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Abstract—Practitioners of secure information flow often face a
design challenge: what is the right semantic treatment of leaks
via termination? On the one hand, the potential harm of un-

trusted code calls for strong progress-sensitive security. On the
other hand, when the code is trusted to not aggressively exploit
termination channels, practical concerns, such as permissiveness
of the enforcement, make a case for settling for weaker, progress-
insensitive security. This binary situation, however, provides no
suitable middle point for systems that mix trusted and untrusted
code. This paper connects the two extremes by reframing progress-
insensitivity as a particular form of declassification. Our novel
semantic condition reconciles progress-insensitive security as a
declassification bound on the so-called progress knowledge in an
otherwise progress or timing sensitive setting. We show how the
new condition can be soundly enforced using a mostly standard
information-flow monitor. We believe that the connection estab-
lished in this work will enable other applications of ideas from the
literature on declassification to progress-insensitivity.

I. INTRODUCTION

Progress-insensitive noninterference (PINI) is a popular se-

mantic condition for secure information flow. PINI generalizes

the classical termination-insensitive noninterference to accom-

modate I/O interactions and provides a practical foundation for

many information flow systems. A known downside of PINI

is that it permits leaking arbitrary amounts of information [6].

Malicious code may launder data through termination channels

by unary encoding the information in the length of the trace

or via timing channels. For these reasons, the consensus in the

information flow community is to use PINI for trusted settings,

where the goal is to prevent accidental information leaks. For

untrusted settings, stronger notions of security, such as progress

or timing sensitivity, are necessary.

Many practical scenarios, however, combine both trusted

and untrusted code. Such combinations are natural to browser

mashups, mobile apps, and just about any system that embeds

third-party code. The binary consensus provides no suitable

middle ground here. Progress-insensitivity is too permissive,

whereas progress and timing-sensitivity is too restrictive.

Consider one such example scenario of a mashup that em-

beds a third-party newsfeed widget. The widget downloads the

latest newsfeed from the news server and displays the favorite

topic of the user. The choice of the favorite topic is sensitive and,

therefore, must not leak to the news server. Figure 1 presents

1 function newsWidget ( userFavTopic ) {
2 if ( counter % 10 == 0) {
3 feed = receive ( newsfeed_server_url )
4 }
5 counter ++;
6 newstext = feed [ userFavTopic ]
7 }

Fig. 1. Newsfeed widget code

a pseudo-code for such a widget. The widget implements a

custom caching logic by maintaining a counter and re-fetching

the news on every tenth invocation. For the purpose of this

example, we regard the counter as sensitive as well.

The code in Figure 1 is straightforward and unproblematic.

We can imagine crafting a tool that analyzes (statically or

dynamically) the code in Figure 1 for potential information flow

violations. But if we are to take the next step and try to prove our

tool sound, we hit a semantic conundrum. Because Line 3 con-

tains a potentially blocking network operation, it is unclear how

long it may take for the server to respond, if ever. This means

that if we want our tool to accept programs such as Figure 1, we

cannot use progress and timing-sensitive security as the basis

for soundness. With the binary consensus, the only other option

is progress-insensitive security. This option permits blocking

and divergence, making it suitable for Figure 1. However, it also

forces us to place the termination and timing attacks outside of

the formal threat model, which weakens our tool.

This paper addresses the problem of the binary situation

by presenting a novel semantic definition that connects the

two extremes by reconciling progress-insensitive security as

a particular form of declassification. This reframing means

that we can treat progress-insensitivity just like any other

declassification – a selective weakening of a baseline end-to-

end security policy. It also means that we can transfer insights

about declassification policies, such as their dimensions and

principles [29], to progress-insensitivity. The key to the new

definition is the use of the epistemic approach to information

flow, which allows us to specify a bound on the knowledge the

attacker learns from observing the progress of the computation

in an otherwise progress or timing-sensitive setting.

Two meta-level points about our definition are worth high-

lighting. First, we note that the practice of declassifying ter-

mination leaks by itself is not novel. This idea appears in the000-0-0000-0/00$00.00 © 2020 IEEE
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literature as early as two decades ago in Jif [27] in the context of

programming languages and later in HiStar [35] in the context

of operating systems. Here, our work provides a firm theoretical

basis that this practice lacked. In fact, we show that a mostly

standard flow-insensitive dynamic monitor soundly enforces

the new definition.

Second, we stress the value of the epistemic approach in

formulating a concise and intuitive definition. It is not clear

to us whether the definition can be reformulated in a classical

two-trace style while retaining the same degree of clarity. The

discussion of the soundness of our monitor presents an opera-

tional security invariant that does have the classical two-trace

formulation, but that invariant is far from intuitive.

We present our condition in the setting of a simple imperative

language with a standard flow-insensitive dynamic monitor,

which conveys the condition in a clean form. The simple lan-

guage does not contain networking or blocking primitives. This

omission does not remove generality from our setup because

the language already contains the possibility of divergence via

infinite loops. We have implemented the enforcement of this

condition in Troupe [11] – a research programming language

with dynamic information flow control, actor-based concur-

rency, and primitives for distributed programming.

The rest of the paper is structured as follows: Section II

introduces the formal setting of a small imperative language

we use in this work. The presentation of the security condition

is split across two sections. Section III presents the security

for a progress-sensitive attacker and presents how a mostly

standard dynamic monitor can soundly enforce this condition;

Section IV presents the security condition for a timing-sensitive

attacker. We discuss our definitions in Section V and report

on the implementation experience in Section VI. Finally, in

Sections VII and VIII we discuss related work and conclude.

II. THE SECURITY MODEL AND THE LANGUAGE

A. Security model

We assume a standard security lattice L of security levels ℓ,

with distinguished bottom and top levels ⊥ and ⊤, and the

operations for least upper bound ⊔ and the lattice order ⊑.

Our language is a standard imperative language extended

with capability-based declassification, and a special purpose

tini command for bounded progress-insensitivity that we ex-

plain below. Each variable in the program has a fixed security

level lev (x) that does not change throughout the execution. An

attacker associated with a security level ℓ observes updates

to variables with levels up to ℓ; they additionally observe the

reachability of the tini blocks, as we explain below.

In the examples we show here, we use a two or three-level

lattice with levels L,M ,H , where L ⊑ M ⊑ H , and ℓ ⊑ ℓ

for each ℓ ∈ {L,M ,H }. We adopt the convention of using

upper-case letters to denote concrete lattice elements of L and

lower-case letters to denote variables of said level. As such, h1

and h2 are variables such that lev (h1) = lev (h2) = H .

e ::= n | x | e op e | attenuate e to (ℓ, p)

c ::= skip | c; c | while e do c | if e then c else c

| x = e | tiniη to ℓ with e do c

| x = decl e to ℓ with e

| eval e {x1, . . . , xn}

Fig. 2. Syntax of the language

B. The language and the monitoring semantics

Figure 2 presents the syntax of our language. We explain

the formal semantics of the language and then discuss the non-

standard features.

a) Monitoring semantics: For evaluating commands

we use a small-step semantics transition 〈c,m, pc〉 −→α

〈c′,m′, pc′〉, where pc is the security level of the program

counter, and α is the event generated by the step. The events

can be empty events, denoted by ǫ, and assignments and declas-

sifications per the following grammar:

α ::= ǫ | a(x, v) | d(x, ℓ, ℓ) | t̄η(ℓ, ℓ)

The stop and pcdecl commands are only used internally, and

therefore not part of the syntax of the language. Command stop

denotes final configurations that cannot step any further. For

evaluating expressions we use a big-step relation 〈e,m〉 ⇓
〈base; ℓ〉 that relates an expression with a labeled value. La-

beled values 〈base; ℓ〉 consists of a base value and a level,

where ℓ denotes the confidentiality-level of the base value base .

Base values include integers n, strings s, and authority values

auth ℓ p. In our semantics, we denote the base type (integer,

string, or authority) of a base value base as type(base), and

we furthermore assign a predetermined type for each program

variable such that type(x) denotes the type of variable x. The

types of variables are static and cannot be changed during the

execution. Fig. 3 presents the rules for expression evaluation

and Fig. 4 presents the command evaluation rules for our

language. Note how a tini statement reduces to the sequential

composition of its argument and a special pcdecl command.

The syntactic structure imposed by the tini blocks ensures that

the use of pcdecl is always well-bracketed since the pcdecl-

command is not part of the surface language. At runtime,

the expanded pcdecl-commands exhibit a stack-like behavior

reminiscent of pc-stacks in other monitor designs from the

literature.

The monitor is inherently progress-sensitive: barring any

pcdecl commands, the pc never goes down during the execu-

tion. A reader familiar with the literature on information flow

monitors may spot deficiencies in the monitor’s precision – for

example, it rejects program (if h then skip else skip); l = 0.

This simple monitor is picked for the purpose of exposition to

allow us to focus on the presentation of the security condition

and the soundness proof in Section III. We further note that

while it is possible to add extra precision to this monitor, unlike
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〈base,m〉 ⇓ 〈base;⊥〉

m(x) = base

〈x,m〉 ⇓ 〈base; lev(x)〉

〈e1,m〉 ⇓ 〈base1; ℓ1〉 〈e2,m〉 ⇓ 〈base2; ℓ2〉
type(base1) = type(base2) base = base1 ⊕ base2

〈e1 ⊕ e2,m〉 ⇓ 〈base; ℓ1 ⊔ ℓ2〉

〈e1,m〉 ⇓ 〈auth ℓauth1
p1; ℓ〉

ℓauth2
⊑ ℓauth1

p2 ≤ p1

〈attenuate e1 to (ℓauth2
, p2),m〉 ⇓ 〈auth ℓauth2

p; ℓ〉

Fig. 3. Semantics of evaluating expressions

progress-insensitive monitors that benefit from hybrid analysis,

it is difficult to avoid pc creep in progress-sensitive monitors.

b) Declassifications: Our language has two different con-

structs for downgrading: one for downgrading values (decl),

and one for downgrading the termination of a region of the

program (tini). We include two constructs to highlight differ-

ences and parallels between the two kinds of declassifications.

Both constructs reveal information by design, but in different

ways. Whereas declassification is a way for the programmer

to indicate that an otherwise secret value is public, the tini

constructs allows the programmer to indicate that a program

block (identified by a unique tag η) should be treated in a

progress-insensitive way, which means that the information

about the termination of the block is public. In the jargon

of information flow control systems, this exactly amounts to

lowering the pc-label at the end of the block.

c) Authority: Our language restricts the use of declassi-

fications via a capability-like mechanism that we refer to as

authority [27]. Given a value at level ℓfrom , an authority of

level ℓauth permits a declassification to level ℓto if ℓfrom ⊑
ℓto ⊔ ℓauth . At run-time, an authority value auth ℓ p consists

of an authority level ℓ and a purpose bit p. The purpose

bit 1 means that the authority can be used for general purpose

declassification, while the purpose bit 0 means that the authority

can only be used for tini-statements. For example, assuming

that variable authM contains the value authM 1, the language

allows the declassification

l = declm to L with authM

but not

l = decl h to L with authM

d) Attenuate and running untrusted code: The only way

to create an authority value in the language is by attenuation of

another authority value. Initially, the special variable rootauth

contains the full authority auth ⊤ 1. Our language contains

primitives for restricting the access, level, and purpose of au-

thority, namely attenuate and eval.

For example, 〈attenuate rootauth to (M, 0),m〉 evaluates to

a value 〈auth M 0;⊥〉 that can only be used for declassifying

progress up to level M . For running untrusted code, we provide

an eval command that takes a string s and a set of variables

{x1, . . . , xn}. The semantics of eval is, that it parses the string

to a command c (denoted c = parse(s)) under the condition

that c is only allowed to use variables explicitly mentioned in

{x1, . . . , xn} and must not contain nested evals. In this way, our

eval-command can be seen as a “poor man’s”-scoping, which

we capture in the following Lemma:

Lemma 1 (eval memory safety). Suppose

〈eval e X,m, pc〉 −→∗
t 〈c′,m′, pc′〉. Then it holds for all

s where x ∈ X =⇒ m(x) = s(x) that

〈eval e X, s, pc〉 −→∗
t 〈c′, s′, pc′〉

and

x ∈ X =⇒ m′(x) = s′(x)

Proof. By induction in the program resulting from parse(s)
using that no variables except those occurring in X is used.

The combination of eval and attenuate allows us to attenuate

the root-authority by storing it in some variable, e.g., x, and

run untrusted code while only permitting access to x. For

example, we may restrict declassifications in the evaluation of

the command stored in variable mcode up to level M as follows.

authM = attenuate rootauth to (M, 1);

eval mcode {authM , l1, l2,m1,m2, h1, h2}

Note that the program in mcode may access high variables h1

and h2 but cannot declassify them since it does not have access

to sufficient authority.

e) tini-blocks: The tini-construct allows us to embed

progress-insensitive code in an otherwise progress-sensitive

setting. To give some intuition about the tini-construct, suppose

we have the following program that loops if a variable of level

H is positive; or makes an assignment at level L otherwise:

while h > 0 do skip

l = 0

This program is acceptable in a progress-insensitive setting,

but is rejected by progress-sensitive security conditions, since

the assignments to l leaks information about the reachability

of the join-point. The tini construct allows us to embed such

code in a progress-sensitive setting by explicitly declassifying

the reachability of the end of the block. Just like regular de-

classification, the tini-block also requires an authority argument.

Hence, the example above can be written instead as:

tiniη to L with rootauth do

while h > 0 do skip;

l = 0

The design of the tini block is inspired by similar constructs

in large-scale information flow systems: Jif [27] implements

pc-declassification by a single command for declassifying the

pc-label although the syntax does not limit the scope of the

progress that is declassified. HiStar [35] implements a similar

thing through “untainting” gates that can be restricted to only

untaint the control flow.
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〈skip,m, pc〉 −→ 〈stop,m, pc〉

〈e,m〉 ⇓ 〈v; ℓe〉 type(x) = type(v) pc ⊔ ℓe ⊑ lev (x)

〈x = e,m, pc〉 −→a(x,v) 〈stop,m[x 7→ v], pc〉

〈c1,m, pc〉 −→α 〈stop,m′, pc′〉

〈c1; c2,m, pc〉 −→α 〈c2,m
′, pc′〉

〈c1,m, pc′〉 −→α 〈c′1,m
′, pc′〉 c′1 6= stop

〈c1; c2,m, pc〉 −→α 〈c′1; c2,m
′, pc′〉

〈e,m〉 ⇓ 〈base; ℓ〉 i =

{

2 if base = 0

1 otherwise

〈if e then c1 else c2,m, pc〉 −→ 〈ci,m, pc ⊔ ℓ〉 〈while e do c,m, pc〉 −→ 〈if e then c;while e do c else skip,m, pc〉

〈eauth ,m〉 ⇓ 〈auth ℓauth 1; ℓ′〉 〈e,m〉 ⇓ 〈v; ℓfrom〉 type(x) = type(v) ℓ′ ⊑ pc

ℓto ⊔ pc ⊑ lev (x) ℓfrom ⊑ ℓto ⊔ ℓauth α = d(x, ℓauth , ℓto) m′ = m[x 7→ v]

〈x = decl e to ℓto with eauth ,m, pc〉 −→α 〈stop,m′, pc〉

〈e,m〉 ⇓ 〈auth ℓ p; ℓ′〉 p ≥ 0 ℓ′ ⊑ pc pc ⊑ ℓto

〈tiniη to ℓto with e do c,m, pc〉 −→ 〈c; pcdeclη(ℓ, ℓto),m, pc〉

pcfrom ⊑ pcto ⊔ ℓauth α = t̄η(ℓauth , pcto)

〈pcdeclη(ℓauth , pcto),m, pcfrom〉 −→α 〈stop,m, pcto〉

〈e,m〉 ⇓ 〈s; ℓ〉 c = parse(s) vars(c) ⊆ {x1, . . . , xn} eval -free(c)

〈eval e {x1, . . . , xn},m, pc〉 −→ 〈c,m, pc ⊔ ℓ〉

Fig. 4. Monitored operational semantics

Attenuation of the purpose can be used in conjunction with

eval and the tini block. Revisiting the news widget example

from Section I, the trusted code may evaluate the widget by

passing it access to an attenuated authority. To bring the exam-

ple closer to the language we have presented, we let receive

fetch the untrusted widget code from a network connection and

run it by using eval:

untrustedWidget = receive newsfeed_server_url ;

userFavTopic = ”Politics”;

authNews = attenuate rootauth to (newslev , 0);

tiniη to ⊥ with authNews do

eval untrustedWidget {userFavTopic}

III. SECURITY CONDITION

This section presents a security definition for embedding tini-

blocks when the baseline security is progress-sensitive.

A. Auxiliary definitions

We use the knowledge-based [5] approach to define our

security condition. The high-level idea behind the approach

is that we consider an attacker that can observe the execution

of the program and define the knowledge that such attacker

obtains as the set of memories that are consistent with seeing

the execution up to this point. The security condition is defined

as a bound on how much the knowledge is allowed to change at

each step of the execution.

To define such bounds, we first define what it means for

memories to be equivalent and define which execution steps are

visible to the adversary.

In the following, we write m ∼ℓ s to denote that two

memories are equal up to ℓ (Definition 1 below), and ⌊t⌋ℓ to

denote a filtering of the trace t that only includes the events that

are observable at level ℓ (Definition 2 below).

Definition 1 (Memory equivalence). Two memories m and s

are equivalent up to level ℓ, written m ∼ℓ s, if dom(m) =
dom(s) and it holds that for all x ∈ dom(m),

lev(x) ⊑ ℓ =⇒ m(x) = s(x)

We define level of an event, denoted lev(α), as the level of

the updated variable for assignment and declassify events, level

ℓto for tini events t̄η(ℓ, ℓto), and ⊤ otherwise:

lev (ǫ) = ⊤

lev(a(x, _)) = lev(x)

lev(d(x, _, _) |) = lev(x)

lev (t̄η(_, ℓto)) = ℓto

Definition 2 (Trace filtering). The filtering of a trace t at level

ℓ written ⌊t⌋ℓ is defined as

⌊[]⌋ℓ = []

⌊t′ · α⌋ℓ =

{

⌊t′⌋ℓ · α if lev (α) ⊑ ℓ

⌊t′⌋ℓ otherwise

We use the above to define two technical definitions of

knowledge. First, we define attacker knowledge which defines

the knowledge of an attacker observing a trace t.

Definition 3 (Attacker knowledge [3]). Given a program c,

initial memory m, initial program counter level pc, such that

〈c,m, pc〉 −→∗
t 〈c′,m′, pc′〉, define attacker knowledge at
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level ℓadv to be the set of memories m′ that are consistent with

the observations of the adversary:

k(c,m, t, ℓadv) , {m′ | m ∼ℓadv m′∧

〈c,m′, pc〉 −→∗
t′ 〈c

′′,m′′, pc′′〉 ∧ ⌊t′⌋ℓadv = ⌊t⌋ℓadv}

We can now use this definition as a building block for defin-

ing security conditions. We can, for example, define progress-

sensitive noninterference as follows:

Definition 4 (Progress-sensitive noninterference). Given a pro-

gram c, initial memory m and initial program counter label pc

such that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

the run satisfies progress-sensitive noninterference if it holds

that for all ℓadv , if lev (α) ⊑ ℓadv then

k(c,m, t · α, ℓadv ) ⊇ k(c,m, t, ℓadv )

Note how this definition bounds the knowledge from se-

ing t ·α with the knowledge of seeing t. This essentially means

that all the memories that the attacker considered possible when

seeing t are still considered possible after also observing the

event α. Note that his is a very strong security condition. To

define more lenient conditions, we use another building block:

the progress knowledge.

Definition 5 (Progress knowledge [4]). Given a program c,

initial memory m, initial program counter level pc, such that

〈c,m, pc〉 −→∗
t 〈c′,m′, pc′〉, define progress knowledge at

level ℓadv to be the set of memories m′ that are consistent with

the knowledge up to t followed further by one more event:

k→(c,m, t, ℓadv) , {m′ | m ∼ℓadv m′∧

〈c,m′, pc〉 −→∗
t′ 〈c

′′,m′′, pc′′〉 ∧ ⌊t′⌋ℓadv = ⌊t⌋ℓadv · α}

The above allows us to express the standard progress-

insensitive noninterference:

Definition 6 (Progress-insensitive noninterference). Given a

program c, initial memory m and initial program counter label

pc such that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

the run satisfies progress-insensitive noninterference if it holds

that for all ℓadv , if lev (α) ⊑ ℓadv then

k(c,m, t · α, ℓadv ) ⊇ k→(c,m, t, ℓadv)

Here, the knowledge of an attacker that observes t · α is

bounded by the progress knowledge from seeing just t. This

exactly captures that the attacker is allowed to rule out the the

memories that do not make progress.

B. Progress-sensitive security with declassification and locally-

bound progress-insensitivity

Armed with the above definitions, we define our main secu-

rity condition as follows.

Definition 7 (Progress-sensitive security with declassification

and locally-bound progress-insensitivity). Given a program c,

initial memory m and initial program counter label pc such

that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

define the run as secure if it holds that for all ℓadv , if lev(α) ⊑
ℓadv then

1) if α = d(_, ℓauth , ℓto) then it should hold that:

a) k→(c,m, t, ℓadv ) ⊇ k(c,m, t, ℓadv), and

b) k(c,m, t · α, ℓadv ) ⊇ k(c,m, t, ℓauth ⊔ ℓadv )

2) if α = t̄η(ℓauth , ℓto) then it should hold that:

a) k(c,m, t · α, ℓadv ) ⊇ k→(c,m, t, ℓadv )
b) k→(c,m, t, ℓadv ) ⊇ k(c,m, t, ℓauth ⊔ ℓadv)

3) otherwise, it should hold that:

k(c,m, t · α, ℓadv ) ⊇ k(c,m, t, ℓadv)

The security condition specifies what information the at-

tacker may learn from observing the program events. The

baseline of progress-sensitive security is captured in item 3 of

the definition stating that the attacker learns nothing from non-

declassify events. This rules out many standard examples of

direct and indirect flows, as well as the termination leaks such

as

l = 0; (while h > 0 do skip); l = 1

The other two items weaken the baseline as follows. For

declassifications (item 1) we have two clauses: Clause 1a says

that reachability of the declassification conveys no knowledge

to the attacker. Observe that this is expressed as a bound on the

progress knowledge! This clause rules out programs such as

l = 0; (while h > 0 do skip); l = decl h to L with authH

that leak via termination without a tini-statement.

Clause 1b specifies an upper bound on the information the

attacker learns from the event to be no more the knowledge

at level ℓauth ⊔ ℓadv before the event. This clause has a flavor

of language-based intransitive noninterference [22], because it

does not otherwise bound what information from the permitted

level is declassified. For example, assuming authM and authH

are authorities with purpose bit one, this definition accepts the

program

m = decl h to M with authH ;

l = declm to L with authM

Both declassifications above are allowed. At the time of the sec-

ond declassification, the adversary at L learns the original value

of h despite only using the authority of M . This is accepted

because the earlier declassification of h to m happened with

sufficient authority.

5



Clause 1b does not regulate exactly what information from

the level of ℓauth ⊔ ℓadv may be declassified; however, prior

work on using knowledge-based conditions for further con-

straining what and where to declassify can be easily applied

here in an orthogonal manner [4], [15].

For tini-events (item 2), we also have two constraints. The

first constraint corresponds to standard progress-insensitive

noninterference [6]: knowledge of the event must reveal no

more than knowledge of the event’s existence. The second

constraint is interesting, because it specifies an upper bound

on the information leaked by the termination to be no more

than the knowledge at level ℓauth ⊔ ℓadv before the event. This

is again expressed as a bound on progress knowledge. This

clause rules out programs with insufficient authority for the pc-

declassification such as

l = 0; (tiniη to L with authM do while h > 0 do skip); l = 1

The definition accepts programs that use tini blocks as long

as the authority for the pc-declassification is sufficient. This

includes nested tini blocks. The following program is accepted.

l = 0;

tiniη1
to L with authM do {

if m > 0 then

tiniη2
toM with authH do

while h > 0 do skip

else skip };

l = 1

C. A note on the design of item 2

For the simple language of this section, the two clauses of

item 2 can be simplified to require that for α = t̄η(ℓauth , ℓto) it

must hold that

k(c,m, t · α, ℓadv ) ⊇ k(c,m, t, ℓauth ⊔ ℓadv)

We opted to present the definition without this simplification,

because in more realistic settings, this simplification is danger-

ous and leads to occlusion.

The simplification is possible in our language, because

pcdecl events are attacker-observable and convey little infor-

mation other than their reachability, thanks to syntactically

enforced well-bracketedness of tini/pcdecl commands.1

However, in reality, it may be unfair to assume that attacker

observes internal events such as pcdecl. Suppose indeed that

pcdecl has no manifestation in the attacker-observable projec-

tion of the trace. How would we need to change Definition 7

to accommodate this? One option is to rephrase item 2 of

Definition 7 so that event α refers to the first observable event

after executing pcdecl. But such events can communicate more

than a unit of information, as in the program below.

tini to L with rootauth do {skip}

if h > 0 then l = 0 else l = 1

1These conveniences help us minimize technical clutter in the paper.

cfg −→α cfg ′ lev (α) ⊑ ℓ

cfg y
0,ℓ
α cfg ′

cfg −→β 〈stop,m, pc〉 lev(β) 6⊑ ℓ

cfg y
0,ℓ
β 〈stop,m, pc〉

cfg1 −→β cfg2 lev (β) 6⊑ ℓ cfg2 y
n,ℓ
α cfg3

cfg1 y
n+1,ℓ
α cfg3

Fig. 5. Bridge-step relation

This program would reduce to

pcdecl(rootauth, L); if h > 0 then l = 0 else l = 1

Here, the first event after pcdecl is one of the low assignments.

The approach of the simplified definition accepts this program

because it mistakenly applies the declassification condition to

reveal the choice of the high branch. On the other hand, the

two-clause approach that explicitly constraints the progress

knowledge rejects this program.

D. Soundness of the enforcement

Next, we formally connect the monitoring semantics of Sec-

tion II with Definition 7. We do this by showing the following

statement:

Theorem 1 (Soundness of the monitoring semantics). Given

a program c, memory m, and level pc then all runs

〈c,m, pc〉 −→∗
t 〈c′,m′, pc′〉 satisfy Definition 7.

To get some intuition about the proof, let us think how classi-

cal noninterference proofs usually proceed. The security invari-

ant of such proofs boils down to the reasoning along the lines of

“a pair of low-equivalent configurations that each emit attacker-

observable events transition to low-equivalent configurations

plus the attacker cannot discriminate between the two events.”

Note how low-equivalence is used in both the precondition

and the post-condition of such a statement. For declassification,

we need to weaken the invariant, which is typically done by

strengthening the precondition to relate fewer configurations.

Set-theoretically, this strengthening corresponds to picking a

relation that is smaller than low-equivalence. Exactly how small

is an important design criterion that is dictated by the top-level

security requirement such as our Definition 7. One challenge

that we have encountered in the proof is finding the right

equivalence relation for the precondition that is compositional

in the applications of the inductive hypothesis. Our solution to

this challenge is to engineer relations that are smaller than low-

equivalence, subject to additional constraints we explain below.

First, we define an auxiliary relation that characterizes the in-

tuition of “configuration emitting an attacker-observable event.”

We call this relation bridge-step. Operationally it is defined as

a relation between two configurations where the first configu-

ration reaches the second one by taking n intermediate “secret”

steps (without producing any observable events) and then either
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〈c,m, pc〉 yn,ℓ
α 〈c′,m′, pc′〉 〈c, s, pc〉 yn′,ℓ

α 〈c′, s′, pc′〉

〈c,m | s, pc〉 ⇒ℓ
α 〈c′,m′ | s′, pc′〉

k > 1 〈c,m | s, pc〉 ⇒ℓ
α1

〈c′,m′ | s′, pc′〉

〈c′,m′ | s′, pc′〉 ⇒ℓ
α2...αk

〈c′′,m′′ | s′′, pc′′〉

〈c,m | s, pc〉 ⇒ℓ
α1...αk

〈c′′,m′′ | s′′, pc′′〉

Fig. 6. Synchronized bridging

emits an observable step or terminates. This relation is shown

in Fig. 5. The security intuition behind the bridge relation is

that the attacker only observes the configurations related by

the bridge relation. Hence, we formulate our security invariant

around that relation.

We furthermore define indistinguishability restriction

〈I〉
c,pc

ℓ|α1...αk
as the restriction of the relation I to only contain

all pairs of the memories that can emit α1 . . . αk (in that

order) when evaluating c using initial program-counter pc. To

formally define 〈I〉
c,pc

ℓ|α1...αk
, we introduce another auxiliary

definition that synchronizes two bridge-step runs on a list of

events. The synchronized bridge has the effect of demanding

that two runs proceed in lock-step w.r.t to their individual

bridge-steps. The rules for synchronized bridging can be seen

in Fig. 6.

We can now define indistinguishability restriction as per

Definition 8 below.

Definition 8 (Indistinguishability restriction 〈I〉
c,pc

ℓ|α ). Consider

a potentially empty sequence of events α1 . . . αk. Define the

relation m 〈I〉c,pc
ℓ|α1...αk

s as follows:

m I s

m 〈I〉
c,pc

ℓ|nil s

m I s 〈c,m | s, pc〉 ⇒ℓ
α1...αk

〈c′,m′ | s′, pc′′〉

m 〈I〉
c,pc

ℓ|α1...αk
s

With all this auxiliary infrastructure, we now state the opera-

tional definition of security.

Lemma 2 (Security for monitored evaluations). Suppose

〈c,m, pc〉 yn,ℓadv
α 〈c′,m′, pc′〉. Then the following holds:

1) if α = d(x, ℓauth , ℓto) and lev (x) ⊑ ℓadv :

Let

I =〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj

where

〈c,m, pc〉 yi1,ℓauth⊔ℓadv
β1

〈c1,m1, pc1〉 y
i2,ℓauth⊔ℓadv
β2

. . . y
ij ,ℓauth⊔ℓadv
βj

〈cj ,mj , pcj〉

such that

〈cj ,mj , pcj〉 y
i′,ℓauth⊔ℓadv
α 〈c′,m′, pc′〉

then it holds that for all s such that m I s,

〈c, s, pc〉 yn′,ℓadv
α 〈c′, s′, pc′〉

and m′ ∼ℓadv s′.

2) if α = t̄η(ℓauth , ℓto) and ℓto ⊑ ℓadv :

Let

I =〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj

where

〈c,m, pc〉 yi1,ℓauth⊔ℓadv
β1

〈c1,m1, pc1〉 y
i2,ℓauth⊔ℓadv
β2

. . . y
ij ,ℓauth⊔ℓadv
βj

〈cj ,mj , pcj〉

such that

〈cj ,mj , pcj〉 y
i′,ℓauth⊔ℓadv
α 〈c′,m′, pc′〉

then it must hold that for all s where m I s there exists α′

such that

〈c, s, pc〉 yn′,ℓadv
α′ 〈c′, s′, pc′〉

and m′ ∼ℓadv s′.

3) if α 6= t̄_(_, _) and pc′ ⊑ ℓadv :

For all s where m ∼ℓadv s it holds that

〈c, s, pc〉 yn′,ℓadv
α 〈c′, s′, pc′〉

and if α is not a declassify event d(x, _, _) where lev(x) ⊑
ℓadv then m′ ∼ℓadv s′.

4) if α = t̄η(_, _) or pc′ 6⊑ ℓadv :

It holds that for all s where m ∼ℓadv s,

〈c, s, pc〉 yn′,ℓadv
α′ 〈c′′, s′, pc′′〉 =⇒

m′ ∼ℓadv s′ ∧ c′ = c′′

∧ pc′ 6⊑ ℓadv =⇒ (pc′′ 6⊑ ℓadv ∧ c′ = stop)

∧ pc′ ⊑ ℓadv =⇒ (pc′′ ⊑ ℓadv ∧ α = α′)

The indistinguishability restriction of ∼ℓ, which we alluded

to earlier, appears in two out of four sub-cases of the invariant.

This is crucial in the proof when showing the clauses related to

declassify-events, since this allows us to account for earlier un-

observable declassifies that might become observable through

the latest event. For example, suppose we have an attacker at

level L and that we earlier on declassified a value v from H

to M . Now if we later declassify that same value from M to

L, it is not enough to only assume that the initial memories

satisfy memory-equivalence up to M to prove the clause for

declassify. Instead, we “replay” the trace at a higher attacker-

level – in this case M – which reveals the events that are

otherwise only observable at this higher level – such as declassi-

fications from H to M . We use these events to synchronize the

memories, and then conclude that the two runs must declassify

the same value. This is exactly what the indistinguishability

restriction condition 〈∼ℓauth⊔ℓto〉
c,pc

ℓauth⊔ℓto |α1,...,αk
provides. The

events α1, . . . , αk here range over the M -level events including

H to M declassifications; none of these events are typically

observable by L.

The detailed proof of Lemma 2 can be found in the Appendix,

where we also prove Theorem 1 by showing that runs satisfying

Lemma 2 satisfy Definition 7.
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IV. TIMING SENSITIVITY

The security condition that we present for progress-sensitive

noninterference in Definition 7 can be naturally strengthened

to also cover timing-sensitive noninterference. The cautious

reader might have noticed already that the monitor we present in

our language is actually already enforcing this stronger notion

of noninterference. As an example, the program

if h > 0

then skip

else skip; skip; skip;

l = 0

is accepted by our progress-sensitive security condition, but is

not allowed by our monitor. This shows that our monitoring

leaves room for strengthening the security condition so that

examples like above are also rejected by the definition.

To formalize this observation, we add a clock ts to our

configurations 〈c,m, pc | ts〉 and timestamps to events (ts, α)
such that our evaluation steps are now defined by the following

rule

〈c,m, pc〉 −→α 〈c′,m′, pc′〉

〈c,m, pc | ts〉 −→(ts+1,α) 〈c
′,m′, pc′ | ts + 1〉

We extend the definition of when events are observable in

the obvious way: a timestamped event (ts, α) is observable at

level ℓ if α is observable at level ℓ. The definitions of attacker

knowledge and progress knowledge from the previous section

are also ported to the new setting in a straightforward manner,

noting that the initial clock value is 0. However, we need a new

knowledge combinator, that we dub clock knowledge.

Definition 9 (Clock knowledge). Given a program c, initial

memory m, initial program counter level pc, and initial times-

tamp ts such that 〈c,m, pc | 0〉 −→∗
t 〈c′,m′, pc′ | ts ′〉, define

clock knowledge at level ℓadv to be the set of memories m′ that

are consistent with the knowledge up to t followed further by

one more event with timestamp ts:

k�→(c,m, t, ℓadv , ts) , {m′ | m ∼ℓadv m′

∧ 〈c,m′, pc | 0〉 −→∗
t′ 〈c

′′,m′′, pc′′ | ts〉

∧ ⌊t′⌋ℓadv = ⌊t⌋ℓadv · (ts , α)}

Observe that the clock knowledge, the

progress knowledge, and the attacker knowl-

edge are related by their definitions as follows:

k(c,m, t, ℓadv)⊇ k→(c,m, t, ℓadv )⊇ k�→(c,m, t, ℓadv , ts
′).

We can now give a more precise top-level security condition:

Definition 10 (Timing-sensitive security with declassification

and locally-bound progress-insensitivity). Given a program c,

initial memory m, initial program counter label pc, and initial

clock ts such that

〈c,m, pc | ts〉 −→∗
t·(ts′,α) 〈c

′,m′, pc′ | ts ′〉

define the run as secure if it holds that for all ℓadv , if lev(α) ⊑
ℓadv then

1) if α = d(_, ℓauth , ℓto) then it should hold that:

a) k�→(c,m, t, ℓadv , ts
′)⊇ k→(c,m, t, ℓadv )

⊇ k(c,m, t, ℓadv)
b) k(c,m, t · (ts ′, α), ℓadv ) ⊇ k(c,m, t, ℓauth ⊔ ℓadv )

2) if α = t̄η(_, _) then it should hold that:

a) k(c,m, t · (ts ′, α), ℓadv ) ⊇ k�→(c,m, t, ℓadv , ts
′)

b) k�→(c,m, t, ℓadv , ts
′) ⊇ k(c,m, t, ℓauth ⊔ ℓadv )

3) otherwise it should hold that:

k(c,m, t · (ts ′, α), ℓadv ) ⊇ k(c,m, t, ℓadv)

Observe that Clause 3 of the above definition now requires

timing-sensitivity since it explicitly states that an attacker must

not learn anything from observing an event α and its timestamp.

Another notable change is Clause 1a that specifies that the tim-

ing of a regular declassification must not convey information.

Finally, this definition also changes the semantics of the tini-

construct (cf. Clause 2b). Instead of declassifying the progress

knowledge it now declassifies the timing behavior of the code

block guarded by tini.

V. DISCUSSION

a) Dimensions and principles of declassification: The re-

framing of the progress-insensitive security as declassification

allows us to think about it in terms of declassification principles

and dimensions. The locality-driven aspect of our definition

places it in a where dimension, while the use of authority-

based bounds naturally has a clear what flavor. While we do

not specify any bounds on what information can be learned via

a tini-declassification as long as the authority is sufficient, the

prior work on tight specification of what information is released

through declassifications [4], [15] should compose with our

definition. Our authority model is inspired by the expressive

label models such as DLM [24] and FLAM [1]; and studying

our condition in the formal frameworks of these label models

will lead to who characterizations of the tini-declassifications.

Another interesting angle to explore is the integration of

integrity into the formal model, which would allow one to

study the robustness [34] of declassifications via progress-

insensitivity. Here, a potentially desirable semantic character-

ization is that attacker-controlled input does not influence in-

formation leaked through termination channels. A knowledge-

based approach to robustness [7] can provide a starting point

for such a definition.

With respect to the four principles of declassification, we

believe that the principles of semantic consistency – namely

that security definition should be invariant under equivalence-

preserving transformations – and of conservativity – namely

that the definition of security should be a weakening of nonin-

terference – follow directly from the knowledge-based nature

of the definition that is inherently attacker-driven [10]. The

principle of monotonicity of release – namely that adding a

declassification should not make a secure program insecure – is

also satisfied by our definition: adding a tini block to a program
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that is already accepted by Definitions 7 does not change

how the definition treats this program, because all knowledge

containments for the declassification cases are weaker than

Clause 3 of the definition (a similar argument applies to the

normal declassification). Finally, our definition also satisfies the

non-occlusion principle – namely, that the presence of declassi-

fications should not mask other covert leaks. This one has two

subtleties. The first one is already discussed in Section III-C.

The second one is that without Clause 1a of the definition,

we would have violated non-occlusion, as examples that reach

an explicit declassification after a high loop would have been

accepted.

Similar arguments apply to Definition 10.
b) Design principle for pc-declassifications: In the infor-

mation flow community, pc-declassifications have a poor repu-

tation because their security characterization has been not well

understood. Our work provides a principle for understanding

security of pc-declassifications that can answer the following

question: given a programming language or a system that has a

primitive for pc-declassification, how dangerous is it? The key

to answering this question is bounding the progress knowledge.

If the security of pc-declassification can be characterized as a

bound on progress knowledge – as we do in Definition 7 – then

these pc-declassifications are as dangerous as leaks through

progress. However, if progress knowledge cannot be bounded,

then these pc-declassifications are more dangerous. For exam-

ple, in a system designed to allow any pc-declassifications,

programs such as

if h then pcdecl(Hauth , L); l = 0 else pcdecl(Hauth , L); l = 1

can leak information indirectly more efficiently than just encod-

ing the secret in the length of the trace.

c) Access control to authority: Neither our security pol-

icy nor the language provides guarantees about programs that

misuse authority if they have access to it. To that extent, our

approach leaves it to the programmers to ensure that untrusted

code does not have access to authority above the code’s in-

tended security clearance. However, the capability-based nature

of the authority means that a complementary technique for

principled control of capabilities can be used. One candidate

approach is the work by Dimoulas et al. [17] that uses access

control and integrity policies to restrict capability use. Another

is the mechanism of bounded privileges for LIO proposed by

Waye et al. [33].

d) Enforcement techniques: We choose a simple runtime

monitor to showcase the enforcement of the new definition.

While the monitor is fully dynamic and flow-insensitive, we

believe that other single-trace monitoring techniques such as

hybrid information flow monitors [2], [20], [25] as well as

Denning-style static techniques can be easily adapted. Static

approaches may have an added benefit of helping infer the

location of tini statements. An interesting prospect for future

work is extension of monitors designed for declassification for

secure multi execution [23], [28] to enforce our definition.

e) Timing treatment: Our treatment of timing-sensitivity

in Section IV via a simple step counter is admittedly academic,

given the plethora of architectural and runtime side channels

today. We nevertheless believe that the formulation of the

timing-sensitive condition is useful, and can be combined with

other proposals to mitigate practical timing attacks such as

predictive mitigation [8], [36], [37].

VI. IMPLEMENTATION EXPERIENCE

We implemented the tini-based enforcement as a part of

Troupe [11]. This language enforces progress-sensitive secu-

rity, but allows tini-scoped initialization as a variation of let-

declarations

1 let tini auth (* tini declaration *)
2 val v1 = e1
3 val v2 = e2
4 ...
5 in (* the point of pcdecl *)
6 e
7 end

This construct declassifies the termination of the initialization

expressions e1, e2, ... using authority auth before evaluating the

body e.

Figure 7 presents a snippet from the code of the news widget

example in our language. The top listing is the source of the

news widget itself. When invoked with the favorite topic and

its current state as arguments, it updates the counter, fetching

updated news from the remote servers if necessary. Finally, it

returns the result together with the updated state. Fetching the

news is potentially blocking and implemented in the function

fetch_news (omitted from the listing but it uses the networking

primitives of the language). The news value is an associative

list, and the secret-dependent lookup is done using the built-

in function list_lookup_with_default. The initial state of the

widget is an empty list, with the counter set to zero. The security

level of the initial state is NEWS.

The bottom listing in the figure displays how this widget

is used by user at level ALICE. The important part is the

invocation of the news_widget is placed in the let tini block

with attenuated authority NEWS, which limits the termination

leakage of the news_widget function.

The actual example is about 80 lines of code. As another data

point for the readers, a different case study in our language of

roughly 500LOC uses the let tini construct 9 times.

VII. RELATED WORK

a) pc-declassification: Jif provides a mechanism for pc-

downgrading in the form of a declassify statement that lowers

that pc-label that is tracked by the type system. Unlike other

features of Jif that are proven sound, e.g., dependent labels [38]

or robust declassification [14], there is no soundness theorem

for the pc-declassifications.

Both the Asbestos [18] and the HiStar [35] operating systems

also allow downgrading of the control-flow. In Asbestos a

process with privilege, a related notion to our authority, can

decontaminate other processes’ send label which has the effect

of allowing the other process to “forget” that it has previously

seen secret data from the privileged process. In our setup, this
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1 fun news_widget fav state =
2 let
3 val (news, update_counter) = state
4 val news = if update_counter %10 = 0
5 then fetch_news() (* Blocking *)
6 else news
7 val update_counter = update_counter + 1
8 (* Operation on the secret *)
9 val fav_news = list_lookup_with_default

10 news fav "no news"
11 in (fav_news, (news,update_counter))
12 end
13 val init_state = ([], 0) raisedTo {NEWS}

1 (* Receiving widget and initial state *)
2 val (news_widget, state0) = fetch_widget ()
3

4 (* Usage of the widget by user ALICE *)
5 val news_auth = attenuate(rootauth, {NEWS})
6 val fav_topic = "#politics" raisedTo {ALICE}
7

8 (* Calling untrusted widget code *)
9 val (fav_news1, state1) =

10 let tini news_auth
11 val res = news_widget fav_topic state0
12 in res
13 end

Fig. 7. News widget (top) and its usage (bottom) code snippets

corresponds to passing an authority that allows declassifying

control-flow up to the senders level. HiStar similarly makes it

possible to lower the accrued taint by passing on untainting

gates that act as a capability for lowering the pc. Both of

these systems provide this functionality because it is a practical

feature to have, but neither of them presents a security condition

that encapsulates what this feature entails regarding leakage.

Chandra and Franz [13] present an information flow frame-

work for the Java Virtual Machine with a hybrid monitoring that

uses a static analysis to reason about when it is safe to declassify

the pc. Similarly to earlier work by, for example, Denning [16],

they statically find the immediate postdominator (the nearest

join-point that all execution paths must pass through) to any

branch-point and insert a pc-lowering command at this point.

Their security condition is intended to only allow lowering the

pc when no knowledge is revealed by doing so, but since they

are in a setting where almost any bytecode can throw unchecked

exceptions, this is not generally feasible. Instead, they disregard

all implicit flows through unchecked exceptions and accept

these leaks as a limitation of the security the system provides.

We believe one could extend this line of work by applying our

bound on what is learned through such flows, and thereby gain

a stronger guarantee for the system as a whole.

The idea of control flow declassification also appears in the

discussions of information flow control vs. taint tracking. For

example, Schoepe et al. [30] use an observational approach

where every branch decision is declassified.

b) Knowledge-based policies: The methodology and the

experience of this paper is in line with the argument by Broberg

et al. [12] that epistemic specifications is the most natural way

to specify information flow properties:

The notion of security intrinsically has nothing to do

with observing two separate runs – but rather what

can be deduced from observing a single run. [. . . ] A

two-run formulation could certainly be very useful as

part of the strategy to prove e.g. the correctness of

an enforcement mechanism. [. . . ] But that property

is then only a stepping stone, and should, for com-

pleteness, be shown to imply the natural epistemic

property.

In our case, it is the operational security (cf. Lemma 2) that has

the two-run formulation.
The knowledge-based approach we use in this work follows

the style of definitions of gradual release [3]. Logical epistemic

approaches include the work by Halpern and O’Neill [19] that

use epistemic logic to specify noninterference, and that of Bal-

liu et al. [9] that uses epistemic temporal logic used to reason

about knowledge acquired by observing program outputs.
Chudnov and Naumann [15] define an epistemic seman-

tics for relational assumptions and guarantees in a progress-

insensitive setting. To specify the allowed knowledge at a

particular point in the trace they define a notion of release policy

of a trace, where relational assumptions are interpreted as an

annotation permitting the attacker to learn new information.

The insight of our work suggests the direction of lifting their

approach into a progress-sensitive setting and treating progress

leaks as another form of relational assumptions.
McCall et al. [23] propose a model for enforcing informa-

tion flow control in the setting of webpages that must handle

execution of untrusted scripts. Their approach enforces ro-

bust declassification such that untrusted code cannot influence

what is declassified by extending prior work on secure-multi-

execution. They show their enforcement sound with respect

to a knowledge-based progress-insensitive noninterference con-

dition with declassification. They also present a progress-

sensitive notion of noninterference, but restrict their focus to the

weaker progress-insensitive condition, because IO-operations

can use potentially looping event handlers that leak information

through progress (a design decision somewhat reminiscent of

the scenario in the Introduction). In the context of their work,

the bridge between progress-sensitive and progress-insensitive

security provided by our definition, can allow programmers

to explicitly state when, and how much, information an event

handler is allowed to leak through divergence.
c) Leakage via termination: Moore et al. [26] propose a

type-based enforcement combined with a runtime mechanism

for budgeting the amount of information leaked through ter-

mination at runtime. The idea is to use a termination oracle

that uses maximum available runtime public information to

deduce the termination behavior of secret-dependent code. The

budgets mechanism allows for a quantitative interpretation of

the leakage.
d) Untrusted code: LIO [31], MAC [32], and related

programming models side step the issue of label creep via a pro-

gramming discipline where high computations are forked into
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separate processes. A consequence of this programming model

however is that consuming the result of the forked computation

requires process synchronization followed by explicit declas-

sification. Fabric [21] contains a number of mechanisms for

confining untrusted code downloaded over a network, including

limits on authority that the code can use and access labels

that limit when the untrusted code can read remote objects.

As Fabric is based on Jif, it also places timing and progress

channels outside of its threat model.

VIII. CONCLUSION

This paper proposes two novel knowledge-based security

conditions that capture the semantic meaning of declassifying

the progress knowledge in information flow control systems.

While many language-based and architectural systems allows

such declassification there is, to the best of our knowledge, no

formal characterization of it. We present a language construct,

tini, that exactly captures the embedding of progress-insensitive

code in a stricter setting and show how this can be used in

the presence of potentially blocking or diverging untrusted

code. We furthermore show that our conditions are enforceable

by a mostly standard dynamic monitor. For future work we

conjecture that our epistemic definitions can form a foundation

for further studies by extending it with for example integrity and

robust downgrades, principled usage of authority-capabilities,

or more elaborate label models. Finally, we believe that a large

body of techniques that rely on progress-insensitive security can

use the insight of our work to accommodate stronger adversary

models.
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APPENDIX

The rest of this document serves to prove Theorem 1 (Soundness of the monitoring semantics). To do so, we first provide a few

auxiliary definitions and lemmas leading up to the proofs.

A. Well formed expressions

We restrict the occurrence of pcdeclη(ℓ1, ℓ2) such that the usage is well-bracketed w.r.t the operational semantics:

WF(pcdeclη(ℓ1, ℓ2))

c 6= c1; c2 pc_decl_free(c)

WF(c)

WF(c1) WF(c2)

WF(c1; c2)

Lemma 3 (Well formedness is preserved by the semantics). for any command c, if WF(c) and 〈c,m, pc〉 −→∗
t 〈c′,m′, pc′〉 then

WF(c′) holds.

Proof. Immediate by induction on c.

B. Indistinguishability relations

Definition 11 (Indistinguishability propagation by bridge). Given an indistinguishability relation I , define indistinguishability

propagation from configuration with command c and pc register pc, denoted [I]c,pc
ℓ|α1...αn

to be the relation such that

m I s

m [I]
c,pc

ℓ|nil s

m I s 〈c,m | s, pc〉 ⇒ℓ
α1...αk

〈c′,m′ | s′, pc′′〉

m′ [I]
c,pc

ℓ|α1...αk
s′

Lemma 4 (Preservation of ℓ-equivalence by bridge propagation). If I ⊆∼ℓ then [I]
c,pc

ℓ|α1...αk
⊆∼ℓ.

Proof. By induction on k. We examine the inductive case, as the base case is straightforward.
Consider m′, s′ such that m′ [I]

c,pc

ℓ|α ⊆∼ℓ s
′. Unfolding the definitions, it must be that there are m and s such that m ∼ℓ s and

m I s. Since the bridge relations update the memories with the same ℓ-equivalent events, then it must be that m′ ∼ℓ s
′.

Lemma 5 (Restriction monotonicity). 〈I〉
c,pc

ℓ|α ⊆ I .

Proof. Immediate from the definition of 〈·〉
c,pc

ℓ|α

Lemma 6 (Sequence decomposition). Suppose 〈c1; c2,m, pc〉 yn,ℓ
α 〈c′,m′, pc′〉, then one of the following holds

1) 〈c1,m, pc〉 yn,ℓ
α 〈c′1,m

′, pc′〉 and c′ = c′1; c2
2) 〈c1,m, pc〉 yn1,ℓ

β 〈stop,m1, pc1〉 and 〈c2,m1, pc1〉 y
n2,ℓ
α 〈c′,m′, pc′〉 where n = n1 + n2 + 1 and β 6⊑ ℓ.

Proof. By inspection of the rules in the bridge relation and the associated rules of the operational semantics.

Lemma 7 (Equivalent runs are synchronized). If we have runs 〈c,m, pc〉 −→∗
t 〈c1,m1, pc1〉 and 〈c, s, pc〉 −→∗

t′ 〈c2, s2, pc2〉,
where the initial memories satisfy that m ∼ℓ s and their traces are equal up to some level ℓ, ⌊t⌋ℓ = ⌊t′⌋ℓ, then there exists c′, m′,

s′, and pc′ such that

〈c,m | s, pc〉 ⇒ℓ
α1,α2,...,αk

〈c′,m′ | s′, pc′〉

where ⌊t⌋ℓ = ⌊t′⌋ℓ = [α1, α2, . . . , αk] and m′ ∼ℓ m1 and s′ ∼ℓ s1.

Proof. Follows from determinism of the operational semantics and the fact that observable events capture all observable changes

to memories.

Lemma 8 (Noninterference of expressions). Given an expression e and two memories m1 and m2 such that m1 ∼ℓ m2. If

〈e,m1〉 ⇓ 〈base1; ℓ1〉 and 〈e,m2〉 ⇓ 〈base2; ℓ2〉 then type(base1) = type(base2) and (ℓ1 ⊑ ℓ ∨ ℓ2 ⊑ ℓ) =⇒ (base1 =
base2 ∧ ℓ1 = ℓ2).

Proof. Straightforward induction on the evaluation rules.

Lemma 9 (Barring pcdecl commands, pc never decreases). Given a bridge-step 〈c,m, pc〉 yn,ℓ
α 〈c′,m′, pc′〉 where pc 6⊑ ℓ and

pc_decl_free(c) then it holds that pc′ 6⊑ ℓ

Proof. Straightforward induction on the bridge-step relation.

Lemma 10 (Observable (non-t̄(, ))-events are only emitted in low contexts). Given a bridge-step 〈c,m, pc〉 y
n,ℓ
α 〈c′,m′, pc′〉

where pc′ ⊑ ℓ and α is not an observable t̄(, )-event, it holds that pc ⊑ ℓ.

Proof. Straightforward induction on the bridge-step relation.
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C. Proof of operational definition

Proof of Lemma 2: Given 〈c,m, pc〉 yn,ℓadv
α 〈c′,m′, pc′〉, we proceed by strong induction in n.

For n = 0:

We have that 〈c,m, pc〉 y
0,ℓadv
α 〈c′,m′, pc′〉 which, by inversion, entails that we must either have that c′ = stop and

α 6⊑ ℓadv or that α ⊑ ℓadv .

α ⊑ ℓadv :

We have the following cases for α:

Case α = a(x, v):
Since c emits a(x, v) in a single evaluation step it must be the case that c is an assignment x = e where

〈e,m〉 ⇓ v. From Lemma 8 (Noninterference of expressions) we have that 〈e, s〉 ⇓ v so it follows trivially

that 〈c, s, pc〉 y0,ℓadv
a(x,v) 〈c

′, s′, pc′〉 where m′ ∼ℓadv s′ which is what we need to prove.

Case α = d(x, ℓauth , ℓto):
Since c emits d(x, ℓauth , ℓto) in a single evaluation step it must be the case that c is a declassify command,

x = decl ev to ℓto with eauth , 〈ev,m〉 ⇓ 〈v; ℓfrom〉 and 〈eauth ,m〉 ⇓ 〈auth ℓauth 1; ℓ′〉 . Furthermore, it

must be the case that ℓfrom ⊑ ℓauth ⊔ ℓadv and ℓ′ ⊑ pc.

We have two cases to show:

Case 1:

Suppose we have s such that s ∼ℓauth⊔ℓadv m. We need to show that 〈x =
decl ev to ℓto with eauth , s, pc〉 y

0,ℓadv
d(x,ℓauth ,ℓto)

〈c′, s′, pc′〉 and s′ ∼ℓadv m′ which follows from

applying Lemma 8 (Noninterference of expressions) on the evaluations of ev and ea.

Case 3:

Suppose we have s such that s ∼ℓadv m. We need to show that 〈x =
decl ev to ℓto with eauth , s, pc〉 y

0,ℓadv
d(x,ℓauth ,ℓt)

〈c′, s′, pc′〉.

By Lemma 8 (Noninterference of expressions) we have that 〈eauth , s〉 ⇓ 〈auth ℓauth 1; ℓ′〉 and by

completeness of expression evaluation we have that 〈ev,m〉 ⇓ 〈v′; ℓfrom〉 so what we need follows

directly from the semantics of the language.

Case α = t̄η(ℓauth , ℓto):
Command c must only consist of a pcdeclη(ℓauth , ℓto) and pc ⊑ ℓauth ⊔ ℓadv so it follows trivially that

for any s such that s ∼ℓauth⊔ℓadv m we have that 〈pcdeclη(ℓauth , ℓto), s, pc〉 y
0,ℓadv
t̄η(ℓauth ,ℓto)

〈c′, s′, pc′〉 and

s′ ∼ℓadv m′.

c′ = stop and α 6⊑ ℓadv :

We have that c′ = stop and α 6⊑ ℓadv . We have two cases based on whether or not pc′ ⊑ ℓadv .

Case pc′ ⊑ ℓadv :

It must also be the case that pc ⊑ ℓadv , and it therefore easily follows that if s ∼ℓadv m we also have that

〈c, s, pc〉 y0,ℓadv
α 〈stop, s′, pc′〉, where s′ ∼ℓadv m′.

Case pc′ 6⊑ ℓadv :

It must be that 〈c, s, pc〉 y
0,ℓadv
α′ 〈c′′, s′, pc′′〉. But since α is not observable neither is α′ so c′′ = stop.

Similarly, α′ cannot be emitted by a command that changed ℓadv -parts of memory, so it also holds that

s′ ∼ℓadv m′. Finally, by examining the determinism of the operational semantics for ℓadv -equivalent

memories we get that pc′′ 6⊑ ℓadv .

For n = k + 1:

We have 〈c,m, pc〉 yk+1,ℓadv
α 〈c′,m′, pc′〉. We proceed by induction in c.

c is an assignment, declassify, or skip:

In all cases we get a contradiction since they all yield stop in a single step which would mean that k + 1 = 0.

c is sequence d1; d2:

We have four cases to prove:

If α = d(x, ℓfrom , ℓto) and α ⊑ ℓadv :

We need to show Case 1 and Case 3.
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Proof of Case 1:

Let I =〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj
where

〈d1; d2,m, pc〉 yi1,ℓauth⊔ℓadv
β1

〈c1,m1, pc1〉 y
i2,ℓauth⊔ℓadv
β2

. . . y
ij ,ℓauth⊔ℓadv
βj

〈cj ,mj , pcj〉

y
i′,ℓauth⊔ℓadv
d(x,ℓfrom ,ℓto)

〈c′,m′, pc′〉

such that i1+ . . .+ ij + j+ i′ = k+1 and s such that m I s be given. We now have two cases based

on j:

Case j is 0:

Since there are no events observable at level ℓauth ⊔ ℓadv we have that

〈d1; d2,m, pc〉 yk+1,ℓauth⊔ℓadv
d(x,ℓfrom ,ℓto)

〈c′,m′, pc′〉.
By applying Lemma 6 (Sequence decomposition) we have two cases:

α is produced by d1
We have 〈d1,m, pc〉 y

k+1,ℓauth⊔ℓadv
d(x,ℓfrom ,ℓto)

〈d′1,m
′, pc′〉 and c′ = d′1; d2. We directly get

what we need by applying the inner induction hypothesis to this run.

α is produced by d2
We have

〈d1,m, pc〉 yk1,ℓauth⊔ℓadv
β 〈stop,m1, pc1〉

and

〈d2,m1, pc1〉 y
k2,ℓauth⊔ℓadv
d(x,ℓfrom ,ℓto)

〈c′,m′, pc′〉

where β 6⊑ ℓauth ⊔ ℓadv and k1 + k2 = k. It follows from applying

Lemma 10 (Observable (non-t̄(, ))-events are only emitted in low contexts) to the run

for d2 that pc1 ⊑ ℓauth ⊔ ℓadv so we can apply the induction hypothesis (with the

attacker level instantiated to ℓauth ⊔ ℓadv ) on the run for d1 and obtain from Case 3

that

〈d1, s, pc〉 y
k1,ℓauth⊔ℓadv
β′ 〈stop, s1, pc1〉

where m1 ∼ℓauth⊔ℓadv s1 and using this we can apply the induction hypothesis to the

d2-run and obtain what we need from Case 1.

Case j > 0:

From the definition of 〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj
we have that 〈c,m |

s, pc〉 ⇒ℓauth⊔ℓadv
β1...βj

〈cj ,mj | sj , pcj〉, and it therefore follows from

Lemma 4 (Preservation of ℓ-equivalence by bridge propagation) that mj ∼ℓauth⊔ℓadv sj .

It must be the case that i′ < k + 1 and we can therefore apply the induction hypothesis on

〈cj ,mj , pcj〉 y
i′,ℓauth⊔ℓadv
α 〈c′,m′, pc′〉 to obtain what we need.

Proof of Case 3:

Suppose we are given s where m ∼ℓadv s. We need to show that

〈d1; d2, s, pc〉 y
n′,ℓadv
d(x,ℓfrom ,ℓto)

〈c′, s′, pc′〉

By applying Lemma 6 (Sequence decomposition) we have two cases based on whether or not the

event is produced by the first or second part of the sequential composition:

α is produced by d1
Then what we need follows directly from applying the inner induction hypothesis.

α is produced by d2
We have that

〈d1,m, pc〉 yk1,ℓadv
β 〈stop,m1, pc1〉

and

〈d2,m1, pc1〉 y
k2,ℓadv
α 〈c′,m′, pc′〉

where β 6⊑ ℓadv . Since we end with a low program-counter, pc′ ⊑ ℓadv , it follows

from applying Lemma 10 (Observable (non-t̄(, ))-events are only emitted in low contexts) to

the run for d2 that pc1 ⊑ ℓadv . Therefore, by applying the inner induction hypothesis on
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〈d1,m, pc〉 y
k1,ℓadv
β 〈stop,m1, pc1〉 and from Case 3 we obtain run 〈d1, s, pc〉 y

k′

1
,ℓadv

β

〈stop, s1, pc1〉 such that m1 ∼ℓadv s1. We can now apply the inner induction hypothesis

on 〈d2,m1, pc1〉 y
k2,ℓadv
α 〈c′,m′, pc′〉 such that Case 1 gives us that 〈d2, s1, pc1〉 y

k′

1
,ℓadv

α

〈c′, s′, pc′〉 and m′ ∼ℓadv s′ which is exactly what we need.

If α = t̄η(ℓauth , ℓto) and α ⊑ ℓadv :

Let I =〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj
where

〈c,m, pc〉 yi1,ℓauth⊔ℓadv
β1

〈c1,m1, pc1〉 y
i2,ℓauth⊔ℓadv
β2

. . . y
ij ,ℓauth⊔ℓadv
βj

〈cj ,mj , pcj〉

and s such that m I s be given. Similarly to the case above, we case on j; the number of intermediate events

that have become observable at the higher attacker-level:

Case j = 0:

We have that 〈d1; d2,m, pc〉 y
k+1,ℓauth⊔ℓadv
t̄η(ℓauth ,pc′) 〈c′,m′, pc′〉 By applying

Lemma 6 (Sequence decomposition) we have two cases:

α is produced by d1
We have that

〈d1,m, pc〉 yk+1,ℓauth⊔ℓadv
β 〈d′1,m

′, pc′〉

and c′ = d′1; d2, so we are done by aplying the inner induction hypothesis to this run.

α is produced by d2
We have

〈d1,m, pc〉 yk1,ℓauth⊔ℓadv
β 〈stop,m1, pc1〉

and

〈d2,m1, pc1〉 y
k2,ℓauth⊔ℓadv
t̄η(ℓauth ,pc′)

〈c′,m′, pc′〉

where β 6⊑ ℓauth ⊔ ℓadv and k1 + k2 = k.

Since the pcdecl that emits the t̄η(ℓauth , pc
′)-event is reached by the run in m we know that

the pc must have satisfied that pc ⊑ ℓauth ⊔ ℓadv . Now since the pc-label cannot decrease

below ℓauth ⊔ ℓadv without emitting ℓauth ⊔ ℓadv -observable events, it must also hold that

pc1 ⊑ ℓauth ⊔ ℓadv .

Furthermore, we know that β cannot be a pcdecl event t̄_(_, _) because then it would have

been an observable event at level ℓauth ⊔ ℓadv which contradicts j = 0. Hence, Case 3 of the

induction hypothesis on the run for d1 applies, and we therefore obtain that

〈d1, s, pc〉 y
k′

1
,ℓauth⊔ℓadv

β′ 〈stop, s1, pc1〉

where s1 ∼ℓauth⊔ℓadv m1. This enables us to apply the induction hypothesis on run for d2 and

from Case 2 we obtain

〈d2, s1, pc1〉 y
k′

2
,ℓauth⊔ℓadv

α′ 〈c′, s′, pc′〉

where s′ ∼ℓauth⊔ℓadv m′. It directly follows that s′ ∼ℓadv m′ as well and furthermore we can

combine the two runs above to obtain

〈d1; d2, s, pc〉 y
k′,ℓadv
α′ 〈c′, s′, pc′〉

as needed.

Case j > 0:

From the definition of 〈∼ℓauth⊔ℓadv 〉
c,pc

ℓauth⊔ℓadv |β1,...,βj
we have that there exists

〈c,m | s, pc〉 ⇒ℓauth⊔ℓadv
β1...βj

〈cj ,mj | sj , pcj〉

and furthermore we have that

〈cj ,mj , pcj〉 y
i′,ℓauth⊔ℓadv
t̄η(ℓauth ,ℓto)

〈c′,m′, pc′〉

Since k > 0 it must be the case that i′ < k + 1 and since I ⊆ (∼ℓauth⊔ℓadv )
we get by Lemma 4 (Preservation of ℓ-equivalence by bridge propagation) that [I]c,pc

ℓauth⊔ℓadv |β1...βj
⊆

(∼ℓauth⊔ℓadv ). Hence, since m I s we have that m ∼ℓauth⊔ℓto s and finally from that we obtain that
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m [I]
c,pc

ℓauth⊔ℓadv |β1...βj
s. This enables us to conclude that mj ∼ℓauth⊔ℓadv sj and we can therefore apply

the induction hypothesis to

〈cj ,mj, pcj〉 y
i,ℓauth⊔ℓadv
t̄η(ℓauth ,ℓto)

〈c′,m′, pc′〉

and obtain what we need from Case 2.

If α 6= t̄(, ) and pc′ ⊑ ℓadv :

Suppose we are given s such that m ∼ℓadv s. We need to show that there exists run 〈d1; d2, s, pc〉 y
k′,ℓadv
α

〈c′, s′, pc′〉 and, if α is not an observable declassify event, that m′ ∼ℓadv s′.

By applying Lemma 6 (Sequence decomposition) we have two cases:

α is produced by d1
Then what we need follows directly from applying the inner induction hypothesis.

α is produced by d2
We then have that

〈d1,m, pc〉 yk1,ℓadv
β 〈stop,m1, pc1〉

and

〈d2,m1, pc1〉 y
k2,ℓadv
α 〈c′,m′, pc′〉

where β 6⊑ ℓadv and k1 + k2 = k. Since we end with a low program-counter, pc′ ⊑ ℓadv , it follows

from Lemma 10 (Observable (non-t̄(, ))-events are only emitted in low contexts) that pc1 ⊑ ℓadv .

Therefore, by applying the inner induction hypothesis on 〈d1,m, pc〉 y
k1,ℓadv
β 〈stop,m1, pc1〉 we

obtain run 〈d1, s, pc〉 y
k1,ℓadv
β 〈stop, s1, pc1〉 such that m1 ∼ℓadv s1. This further entails that m1 I s1

so by applying the inner induction hypothesis on 〈d2,m1, pc1〉 y
k2,ℓadv
α 〈c′,m′, pc′〉 we obtain that

〈d2, s1, pc1〉 y
k′′,ℓadv
α 〈c′, s′, pc′〉 and m′ ∼ℓadv s

′ which is exactly what we need.

If α = t̄η(ℓauth , ℓto) or pc′ 6⊑ ℓadv :

We are given run 〈d1; d2, s, pc〉 y
k′,ℓadv
α′ 〈c′′, s′, pc′′〉 such that m ∼ℓadv s. Then either it must be the case

that α 6⊑ ℓ or α = t̄η(ℓauth , ℓto):

α 6⊑ ℓadv :

It then follows that the finals memories must be related (since none of the run emit any observable

events) and that pc′′ 6⊑ ℓadv .

α = t̄η(ℓauth , ℓto):
We then have that α′ must also be t̄η(ℓauth , ℓto) since otherwise it would have to be an unobservable

event and c′′ would have to be stop, which leads to a contradiction since WF(d1; d2) holds and

therefore the run in s cannot “step over” the pcdecl command. It then also follows that m′ ∼ℓadv s′

since both runs only emit unobservable events up to the t̄η(ℓauth , ℓto) event and the commands c′ and

c′′ must be the same.

c is conditional if e then ct else ce:

Suppose 〈e,m〉 ⇓ 〈base ; ℓv〉. We consider two cases based on whether or not ℓv ⊑ ℓadv .

ℓv ⊑ ℓadv :

From Lemma 8 (Noninterference of expressions) we have that for any memory s such that m ∼ℓadv s, it

holds that 〈e, s〉 ⇓ 〈base; ℓv〉. Hence, any other memory will also be able to step, and it will step to the same

branch. After stepping to euther ct or ce we are done by applying the inner induction hypothesis.

ℓv 6⊑ ℓadv :

We know that after stepping to one of the branches, the program-counter will be pc ⊔ ℓv for which it holds

that ℓadv 6⊑ pc ⊔ ℓv. Now since we know that WF(c) holds, we know that the pc cannot go down in either

branch, so we can apply Lemma 9 to conclude that pc′ 6⊑ ℓadv . Hence we know that c′ = stop and are given

s such that m ∼ℓadv s. We need to show

〈if e then ct else ce, s, pc〉 y
k+1,ℓadv
α′ 〈c′′, s′, pc′′〉 =⇒ c′ = c′′ = stop ∧m′ ∼ℓadv s′ ∧ α′ 6⊑ ℓadv

which follows directly by applying the inner induction hypothesis to either of the branches that the run may

step to.

c is while e do cb:

Follows from unfolding a single evaluation step and applying the same reasoning as above for if e then cb else skip

and sequences.
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c is tiniη to ℓto with eauth do cb:

Follows from unfolding a single evaluation step and applying the same reasoning as above for sequences.

c is eval e {x1, . . . , xn}:

By unfolding a single evaluation step we obtain that e evaluates to a string that can be parsed as a command c. Now

the reasoning is exactly the same as for conditionals if then else since we are either in a case where e is a “low”

value and then any other memory will produce the same string and otherwise we are stepping to a “high” pc and we

can again reason in the same fashion as for conditionals.

D. Proof of top-level definitions

a) Proof of soundness for progress-sensitive NI with declassification and bounded PINI: We are now in position to prove

Theorem 1: Suppose we have an attacker at level ℓ and a run

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

where lev(α) ⊑ ℓ.

Suppose ⌊t⌋ℓ = β1, β2, . . . , βj : Then it must be the case that

〈c,m, pc〉 yi1,ℓ
β1

〈c1,m1, pc1〉 y
i2,ℓ
β2

. . . y
ij ,ℓ

βj
〈cj ,mj , pcj〉 y

i,ℓ
α 〈c′,m′, pc′〉

We have three cases to show:

α is d(x, ℓfrom , ℓto):
We need to show 2 conditions:

k→(c,m, t, ℓ) ⊇ k(c,m, t, ℓ) (1)

k(c,m, t · α, ℓ) ⊇ k(c,m, t, ℓauth ⊔ ℓ) (2)

k→(c,m, t, ℓ) ⊇ k(c,m, t, ℓ):
To show Condition 1, suppose s ∈ k(c,m, t, ℓ). By unfolding the knowledge definition, this

entails that 〈c, s, pc〉 −→∗
t′ 〈c′′, s′′, pc′′〉 where ⌊t′⌋ℓ = ⌊t⌋ℓ and m ∼ℓ s. So using

Lemma 7 (Equivalent runs are synchronized) we have that

〈c,m | s, pc〉 ⇒ℓ
β1,β2,...,βj

〈cj ,mj | sj , pcj〉

Which we can use to conclude thatm [∼ℓ]
c,pc

ℓ|β1,...βj
s, so by Lemma 4 (Preservation of ℓ-equivalence by bridge propagation)

we have that mj ∼ℓ sj .

We need to show that s ∈ k→(c,m, t, ℓ), which now amounts to showing

〈cj , sj , pcj〉 y
k,ℓ

d(x,ℓfrom ,ℓto)
〈c′, s′, pc′〉

Now, it must be the case that pc′ ⊑ ℓ (since d(x, ℓfrom , ℓto) is observable), so this follows directly from Case 3 of

Lemma 2 (Security for monitored evaluations).

k(c,m, t · α, ℓ) ⊇ k(c,m, t, ℓauth ⊔ ℓ):
To show Condition 2, suppose s ∈ k(c,m, t, ℓauth ⊔ ℓ). By unfolding the knowledge definition, this

entails that 〈c, s, pc〉 −→∗
t′ 〈c′′, s′, pc′′〉 where ⌊t′⌋ℓauth⊔ℓ = ⌊t⌋ℓ and m ∼ℓauth⊔ℓ s. So using

Lemma 7 (Equivalent runs are synchronized) we have that

〈c,m | s, pc〉 ⇒ℓauth⊔ℓ
β1,β2,...,βj

〈cj ,mj | sj, pcj〉

where 〈cj ,mj , pcj〉 y
i,ℓ

d(x,ℓfrom ,ℓto)
〈c′,m′, pc′〉

We then need to show that s ∈ k(c,m, t · α, ℓ), which now amounts to showing

〈cj , sj , pcj〉 y
i′,ℓ

d(x,ℓfrom,ℓto)
〈c′, s′, pc′〉

We have that m ∼ℓauth⊔ℓ s so from the synchronized bridge above it follows that mj [(∼ℓauth⊔ℓ)]
c,pc

ℓauth⊔ℓ|β1...βj
sj .

Using Lemma 4 (Preservation of ℓ-equivalence by bridge propagation) we can also conclude that

[(∼ℓauth⊔ℓ)]
c,pc

ℓauth⊔ℓ|β1...βj
⊆ (∼ℓauth⊔ℓ), so it must be the case that mj ∼ℓauth⊔ℓ sj . Now we can obtain exactly what

we need from Case 1 of Lemma 2 (Security for monitored evaluations).

α is t̄η(., .):
We need to show that two conditions:

k(c,m, t · α, ℓ) ⊇ k→(c,m, t, ℓ) (3)

k→(c,m, t, ℓ) ⊇ k(c,m, t, ℓauth ⊔ ℓ) (4)
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k(c,m, t · α, ℓ) ⊇ k→(c,m, t, ℓ):
To show Condition (3), suppose s ∈ k→(c,m, t, ℓ). By unfolding the definition of progress knowledge we therefore

have that 〈c, s, pc〉 −→∗
t′ 〈c

′′, s′, pc′′〉 where ⌊t′⌋ℓ = ⌊t⌋ℓ ·α
′ for some α′ and that m ∼ℓ s. We need to show that s ∈

k(c,m, t · α, ℓ), which amounts to showing that α = α′. Now since we know that α is a public event, we know that

pc ′ ⊑ ℓ and hence we obtain what we need from Case 4 of applying Lemma 2 (Security for monitored evaluations).

k→(c,m, t, ℓ) ⊇ k(c,m, t, ℓauth ⊔ ℓ):
To show Condition (4), suppose s ∈ k(c,m, t, ℓ ⊔ ℓauth ⊔ ℓ). By unfolding the definition of knowledge

this entails that 〈c, s, pc〉 −→∗
t′ 〈c′′, s′, pc′′〉 where ⌊t′⌋ℓauth⊔ℓ = ⌊t⌋ℓauth⊔ℓ and m ∼ℓauth⊔ℓ s. So using

Lemma 7 (Equivalent runs are synchronized) we have that

〈c,m | s, pc〉 ⇒ℓauth⊔ℓ
β1,β2,...,βj

〈cj ,mj | sj, pcj〉

where 〈cj ,mj, pcj〉 y
i,t̄η(ℓauth ,ℓto)
ℓ 〈c′,m′, pc′〉 We need to show that s ∈ k→(c,m, t, ℓ) which now amounts to

showing that there exists α′ such that

〈cj , sj , pcj〉 y
i′,ℓ
α′ 〈c′′, s′, pc′′〉

We have that m ∼ℓauth⊔ℓ s so from the synchronized bridge above it follows that mj [(∼ℓauth⊔ℓ)]
c,pc

ℓauth⊔ℓ|β1,...,βj
sj .

Using Lemma 4 (Preservation of ℓ-equivalence by bridge propagation) we can also conclude that

[(∼ℓauth⊔ℓ)]
c,pc

ℓauth⊔ℓ|β1...βj
⊆ (∼ℓauth⊔ℓ), so it must be the case that mj ∼ℓauth⊔ℓ sj . Again, we are now in a

position to obtain exactly what we need from Case 2 of applying Lemma 2 (Security for monitored evaluations).

Otherwise:

We need to show

k(c,m, t · α, ℓ) ⊇ k(c,m, t, ℓ)

So suppose s ∈ k(c,m, t, ℓ). This entails that there exists run such that 〈c, s, pc〉 −→∗
t′ 〈c

′′, s′′, pc′′〉 where ⌊t′⌋ℓ = ⌊t⌋ℓ =
β1, β2, . . . , βj .

Again, using Lemma 7 (Equivalent runs are synchronized) we can conclude that

〈c,m | s, pc〉 ⇒ℓ
β1,β2,...,βj

〈cj ,mj | sj , pcj〉

such that

〈cj ,mj , pcj〉 y
i,ℓ
α 〈c′,m′, pc′〉

which we can use to conclude that m [∼ℓ]
c,pc

ℓ|β1,...βj
s, so by Lemma 4 (Preservation of ℓ-equivalence by bridge propagation)

we have that mj ∼ℓ sj .

We need to show that s ∈ k(c,m, t · α, ℓ) which amounts to showing that

〈cj , sj, pcj〉 y
m′,ℓ
α 〈c′, s′, pc′〉

Now since we know that α ⊑ ℓ, we know that pc′ ⊑ ℓ. Hence we can conclude what we need from Case 3 of applying

Lemma 2 (Security for monitored evaluations).
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