for RLR,ωi,ωj ,Vi,Vj
and

RSR,Vi“tSu to the user), the relation rc (as described in

Section VII) and the weakest possible relation rw (Section III).

Our fork retains full compatibility with the classic SAPiC

semantics, with the extension for liveness properties [6] and

operates without any substantial changes to Tamarin. By

default, our fork preserves multiset rewrite rules contained in

its input, and can thus also serve as a preprocessor for ac-

countability protocols encoded in Tamarin’s multiset rewriting

calculus.

Our findings are summarized in Table III. For each case

study, we give the type (� for successful verification, � if

5Currently available in the development branch of Tamarin and to be
included in the next release: https://github.com/tamarin-prover/tamarin-prover.

TABLE III
CASE STUDIES AND RESULTS.

lemmas # helping
protocol type generated lemmas time

Whodunit
faulty �,rw 16 0 395s
fixed �,rw 8 0 112s

Certificate Transp.
model from [10] �,rw 31 0 41s
extended model �,rw 21 0 50s

OCSP Stapling
trusted resp. �,rw 7 3 945s
untrusted resp. �,rw 7 3 12s˚

Centralized monitor
faulty �,rc 17 0 5s
fixed �,rc 17 0 3s
replication �,rc 17 0 7s

Causality
Desert traveller �,rc 16 0 7s
Early preempt. �,rc 16 0 1s
Late preempt. �,rc 16 0 13s

Accountable alg.
modified-1 �,rc 27 1 5792s
modified-2 �,rc 27 1 2047s

(*): time to find counter-examples for Vωi,Vi
and Uωi,Vi

.

S ¨̈“ in pa); outpcSA,a); outpcSJ ,a)
A ¨̈“ inpcSA,a); out pcAJ ,a)
J ¨̈“ inpcSJ ,a1); inpcAJ ,a2); if a1=a2 then event Equalp)

else event Unequalp)
ν cSA; νcAJ ; νcSJ ; pS |A |J |

!p inpx’ corrupt ’ ,xy) ; event Corruptedpx); outpskpx)) ;
p if x=’S’ then outpcSA); out pcSJ))

| p if x=’A’ then outpcSA); out pcAJ)))))

Fig. 2. Whodunit protocol[24, Ex. 8].

we discovered an attack), the number of lemmas generated by

our translation, the number of additional helping lemmas6 and

the time needed to verify all lemmas (even if an attack was

found). Verification was performed on a 2,7 GHz Intel Core

i5 with 8GB RAM.

Toy example: whodunit: The example in Figure 2 illustrates

the difference between verdicts larger than 2 and uncertainty

about the correct verdict. Two parties, S and A, coordinate

on some value chosen by S. S sends this value to A and to

a trusted party J . Then, A is supposed to forward this value

to J . We are interested in accountability for J receiving the

same value from S and A.

The crux here is that a correct verdict function cannot

exist: if J receives different values, there are two minimal

explanations for her. Either A altered the value it received

or S gave A a different value in the first place. Indeed, if

6SAPiC, as well as tamarin, are sound and complete, but the underlying
verification problem is undecidable [1]. Therefore, analyses in SAPiC/Tamarin
sometimes employ helping lemmas to help the verification procedure termi-
nate. Just like security properties, they are stated by the user and verified by
the tool.

404

O S J

cert

m1 “ xcert , t, goody, sigpm1, skOq
m1, sigpm1, skOq

Fig. 3. OCSP Stapling

we formalize this in two verdict functions, one blaming A if

the fact Unequal occurs in the trace, the other blaming S,

Tamarin finds a counterexample for each. If we change the

protocol so that S needs to sign her message, and A needs to

forward this signature, then we can prove accountability for

the verdict function that blames S in case of inequality.

Certificate Transparency: Certificate Transparency [35] is

a protocol that provides accountability to the public key

infrastructure. Clients are submitting certificates signed by

CAs to logging authorities (LAs), who store this information

in a Merkle tree. Auditors validate that these logs have not

been tampered with. Based on these trustworthy, distributed

logs, clients, e.g., domain owners, may detect misbehavior,

e.g., an unauthorised CA, issuing certificates for this domain.

We base our modelling on that of Bruni et.al. [10], which

considers a simplified setting with one CA, one LA, and two

honest auditors. We first verify accountability of the CA for

the property that any certificate in the log that is tested was

honestly registered. To this end, we, as well as Bruni et.al.,

have to assume access to the CA’s domain registration data.

We then verify accountability of the LA for the property that

any log entry that was provided was provided consistently to

all auditors. Finally, we compose both security properties and

verdict functions, and can thus show that CA and LA can be

held accountable at the same time.

While the original modelling prescribed cheating LAs to

cheat in a certain way (always provide the correct log entry to

auditor u1 and omit it to auditor u2), we extended the model

to permit deviating LAs to selectively provide log entries. This

complicates the formulation of the consistency criterion, but

makes the model slightly more realistic. Both models can be

verified within a minute.

OCSP Stapling: The Online Certificate Status Protocol

(OCSP [34]) provides an interface to query whether a digital

certificate is revoked, or not. Upon a request (which may

be signed or not), a trusted responder (e.g., a CA or a

delegate) gives a signed response containing a timestamp, the

certificate in question and its revocation status (good, revoked
or unknown). OCSP Stapling [33], is an extension to TLS that

specifies how a TLS server may attach a recent enough OCSP

response to a handshake. This reduces the communication

overhead. In addition, it avoids clients exposing their browsing

behavior to the OCSP server via their requests.

We model OCSP stapling as an accountability protocol

between a trusted OCSP responder O, an untrusted server

S and a trusted Judge J . The judge represents a client that

receives a stapled response from the server and seeks to

determine if its communication partner can be trusted. In

addition, a clocking process emits timestamps. Our modelling

is quite simplistic, e.g., the TLS Handshake is reduced to a

forwarding of the signed timestamp. The main challenge we

focussed on was defining the accountability property that is

actually achieved. First, note that a server can choose to reveal

its secret key at any time. In order to make any meaningful

statement about the revocation mechanism, we have to limit

ourselves to cases where, whenever a server reveals his secret,

it also revokes the corresponding certificate. We thus slightly

diverge from the corruption procedure in Definition 5, and

require the server to mark his certificate as revoked upon

corruption.

We can show accountability for ϕ “
�Dc, sk , t, i, j, k, l.Judgedpt, cq@i^ Secretpc, skq@j

^Kpskq@k ^ Timeptq@l ^ k ă l,

i.e., whenever a client received an OCSP response for a

certificate c with timestamp t (at which point Judgedpt, cq
is raised), she can be assured that the corresponding secret sk
was not leaked (recall that Kpskq marks the adversary sending

a message) at a point in time k prior to the emission of the

timestamp t at time l (but possibly later). Timestamps are here

modelled as public nonces emitted by the clock process. Prior

to outputting a nonce, the event Timeptq is emitted, binding

these nonces to positions in the trace.

To explore the limits of OCSP, we declare the OCSP

responder to be untrusted. We find an attack on the previous

accountability property where O reports a good certificate

status to J , despite the revocation triggered when corrupting

S. The techniques used by Milner et.al. to detect misuse of

secrets [32] could potentially be used to mitigate this issue.

We leave this research question for future work.

VII. VERIFYING RL AND RS

For protocols in which parties can collude, but can also

cause damage on their own, we need to verify accountability

with respect to a relation r between what actually happened,

and what could have happened with a subset of these parties

(see Example 2). The verification conditions in Section IV

provide a framework for many counterfactual relations r.

In this section, we show how r can be instantiated to the

relation rc discussed in Section II, so that the conditions

RLR,ωi,ωj ,Vi,Vj and RSR,Vi“tSu, and thus accountability as a

whole, can be verified with SAPiC and Tamarin. For other

relations, which includes relations that cannot be formally

stated such as rk, RLR,ωi,ωj ,Vi,Vj
and RSR,Vi“tSu need to be

proven or justified on paper (but the remaining conditions can

be verified).

In practice, the control-flow of a process is not necessarily

the control-flow of its implementation. To leave some degree

of flexibility to the modeller, we allow for the control-flow to

be manually annotated and use a unary fact Control P Σfact

to mark control-flow. Per default, there should be exactly one

statement event Controlpp : pubq on each path from the root

to a leaf of the process tree of each process corresponding to

405

a trusted party. We can then define rcpt, t1q iff for all p and p1
s.t. Controlppq P t and Controlpp1q P t1, p “E p1.

The main challenge in proving RLR,ωi,ωj ,Vi,Vj and

RSR,Vi“tSu is that SAPiC supports only trace properties.7

Hence, in general, we can argue about all or some t, but not

about pairs of t and t1. The solution is to combine t and t1 in a

single trace, which is their concatenation. If for all occurrences

of Controlppq in the first part, and of Controlpp1q in the

second part, p and p1 coincide, then the t and t1 corresponding

to these two parts are in the relation. This technique is known

as self-composition [7].

Defining this sequential composition of P with itself is

technically challenging and requires altering the translation

from SAPiC to multiset rewrite rules — observe that P ;P
is not a syntactically valid process. Due to space limitations,

we refer to Appendix E in the full version [23] and F in the

full version [23] for the technical solution and its proof of

correctness (it is sound and complete), and will only discuss

the idea and limitations.

The idea is that the adversary can start executions with a

fresh execution id, which is used to annotate visible events. To

separate executions, the adversary can trigger a stopping event.

A rewriting of the security property ensures that it is trivially

true, unless both executions are properly separated, i.e., every

execution is terminated, events are enclosed by start and stop

events, and these events themselves define disjoint intervals.

Note that for a process where a trusted party is under

replication, it is possible that two different Controlpq-events

are emitted in the same execution, and thus the corresponding

process is in no equivalence class w.r.t. rc. This affects only

one of our case studies (centralized monitor), however, instead

of considering a possibly replicating series of violations,

we chose to identify the party causing the first violation.

Appendix E in the full version [23] discusses other possible

solutions to this issue in more detail.

VIII. CASE STUDIES FOR rc

The most challenging protocols from an accountability per-

spective are those in which joint misbehaviour is possible. The

centralized monitoring mechanism from Example 2 provides

such an example, as well as the accountable algorithm’s

protocol proposed by Kroll. In both cases, an analysis w.r.t. a

more restrictive counterfactual relation is strictly necessary.

We opt for the relation rc, relating runs having the same

control-flow. To this end, we use the elaborate verification

condition for arbitrary r (Def. 4) and automate the analysis of

RLR,ωi,ωj ,Vi,Vj
and RSR,Vi“tSu by considering the sequential

self-composition of the protocol as described in the previous

section. Owing to our accountability definition’s origins in

causation, we will discuss examples of ‘preemption’ from the

causation literature, which are considered difficult to handle,

but can be tamed by considering the control-flow of execution.

7Tamarin supports diff-equivalence [8]. This variant of observational equiv-
alence considers two processes unequal if they move into different branches,
hence it is not suitable for our case.

D¨̈“inpa);
if isNormalpa) then

outpxm1 ¨̈“ x1Do1, ay,signpm1,skp’D’))y)
else if isExceptional pa) then

outpxm2 ¨̈“ x1Permit1, ay,signpm2,skp’D’))y))
C¨̈“inpxm2 ¨̈“ x1Permit1, ay,m2sy);

if verify pm2s, m2, pkpskp’D’)))= truep) then
if isExceptional pa) then

outpxm3 ¨̈“ xm2,m2sy,signpm3,skp’C’))y)
M¨̈“
p inpxm1 ¨̈“ x1Do1, ay,m1sy);

if verify pm1s,m1,pkpskp’D’)))=truep) then
event Controlp’0’ , ’1’) ;event LogDpa);event Executepa))

+pinpxm3 ¨̈“ xm2,m2sy,m3sy); // for m2 ¨̈“ x1Permit1, ay
if verify pm3s, m3, pkpskp’C’))) = truep) then
if verify pm2s, m2, pkpskp’D’))) = truep) then
event Controlp’0’ , ’2’) ;event LogDCpa);event Executepa))

!pD |C) |M
| // give access to public keys

poutppkpskp’D’))) ;outppkpskp’C’))) ;outppkpskp’M’))))
| !p inp’c’ ,x’ corrupt ’ ,xy) ;

event Corruptedpx); outp’c’ , skpx))))

Fig. 4. Centralized monitor.

Note that we omit code listings for most examples, however,

they come with the implementation.

Centralized monitor: Example 2 considered a protocol

based on a central trust monitor M . Albeit modelled in a very

abstract form (the actual protocols are likely to be tailored for

their use case), this kind of mechanism occurs in various forms

in plenty of real-world scenarios. We want to demonstrate that,

in principle, we can handle such scenarios.

A party D can effectuate actions, some of which are

usual (e.g., a doctor requesting his patient’s file), some of

which are not (e.g., requesting the file of another doctor’s

patient). Rather than blocking access for exceptional action,

these are logged by M , (e.g., if another doctor’s patient has

a heart attack and needs treatment right away), which is an

accountability problem w.r.t. the property that no exceptional

action happened. A supervisor C (e.g., chief of medicine)

is needed to effectuate a third class of actions, exceptional

actions, for which D needs to get C’s authorization. The

processes of parties D, C and M are running in parallel with

a process that outputs their public keys and their private keys

on request (see Fig. 4).

We use function symbols NormalAct{0, ExceptionalAct{0
to denote these kinds of actions, and sig{2, verify{2 to model

digital signatures.

D receives an action a from the adversary (for generality)

and either signs it and sends it to M directly (if a is ‘normal’),

or signs a permission request, which C has to sign first (if a is

‘exceptional’). C only signs requests for exceptional actions.

M non-deterministically guesses what kind of message arrives,

and verifies that the signatures are correct. If this is the case,

the action is executed.

We investigate accountability for the property that only

406

‘exceptional’ or ‘normal’ actions are executed:

@a, i.Executepaq@i

ùñ a “ ExceptionalActpq _ a “ NormalActpq
Within 3 seconds, our toolchain shows that the verdict

function that maps the occurrence of LogD to ttDuu and the

occurrence of LogDC to ttD,Cuu provides accountability for

this property.

The first protocol design was (without intention) erroneous.

We find two attacks within 5 seconds (for falsification and

verification of all lemmas).

For simplicity, M is not covered under replication. Putting

M under replication, it is possible to have two different

Control -events in the same run, which entails that no second

trace can relate via rc. We can, however, prove a modified

property ϕ1 which is true only if there are no violations to

ϕ, or at least two. Intuitively, this means that we can point

out which party caused the first violation by considering,

for every violating trace, the prefix which contains only one

violation. This is possible for all safety-properties, as they are,

by definition, prefix-closed [28]. In addition, we modify M to

only emit Control -events when acting upon an action that is

neither normal nor exceptional, i.e., we consider only control-

flow for actions which produce violations.

Examples from causation literature: As our accountability

definition is rooted in causation, we chose to model three ex-

amples from the causation literature, two from Lewis’ seminal

work on counterfactual reasoning [29], and one formulated

by Hitchcock [18, p. 526]. They all encode problems of

preemption, where a process that would cause an event (e.g., a

violation) is interrupted by a second processes. All examples

are verified in a couple of seconds. We refer to Appendix G

in the full version [23] for details.

Kroll’s Accountable Algorithms protocol: The most inter-

esting case study is the accountable algorithms protocol of

Kroll [21, Chapter 5]. It lets an authority A, e.g., a tax

authority, perform computations for a number of subjects S1

to Sn, e.g., the validation of tax returns. Any subject can

verify, using a public log, that the value it receives has been

computed correctly w.r.t. the input it provides and some secret

information that is the same for all parties. We substantially

extend this protocol to also provide accountability for the

subjects: if a subject decides to falsely claim that the authority

cheated, we can validate their claim. This is a very instructive

scenario, as now any party emitting logs or claims can just lie.

It also demonstrates that a trusted third party is not needed to

provide accountability. While we define a judgment process

J , which is technically a trusted party (it is always honest),

this party is (a) not involved in the protocol and (b) can be

computed by anyone, e.g., a journalist, an oversight body, or

the general public.

The goal is to compute a function f on inputs x and

y; f representing an arbitrary algorithm, x the subject’s

input, and y some secret policy that f takes into account

(e.g., an income threshold to decide which tax returns need

Public log Authority A Subject S
Init , Cy

xm1 ¨̈“ x1, x, r1
x, sigC1

x
y, sigm1

y

z ¨̈“ fpx, yq
xr ¨̈“ x2, z, rz, rxy, sigry

Log , xsigC1
x
, ZKp. . .q, C 1

xy
Log , xsigC1

x
, ZKp. . .q, C 1

xy
¨ ¨ ¨

Final

Fig. 5. Honest protocol run for accountable algorithm protocol.

extra scrutiny). The policy y is the same for all sub-

jects. First, the authority commits on y (see Figure 5). We

model commitments using the symbols commit{2, open{2,

verCom{2 and equations openpcommitpm, rq, rq “ m and

verCompcommitpm, rq, rq “ truepq. Next, the subject sends

its input x along with randomness for its desired commitment

r1x and a signature for the commitment C 1x ¨̈“ commitpx, r1xq.
Now the authority computes z “ fpx, yq and returns z, as

well as the randomness which was used to compute two

commitments on its own, Cx on x and Cz on z. The signed

commitment C 1x and a zero-knowledge proof (ZKP) are stored

in a public append-only log, e.g., the blockchain. The log is

modelled via the store and a global assumption that entries

cannot be overwritten. The ZKP contains the three commit-

ments Cx, Cy and Cz and shows that they are commitments

to x, y and z such that fpx, yq “ z. Using this ZKP, one

can check that Cy is the value initially committed to, and that

the input x and the output z are consistent. Now A proceeds

with the next subject, and appends a Final message to the

log to indicate when it is done. S can decide to file a claim,

consisting of x, z, r1x and the signed message it received from

A in the second step.

The original protocol was implemented with hash func-

tions and ZK-SNARKs. Kroll’s preliminary analysis [21,

Section 5.2.2] was informal and only considered holding

the authority accountable. Later analysis discovered that any

subject can falsely accuse the authority A of misbehavior [24].

Obviously, such a claim would subvert the trust into the

system and hence render the accountability mechanism useless

in practice. Consequently, we extended the protocol with a

message authentication mechanism based on digital signatures

so that A and Si prove their identity and protect themselves

from false accusations, as well as C 1x, which is a second

commitment on x generated by S instead of A.

This commitment (along with S’es signature) serves as a

witness that the input which A claims to have received is

indeed the one S has sent, without revealing x to the public.

On the other hand, we simplified Kroll’s protocol by re-

moving randomness generation for f , which was implemented

using verifiable random functions. We outline in Section X

how this feature calls for a definition of accountability in the

407

S¨̈“ let res = x’2’ , z , rz , rxy
claim = x’3’ , x , z , res , sig res , rxpy
Cxp = commitpx, rxp)
m1 = x’1’ , x , rxp , signpCxp, skp’S’))y
sig cxp = fst plog)
zkp = fst psndplog))
CxpL = sndpsndplog))
Cy = fst psndpPubpzkp)))

in
lookup x’A’, ’ Init ’y as CyL in
ν x; ν rxp; out pxm1, signpm1,skp’S’))y) ;
lookup x’A’,’Log’,’S’y as log in
if and4p verZKpzkp), eqpsig cxp, signpCxp, skp’S’))) ,

eqpCxpL,Cxp), eqpCy, CyL)) then
in pxres , sig resy) ;
if verify psig res , res , pkpskp’A’)))=truep)

then
out pxclaim, signpclaim, skp’S’))y)

A¨̈“ let m1 = x’1’, x, rxp, sig cxpy
z = fpx, y)
res = x’2’ , z , rz , rxy
Cx = commitpx, rx)
Cy = commitpy, ry)
Cz = commitpz, rz)
Cxp = commitpx, rxp)
zkp = ZKpxCx,Cy,Czy,x,y,z , rx , ry , rz)
sig res = signpres , skp’A’))

in
ν y; ν ry;
insert x’A’, ’ Init ’y , Cy;
in pxm1, sig m1y); ν rx; ν rz ;
if and3p verify psig m1,m1,pkpskp’S’))) ,

eqpx, openpCxp,rxp)) ,
verify psig cxp,Cxp,pkpskp’S’)))) then
out pxres , sig resy) ; // send result to S
insert x’A’,’Log’,’S’y , xsig cxp, zkp , Cxpy;
insert x’A’,’ Final ’y , truep)

!pA |S) |J |
outppkpskp’A’))) ; outppkpskp’S’)))

|
!p inp’c’ ,x’ corrupt ’ ,xy) ;event Corruptedpx);outp’c’ , skpx)) ;

!pp if x=’A’ then inpy); insert x’A’,’ Init ’y ,y)
| p if x=’A’ then inpy); insert x’A’,’Log’,’S’y , y)
| p if x=’A’ then inpy); insert x’A’,’ Final ’y , y))
| p if x=’A’ then lookup x’A’,’Log’,’S’y as y in outpy))
| p if x=’S’ then lookup x’A’,’Log’,’S’y as y in outpy))
))

Fig. 6. Accountable algorithms protocol.

computational setting.

We model this protocol as an accountability process with

three subprocesses A, S and a judging procedure J (see

Figure 6 and 7). This judging procedure essentially determines

the verdict by inspecting the log and a claim output by S. For

brevity, we introduce a symbol eq{2 with equation eqpx, xq “
true and predicates and3 and and4 which evaluate to true if

all three or four terms equal the constant true . We also use

syntactic sugar let v “ t in P to denote the literal substitution

of v by t in P .

J¨̈“ let res = x’2’ , z , rz , rxy
claim = x’3’ , x , z , res , sig res , rxpy
sig cxp = fst plog) // log is xsig cxp, zkp , Cxpy;
zkp = fst psndplog))
CxpL = sndpsndplog))
Cx = fst pPubpzkp))
Cy = fst psndpPubpzkp)))
Cz = sndpsndpPubpzkp)))

in
in pxclaim, sig claimy) ;
if verify psig claim, claim, pkpskp’S’))) = truep) then

lookup x’A’,’ Final ’y as y in
event Finalp) ;
lookup x’A’,’ Init ’y as CyL in
event CommpCyL);
lookup x’A’,’Log’,’S’y as log in
// first check validity of the log by itself ,
if and3pverZKpzkp), eqpCyL, Cy), // produced by A

verify psig cxp,CxpL,pkpskp’S’)))) // verified by A
then

if and3p verify psig res , res ,pkpskp’A’))) , // honest S
verifies this

verCompCxpL,rxp), // produced by S
eqpx, openpCxpL,rxp)))) // both signed by S

then // We now believe S is honest and its claim valid
if and4pverCompCx,rx), verCompCz,rz),

eqpx, openpCx, rx)) ,eqpz , openpCz, rz)))
then

event Controlp’0’ , ’1’) ;event HonestSp);
event HonestAp);event Verified pclaim)

else
if oraclepx,Cy,z)=truep) then // see below.

event Controlp’0’ , ’2’) ;event HonestSp);
event HonestAp); event Verified pclaim)

else
event Controlp’0’ , ’3’) ;event HonestSp);
event DisHonestAp); event Verified pclaim)

else // A’s log is ok, but S is definitely cheating
if oraclepx,Cy,z)=truep) then

event Controlp’0’ , ’4’) ;event HonestSp);
event HonestAp); event Verified pclaim))

else
event Controlp’0’ , ’5’) ;event DisHonestSp);
event HonestAp);event Verified pclaim)

else p // A is dishonest and produced bad log
if oraclepx,CyL,z)=truep) then

event Controlp’0’ , ’6’) ;event HonestSp);
event HonestAp);event Verified pclaim)

else
event Controlp’0’ , ’7’) ;event DisHonestAp);
event DisHonestSp);
// S checks log before submitting claimÑ S dishonest
event Verified pclaim))

Fig. 7. Accountable algorithms protocol: judging procedure.

The verdict function is a trivial conversion of the events

emitted by the judging procedure J , which inspects the log

and evaluates the claim for consistency (see Figure 7). We

decided for this approach in order to ensure that the judgement

can be made by the public, and to provide an algorithmic

description on how to do so, since a verdict function can easily

be written to rely on information that is not available or not

408

computable. J is technically a trusted party in the sense that

it is always honest. However, J is not involved in the protocol

and the fact can be computed after the fact by anyone who

receives the claim, e.g., a newspaper, an oversight body, or the

general public. A dishonest J merely means that the verdict

function is computed incorrectly, in which case we cannot,

and should not, make any guarantees. The verdict function

maps traces in which DishonestA and DishonestS appear to

be ttA,Suu, and traces with DishonestA and HonestS to

be ttAuu. It provides the protocol with accountability for the

following property ϕ:

@t, x, z, r, sigr, rx1 .Verifiedpxt, x, z, r, sigr, rx1yq@k

ùñ Dj, i, y, ry.Finalpq@i^ Commpcommitpy, ryqq@j

^ z “ fpx, yq ^ i ă j ă k.

This property guarantees that any claim considered by the

judging procedure is correctly computed w.r.t. f and the

initial commitment to y. Note that a violation requires a

Verified -event, which J only emits if, and only if, the first

conditional and the two subsequent lookups are successful.

The conditional formulates the requirement of a claim to

be signed by S, the two lookups require A to indicate the

protocol is finished and to have produced an Init entry, in

order to ensure that the claim is only filed after the protocol

has finished.

The judging procedure needs to rely on an external oracle

to determine whether a violation actually took place. This is

a restriction, as it requires any party making a judgement

to have access to such an oracle. We need this for the

following reason: accountability implies verifiability, hence,

even if the logs have been tampered with, and they do

not contain usable information, the verdict function needs

to nevertheless output the empty verdict if z “ fpx, yq.
For example, if Cy in the log does not match x1 and z
in claim, i.e., z ‰ fpx1, openpCy, ryqq, but the logged Cx

is a commitment to a different x, it could well be the

case that z “ fpx, yq. Figuratively speaking, the adversary

tries to trick us into thinking something went wrong. We

represent the oracle as a function symbol oracle{3 with equa-

tion oraclepx, commitpy, ryq, fpx, yqq “ true , and restrain

ourselves to only use this function in the judging procedure.

The judging procedure is instructive in the constraints it

puts on the parties. Broadly speaking, they have to assist J in

holding the opposite party accountable by validating incoming

messages. E.g., if A manipulates the log by providing an

invalid ZKP, S terminates, and ϕ is trivially true. This ensures

that J can count on the validity of the log unless S is

dishonest. On the other hand, A can now stall the process.

From a protocol design perspective, this raises the following

challenges: 1. Are there guiding principles for the judging

procedure? (Our design involved a lot or trial and error, which

is only a viable strategy due to the tool support we have.)

2. Is it possible to achieve accountability for timeliness, i.e.,

the property that the protocol eventually finishes [6]? 3. Can

we do without oracle access in the judging procedure?

The verification of the modified variant of Kroll’s protocol

takes about two hours. An alternative way of fixing this model

requires a modified zero-knowledge proof but is structurally

closer to the original proposal. In order to avoid maintaining

both Cx (chosen by A) and Cx1 (chosen by S), we allow S
to chose Cx, i.e., the commitment to x in the public part of

the ZKP, similar to how the commitment to y has to match

the commitment sent out at the beginning of the protocol. We

therefore modelled and verified both fixes, but present only

one here. This second variant can be verified in half an hour.

In both cases, the analysis is fully automatic, but a helping

lemma (which itself is verified automatically) was added for

speedup. It states that lookups for the same key in the log

always give the same result.

IX. RELATED WORK

The focus of this work is on accountability in the security

setting; here we understand accountability as the ability to

identify malicious parties. Early work on this subject provides

or uses a notion of accountability in either an informal way,

or tailored to the protocol and its security [3, 21, 4, 5]. The

difficulty is defining what constitutes ‘malicious behavior’

and what this means for completeness, i.e., the ability of a

protocol to hold all malicious parties accountable. Jagadeesan

et al. provided the first generalized notion of accountability,

considering parties malicious if they deviate from the protocol.

But in their model, ‘the only auditor capable of provid-

ing [completeness] is one which blames all principals who

are capable of dishonesty, regardless of whether they acted

dishonestly or not’ [19]. Algorithms in distributed systems,

e.g., PeerReview [17], use this notion to detect faults in the

Byzantine setting, but need a complete local view of all

participating agents. Our corruption model is also Byzantine,

however, we work in the security setting and thus we do not

assume that a complete view of every component or the whole

communication is available.

For the security setting, Küsters et al. recognize that com-

pleteness according to this definition of maliciousness cannot

be fulfilled (while remaining sound), because it ‘includes

misbehavior that is impossible to be observed by any other

party [or is harmless]’. They propose to capture completeness

via policies. Künnemann et al. [24] argue that these policies

are not expressive enough. In case of joint misbehavior,

the policy is either incomplete, unfair, or it encodes the

accountability mechanism itself [24]. Other approaches focus

on protocol actions as causes for security violations [16, 12,

15]. However, not all protocol actions that are related to an

attack are necessarily malicious. Consider, e.g., an attack that

relies on the public key retrieved from a key server — the

sending of the public key is causally related to the violation,

but harmless in itself. While causally related protocol actions

can be a filter and a useful forensic tool, they refer us back to

the original question: What constitutes malicious misbehavior?

Künnemann et al. [24] answer these questions by consider-

ing the fact that a party deviated as a potential cause [24]. The

main difference between their framework and the present is

409

that they define a calculus which allows for individual parties

to deviate. In particular, deviating parties can communicate

with each other and make their future behavior dependent on

such signals. This allows to encode ‘artificial’ causal depen-

dencies in their behavior, e.g., a party A, instead of mounting

an attack, waits for an arbitrary message from a second party

B before doing so. If one only observes A’s attack, the

involvement of B is as plausible as the idea of A acting on

its own. This kind of ‘provocation’ can occur whenever B can

secretly communicate with A. As out-of-band channels cannot

be excluded in practice, this shows that accountability is im-

possible. In the single-adversary setting, provocation cannot be

encoded: all deviating parties are represented by the adversary;

neither B sending the provocation message to A, nor A
conditioning the attack on the arrival of this message can be

expressed. As the case studies show, the provocation problem

vanishes. This implies that the single-adversary setting comes

at a loss of generality — although it is a commonly assumed

worst-case assumption in security. They propose ‘knowledge-

optimal’ attacks, where only secret information is exchanged,

which we conjecture to be equivalent to the single-adversary

setting following [24, Lemma 3].

Independently, Bruni, Giustolisi and Schürmann, propose a

definition of accountability that is based on parties choosing to

deviate [10]. In contrast to our verdict function, they consider

per-party tests, e.g., ‘Is party A to be held accountable in this

run’. Any set of these tests can be interpreted as a verdict

function that outputs the set of singleton sets for which the

test gave true. In fact, this is how we constructed the verdict

function in the Certificate Transparency case study from their

tests. The downside to this approach is that joint account-

ability is not expressible, excluding, e.g., the case studies

in Section VIII. Nevertheless, it is instructive to compare

their definition to our verification conditions for rw (other

relations are not covered). The definition has four criteria,

three of which have logically equivalent formulae in our set

of verification conditions. Their fourth criterion, however, is

weaker (than Vωi,Vi), and our criterion SFωi,ϕ,S is missing

in their definition. We argue that both conditions are strictly

necessary: without SFωi,ϕ,S, a protocol that does not even

permit a violation (ϕ is always true), could fulfill all their

criteria and still (unfairly!) blame a party. Furthermore, their

counterpart to Vωi,Vi allows violations to remain undetected

under certain circumstances. We elaborate this in Appendix H

in the full version [23]. This confirms our top-down approach:

by building on accountability as a problem of causation, we

were able to ground our verification conditions in Def. 1.

We are able to specify exactly what our verdict function is

computing and can be sure to not forget conditions.

X. CONCLUSION AND FUTURE WORK

We demonstrated the practicality of verifying accountability

in security protocols with a high degree of automation, and

thus call for the analysis of existing and the invention of new

protocols that provide for accountability, instead of blindly

trusting third parties, e.g., voting protocols.

The present definitions apply to a wide-range of protocol

calculi. We implemented support for the SAPiC calculus,

which allows for a precise definition of control-flow. However,

the definition we provide cannot express computational or

statistical indistinguishability. For this reason, we had to sim-

plify Kroll’s accountable algorithms protocol, and ignore its

ability to randomize the computation using a verifiable random

function, and thus implement, e.g., accountable lotteries. A

computational variant of our definition would be desirable, but

it poses some technical challenges. In particular, counterfac-

tual adversaries shall not depend on the randomness actually

used, which prohibits a straight-forward translation and thus

renders the formulation of a generalized accountability game

an interesting question for future research.

Acknowledgements: We thank Deepak Garg and Rati Dev-

idze for discussion and advice in the early stages of this work,

and Hizbullah Abdul Aziz Jabbar for help on the accountable

algorithms protocol. This work has been partially funded by

the German Research Foundation (DFG) via the collaborative

research center “Methods and Tools for Understanding and

Controlling Privacy” (SFB 1223), and via the ERC Synergy

Grant IMPACT (Grant agreement ID: 610150). The second

author holds the Ministry of National Education Scholarship

of the Turkish Republic.

REFERENCES

[1] Martı́n Abadi and Véronique Cortier. “Deciding knowl-

edge in security protocols under equational theories”.

In: Theoretical Computer Science 387.1-2 (2006).

[2] Martı́n Abadi and Cédric Fournet. “Mobile Values, New

Names, and Secure Communication”. In: POPL. 2001.

[3] N. Asokan, Victor Shoup, and Michael Waidner. “Asyn-

chronous protocols for optimistic fair exchange”. In:

Security and Privacy. 1998.

[4] Michael Backes, Jan Camenisch, and Dieter Sommer.

“Anonymous yet accountable access control”. In: Work-
shop on Privacy in the Electronic Society. 2005.

[5] Michael Backes, Dario Fiore, and Esfandiar Moham-

madi. “Privacy-Preserving Accountable Computation”.

In: ESORICS. 2013.

[6] Michael Backes et al. “A Novel Approach for Reason-

ing about Liveness in Cryptographic Protocols and its

Application to Fair Exchange”. In: EuroS&P. 2017.

[7] Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk.

“Secure information flow by self-composition”. In: Pro-
ceedings. 17th IEEE Computer Security Foundations
Workshop, 2004. 2004.

[8] David A. Basin, Jannik Dreier, and Ralf Sasse. “Auto-

mated Symbolic Proofs of Observational Equivalence”.

In: 22nd Conference on Computer and Communications
Security (CCS’15). 2015.

[9] Bruno Blanchet. “An Efficient Cryptographic Protocol

Verifier Based on Prolog Rules”. In: Computer Security
Foundations Workshop. 2001.

410

[10] Alessandro Bruni, Rosario Giustolisi, and Carsten

Schürmann. “Automated Analysis of Accountability”.

In: ISC 2017. 2017.

[11] Cas J.F. Cremers. “The Scyther Tool: Verification, Fal-

sification, and Analysis of Security Protocols”. In: 20th
Conference on Computer Aided Verification (CAV’08).
2008.

[12] Anupam Datta et al. “Program actions as actual causes:

A building block for accountability”. In: CSF. 2015.

[13] Joshua Dressler. Understanding criminal law. Matthew

Bender, 1995.

[14] Santiago Escobar, Catherine Meadows, and José

Meseguer. “Maude-NPA: Cryptographic Protocol Anal-

ysis Modulo Equational Properties”. In: Foundations of
Security Analysis and Design. 2009.

[15] Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N.

Wright. “Towards a Formal Model of Accountability”.

In: New Security Paradigms Workshop. 2011.

[16] Gregor Gößler and Daniel Le Métayer. “A general

framework for blaming in component-based systems”.

In: Sci. Comput. Program. 113 (2015).

[17] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-

uschel. “PeerReview: Practical Accountability for Dis-

tributed Systems”. In: SIGOPS Oper. Syst. Rev. 41.6

(2007).

[18] Christopher Hitchcock. “Prevention, Preemption, and

the Principle of Sufficient Reason”. In: Philosophical
Review 116.4 (2007).

[19] Radha Jagadeesan et al. “Towards a theory of account-

ability and audit”. In: ESORICS. 2009, pp. 152–167.

[20] Steve Kremer and Robert Künnemann. “Automated

analysis of security protocols with global state”. In:

Journal of Computer Security 24.5 (2016).

[21] Joshua A. Kroll. “Accountable Algorithms”. PhD thesis.

Princeton University, 2015.

[22] Robert Künnemann. “Sufficient and necessary causation

are dual”. In: CoRR abs/1710.09102 (2017).

[23] Robert Künnemann, Ilkan Esiyok, and Michael Backes.

“Automated Verification of Accountability in Security

Protocols”. In: CoRR abs/1805.10891 (2018).

[24] Robert Künnemann, Deepak Garg, and Michael Backes.

Accountability in Security Protocols. Cryptology ePrint

Archive, Report 2018/127. 2018.

[25] Robert Künnemann, Deepak Garg, and Michael Backes.

“Causality & Control flow”. In: 4th Workshop on
Formal Reasoning about Causation, Responsibility, &
Explanations in Science & Technology. to appear. 2019.

[26] Matthias Kuntz, Florian Leitner-Fischer, and Stefan

Leue. “From Probabilistic Counterexamples via Causal-

ity to Fault Trees”. In: Computer Safety, Reliability, and
Security. 2011.

[27] Ralf Küsters, Tomasz Truderung, and Andreas Vogt.

“Accountability: Definition and Relationship to Verifia-

bility”. In: CCS. 2010.

[28] Leslie Lamport. “Proving the correctness of multipro-

cess programs”. In: Transactions on Software Engineer-
ing 2 (1977).

[29] David Lewis. “Causation”. In: Journal of Philosophy
70.17 (1973).

[30] Gavin Lowe. “A hierarchy of authentication specifica-

tions”. In: Computer Security Foundations Workshop.

1997.

[31] J. L. Mackie. The Cement of the Universe: A Study of
Causation. Clarendon Press, 1980.

[32] K. Milner et al. “Automatically Detecting the Misuse

of Secrets: Foundations, Design Principles, and Appli-

cations”. In: CSF. 2017.

[33] D. Eastlake 3rd. Transport Layer Security (TLS) Ex-
tensions: Extension Definitions. RFC 6066 (Proposed

Standard). 2011.

[34] S. Santesson et al. X.509 Internet Public Key Infrastruc-
ture Online Certificate Status Protocol - OCSP. RFC

6960 (Proposed Standard). 2013.

[35] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962 (Experimental). 2013.

[36] Benedikt Schmidt et al. “Automated Analysis of Diffie-

Hellman Protocols and Advanced Security Properties”.

In: CSF. 2012.

APPENDIX

A. Operational semantics

Frames and deduction: Before giving the formal semantics

of SAPiC, we introduce the notions of frame and deduction.

A frame consists of a set of fresh names ñ and a substitution

σ, and is written νñ.σ. Intuitively, a frame represents the

sequence of messages that have been observed by an adversary

during a protocol execution and secrets ñ generated by the

protocol, a priori unknown to the adversary. Deduction models

the capacity of the adversary to compute new messages from

the observed ones.

Definition 6 (Deduction). We define the deduction relation
νñ.σ $ t as the smallest relation between frames and terms
defined by the deduction rules in Figure 8.

Operational semantics: We can now define the operational

semantics of our calculus. The semantics is defined by a

labelled transition relation between process configurations. A

process configuration is a 5-tuple pX ,S,P, σ,Lq where

‚ X Ď FN is the set of fresh names generated by the

processes;

‚ S : MΣ ÑMΣ is a partial function modeling the store;

‚ P is a multiset of ground processes representing the

processes executed in parallel;

‚ σ is a ground substitution modeling the messages output

to the environment;

‚ L ĎMΣ is the set of currently active locks

The transition relation is defined by the rules in Figure 9.

Transitions are labelled by sets of ground facts. For readability,

we omit empty sets and brackets around singletons, i.e., we

411

a P FN Y PN a R ñ
νñ.σ $ a

DNAME
νñ.σ $ t t “E t1

νñ.σ $ t1
DEQ

x P dompσq
νñ.σ $ xσ

DFRAME

νñ.σ $ t1 ¨ ¨ ¨ νñ.σ $ tn f P ΣkzΣk
priv

νñ.σ $ fpt1, . . . , tnq DAPPL

Fig. 8. Deduction rules.

Standard operations:

pX ,S,P Y# t0u, σ,Lq ÝÑ pX ,S,P, σ,Lq
pX ,S,P Y# tP |Qu, σ,Lq ÝÑ pX ,S,P Y# tP,Qu, σ,Lq

pX ,S,P Y# t!P u, σ,Lq ÝÑ pX ,S,P Y# t!P, P u, σ,Lq
pX ,S,P Y# tνa;P u, σ,Lq ÝÑ pX Y ta1u,S,P Y# tP ta1{auu, σ,Lq

if a1 is fresh

pX ,S,P, σ,Lq KpMqÝÝÝÝÑ pX ,S,P, σ,Lq if νX .σ $ M

pX ,S,P Y# toutpM,Nq;P u, σ,Lq KpMqÝÝÝÝÑ pX ,S,P Y# tP u, σ Y tN{xu,Lq
if x is fresh and νX .σ $ M

pX ,S,P Y# tinpM,Nq;P u, σ,Lq KpxM,NτyqÝÝÝÝÝÝÝÑ pX ,S,P Y# tPτu, σ,Lq
if νX .σ $ M, νX .σ $ Nτ and τ is grounding for N

pX ,S,P Y# toutpM,Nq;P, inpM 1, N 1q;Qu, σ,Lq ÝÑ pX ,S,P Y tP,Qτu, σ,Lq
if M “E M 1 and N “E N 1τ and τ grounding for N 1

pX ,S,P Y tif prpM1, . . . ,Mnq then P else Qu, σ,Lq ÝÑ pX ,S,P Y tP u, σ,Lq
if φprtM1{x1 , . . . ,

Mn {xnu is satisfied

pX ,S,P Y tif prpM1, . . . ,Mnq then P else Qu, σ,Lq ÝÑ pX ,S,P Y tQu, σ,Lq
if φprtM1{x1 , . . . ,

Mn {xnu is not satisfied

pX ,S,P Y tevent(F); P u, σ,Lq FÝÑ pX ,S,P Y tP u, σ,Lq
Operations on global state:

pX ,S,P Y# tinsert M,N ; P u, σ,Lq ÝÑ pX ,SrM ÞÑ N s,P Y# tP u, σ,Lq
pX ,S,P Y# tdelete M ; P u, σ,Lq ÝÑ pX ,SrM ÞÑ Ks,P Y# tP u, σ,Lq

pX ,S,P Y# tlookup M as x in P else Q u, σ,Lq ÝÑ pX ,S,P Y# tP tV {xuu, σ,Lq
if SpNq “E V is defined and N “E M

pX ,S,P Y# tlookup M as x in P else Q u, σ,Lq ÝÑ pX ,S,P Y# tQu, σ,Lq
if SpNq is undefined for all N “E M

pX ,S,P Y# tlock M ; P u, σ,Lq ÝÑ pX ,S,P Y# tP u, σ,L Y tMuq if MREL
pX ,S,P Y# tunlock M ; P u, σ,Lq ÝÑ pX ,S,P Y# tP u, σ,LztM 1 | M 1 “E Muq

Fig. 9. Operational semantics.

write Ñ for
HÝÑ and

fÝÑ for
tfuÝÑ. We write Ñ˚ for the

reflexive, transitive closure of Ñ (the transitions that are

labelled by the empty sets) and write
fñ for Ñ˚ fÑÑ˚. We

can now define the set of traces, i.e., possible executions that

a process admits.

Definition 7 (Traces of P). Given a ground process P , we
define the traces of P as

tracespP q “
!
pF1, . . . , Fnq |

c0
F1ùñ˚ . . .

Fnùñ˚ cn

)
, where

c0 “ pH,H, tP u,H,H,Hq, A progressing trace additionally
fulfils the condition that all processes in Pn are blocking [6,

Def. 2].

If we are interested in liveness properties, we will only

consider the set of progressing traces, i.e., traces that end

with a final state. Intuitively, a state is final if all messages

on resilient channels have been delivered and the process is

blocking [6, Def. 2,3].

B. Security properties

In the Tamarin tool [36], security properties are described

in an expressive two-sorted first-order logic. The sort temp is

used for time points, Vtemp are the temporal variables.

Definition 8 (Trace formulae). A trace atom is either false
K, a term equality t1 « t2, a timepoint ordering i Ì j, a

412

timepoint equality i
.“ j, or an action F@i for a fact F P F

and a timepoint i. A trace formula is a first-order formula
over trace atoms.

(If clear from context, we use t1 “ t2 instead of t1 « t2,

i ă j instead of i Ì j, and i “ j instead ofi
.“ j.)

To define the semantics, let each sort s have a domain

dompsq. domptempq “ Q, dompmsgq “ M, dompfreshq “
FN , and domppubq “ PN . A function θ : V ÑMYQ is a

valuation if it respects sorts, i.e., θpVsq Ă dompsq for all sorts

s. If t is a term, tθ is the application of the homomorphic

extension of θ to t.

Definition 9 (Satisfaction relation). The satisfaction relation
ptr , θq (ϕ between a trace tr , a valuation θ, and a trace
formula ϕ is defined as follows:

ptr , θq (K never

ptr , θq (F@i ðñ θpiq P idx ptrq ^ Fθ PE trθpiq
ptr , θq (i Ì j ðñ θpiq ă θpjq
ptr , θq (i

.“ j ðñ θpiq “ θpjq
ptr , θq (t1 « t2 ðñ t1θ “E t2θ

ptr , θq (�ϕ ðñ not ptr , θq (ϕ

ptr , θq (ϕ1 ^ ϕ2 ðñ ptr , θq (ϕ1 and ptr , θq (ϕ2

ptr , θq (Dx : s.ϕ ðñ there is u P dompsq
such that ptr , θrx ÞÑ usq (ϕ.

For readability, we define t1 Í t2 as �pt1 Ì t2 _ t1
.“ t2q

and (ď̈, .“, ě̈) as expected. We also use classical notational

shortcuts such as t1 Ì t2 Ì t3 for t1 Ì t2 ^ t2 Ì t3 and

@i ď j. ϕ for @i. i ď j Ñ ϕ. When ϕ is a ground formula

we sometimes simply write tr (ϕ as the satisfaction of ϕ is

independent of the valuation.

Definition 10 (Validity, satisfiability). Let Tr Ď pPpGqq˚ be
a set of traces. A trace formula ϕ is said to be valid for Tr
(written Tr (@ ϕ) if for any trace tr P Tr and any valuation
θ we have that ptr , θq (ϕ.

A trace formula ϕ is said to be satisfiable for Tr , written
Tr (D ϕ, if there exist a trace tr P Tr and a valuation θ such
that ptr , θq (ϕ.

Note that Tr (@ ϕ iff Tr *D �ϕ. Given a multiset

rewriting system R we say that ϕ is valid, written R (@ ϕ,

if tracesmsr pRq (@ ϕ. We say that ϕ is satisfied in R,

written R (D ϕ, if tracesmsr pRq (D ϕ. Similarly, given a

ground process P we say that ϕ is valid, written P (@ ϕ, if

tracespP q (@ ϕ, and that ϕ is satisfied in P , written P (D ϕ,

if tracespP q (D ϕ.

413

