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Abstract

We present the Flow-Limited Authorization First-Order Logic (FLAFOL), a logic for reasoning

about authorization decisions in the presence of information-flow policies. We formalize the FLAFOL

proof system, characterize its proof-theoretic properties, and develop its security guarantees. In particu-

lar, FLAFOL is the first logic to provide a non-interference guarantee while supporting all connectives of

first-order logic. Furthermore, this guarantee is the first to combine the notions of non-interference from

both authorization logic and information-flow systems. All theorems in this paper are proven in Coq.

1 Introduction

Distributed systems often make authorization decisions based on private data, which a public decision might

leak. Preventing such leakage requires nontrivial reasoning about the interaction between information flow

and authorization policies [Bec10, ALM15, AM16]. In particular, the justification for an authorization de-

cision can violate information-flow policies. To understand this concern, consider a social network where

Bob can say that only his friends may view his photos, and that furthermore only his friends may know the

contents of his friend list. If Alice is not on Bob’s friend list and she is denied access to one of his photos,

the denial leaks Bob’s private information: that Alice is not on Bob’s friend list. Worse, if Alice can indi-

rectly determine what other principals are permitted to see Bob’s photos, she could completely enumerate

the friend list.

Reasoning about the interaction between information flow and authorization policies is challenging

for several reasons. First, authorization logics and information-flow systems use different notions of trust.

Information-flow systems tend to focus on tracking data dependencies by representing information-security

policies as labels on data. They then represent trust as a flows-to relation between labels, which deter-

mines when one piece of data may safely influence another. In contrast, authorization logics tend to di-

rectly encode delegations between principals as a speaks-for relation. Such delegations are often all-or-

nothing, where a delegating principal trusts any statements made by the trusted principal, although some

logics (e.g., [HK00, BFG10, SWS11]) support restricting delegations to specific statements. Flows-to rela-

tions implicitly encode delegations while speaks-for relations implicitly encode permitted flows. To under-

stand how, we must understand how these disparate notions of trust interact.

Both forms of trust serve to selectively constrain the communication that system components rely on

to make secure authorization decisions. For example, in the social network example above, suppose Bob’s

security settings are recorded on server X, and his photos are stored on server Y . When Alice tries to view

*Work done while author was at Cornell University
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Bob’s photo, server Y communicates with serverX to determine if Alice is permitted to do so. Modeling this

communication is important because (1) the servers that Y communicates with influence its authorization

decisions, and (2) communication can leak private information.

Describing the information security of authorization decisions such as the one above requires modifying

typical authorization policies to include information flow. Information-flow systems are excellent at track-

ing when and what information one principal communicates to another, specifically by transferring data

from one label to another. It is less clear when communications occur in authorization logics. A common

approach [SWS11, LABW91, Aba06] simply models Alice delegating trust to Bob as Alice importing all of

Bob’s beliefs.

Authorization logics do, however, excel at reasoning about beliefs. Authorization logics allow us to write

Alice says ϕ, meaning that Alice believes formula ϕ. This says statement is itself a formula, so we can

reason about what Bob believes Alice believes by nesting says formulae. Information flow, in contrast, has

no notion of belief, and so cannot reason about principals’ beliefs about each others’ beliefs.

In order to express authorization policies, not only does one need the ability to express trust and com-

munication, but also a battery of propositions and logical connectives. Any tool that combines authorization

and information flow should be capable of expressing enough logical connectives to reason about real-world

policies. First-order logic seems to be a sweet spot of expressive power: it can encode most authorization

policies, but it is still simple enough to have clean semantics. For instance, Nexus [SWS11,SBR+11]—a dis-

tributed operating system that uses authorization logic directly in its authorization mechanisms—can encode

all of its authorization policies using first-order logic.1

Finally, evaluating any attempt to combine authorization and information flow policies must examine

the resulting security guarantees. Both authorization logics and information-flow systems have a security

property called non-interference. Information-flow systems view non-interference as standard, while autho-

rization logics often view it as desirable but unobtainable. Although the two formulations look quite different,

both make guarantees limiting how one component of a system can influence—i.e., interfere with—another.

In authorization logics, this takes the form “Alice’s beliefs can only impact the provability of Bob’s beliefs

if Bob trusts Alice.” In information-flow systems—which are mostly defined over programs—changing the

value of an input variable x can only change the value of an output variable y when the label of x flows to

the label of y.

Both of these notions of non-interference are important. Consider again the example where Bob’s friend

list is private but Alice attempts to view his photo. Because Bob’s friend list is private, changing the list

should not affect Alice’s beliefs. For instance, Alice should not be affected by Bob adding or removing

Cathy. To enforce this, whether or not Cathy is Bob’s friend must not affect the set of Bob’s beliefs that

Alice may learn. This requires authorization-logic non-interference, since Bob’s beliefs should not affect

Alice’s beliefs unless they communicate. It also, however, requires information-flow non-interference, since

the privacy of Bob’s belief is why he is unwilling to communicate.

Gluing together both ideas of non-interference requires understanding the connection between their

notions of trust. As we have discussed, this connection is difficult to formulate, making the non-interference

combination harder still.

Our goal in this work is to provide a logic that supports reasoning about both information flow and

authorization policies by combining their models of trust to obtain the advantages of both. To this end, we

present the Flow-Limited Authorization First-Order Logic (FLAFOL), which

• provides a notion of trust between principals that can vary depending on information-flow labels,

• clearly denotes points where communication occurs,

1The Nexus Authorization Logic is actually a monadic second-order logic, but this is used only to encode speaksfor; their

examples only use first-order quantification [SWS11].
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• uses says formulae to reason about principals’ beliefs, including their beliefs about others’ beliefs,

• is expressive enough to encode real-world authorization policies, and

• provides a strong security guarantee which combines both authorization-logic and information-flow

non-interference.

We additionally aim to clarify the foundations of flow-limited authorization (introduced by Arden et

al. [ALM15]). We therefore strive to keep FLAFOL’s model of principals, labels, and communication as

simple as possible. For example, unlike previous work, we do not require that labels form a lattice.

A final contribution is an implementation of FLAFOL in Coq [Coq04] and formal proofs of all theorems

in this paper.2 Together these consists of 18,384 lines of Coq code. For more details, see Appendix C.

We are, of course, not the first to recognize the important interaction of information-flow policies

with authorization, but all prior work in this area is missing at least one important feature. The three

projects that have done the most to combine authorization and information flow are FLAM [ALM15],

SecPAL+ [BFG10,Bec10], and AURA [JVM+08, JZ09]. FLAM models trust using information flow, AURA

uses DCC [ABHR99, Aba06], a propositional authorization logic, and SecPAL+ places information flow

labels on principal-based trust policies, but does not attempt to reason about the combination at all. Neither

FLAM nor SecPAL+ can reason about nested beliefs, and both are significantly restricted in what logical

forms are allowed. Finally, FLAM’s security guarantees are non-standard and difficult to compare to other

languages (see Section 8), while AURA relies on DCC’s non-interference guarantee which does not apply

on any trust relationships outside of those assumed in the static lattice.

The rest of this paper is organized as follows: In Section 2 we discuss three running examples. This

also serves as an intuitive introduction to FLAFOL. In Section 3 we show how FLAFOL’s parameterization

allows it to model real systems. In Section 4 we detail the FLAFOL proof rules. In Section 5 we discuss the

proof theory of FLAFOL, proving important meta-level theorems, including consistency and cut elimination.

In Section 6 we provide FLAFOL’s non-interference theorem. We discuss related work in Section 8, and

finally we conclude in Section 9.

2 FLAFOL By Example

We now examine several examples of authorization policies and how FLAFOL expresses them. This will

serve as a gentle introduction to the main ideas of FLAFOL, and introduce notation and running examples

we use throughout the paper.

We explore three main examples in this section:

1. Viewing pictures on social media

2. Sanitizing data inputs to prevent SQL injection attacks

3. Providing a hospital bill in the presence of reinsurance

Each setting has different requirements, such as defining the meaning of labels in its own way. The ability

of FLAFOL to adapt to each demonstrates its expressive power. In a new setting, it is often convenient—

even necessary—to define constants, functions, and relations beyond those baked into FLAFOL. FLAFOL

supports this by being parameterized over such definitions and having a security guarantee which holds for

any parameterization. We use such symbols freely in our examples to express our intent clearly. Formally,

FLAFOL interprets them using standard proof-theoretic techniques, as we see in Section 3.

Notably, FLAFOL does not allow computation on terms, so the meaning of functions and constants are

axiomatized via FLAFOL formulae. This allows principals to disagree on how functions behave, which can

2The Coq code is available at https://github.com/FLAFOL/flafol-coq.
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be useful in modeling situations where each principal has their own view of some piece of data.

2.1 Viewing Pictures on Social Media

We begin by reconsidering in more detail the example from Section 1 where Alice requests to view Bob’s

picture on a social-media service. This service allows Bob to set privacy policies, and Bob made his pictures

visible only to his friends. When Alice makes her request, the service can check if she is authorized by

scanning Bob’s friend list. If she is on the list and the photo is available, it shows her the photo. If she is not

on Bob’s friend list, it shows her HTTP 403: Forbidden.

Bob may choose who belongs in the role of “friend.” Following the lead of other authorization logics,

FLAFOL represents Bob believing that Alice is his friend as Bob says IsFriend(Alice). Since says state-

ments can encompass any formula, we can express the fact that Bob believes that Alice is not his friend as

Bob says ¬IsFriend(Alice).
We interpret these statements as Bob’s beliefs. This reflects the fact that Bob could be wrong, in the

sense that he may affirm formulae with provable negations. There is no requirement that Bob believes all

true things nor that Bob only believe true things (see Section 4), so holding an incorrect belief does not

require Bob to believe False. Note that because False allows us to prove anything, a principal who does

believe False will affirm every statement.

Now imagine that, as in Section 1, the social-media service allows Bob to set a privacy policy on his

friend list as well. As before, Bob can restrict his friend list so that only his friends may learn its contents. In

order to discuss such a policy in FLAFOL, we need a way to express that Bob’s friend list is private. Since,

formally, his friend list is a series of beliefs about who his friends are, we must express the privacy of those

beliefs. We view this as giving each belief a label describing Bob’s policy about who may learn that belief.

Syntactically, we attach this label to the says connective. For example, Bob may use the label Friends to

represent the information-security policy “I will share this with only my friends.”

If he attaches this policy to the beliefs representing his friend list, there is no way to securely prove either

Bob saysℓ IsFriend(Alice) or Bob saysℓ ¬IsFriend(Alice) when ℓ is less restrictive than Friends. To see

why, imagine what happens when Alice makes her request. If she is on Bob’s friend list, she may again see

the photo. However, if she is not, showing her an HTTP 403 page would leak Bob’s private information;

Alice would learn that she is not on Bob’s friend list, something Bob only shared with his friends. Since

FLAFOL’s security guarantee (Theorem 7) shows that every FLAFOL proof is secure, neither option is

provable in FLAFOL. Clearly Bob needs to define a more permissive policy on his friend list.

If Bob’s friend list were public, simply checking the list would be enough to prove either of the above

statements. FLAFOL can easily express this by labeling each of Bob’s beliefs about IsFriend as Public.

Another, more subtle, change would be to say that every principal can find out whether they are on Bob’s

friend list, but only Bob’s friends can see the rest of the list. FLAFOL can also express this policy and

prove it decidable, but doing so will require significant infrastructure using the technology we will build in

Sections 3 and 4. We show how to express this policy in Appendix A.1.

This example demonstrates how naively reasoning about authorization with information flow can cause

leaks, and how FLAFOL can help reason about those beliefs, leading to enforceable policies that capture

the intent of system developers.

2.2 Integrity Tracking to Prevent SQL Injection

For our second example, imagine a stateful web application. It takes requests, updates its database, and

returns web pages. In order to avoid SQL injection attacks, the system will only update its database based

on high-integrity input. However, it marks all web request inputs as low integrity, representing the fact that
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they may contain attacks. The server has a sanitization function San that will neutralize attacks, so when it

encounters a low-integrity input, it is willing to sanitize that input and endorse the result.

FLAFOL’s support for arbitrary implications allows it to easily encode such endorsements. Let the pred-

icate DBInput(x) mean that a value x—possibly taken from a web request—is a database input. When a

user makes a request with database input x, we can thus represent it as System saysLInt DBInput(x). Here

LInt represents low-integrity beliefs. We represent the system’s willingness to endorse any sanitized input

as:

System saysLInt DBInput(x) → System saysHInt DBInput(San(x))

This example shows the power of arbitrary implications for expressing authorization and information-

flow policies. It also, however, demonstrates their dangers, since unconstrained downgrades can allow infor-

mation to flow in unintended ways. In Section 6 we will discuss how non-interference (Theorem 7) adapts

to these downgrades by weakening its guarantees.

2.3 Hospital Bills Calculation and Reinsurance

Imagine now that Alice finds herself in the hospital. Luckily her employer provides health insurance, but

they have just switched companies. Now she has two unexpired insurance cards, and she cannot figure out

which one is valid. Thus, either of two insurers, I1 and I2, may be paying.

Imagine further that Bob’s job is to create a correct hospital bill for Alice. He uses the label ℓH to

determine both who may learn the contents of Alice’s bill and who may help determine them. That is, ℓH
expresses both a confidentiality policy and an integrity policy. Bob believes that Alice’s insurer may help

determine the contents of Alice’s bill, since they can decide what they are willing to pay for Alice’s surgery.

Bob knows that I2 has a reinsurance contract with I1. This means that if Alice is insured with I2 and the

surgery is very expensive, I1 will pay some of the bill. Thus, I1 may help determine the contents of Alice’s

hospital bill, even if I2 turns out to be her current insurer.

Bob is willing to accept Alice’s insurance cards as evidence that she is insured by either I1 or I2, which

we can express as Bob saysℓH (CanWrite(I1, ℓH) ∨ CanWrite(I2, ℓH)). Because Bob knows about I2’s

reinsurance contract with I1, he knows that if I2 helps determine the contents of Alice’s bill, they will

delegate some of their power to I1, which we express as Bob saysℓH (I2 saysℓH CanWrite(I1, ℓH)).
Bob’s beliefs allow him to prove that I1 may help determine the contents of Alice’s bill, since by assum-

ing the previous two statements we can prove that Bob saysℓH CanWrite(I1, ℓH). There are two possible

cases: if Bob already believes that I1 can help determine the contents of Alice’s bill, we are done. Other-

wise, Bob believes that I2 can help determine the contents of Alice’s bill, and so Bob is willing to let I2
delegate their power. Since he knows that they will delegate their power to I1, he knows that I1 can help

determine the contents of Alice’s bill in this case as well. This covers all of the cases, so we can conclude

that Bob saysℓH CanWrite(I1, ℓH).
We think of Bob as performing this proof, since it is entirely about Bob’s beliefs. From this point of view,

Bob’s ability to reason about I2’s beliefs appears to be Bob simulating I2. This ability of one principal to

simulate another provides the key intuition to understand the generalized principal, a fundamental construct

in the formal presentation of FLAFOL (see Section 3).

We also note that Bob used I2’s beliefs in this proof, even though he does not necessarily trust I2.

However, he might trust it if it turns out to be Alice’s insurer. Because Bob trusts I2 in part of the proof but

not in general, we refer to this as discoverable trust. FLAFOL’s ability to handle discoverable trust makes

reasoning about its security properties more difficult, as we see in Section 6.

This example shows how disjunctions can be used to express policies when principals do not know the

state of the world. It also demonstrates how disjunctions make it difficult to know how information can

flow at any point in time, since we may discover new statements of trust under one branch of a disjunction.

5



FLAFOL’s non-interference theorem adapts to this by considering all declarations of trust that could possibly

be discovered in a given context.

2.4 Further Adapting FLAFOL

All of the above examples use information-flow labels to express confidentiality policies, integrity policies,

or both. While confidentiality and integrity are mainstay features of information flow tracking, information-

flow labels can also express other properties. For instance, MixT [MM18] describes how to use information-

flow labels to create safe transactions across databases with different consistency models, and the work of

Zheng and Myers [ZM05] uses information-flow labels to provide availability guarantees. FLAFOL allows

such alternative interpretations of labels by using an abstract permission model to give meaning to labels.

By default, the permissions gain meaning only through their behavior in context, but they are able to

encode and reason about a wide variety of authorization mechanisms. In Section 3, we see how FLAFOL can

be used to reason about capabilities, and in Appendix B we discuss a model closer to military classification.

3 Using FLAFOL

In this section, we examine how to use FLAFOL to reason about real systems. To do this, we look at

a fictional verified-distributed-systems designer Dana. She wants to formally prove that confused-deputy

attacks are impossible in her capability-based system with copyable, delegatable read capabilities. Dana

employs a six-step process to reason about her system in FLAFOL:

1. Decide on a set S of sorts of data she wants to represent.

2. Choose a set F of function symbols representing operations in the system, and give those operations

types.

3. Choose a set R of relation symbols representing atomic facts to reason about, and give the relations types.

4. Develop axioms that encode meaning for these relationships.

5. Specify meta-level theorems stating her desired properties.

6. Prove that those meta-level theorems hold.

Sorts. First, Dana decides on what sorts of data she wants to represent. We can think of sort as the logic

word for “type.” FLAFOL is defined with respect to a set S of sorts that must include at least Label and

Principal, but may contain more. Dana wants to reason about capability tokens that grant read access to

data, so she also includes a sort named Token.

Dana uses the Principal sort to represent system principals, but conceptually divides the Label sort into

Confidentiality and Integrity, two sorts which she also adds. Each Confidentiality value defines a confiden-

tiality policy which may be applied to many pieces of data. A capability (which is always public itself) grants

read access to data governed by one or more such policies. She uses the Integrity sort to represent integrity

policies on tokens themselves. We will see below how she can enforce Label = Confidentiality × Integrity.

Function Symbols. Dana next decides on operations she wants to reason about. This is also her chance

to define constants using nullary operations. Formally, FLAFOL is defined with respect to an arbitrary set

F of function symbols. Each function comes equipped with a signature, or type, expressing when it can be

applied.

Dana considers what information she needs about a given token. She needs a way to determine which

confidentiality level a token grants permission to read, the integrity of that token, and which principal is the
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token’s root of authority—that is, who created the token. She thus creates three function symbols:

TknConf : Token → Confidentiality

IntegOfTkn : Token → Integrity

RootOfAuth : Token → Principal

She also needs to be able to determine the integrity that a principal commands, so she includes a function

symbol IntegOf : Principal → Integrity. Finally, since a token can potentially be transferred to anyone in

her system, she creates a constant Public : Confidentiality to represent this.

Dana wants to enforce that labels are pairs of confidentiality and integrity. She therefore creates two

“projection” function symbols πC and πI , and a third pair symbol ( , ) with the following signatures:

πC : Label → Confidentiality

πI : Label → Integrity

( , ) : Confidentiality → Integrity → Label

The first two ensure that labels contain a confidentiality and an integrity, while pairing allows creation of

labels from a confidentiality with an integrity. This makes labels pairs of confidentiality and integrity. Dana

also adds axioms corresponding to the η and β laws for pairs.

Relation Symbols. Dana can now choose relations representing facts that she wants to reason about. Along

with sorts and functions, FLAFOL is defined with respect to a set R of relation symbols, allowing it to reason

about more facts. The set R must include at least flows-to (⊑), CanRead, and CanWrite, but may contain

more. We call these required relations permissions because they define the trust relationships governing

communication. The relation ℓ ⊑ ℓ′ means information with label ℓ can affect information with label ℓ′,
CanRead(p, ℓ) means that principal p may learn beliefs with label ℓ, and CanWrite(p, ℓ) means p may

influence beliefs with label ℓ.
Dana is able to use these relations to define the permissions her capability tokens grant. She also includes

a fourth relation in R, HasToken(Principal,Token), defining token possession: if HasToken(p, t), then

principal p has (a copy of) token t.

Axioms. Dana describes the behavior of her system with axioms that use the sorts, functions, and relations

she defined above. These should be consistent, in the sense that they do not allow a derivation of False.

Theorem 2 in Section 5.1 gives conditions under which all of the axioms that we will discuss in this section

are consistent.

Dana uses three main axioms: one describing how tokens may be copied and delegated, one describing

when one principal may read another’s beliefs, and one describing when a principal may affect another’s

beliefs. She may use more axioms if she likes—e.g., to capture principals’ beliefs about permitted flows

between labels.

Dana’s first axiom allows any principal to copy any capability it holds and give that copy to another

principal:

∀q :Principal.∀t :Token.
(

∃p :Principal.HasToken(p, t)
∧ p says(Public,IntegOfTkn(t)) HasToken(q, t)

)

→ HasToken(q, t)

This says that, for principals p and q, if p holds a read capability token t, p can pass t to q. To do so, p must

affirm that q has t at a public label with the integrity of the token. Note that the use of Public here means

Dana’s system must allow everyone to learn whenever one principal copies a token and passes it to another.
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Sorts σ ::= Label | Principal | · · ·
Labels ℓ

Principals p, q, r
Functions f ::= · · ·
Relations R ::= CanRead(Principal, Label)

| CanWrite(Principal, Label)
| Label ⊑ Label | · · ·

σ-terms t ::= x | f(t1, . . . , tn)
Formulae ϕ, ψ, χ ::= R(t1, . . . , tn)

| True | False
| ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ
| ∀x :σ. ϕ | ∃x :σ. ϕ
| p says

ℓ
ϕ

Generalized

Principals
g ::= 〈〉 | g · p〈ℓ〉

Figure 1: FLAFOL Syntax

Dana’s second axiom defines when a principal p allows q to read a belief of p’s labeled ℓ. First, p checks

that q has a token, and that p believes that the token gives read access to something at least as confidential

as ℓ. Second, p checks to make sure that the token’s root authority may influence this belief:

∀q :Principal.∀ℓ :Label.∀p :Principal.∀ℓ′ :Label.




∃t :Token.HasToken(q, t)
∧ p saysℓ′ πC(ℓ) ⊑ TknConf(t)
∧ p saysℓ′ CanWrite(RootOfAuth(t), ℓ′)



→ p saysℓ′ (CanRead(q, ℓ))

More formally, it says that if q holds some token t and p believes both that t grants read permissions for ℓ’s
confidentiality and that the root of authority for t can influence p’s beliefs at ℓ′, then p will allow q to read

ℓ. This defines what it means for a principal (p here) to believe that a token grants read access to their

data. Dana now needs to make sure that whenever a read access is granted in her system, not only does the

principal who gets read access have a token, but that the principal who owns the data does indeed believe

that the token grants read access to that data.

Finally, her third axiom states that one principal p believes that another principal q, can write a label ℓ if

p believes that the integrity of q flows to the integrity of ℓ:

∀q :Principal.∀ℓ :Label.∀p :Principal.∀ℓ′ :Label.
p saysℓ′ (IntegOf(q) ⊑ πI(ℓ)) → p saysℓ′ (CanWrite(q, ℓ))

Dana then needs to make sure that write accesses are only granted to principals with high enough integrity.

Metatheoretic Properties. Dana has now created a model of her system, so she can use it to state and

prove properties of her system as meta-theorems. Luckily, Rajani, Garg, and Rezk [RGR16] have shown

that information-flow integrity tracking with a non-interference result is sufficient to avoid confused deputy

attacks with capability systems. Therefore Theorem 7 provides the guarantees she needs.

FLAFOL Syntax. This example demonstrates FLAFOL’s flexibility as a powerful tool for reasoning about

authorization mechanisms in the presence of information-flow policies. We saw that, since FLAFOL is

defined with respect to the three sets S , F , and R, it can express the key components of a system. This

parameterized definition gives rise to the formal FLAFOL syntax in Figure 1.

8



FLOWSTOREFL
Γ ⊢ ℓ ⊑ ℓ @ g

FLOWSTOTRANS
Γ ⊢ ℓ1 ⊑ ℓ2 @ g Γ ⊢ ℓ2 ⊑ ℓ3 @ g

Γ ⊢ ℓ1 ⊑ ℓ3 @ g

CRVAR
Γ ⊢ CanRead(p, ℓ2) @ g Γ ⊢ ℓ1 ⊑ ℓ2 @ g

Γ ⊢ CanRead(p, ℓ1) @ g

CWVAR
Γ ⊢ CanWrite(p, ℓ1) @ g Γ ⊢ ℓ1 ⊑ ℓ2 @ g

Γ ⊢ CanWrite(p, ℓ2) @ g

Figure 2: Permission Rules

In order to use the function and relation symbols and incorporate axioms, FLAFOL allows proofs to

occur in a context. FLAFOL additionally includes rules requiring flows-to to be reflexive and transitive,

placing a preorder on the Label sort,3 and requiring CanRead and CanWrite to respect a form of variance.

If ℓ1 ⊑ ℓ2 and Alice can read data A with label ℓ2, then she may learn information about data with label ℓ1
used to calculate A. This means she should also be able to read data with label ℓ1. Thus, CanRead must

(contravariantly) respect the preorder on labels. Similarly, if Alice can help determine some piece of data B
labeled with ℓ1, she can influence any data labeled with ℓ2 that is calculated from B, so Alice should be able

to help determine data labeled at ℓ2. Thus, CanWrite must (covariantly) respect the preorder on labels.

Figure 2 presents these rules formally. We give the proof rules in the form of a sequent calculus. The

trailing @ g represents who affirms that formula in the proof, similarly to how says formulae represent

who affirms a statement at the object level. Unlike says formulae, these meta-level objects—which we call

generalized principals—encode arbitrary reasoners, including possibly-simulated principals.

Recall from Section 2.3 that we can think of some proofs as being performed by principals if those

proofs entirely involve that principal’s beliefs. In that example, Bob reasoned about his belief that another

principal, the insurer I2, trusted a third principal, the insurer I3. We think of this ability to reason about the

beliefs of others as the ability to simulate other principals. In fact, because principals’ beliefs are segmented

by labels, principals can have multiple simulations of the same other principal.

This suggests that FLAFOL captures the reasoning of principals at some level of simulation. A gener-

alized principal is a stack of principal/label pairs, representing a stack of simulators and simulations. The

empty stack, written 〈〉, represents ground truth. A stack with one more level, written g · p〈ℓ〉, represents

the beliefs of p at level ℓ according to the generalized principal g. Figure 1 contains the formal grammar for

generalized principals.

4 Proof System

So far, we have discussed the intuitions behind FLAFOL and its syntax. Here we introduce FLAFOL for-

mally. Unfortunately, we cannot examine every aspect of FLAFOL’s formal presentation in detail, though

interested readers should see Appendix D. Instead, we discuss the most novel and most security-relevant

aspects of FLAFOL’s design.

FLAFOL sequents are of the form Γ ⊢ ϕ @ g, where Γ is a context containing beliefs. This means that

the FLAFOL proof system manipulates beliefs, as described in Section 3. Readers familiar with sequent

3Many information-flow tools require their labels to form a lattice. We find that a preorder is sufficient for FLAFOL’s design

and guarantees, so we decline to impose additional structure. In Section 5.1 we show that enforcing a lattice structure is both simple

and logically consistent.
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FALSEL
Γ,False @ g ⊢ ϕ @ g · g′

IMPL
Γ ⊢ ϕ @ 〈〉 Γ, ψ @ g ⊢ χ @ g′

Γ, (ϕ→ ψ @ g) ⊢ χ @ g′
IMPR

Γ, ϕ @ 〈〉 ⊢ ψ @ g

Γ ⊢ ϕ→ ψ @ g

SAYSL
Γ, ϕ @ g · p〈ℓ〉 ⊢ ψ @ g′

Γ, p says
ℓ
ϕ @ g ⊢ ψ @ g′

SAYSR
Γ ⊢ ϕ @ g · p〈ℓ〉

Γ ⊢ p says
ℓ
ϕ @ g

VARR

Γ ⊢ ϕ @ g · p〈ℓ′〉 · g′

Γ ⊢ ℓ′ ⊑ ℓ @ g · p〈ℓ〉

Γ ⊢ ϕ @ g · p〈ℓ〉 · g′
FWDR

Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

Γ ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉 Γ ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

Γ ⊢ ϕ @ g · q〈ℓ〉 · g′

Figure 3: Selected FLAFOL Proof Rules

calculus may recognize that FLAFOL is intuitionistic, as there is only one belief on the right side of the

turnstile.4

Sequent calculus rules tend to manipulate beliefs either on the left or the right side of the turnstile. For

instance, consider the FLAFOL rules for disjunctions:

ORL
Γ, ϕ @ g ⊢ χ @ g′ Γ, ψ @ g ⊢ χ @ g′

Γ, (ϕ ∨ ψ @ g) ⊢ χ @ g′
ORR1

Γ ⊢ ϕ @ g

Γ ⊢ ϕ ∨ ψ @ g
ORR2

Γ ⊢ ψ @ g

Γ ⊢ ϕ ∨ ψ @ g

We find it easiest to read left rules “up” and right rules “down.” With this reading, the ORL rule tells us how

to use an assumption of the form ϕ ∨ ψ @ g in order to prove a belief χ @ g′ by performing case analysis.

That is, ORL tells us how to prove χ @ g′ assuming ϕ∨ψ @ g if we can prove that χ @ g′ assuming ϕ @ g
and separately assuming ψ @ g.

The ORR1 rule takes a proof of ϕ @ g and uses it to prove ϕ ∨ψ @ g. The ORR2 rule is symmetric, so

it takes a proof of ψ @ g and uses it to prove ϕ ∨ ψ @ g.5

Note that these rules (along with the says rules discussed below) allow says to distribute over disjunc-

tions. That is, given p saysℓ (ϕ ∨ ψ), we can prove (p saysℓ ϕ) ∨ (p saysℓ ψ). In an intuitionistic logic

like FLAFOL, disjunctions must be a proof of one side or the other. The proof that says distributes over ∨
then says that if p has evidence of either ϕ or ψ, then p can examine this evidence to discover whether it is

evidence of ϕ or of ψ.

Most of the rules of FLAFOL are standard rules for first-order logic, but with generalized principals

included to indicate who believes each formula. For instance, the rules for disjunctions above were likely

familiar to those who know sequent calculus.

Figure 3 contains FLAFOL rules selected for discussion. The first, FALSEL, tells us how to use False

as an assumption. In standard intuitionistic first-order logic, this is simply the principle of Ex Falso: if we

assume False, we can prove anything. In FLAFOL, a generalized principal who assumes false is willing

to affirm any formula. This includes statements about other principals, so FALSEL extends the generalized

principal arbitrarily. We use g ·g′ as notation for extending the generalized principal g with a list of principal-

label pairs, denoted g′.

4Recall that we argued in Section 2.1 that reasoning about authorization and information-flow security together is naturally

intuitionistic, since we cannot securely conclude ϕ or ¬ϕ in some naturally-occurring contexts.
5For readers interested in learning more about sequent calculus, we recommend MIT’s interactive tool for teaching sequent

calculus as a tutorial [Yan12].
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The implication rules IMPR and IMPL interpret the premise of an implication as ground truth, while the

generalized principal who believes the implication believes the consequent. In particular, this means that

says statements do not distribute over implication as one might expect, i.e., p saysℓ (ϕ → ψ) does not

imply that (p saysℓ ϕ) → (p saysℓ ψ). Instead, p saysℓ (ϕ → ψ) implies ϕ→ (p saysℓ ψ). We can thus

think of implications as conditional knowledge. That is, if a generalized principal g believes ϕ→ ψ, then g
believes ψ conditional on ϕ being true about the system.

We can still form implications about generalized principals’ beliefs, but we must insert appropriate says

statements into the premise to do so. In Section 5.5, we discuss how this semantics is necessary for both our

proof theoretic and our security results.

The next two rules of Figure 3, SAYSR and SAYSL, are the only rules which specifically manipulate

says formulae. Essentially, generalized principals allow us to delete the says part of a formula while not

forgetting who said it. Thus, generalized principals allow us to define sequent calculus rules once for every

possible reasoner.

The final rules, VARR and FWDR, define communication in FLAFOL. Both manipulate beliefs on the

right and have corresponding left rules, which act contravariantly and can be found in Appendix D.

Information-flow communication is provided by the variance rule VARR. This can be thought of like the

variance rules used in subtyping. Most systems with information-flow labels do not have explicit variance

rules, but instead manipulate relevant labels in every rule. By adding an explicit variance rule, we not only

simplify every other FLAFOL rule, we also remove the need for the label join and meet operators that

are usually used to perform the label manipulations. Others have noted that adding explicit variance rules

simplifies the design of the rest of the system [VSI96, Alg18], but it remains an unusual choice.

The forwarding rule FWDR provides authorization-logic-style communication. In FLAFOL, p can for-

ward a belief at label ℓ to q if:

• p is willing to send its beliefs at label ℓ to q, denoted p saysℓ CanRead(q, ℓ), and

• q is willing to allow p to determine its beliefs at label ℓ, denoted q saysℓ CanWrite(p, ℓ).

After establishing this trust, p can package up its belief and send it to q, who will believe it at the same label.

5 Proof Theory

In this section, we evaluate FLAFOL’s logical design. We show that FLAFOL has the standard sequent calcu-

lus properties of (positive) consistency and cut elimination and discuss fundamental limitations that inform

our unusual implication semantics. We also develop a new proof-theoretic tool, compatible supercontexts,

for use in our non-interference theorem in Section 6.

5.1 Consistency

One of the most important properties about a logic is consistency, meaning it is impossible to prove False.

This is not possible in an arbitrary context, since one could always assume False. One standard solution is

to limit the theorem to the empty context. By examining the FLAFOL proof rules, however, we see that it

is only possible to prove False by assumption or by Ex Falso. Either method requires that False already be

on the left-hand side of the turnstile, so if False can never get there, then it should be impossible to prove.

To understand when False can appear on the left-hand side of the turnstile, we note that formulae on

the left tend to stay on the left and formulae on the right tend to stay on the right. The only exception is

the implication rules IMPL and IMPR which move the premise of the implication to the other side. The fact

that no proof rule allows us to change either side of the sequent arbitrarily gives useful structure to proofs.

To handle implications, however, we must keep track of their nesting structure, which we do by considering

11



s ∈ {+,−} + = − − = +

ϕs ≤ ϕs

ϕs ≤ ψs
′

ψs
′

≤ χs
′′

ϕs ≤ χs
′′

ϕs ≤ (ϕ ∨ ψ)s ψs ≤ (ϕ ∨ ψ)s ϕs ≤ (ϕ ∧ ψ)s

ψs ≤ (ϕ ∧ ψ)s ϕs ≤ (ϕ→ ψ)s ψs ≤ (ϕ→ ψ)s (ϕ[x 7→ t])− ≤ (∀x :σ. ϕ)−

ϕ+ ≤ (∀x :σ. ϕ)+ ϕ− ≤ (∃x :σ. ϕ)− (ϕ[x 7→ t])+ ≤ (∃x :σ. ϕ)+ ϕs ≤ (p says
ℓ
ϕ)s

Figure 4: Signed Subformula Relation

signed formulae. We call a formula in a sequent positive if it appears on the right side of the turnstile and

negative if it appears on the left. If ϕ is positive we write ϕ+, and if ϕ is negative we write ϕ−.

Figure 4 contains the rules for the signed subformula relation.

Note that every subformula of a signed formula has a unique sign. If a subformula appears by itself in

a sequent during a proof, then which side of the turnstile it is on is determined by its sign. This structure

results in the following formal property.

Theorem 1 (Left Signed-Subformula Property). If Γ ⊢ ϕ @ g1 appears in a proof of ∆ ⊢ ψ @ g2, then for

all χ1 @ g3 ∈ Γ, either (1) χ−

1 ≤ ψ+ or (2) there is some χ2 @ g4 ∈ ∆ such that χ−

1 ≤ χ−

2 .

This proof follows by induction on the FLAFOL proof rules.

Many logics also have a similar right signed-subformula property. FLAFOL does not enjoy that property

since Γ ⊢ ϕ @ g1 may be a side condition on a forward or a variance rule, and thus not related directly to ψ.

This property allows us to prove an important result about the consistency of FLAFOL.

Theorem 2 (Positive Consistency). For any context Γ, if

False− � ϕ− for all ϕ @ g ∈ Γ

then Γ 0 False @ g′.

The proof follows by induction on the FLAFOL proof rules. Note that formulae which do not contain

False as a negative subformula are called positive formulae, explaining the name.

We get the result with an empty context as a corollary. This states that False is not a theorem of

FLAFOL.

Corollary 1 (Consistency). 0 False @ g

Theorem 2 demonstrates that a variety of useful constructs are logically consistent. For instance, we

can add a lattice structure to FLAFOL’s labels. We can define join (⊔) and meet (⊓) as binary function

symbols on labels and ⊤ and ⊥ as label constants. Then we can simply place the lattice axioms (e.g.,

∀ℓ : Label. ℓ ⊑ ⊤) in our context to achieve the desired result. Since none of the lattice axioms include

False, Theorem 2 ensures that they are consistent additions to the logic.

5.2 Simulation

In (multi-)modal logics, we are interested in modeling perfect reasoners. That is, reasoners should reason

correctly based on their assumed beliefs; if their assumed beliefs were true, then all of their derived beliefs

would be as well.
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In most logics (which do not have generalized principals, this is axiomatized as a rule in the system,

written as follows:
Γ ⊢ ϕ

p saysℓ Γ ⊢ p saysℓ ϕ

Here, p saysℓ Γ refers to a copy of Γ with p saysℓ in front of every formula in Γ. In such logics, this is the

main rule for manipulating says statements. However, this requires removing all beliefs that are not those of

p at level ℓ in a context before using this rule to reason as p at level ℓ.
FLAFOL instead uses the says introduction rules in Section 4, which allows us to retain the beliefs of

other principals and of p at other labels, making it easier to discuss communication. This difference causes

no harm. FLAFOL reasoners are still be perfect reasoners, which we show by proving a theorem analogous

to the above rule. We refer to this as the simulation theorem, since it says that p is correctly simulating the

world in its head.

Adopting the above rule directly fails for two reasons. The first is that our belief syntax pushes says

statements into generalized principals, so we must place the new principal-label pair at the beginning of

the generalized principal instead of on the formula. The second is that the semantics of implications in

FLAFOL mean that p saysℓ (ϕ→ ψ) has different semantics from (p saysℓ ϕ) → (p saysℓ ψ). To address

this concern, we define the ⊙ operator:

p〈ℓ〉 ⊙ ϕ ,











































(p saysℓ (p〈ℓ〉 ⊙ ψ)) → (p〈ℓ〉 ⊙ χ) ϕ = ψ → χ

(p〈ℓ〉 ⊙ ψ) ∧ (p〈ℓ〉 ⊙ χ) ϕ = ψ ∧ χ

(p〈ℓ〉 ⊙ ψ) ∨ (p〈ℓ〉 ⊙ χ) ϕ = ψ ∨ χ

∀x :σ. (p〈ℓ〉 ⊙ ψ) ϕ = ∀x :σ. ψ

∃x :σ. (p〈ℓ〉 ⊙ ψ) ϕ = ∃x :σ. ψ

ϕ otherwise

This essentially “repairs” implications to have the right says statements in front of the premise.

Because FLAFOL can move says statements into generalized principals, we need to lift the operator to

beliefs. In doing so, we must place p〈ℓ〉 at the beginning of the generalized principal, leading to the following

definition:

p〈ℓ〉 ⊙ (ϕ @ 〈〉 · g′) , (p〈ℓ〉 ⊙ ϕ) @ 〈〉 · p〈ℓ〉 · g′,

From there we can lift the operator to contexts as well.

p〈ℓ〉 ⊙ Γ ,

{

· Γ = ·

(p〈ℓ〉 ⊙ Γ′) , p〈ℓ〉 ⊙ (ϕ @ g) Γ = Γ′, ϕ @ g

With this definition in hand, we can now state the simulation theorem in full:

Theorem 3 (Simulation). The following rule is admissible:

Γ ⊢ ϕ @ g

(p〈ℓ〉 ⊙ Γ) ⊢ p〈ℓ〉 ⊙ (ϕ @ g)

5.3 Compatible Supercontexts

To prove Theorem 2 we needed to consider the possible locations of formulae within a sequent, but in

Section 6 we will need to reason about the possible locations of beliefs. To enable this, we introduce the

concept of a compatible supercontext (CSC). Informally, the CSCs of a sequent are those contexts that
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CSCREFL
Γ ≪ Γ ⊢ ϕ @ g

CSCUNION
∆1 ≪ Γ ⊢ ϕ @ g ∆2 ≪ Γ ⊢ ϕ @ g

∆1 ∪∆2 ≪ Γ ⊢ ϕ @ g

CSCORL1
∆ ≪ Γ, ϕ @ g ⊢ χ @ g′

∆ ≪ Γ, (ϕ ∨ ψ @ g) ⊢ χ @ g′
CSCIMPR

∆ ≪ Γ, ϕ @ 〈〉 ⊢ ψ @ g

∆ ≪ Γ ⊢ ϕ→ ψ @ g

Figure 5: Selected Rules for Compatible Supercontexts

contain all of the information in the current context, along with any counterfactual information that can be

considered during a proof. Intuitively, the rules ORL and IMPL allow a generalized principal to consider

such information by using either side of a disjunction or the conclusion of an implication. If it is possible

to consider such a counterfactual, there is a CSC which contains it. We use the syntax ∆ ≪ Γ ⊢ ϕ @ g to

denote that ∆ is a CSC of the sequent Γ ⊢ ϕ @ g. Figure 5 contains selected rules for CSCs. The full CSC

relation can be found in Appendix E.

Since all of the information in Γ has already been discovered by the generalized principal who believes

that information, we require that Γ ≪ Γ ⊢ ϕ @ g with CSCREFL.

If we can discover two sets of information, we can discover everything in the union of those sets using

CSCUNION. This rule feels different from the others, since it axiomatizes certain properties of CSCs. We

conjecture that there is an alternative presentation of CSCs where we can prove this rule.

The rest of the rules for CSCs essentially follow the proof rules, so that any belief added to the context

during a proof can be added to a CSC. For instance CSCORL1 and CSCORL2 allow either branch of an

assumed disjunction to be added to a CSC, following the two branches of the ORL rule of FLAFOL.

If a context appears in a proof of a sequent, then it is a CSC of that sequent. We refer to this as the

compatible-supercontext property (CSC property).

Theorem 4 (CSC Property). If ∆ ⊢ ψ @ g′ appears in a proof of Γ ⊢ ϕ @ g, then ∆ ≪ Γ ⊢ ϕ @ g.

5.4 Cut Elimination

In constructing a proof, it is often useful to create a lemma, prove it separately, and use it in the main proof.

If we both prove and use the lemma in the same context, the main proof follows in that context as well. We

can formalize this via the following rule:

CUT
Γ ⊢ ϕ @ g1 Γ, ϕ @ g1 ⊢ ψ @ g2

Γ ⊢ ψ @ g2

This rule is enormously powerful. It allows us to not only create lemmata to use in a proof, but also

simply prove things whose other proofs are complicated and non-obvious. For instance, consider the rule

UNSAYSR
Γ ⊢ p saysℓ ϕ @ g

Γ ⊢ ϕ @ g · p〈ℓ〉

We can show that this rule is admissible—meaning any sequent provable with this rule is provable without

it—by cutting a proof of the sequent Γ ⊢ p saysℓ ϕ @ g with the following proof:6

SAYSL

AX
ϕ @ g · p〈ℓ〉 ⊢ ϕ @ g · p〈ℓ〉

p saysℓ ϕ @ g ⊢ ϕ @ g · p〈ℓ〉

6Not only can UNSAYSR be proven without CUT (as can all FLAFOL proofs), it is actually important for proving cut elimination.

See the Coq code.
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SAYSL

IMPR′

IMPL′

SAYSL

AX
ϕ @ g · p〈ℓ〉 ⊢ ϕ @ g · p〈ℓ〉

p saysℓ ϕ @ g ⊢ ϕ @ g · p〈ℓ〉

ψ @ g · p〈ℓ〉 ⊢ ψ @ g · p〈ℓ〉
AX

ψ @ g · p〈ℓ〉 ⊢ p saysℓ ψ @ g
SAYSR

(ϕ→ ψ) @ g · p〈ℓ〉, p saysℓ ϕ @ g ⊢ p saysℓ ψ @ g

(ϕ→ ψ) @ g · p〈ℓ〉 ⊢ (p saysℓ ϕ) → (p saysℓ ψ) @ g

p saysℓ (ϕ→ ψ) @ g ⊢ (p saysℓ ϕ) → (p saysℓ ψ) @ g

Figure 6: Proof that IMPL′ and IMPR′ allow says to distribute over implication.

SAYSR

IMPR′

IMPL′

SAYSR

AX
ϕ @ g · p〈ℓ〉 ⊢ ϕ @ g · p〈ℓ〉

ϕ @ g · p〈ℓ〉 ⊢ p saysℓ ϕ @ g

ψ @ g · p〈ℓ〉 ⊢ ψ @ g · p〈ℓ〉
AX

p saysℓ ψ @ g ⊢ ψ @ g · p〈ℓ〉
SAYSL

(p saysℓ ϕ) → (p saysℓ ψ) @ g, ϕ @ g · p〈ℓ〉 ⊢ ψ @ g · p〈ℓ〉

(p saysℓ ϕ) → (p saysℓ ψ) @ g ⊢ (ϕ→ ψ) @ g · p〈ℓ〉

(p saysℓ ϕ) → (p saysℓ ψ) @ g ⊢ p saysℓ (ϕ→ ψ) @ g

Figure 7: Proof that IMPL′ and IMPR′ allow says to undistribute over implication.

However, the CUT rule allows an arbitrary formula to appear on both sides of the turnstile in a proof.

That formula may not even be a subformula of anything in the sequent at the root of the proof-tree! This

would seemingly destroy the CSC property that FLAFOL enjoys, and which we rely on in order to prove

FLAFOL’s security results. As is standard in sequent calculus proof theory, we show that CUT can be

admitted, allowing FLAFOL the proof power of CUT while maintaining the analytic power of the CSC

property.

Theorem 5 (Cut Elimination). The CUT rule is admissible.

To prove Theorem 5, we first normalize each FLAFOL proof and then induct on the formula ϕ followed

by each proof in turn. Both of these inductions are very involved. Appendix C contains more details.

This theorem is one of the key theorems of proof theory [Tak87, GLT89]. Frank Pfenning has called it

“[t]he central property of sequent calculi” [Pfe95]. From the propositions-as-types perspective, cut elimina-

tion is preservation of types under substitution.

5.5 Implications and Communication

Recall from Section 4 how we interpret implication formulae such as Alice saysℓ (ϕ→ ψ): ifϕ is true about

the system, then Alice believes ψ at label ℓ. We can now see why we use this interpretation of implication.

In particular, we consider replacing IMPL and IMPR with the following rules:

IMPL′
Γ ⊢ ϕ @ g Γ, ψ @ g ⊢ χ @ g′

Γ, (ϕ→ ψ) @ g ⊢ χ @ g′
IMPR′

Γ, ϕ @ g ⊢ ψ @ g

Γ ⊢ ϕ→ ψ @ g

Doing so allows us to prove that says distributes over implications, as we can see in Figure 6. It also allows

us to prove that says un-distributes over implication, as we see in Figure 7. While IMPL′, IMPR′, and the

says distribution results may all appear sensible, they actually cause security bugs and make cut elimination

impossible.

To see why, imagine that there are three principals of interest: Alice, Bob, and Cathy, and three labels: ℓP,

ℓS, and ℓTS, representing Public, Secret, and TopSecret, respectively. (We use the shorter names to make

our formal proofs easier to read.) Anybody in the system can read public data (i.e., data labeled with ℓP).
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FWDL†

IMPL′

AX
Γ, ϕ @ Alice〈ℓTS〉 ⊢ ϕ @ Alice〈ℓTS〉

Γ, ϕ @ Alice〈ℓTS〉, ψ @ Alice〈ℓTS〉 ⊢ ψ @ Alice〈ℓTS〉
AX

Γ, (ϕ→ ψ) @ Alice〈ℓTS〉, ϕ @ Alice〈ℓTS〉 ⊢ ψ @ Alice〈ℓTS〉

Γ, (ϕ → ψ) @ Alice〈ℓTS〉, ϕ @ Cathy〈ℓTS〉 ⊢ ψ @ Alice〈ℓTS〉

Figure 8: Alice using Cathy’s ϕ and a redaction function

VARR†

IMPR′

VARR†

FWDL†

FWDR†

IMPL′

SAYSR

AX
Γ, ϕ @ Bob〈ℓS〉 ⊢ ϕ @ Bob〈ℓS〉

Γ, ϕ @ Bob〈ℓS〉 ⊢ Bob saysℓS
ϕ @ 〈〉

Γ, ψ @ Bob〈ℓP〉 ⊢ ψ @ Bob〈ℓP〉
AX

Γ,Bob saysℓP
ψ @ 〈〉 ⊢ ψ @ Bob〈ℓP〉

SAYSL

Γ, (Bob saysℓS
ϕ) → (Bob saysℓP

ψ) @ 〈〉, ϕ @ Bob〈ℓS〉 ⊢ ψ @ Bob〈ℓP〉

Γ′, ϕ @ Bob〈ℓS〉 ⊢ ψ @ Alice〈ℓP〉

Γ′, ϕ @ Alice〈ℓS〉 ⊢ ψ @ Alice〈ℓP〉

Γ′, ϕ @ Alice〈ℓS〉 ⊢ ψ @ Alice〈ℓS〉

Γ′ ⊢ (ϕ→ ψ) @ Alice〈ℓS〉

Γ′ ⊢ (ϕ→ ψ) @ Alice〈ℓTS〉

Figure 9: Proof corresponding to Alice sending ϕ to Bob and receiving a ψ back

Alice and Cathy believe all three principals of interest can read secret data (i.e., data labeled with ℓS), but

Bob is unsure of the security clearances and will only send public data to other principals. Alice and Cathy

also have top secret clearance, but Bob does not, so he cannot read data labeled at ℓTS. We can formalize

these permission policies in the following context:

Γ = ∀p :Principal. p saysℓS
ℓP ⊑ ℓS @ 〈〉,

∀p :Principal. p saysℓTS
ℓS ⊑ ℓTS @ 〈〉,

CanRead(Bob, ℓS) @ Alice〈ℓS〉,

CanRead(Alice, ℓTS) @ Cathy〈ℓTS〉,

∀p, q :Principal. p saysℓP
CanRead(q, ℓP) @ 〈〉,

∀p, q :Principal.∀ℓ, ℓ′ :Label. p saysℓ CanWrite(q, ℓ′) @ 〈〉

Additionally, Bob serves as a redactor: givenϕ—which represents a document containing secret information—

he can produce ψ—which represents a redacted version of the same document—performing a declassifica-

tion in the process. We represent Bob’s ability by adding one belief:

Γ′ = Γ, (Bob saysℓS
ϕ) → (Bob saysℓP

ψ) @ 〈〉

Imagine further that Alice decides she wants to redact secret information from a TopSecret version

of ϕ that she receives from Cathy, but leave it TopSecret. If she can figure out how to get an implication

representing redaction, she can simply receive ϕ from Cathy and use the implication. This is the proof in

Figure 8. For the sake of brevity and readability, we do not explicitly state side conditions that are proven

straightforwardly from Γ. The rules where these side conditions should appear are marked with “†.”

While she knows how to use an implication representing redaction, Alice does not know how to redact

ϕ except by giving it to Bob. Using IMPL′ and IMPR′, she is able to package up the process “give Bob a

secret version of ϕ, get back a public version of ψ, and then use variance to get a secret version of ψ” as a
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belief ϕ→ ψ @ Alice〈ℓS〉. She can then use variance again to get a belief ϕ→ ψ @ Alice〈ℓTS〉. This is the

proof in Figure 9. Again, we elide side conditions that are proven straightforwardly from Γ, and mark the

rules where they should appear with “†.”

Cutting these two proofs together gives Alice what she wants: a TopSecret version of ψ. However, this

cut is not possible to eliminate! Examining this through a propositions-as-types lens tells us why: one of

Alice or Cathy must send a TopSecret version of ϕ to Bob, which neither is willing to do.

6 Non-Interference

Both authorization logics and information flow systems have important security properties called non-

interference [Den76, GM82, GP06]. On the face, these two notions of non-interference look very different,

but their core intuitions are the same. Both statements aim to prevent one belief or piece of data from inter-

fering with another—even indirectly—unless the security policies permit an influence. Authorization logics

traditionally define trust relationships between principals and non-interference requires that p’s beliefs af-

fect the provability of q’s beliefs only when q trusts p. Information flow control systems generally specify

policies as labels on program data and use the label flows-to relation to constrain how inputs can affect

outputs. For non-interference to hold, changing an input with label ℓ1 can only alter an output with label ℓ2
if ℓ1 ⊑ ℓ2.

FLAFOL views both trust between principals and flows between labels as ways to constrain communi-

cation of beliefs. The forward rules model an authorization-logic-style sending of beliefs from one principal

to another based on their trust relationships. The label variance rules model a single principal transferring

beliefs between labels based on the flow relationship between them. By reasoning about generalized princi-

pals, which include both the principal and the label, we are able to capture both at the same time. The result

(Theorem 7) mirrors the structure of existing authorization logic non-interference statements [GP06,Aba06].

No similar theorem reasons about information flow or applies to policies combining discoverable trust and

logical disjunction. Theorem 7 does both.

6.1 Trust in FLAFOL

Building a notion of trust on generalized principals requires us to consider both the trust of the underlying

(regular) principals and label flows. The explicit label flow relation (⊑) cleanly captures restrictions on

changing labels. Trust between principals requires more care. Alice may trust Bob with public data, but

that does not mean she trusts him with secret data. Similarly, Alice may believe that Bob can influence

low integrity data without believing Bob is authorized to influence high integrity data. This need to trust

principals differently at different labels leads us to define our trust in terms of the two permission relations:

CanRead(p, ℓ) and CanWrite(p, ℓ).
We group label flows and principal trust together in a meta-level statement relating generalized princi-

pals. As this relation is the fundamental notion of trust in FLAFOL, we follow existing authorization logic

literature and call it speaks for.

The speaks-for relation captures any way that one generalized principal’s beliefs can be safely transferred

to another. This can happen through flow relationships (g · p〈ℓ〉 speaks for g · p〈ℓ′〉 if ℓ ⊑ ℓ′), forwarding

(g ·p〈ℓ〉 speaks for g ·q〈ℓ〉 if p can forward beliefs at ℓ to q), and introspection (g ·p〈ℓ〉 speaks for g ·p〈ℓ〉·p〈ℓ〉
and vice versa). We formalize speaks-for with the rules in Figure 10.

To validate this notion of trust, we note that existing authorization logics often define speaks-for as an

atomic relation and create trust by requiring that, if p speaks for q, then p’s beliefs can be transferred to q.

As our speaks-for relation exactly mirrors FLAFOL’s rules for communication, it enjoys this same property.

17



REFLSF
Γ ⊢ g SF g

EXTSF
Γ ⊢ g1 SF g2

Γ ⊢ g1 · p〈ℓ〉 SF g2 · p〈ℓ〉

SELFLSF
Γ ⊢ g · p〈ℓ〉 SF g · p〈ℓ〉 · p〈ℓ〉

SELFRSF
Γ ⊢ g · p〈ℓ〉 · p〈ℓ〉 SF g · p〈ℓ〉

VARSF
Γ ⊢ ℓ ⊑ ℓ′ @ g · p〈ℓ′〉

Γ ⊢ g · p〈ℓ〉 SF g · p〈ℓ′〉
FWDSF

Γ ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉 Γ ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

Γ ⊢ g · p〈ℓ〉 SF g · q〈ℓ〉

TRANSSF
Γ ⊢ g1 SF g2 Γ ⊢ g2 SF g3

Γ ⊢ g1 SF g3

Figure 10: The rules defining speaks for.

Theorem 6 (Speaks-For Elimination). The following rule is admissible in FLAFOL:

ELIMSF
Γ ⊢ ϕ @ g1 Γ ⊢ g1 SF g2

Γ ⊢ ϕ @ g2

With this notion of trust we can begin structuring a non-interference statement. We might like to say that

beliefs of g1 can only influence beliefs of g2 if Γ ⊢ g1 SF g2, or formally: if Γ, (ϕ @ g1) ⊢ ψ @ g2 is

provable, then either Γ ⊢ ψ @ g2 is provable or Γ ⊢ g1 SF g2. Unfortunately, this statement is false for three

critical reasons: says statements, implication, and the combination of discoverable trust and disjunctions.

6.2 Says Statements and Non-Interference

The first way to break the proposed non-interference statement above is simply by moving affirmations of

a statement between the formula—using says—and the generalized principal who believes it. For example,

we can trivially prove p saysℓ ϕ @ 〈〉 ⊢ ϕ @ 〈〉 · p〈ℓ〉, yet we cannot prove 〈〉 SF 〈〉 · p〈ℓ〉.
To address this case, we can view p saysℓ ϕ @ 〈〉 as a statement that 〈〉 · p〈ℓ〉 believes ϕ. This insight

suggests generally pushing all says modalities into the generalized principal. We can do this for simple

formulae, but the process breaks down with conjunction and disjunction. In those cases, the different sides

may have different says modalities, and either side could influence a belief through the different resulting

generalized principals. We alleviate this concern by considering a set of generalized principals referenced in

a given belief. We build this set using an operator G:

G(χ @ g) ,































G(ϕ @ g · p〈ℓ〉) χ = p says
ℓ
ϕ

G(ϕ @ g) ∪ G(ψ @ g) χ = ϕ ∧ ψ or ϕ ∨ ψ

G(ψ @ g) χ = ϕ→ ψ
⋃

t:σ
G(ϕ[x 7→ t] @ g) χ = ∀x :σ. ϕ or ∃x :σ. ϕ

{g} otherwise

For implications, G only considers the consequent, since only its consequent can affect the provability of a

belief. For quantified formulae, a proof may substitute any term of the correct sort for the bound variable, so

we must as well.

Using this new operator, we can patch the hole says statements created in our previous non-interference

statement, producing the following: If Γ, (ϕ @ g1) ⊢ ψ @ g2, then either Γ ⊢ ψ @ g2, or there is some

g′1 ∈ G(ϕ @ g1), g
′

2 ∈ G(ψ @ g2), and some g′′1 such that Γ ⊢ g′1 · g
′′

1 SF g′2.
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Here g′′1 represents the ability of a generalized principal to ship entire simulations to other generalized

principals. In particular, the forward and variance rules operate on an “active” prefix of the current general-

ized principal; g′′1 represents the “inactive” suffix.

The G operator converts reasoning about beliefs from the object level (FLAFOL formulae) to the meta

level (generalized principals). FLAFOL’s ability to freely move between the two forces us to push all such

reasoning in the same direction to effectively compare the reasoner in two different beliefs. Prior autho-

rization logics do not contain a meta-level version of says, meaning similar conversions do not even make

sense.

6.3 Implications

While use of the G function solves part of the problem with our original non-interference proposal, it does not

address all of the problems. Implications can implicitly create new trust relationships, allowing beliefs of one

generalized principal to affect beliefs of another, even when no speaks-for relationship exists. To understand

how this can occur, we revisit our example of preventing SQL injection attacks from from Section 2.2.

Recall from Section 2.2 that a web server might treat sanitized versions of low-integrity input as high

integrity. Further recall, it might represent this willingness with the following implication.

System saysLInt DBInput(x) → System saysHInt DBInput(San(x))

In an intuitively-sensible context where System believes HInt ⊑ LInt—high integrity flows to low

integrity—but not vice versa, there is no way to prove System〈LInt〉 SF System〈HInt〉. The presence

of this implication, however, allows some beliefs at System〈LInt〉 to influence beliefs at System〈HInt〉.
This influence is actually an endorsement from LInt to HInt, and our speaks-for relation explicitly does not

capture such effects.

Prior work manages this trust-creating effect of implications either by claiming security only when all

implications are provable [Aba06] or by explicitly using assumed implications to represent trust [GP06].

We hew closer to the latter model and make the implicit trust of implications explicit in our statement of

non-interference. We therefore cannot use the speaks-for relation, so we construct a new relation between

generalized principals we call can influence.

Intuitively, g1 can influence g2—which we denote Γ ⊢ g1 CanInfl g2—if either g1 speaks for g2 or there

is an implication in Γ that allows a belief of g1 to affect the provability of a belief of g2. This relation,

formally defined in Figure 11, uses the G operator discussed above to capture the generalized principals

actually discussed by each subformula of the implication. Because FLAFOL interprets the premise of an

implication as a condition whose modality is independent of the entire belief, so too does the can-influence

relation. The relation is also transitive, allowing it to capture the fact that a proof may require many steps to

go from a belief at g1 to a belief at g2.

Simply taking our attempted non-interference statement from above and replacing speaks-for with can-

influence allows us to straightforwardly capture the effect of implications on trust within the system.

While this change may appear small, it results in a highly conservative estimate of possible influence.

Implications are precise statements that can allow usually-disallowed information flows under very partic-

ular circumstances. Unfortunately, because our non-interference statement only considers the generalized

principals involved, not the entire beliefs, it cannot represent the same level of precision. A single precise

implication added to a context can therefore relate whole classes of previously-unrelated generalized prin-

cipals, eliminating the ability for non-interference to say anything about their relative security. A similar

lack of precision in information flow non-interference statements has resulted in long lines of research on

how to precisely model or safely restrict declassification and endorsement [ZM01,SM04,MS04,LZ05,SS05,

MSZ06, CM08, AM11, WBK+15, CMA17].
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SF-CI
Γ ⊢ g1 SF g2

Γ ⊢ g1 CanInfl g2
EXTCI

Γ ⊢ g1 CanInfl g2

Γ ⊢ g1 · g
′ CanInfl g2 · g

′

TRANSCI
Γ ⊢ g1 CanInfl g2 Γ ⊢ g2 CanInfl g3

Γ ⊢ g1 CanInfl g3

IMPCI
ϕ→ ψ @ g ∈ Γ g1 ∈ G(ϕ @ 〈〉) g2 ∈ G(ψ @ g)

Γ ⊢ g1 CanInfl g2

Figure 11: The rules defining the can influence relation.

6.4 Discovering Trust with Disjunctions

The G operator and can-influence relation address difficulties from both says formulae and implications,

but our statement of non-interference still does not account for the combination of disjunctions and the

ability to discover trust relationships. To understand the effect of these two features in combination, re-

call the reinsurance example from Section 2.3. Bob can derive CanWrite(I1, ℓH) if he already believes

both CanWrite(I1, ℓH) ∨ CanWrite(I2, ℓH) and I2 saysℓH CanWrite(I1, ℓH). We clearly cannot remove

either of Bob’s beliefs and still prove the result. Our desired theorem statement would thus require that

Bob〈ℓH〉 · I2〈ℓH〉 can influence Bob〈ℓH〉, which there is no way to prove. The reason the sequent is still

provable, as we noted in Section 2.3, is that Bob can discover trust in I2 when he branches on an Or statement,

which then allows I2 to influence Bob. In this branch, we can prove Bob〈ℓH〉·I2〈ℓH〉 SF Bob〈ℓH〉·Bob〈ℓH〉,
which then speaks for Bob〈ℓH〉.

To handle such assumptions, we cannot simply consider the context in which we are proving a sequent;

we must consider any context that can appear in the proof of that sequent. We developed the notion of

compatible supercontexts in Section 5.3 for exactly this purpose. Indeed, if we replace Γ with an appropriate

CSC when checking the potential influence of generalized principals, we remove the last barrier to a true

non-interference theorem.

6.5 Formal Non-Interference

The techniques above allow us to modify our attempted non-interference statement into a theorem that holds.

Theorem 7 (Non-Interference). For all contexts Γ and beliefs ϕ @ g1 and ψ @ g2, if

Γ, ϕ @ g1 ⊢ ψ @ g2,

then either (1) Γ ⊢ ψ @ g2, or (2) there is some ∆ ≪ Γ, ϕ @ g1 ⊢ ψ @ g2, g′1 ∈ G(ϕ @ g1), g
′

2 ∈ G(ψ @
g2), and g′′1 such that ∆ ⊢ g′1 · g

′′

1 CanInfl g′2.

The proof of this theorem follows by induction on the proof of Γ, ϕ @ g1 ⊢ ψ @ g2. For each proof rule,

we argue that either ϕ @ g1 is unnecessary for all premises or we can extend an influence from one or more

subproofs to an influence from ϕ @ g1 to ψ @ g2.

This theorem limits when a belief ϕ @ g1 can be necessary to prove ψ @ g2 in context Γ, much like

other authorization logic non-interference statements [GP06, Aba06]. As we mentioned above, however, it

is the first such non-interference statement for any authorization logic supporting all first-order connectives

and discoverable trust. Moreover, it describes how FLAFOL mitigates both:

• communication between principals, through CanRead and CanWrite statements, and
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• movement of information between security levels represented by information flow labels, via flows-to

statements.

The CanInfl relation seems to make our non-interference statement much less precise than we would

like. After all, implications precisely specify what beliefs can be declassified or endorsed, whereas CanInfl

conservatively assumes any beliefs can move between the relevant generalized principals. This lack of pre-

cision serves a purpose. It allows us to reason about any implications, including those that arbitrarily change

principals and labels, something which other no authorization logics have done before. It is therefore worth

noting that, when all of the implications in the context are provable, the theorem holds even if you replace

CanInfl with SF everywhere. The same proof works, with some simple repair in the IMPL case.

Another complaint of imprecision applies to compatible supercontexts. Specifically, if any principal

assumes ϕ ∨ ¬ϕ for any formula ϕ, then there is a CSC in which that principal has assumed both, even

though these are arrived at through mutually-exclusive choices. Since CSCs have been added in order to

allow disjunctions and discoverable trust to co-exist, it is good to know that if we disallow either, CSCs are

not required for non-interference. That is, if there are no disjunctions in the context, then we can always

instantiate the ∆ in Theorem 7 with Γ, ϕ @ g1. Similarly, if every permission that is provable in any CSC of

Γ, ϕ @ g1 ⊢ ψ @ g2 is provable under Γ, ϕ @ g1, then we can again always instantiate ∆ with Γ, ϕ @ g1.

Together, these points demonstrate that there are only two types of poorly-behaved formulae that force

the imprecision in Theorem 7. This further shows that our non-interference result is no less precise than

those of other authorization logics in the absence of such formulae. We add imprecision only when needed

to allow our statement to apply to more proofs.

To see how Theorem 7 corresponds to traditional non-interference results for information flow, consider

a setting where every principal agrees on the same label ordering, and where there are no implications

corresponding to declassifications or endorsements. Then any two contexts Γ and Γ′ which disagree only on

beliefs labeled above some ℓ can prove exactly the same things at label ℓ—Γ ⊢ ϕ @ g · p〈ℓ〉 if and only

if Γ′ ⊢ ϕ @ g · p〈ℓ〉—since Theorem 7 allows us to delete all of the beliefs on which they disagree. If we

view contexts as inputs, as in a propositions-as-types interpretation, then this says that changing high inputs

cannot change low results.

7 Future Work

FLAFOL is already very powerful, but it suggests numerous avenues for future work.

First, FLAFOL only disallows direct flows of information in proofs, but checking proofs can cause

communication and potentially leak information. Importantly, eliminating cuts in proofs can increase the

information leaked during proof-checking because eliminating cuts can reduce the uncertainty about which

discoveries can be made during a proof. This is disturbing, since we would like to be able to perform sound

security analyses on proofs with cut; system designers should not need to understand the very complicated

cut-elimination proof. The program counter mechanism used by information flow control systems like Fab-

ric [LAGM17] and FLAM [ALM15] seems to prevent similar leaks. Incorporating program counter labels

to limit communication in FLAFOL proofs could eliminate these leaks in FLAFOL as well.

This improvement also widens the range of programs that can safely use FLAFOL. Justifications for

authorization need to be found as well as checked. From the point of view of an authorization logic, this

corresponds to proof search. Searching for an authorization proof in a distributed system, however, may

require communication between principals, potentially leaking why they are searching for this proof in the

first place. One avenue forward embeds FLAFOL in a language with information-flow types, and runs proof

search in that language. This would guarantee that the proof search does not leak data assuming FLAFOL

proofs do not leak data when checked.
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We have developed new techniques to reason about authorization-logic proofs in order to prove non-

interference for FLAFOL. These reasoning principles could be expanded and used in other logics. For in-

stance, using the tools developed in Section 6, we should be able to give non-interference proofs for logics

like NAL [SWS11] and FOCAL [HC13] which reason about implication and disjunction. We should also

be able to add disjunction and implication to logics like DCC [Aba06, ABHR99] while still providing a

non-interference theorem.

Another avenue of further work would understand better how says statements can interact with other

logical connectives. For instance, one might want to model a principal who cannot observe whether they are

holding evidence of ϕ or of ψ. For instance, we might want to model a principal pwho receives an encrypted

message containing a bit b. Then p knows that either b = 0 or b = 1, but p has no way to determine which.

Thus, while p saysℓ (b = 0∨ b = 1), we should not be able to show that (p saysℓ b = 0)∨ (p saysℓ b = 1).
A NuPRL-like “squash” operator, which prevents evidence from being used [Cal98], could model this, but

further research is needed for FLAFOL to reason about the security of such protocols.

A similar avenue for future work involves exploring ways to allow says to distribute over implications

while remaining coherent. One potential approach would be to confine most reasoning to a single generalized

principal, but this would restrict implications so that the principal who believes them cannot communicate

in their proof. The consequences of such a restriction on modeling real-world systems are unclear.

Finally, it would be nice to reason about the temporal components of authorization; this is one place

where work on information flow far outstrips that on authorization logic [ZM01, SM04, MS04, LZ05, SS05,

MSZ06,CM08,AM11,WBK+15,CMA17]. Trust relationships may change over time, allowing or disallow-

ing communication pathways. Understanding how this changes which authorizations should be provable,

and how this affects information-flow policies, is a rich area for exploration.

8 Related Work

Prior work in information flow and authorization logics has explored the connection between the two. The

Decentralized Label Model [ML98,ML00] includes a notion of ownership in information flow policies speci-

fying who may authorize exceptions to the policy. The Flow-Limited Authorization Model (FLAM) [ALM15]

was the first logic to directly consider the effects of data confidentiality and integrity on trust relationships

between principals. Prior work on Rx [SHTZ06] and RTI [BWW08] enforced language-based information

flow policies via roles whose membership were protected with confidentiality and integrity labels. By con-

trast, FLAFOL is a formal authorization logic containing every first-order connective.

Decentralized Label Model. The Decentralized Label Model (DLM) [ML98, ML00] is a model for ex-

pressing information flow labels in a decentralized system. Its labels contain two components, confidential-

ity and integrity, which are each specified as a set of principals who may read or write the data, respectively.

FLAFOL separates principals and labels by making them independent sorts that are related by the CanRead

and CanWrite relations. This allows system designers much more freedom in determining the semantics of

principals and labels. For instance, DLM labels cannot represent availability.

DLM labels also include a notion of ownership, but it only specifies who may authorize exceptions to

the policy. FLAFOL has no built-in ownership notion, nor does it allow specific exceptions to policies.

Moreover, DLM assumes that labels form a global static lattice. As we have discussed in detail, FLAFOL

does not make this assumption. In particular, FLAFOL labels need not be static, since they can be the result

of functions. Second, they need not be a lattice, but merely a partial order. Finally, the order of FLAFOL

labels need not be global, since different (generalized) principals may have very different ideas of the order.

This generality allows FLAFOL to be extremely expressive, as we saw in Section 3.

Flow-Limited Authorization Model. The Flow-Limited Authorization Model (FLAM) [ALM15] was the
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first information-flow label model to directly consider the interaction between information flow and autho-

rization. FLAM does not, however, provide a full authorization logic. It lays out important rules for reason-

ing about communication in systems with discoverable trust relationships where principals may disagree on

those relationships. It also restricts participation in a proof using a program counter label to help full sys-

tems remain secure in contexts where merely checking a proof may leak data. FLAM, however, provides no

means to directly express authorization policies other than one principal trusting another. It has no first-order

connectives or quantifiers and no way for one principal to reason about another’s beliefs.

FLAM also takes the principal-label connection a step beyond the DLM and represents principals di-

rectly as a combination of confidentiality and integrity labels. This view restricts FLAM from reasoning

about labels with policies other than confidentiality and integrity, since they might necessitate subtle changes

to FLAM’s reasoning rules. FLAFOL’s CanRead and CanWrite relations abstract out how different label

components may interact, allowing each system to specify appropriate restrictions given the meaning of its

labels.

Unifying principals and labels also undermines FLAM’s effectiveness as an authorization logic. It is

often convenient to construct complex policies from simpler ones, such as a policy protecting Alice’s confi-

dentiality and Bob’s integrity. FLAM regards such a compound policy as a principal, breaking the connection

between formal principals and system entities. While FLAFOL can certainly represent these policies, doing

so does not force a reasoner to break this connection.

FLAM additionally does not provide a non-interference guarantee, instead offering a guarantee called

robust authorization. In FLAM, each fact has a label representing its confidentiality and integrity and is

stored on a node, which is itself represented by a label. If a node c believes a derived fact at label ℓ, robust

authorization says:

• The label of every fact used in the derivation flows to ℓ,

• Every node in the derivation may control whether the derivation took place,

• c is allowed to learn every fact used in the derivation, and

• For each node n involved in the derivation, c will listen to n at ℓ and n will talk to c at ℓ.

FLAFOL’s non-interference theorem gives similar guarantees. In particular, our non-interference theo-

rem shows that the label of every belief used in a derivation (without implications) flows to the label of the

derived belief. Moreover, for each belief ϕ @ g used in a derivation without implications, the generalized

principal who believes the conclusion must (transitively) trust g.

However, FLAFOL does not have any notion of who may control whether a derivation takes place. We

are able to achieve FLAFOL’s security guarantee without the restrictions imposed by FLAM’s program

counter label.

DCC and FLAC. The Dependency Core Calculus (DCC) [ABHR99] is a small functional core calculus

designed to capture dependencies within programs, including information flows. It uses a monadic structure

to represent labels at the level of types and enforce standard information flow typing constraints. Abadi

also reinterpreted DCC’s type system as an authorization logic [Aba06], but used the modalities created by

the monadic structure to represent principals’ beliefs. This technique allows DCC to reason about either

information flow or authorization, but not both at the same time. DCC does provide a non-interference

property, but it employs a static external lattice to express trust.

The Flow-Limited Authorization Calculus (FLAC) [AM16] builds a computational model for FLAM by

extending Polymorphic DCC [Aba06] with discoverable trust relationships. It uses DCC’s information-flow

interpretation and FLAM’s discoverable trust rules to bound information flows and how they can affect trust

assumptions.

Because FLAC incorporates DCC’s computational model, we can view its type system as a propositional
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logic that reasons about discoverable trust. Since the logic is based on System F, it contains some elements of

second-order logic by supporting universal quantification over types, but lacks any existential quantification.

Critically, FLAC programs execute only on a single machine with no notion of communication. This means

that, unlike both FLAM and FLAFOL, it does not allow reasoning about the interaction between different

system components with different trust assumptions, and thus does not form a full authorization logic. It

can only reason about how data may influence trust assumptions and resulting decisions within a single

component. DFLATE [GCA19] extends FLAC with channels that support a limited form of communication.

FLAC provides strong information security guarantees for computations defined in the language. The

local nature of these computations, however, means these assurances apply only to local reasoning on a

single host. FLAFOL, by contrast, provides strong security guarantees in a fully distributed context when

reasoning about differing beliefs within a system. It does not yet have an associated programming model,

but developing one would be interesting future work.

Other Authorization Logics. Becker [Bec12] explores preventing probing attacks, authorization queries

which leak secret information, in Datalog-based authorization logics like DKAL [GN08] and SecPAL [BFG10].

In SecPAL+ [Bec10], Becker proposes a new can listen to operator, similar to FLAFOL’s CanRead permis-

sion, that expresses who is permitted to learn specific statements. However, can listen to expresses permis-

sions on specific statements, not labels as CanRead does. Moreover, FLAFOL tracks dependencies between

statements using these labels, so the security consequences of adding a new permission are more explicit.

Garg and Pfenning [GP06] present an authorization logic and a non-interference result that ensures

untrusted principals cannot influence the truth of statements made by other principals. Garg and Pfenning,

however, support a more limited set of logical connectives than FLAFOL, use only implications to encode

trust, and do not reason directly about information flow.

Finally, AURA [JVM+08, JZ09] embeds DCC into a language with dependent types to explore how

authorization logic interacts with programs. They inherit their non-interference result directly from DCC,

but they express first-order properties by combining other programming language constructs with DCC.

This makes it unclear what guarantees the theorem provides. Jia and Zdancewic encode information-flow

labels into AURA as principals and develop a non-interference theorem in the style of information-flow

systems [JZ09]. This setup unfortunately makes it impossible for principals to disagree about the meaning

of labels, since the labels themselves define their properties.

9 Conclusion

We have introduced FLAFOL, a first-order logic which combines notions of trust from both authorization

and information flow. It provides a concrete model of communication that respects this combination and

gives principals the ability to reason about each other’s differing opinions, including differing opinions about

trust. FLAFOL has a powerful non-interference theorem that navigates this complexity, a top-tier result for

authorization logics. It is, moreover, the most complete first-order logic with such a guarantee.
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A Formalizing the Examples

In Section 2, we discussed several examples of authorization policies that interact with information-flow

policies in non-trivial ways. While we used these to introduce FLAFOL’s features and syntax, in Sections 2.1

and 2.3 we elided some technical details in order to simplify the presentation. In this section, we formalize

these examples, making it clear how FLAFOL can represent each of the policies described in Section 2.

A.1 Viewing Pictures on Social Media

Recall the example in Section 2.1: Bob has uploaded a picture to a social-media account along with a policy

that only those on a friend list that he maintains on that account may view the photo. Moreover, he has a

policy that only his friends may know who is on his friend list.

We mentioned that we can represent Bob’s friend list as a collection of beliefs of the form Bob saysFriends

IsFriend(p). We can now discuss these beliefs in more detail. Bob’s friend list contains a finite number of

principals; let L be the set of principals on the list. We can then represent Bob’s friend list with the following

FLAFOL assumptions:

ΓL = {Bob saysFriends IsFriend(p) | p ∈ L} ∪















∀q :Principal.

Bob saysFriends IsFriend(q)

→
(

∨

p∈L Bob saysFriends q = p
)















(For brevity, we omit “@ 〈〉” on all beliefs at 〈〉.)
This set of beliefs, along with some beliefs about equality (such as reflexivity, decidability of equality

on principals, and Bob’s belief that if two principals are equal, then one is a friend if the other is) are enough

to determine Bob’s friend list. In particular, one can show that

ΓL,Γ ⊢ ∀p :Principal.

(

Bob saysFriends IsFriend(p)
∨ Bob saysFriends ¬IsFriend(p)

)

.

This proof is conceptually simple, but quite tedious, so we elide it here. This is a decision procedure since

any FLAFOL proof of Γ ⊢ ϕ ∨ ψ @ g can be transformed into a proof of either Γ ⊢ ϕ @ g or Γ ⊢ ψ @ g.7

Recall that we created the label Friends in order to represent Bob’s policy “I will only share this with

my friends.” However, we never showed how to connect this with Bob’s friend list, expressed as the relation

IsFriend(Principal). In order to make this connection, we use a bi-implication

∀p :Principal.

(

Bob saysFriends IsFriend(p)
↔ Bob saysFriends CanRead(p,Friends)

)

It might seem strange to have an implication from CanRead(p,Friends) to IsFriend(p). After all, this

seems to suggest that, if a principal can read Bob’s Friends label, then Bob is going to be willing to consider

them a friend, even if they were not on his friend list. However, note that in ΓL we have a belief that says

that if a principal is a friend, then they are one of the principals on Bob’s friend list. Thus, the troublesome

implication above actually suggests that only those principals in L can read the label Friends.

While we can decide whether Bob believes that somebody is on his friend list—and therefore whether

they can read things labeled Friends—when Alice tries to look at Bob’s picture the system needs to be able

to tell Alice whether she is allowed to do so or not. We informally argued earlier that this was impossible. To

see why, imagine that there is a label ℓ that we know Alice can read. Since we don’t know if Alice can read

7This has been proven in Coq as part of the cut-elimination proof.
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things of label Friends, we assume that ΓL,Γ 0 Friends ⊑ ℓ @ 〈〉 · Bob〈ℓ〉. But then it is not the case that

〈〉 · Bob〈Friends〉 SF 〈〉 · Bob〈ℓ〉, so the same holds for CanInfl in the absence of irrelevant implications.

Now if we have any proof of

ΓL,Γ ⊢ ∀p :Principal.

(

Bob saysℓ IsFriend(p)
∨ Bob saysℓ (¬IsFriend(p))

)

by Theorem 7, we could remove Bob’s friend list and get a proof under only Γ, which is clearly impossible.

As we discussed in Section 2.1, this suggests that Bob should choose a more-permissive policy for his

friend list. One possibility is for Bob to label his friend list publicly, but this is not a very satisfying solution.

Another possibility is for Bob to allow any principal p to know whether p is on the list, but to not allow any

principal p that is not on the list to know the status of any other principal. However, we did not discuss how

to represent this policy in FLAFOL.

One simple way to represent this policy is using an implication. That is, we can assume the following:

∀p :Principal.
(

Bob saysFriends IsFriend(p)
→ p saysFriends (Bob saysFriends IsFriend(p))

)

∧

(

Bob saysFriends ¬IsFriend(p)
→ p saysFriends (Bob saysFriends ¬IsFriend(p))

)

This allows p to know whether p is on Bob’s friend list. However, it is rather unsatisfying, because it destroys

all of the security guarantees of Theorem 7. After all, we can now show that 〈〉 · Bob〈Friends〉 CanInfl 〈〉 · p〈Friends〉
for any p.

We can create a more-subtle version of this policy which still enjoys the guarantees of Theorem 7. To

do this, Bob labels his belief about whether or not a principal p is on his friend list at a label f(p) that p may

read and Bob’s friends may read, but no one else. We thus create a function symbol f : Principal → Label

and use it to define Bob’s friend list. Now we can re-define ΓL as follows:

ΓL = {Bob saysf(p) IsFriend(p) | p ∈ L} ∪











∀q :Principal.
Bob saysf(q) IsFriend(q)

→
(

∨

p∈L Bob saysf(q) q = p
)











If Γ contains axioms about equality, then

ΓL,Γ ⊢ ∀p :Principal.

(

Bob saysf(p) IsFriend(p)

∨ Bob saysf(p) ¬IsFriend(p)

)

.

We now need to formalize the statement that p and Bob’s friends may read f(p), but nobody else. We

do this with the following assumptions Γf .

Γf =























∀p :Principal.Bob saysf(p) CanRead(p, f(p)),

∀p :Principal.Bob saysFriends f(p) ⊑ Friends,

∀p :Principal.

(

Bob saysf(p) IsFriend(p)

↔ Bob saysf(p) CanRead(p,Friends)

)























These rules allow Bob to forward to p the results of the above decision procedure on Bob saysf(p) IsFriend(p)
if p will listen—which requires p saysf(p) CanWrite(Bob, f(p)). Similarly, if p ∈ L, then Bob will for-

ward whether or not q is Bob’s friend for any principal q at label Friends.
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ORL

AX
Γ′, ϕ ⊢ ϕ

Γ′,CanWrite(I2, ℓH) @ 〈〉 · Bob〈ℓH〉,CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉 ⊢ ϕ
AX

Γ′,CanWrite(I2, ℓH) @ 〈〉 · Bob〈ℓH〉,CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉 · Bob〈ℓH〉 ⊢ ϕ
SELFL

Γ′,CanWrite(I2, ℓH) @ 〈〉 · Bob〈ℓH〉 ⊢ ϕ
FWDL†

Γ ⊢ ϕ

Figure 12: Bob’s proof that I1 can influence the bill

A.2 Hospital Bills Calculation and Reinsurance

Recall the example from Section 2.3: Alice has two possible insurers, I1 and I2. Bob is trying to figure out

which will be allowed to influence Alice’s hospital bill, labeled ℓH . He represents the fact that either I1 or I2
will be able to influence the bill as Bob saysℓH (CanWrite(I1, ℓH) ∨ CanWrite(I2, ℓH)). He knows that

I2 reinsures with I1, which we represent as Bob saysℓH (I2 saysℓH CanWrite(I1, ℓH)).
In Section 2.3, we did not discuss the confidentiality requirements of this situation. In this case, since

both insurers know that Bob is a hospital administrator, they are willing to talk to Bob about ℓH . Bob

moreover knows this. Therefore, we can use Bob saysℓH (I2 saysℓH CanRead(Bob, ℓH)), which we will

need in the proof.

We can then formalize this example as a proof of the sequent Γ ⊢ CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉
where

Γ =























(

CanWrite(I1, ℓH)

∨ CanWrite(I2, ℓH)

)

@ 〈〉 · Bob〈ℓH〉,

CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉 · I2〈ℓH〉,

CanRead(Bob, ℓH) @ 〈〉 · Bob〈ℓH〉 · I2〈ℓH〉























Note that we have moved from says statements to generalized principals here. This is conceptually the

same, and simply requires less work to move all of the says statements to the generalized principal in the

proof. The formal proof is available in Figure 12, where we use a few pieces of shorthand for brevity and

readability. First we refer to the belief CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉 as ϕ. Second, we let

Γ′ =

{

CanWrite(I1, ℓH) @ 〈〉 · Bob〈ℓH〉 · I2〈ℓH〉,
CanRead(Bob, ℓH) @ 〈〉 · Bob〈ℓH〉 · I2〈ℓH〉

}

Finally, we do not explicitly state side conditions which are proven straightforwardly from Γ. The rules

where these side conditions should appear are marked with “†.”

B Examples of Permission Models

In Section 4 we saw how FLAFOL can be used to reason about a capabilities-based system. However,

FLAFOL’s flexibility allows it to model many other kinds of systems. In this appendix, we explore modeling

two other systems in FLAFOL: a simple system with no additional assumptions, and a system similar to

military classification levels or FLAM’s system.

There is no particular reason for there to be some external model of permissions. The “default” per-

mission model simply gives meaning to CanRead and CanWrite through their behavior. That is, the only

properties FLAFOL assumes about CanRead and CanWrite are variance constraints, while all other prop-

erties of CanRead and CanWrite come from formulae in the context of a proof. This is appropriate in many
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cases. For instance, in the example of viewing photos on social media, CanRead and CanWrite have their

behavior tuned by Bob’s selections on his account settings page. It is appropriate for the behaviors based on

the selections to be axiomatized directly, rather than forced into some other model. Note that since we only

care about confidentiality in that example, CanWrite can have a trivial implementation:

p saysℓ′ CanWrite(q, ℓ) ↔ True.

FLAFOL can encode a more-concrete possible permission model by assigning every principal a label

representing “which data this person is allowed to read or write.” This model appears in the real world in the

U.S. military, where every person has a clearance label, and they are allowed to read documents labeled at or

below their clearance. A more subtle version of this model separates reading and writing into confidentiality

and integrity labels and allows every principal to have their own idea of each person’s label. This is similar

to FLAM’s model, though our version is typed and does not force principals and labels to be the same.

We can formalize this by giving projection functions from both principals and labels to both confiden-

tiality and integrity. The πP,C and πP,I projections take principals and produce confidentiality and integrity,

respectively, and πL,C and πL,I do the same, but with labels as arguments. We can think of πP,C(p) as “the

most confidential data that p can read,” while πP,I(p) is “the highest integrity data that p can write.” We

think of πL,C(ℓ) as “the confidentiality component of label ℓ,” while πL,I(ℓ) is “the integrity component of

label ℓ.” With these functions, we can say that

p saysℓ′ CanRead(q, ℓ) ↔ p saysℓ′ (πL,C(ℓ) ⊑ πP,C(q)),

and

p saysℓ′ CanWrite(q, ℓ) ↔ p saysℓ′ (πP,I(q) ⊑ πL,I(ℓ)).

The reversal of the order here comes from the fact that integrity, as a flow ordering, is dual to confidentiality.

C Details of the Coq proofs

In this appendix, we give some basic guidance to the Coq code, available at

https://github.com/FLAFOL/flafol-coq.

General Structure. In the file Term.v we define the term language used by FLAFOL along with its type

system. In the same file the module GroundInfo is defined. This module takes as parameters information

necessary to instantiate the recipe specified in Section 3. For instance, it assumes the existence of a type of

sorts and the existence of two sorts: Principal and Label. It also assumes that fresh variables can be generated

and that equality of function and relation symbols is decidable. In the file Formula.vwe define FLAFOL

formulae.To simplify proofs, we use a locally nameless representation of variables [Cha12] and binding, and

we prove some basic results about this binding discipline. Note also that the definition of FLAFOL formulae

is slightly different then that in the paper; rather than being part of the set R, the permission relations are

baked into the syntax of FLAFOL formulae directly.

We define the FLAFOL proof system in the file Sequent.v. There are three ways in which our Coq

formalism differs from the presentation of FLAFOL in Section 4: (1) we use an equivalent presentation of

the structural rules, (2) we use a slightly more general logic, and (3) we use two representations of the logic.

First, as is suggested by Pfenning [Pfe95], we drop the structural rules from the logic (WEAKENING,

EXCHANGE and CONTRACTION), modify our rules so that they never erase anything from the context and

we prove that the removed rules are admissible. This makes meta-theoretic proofs simpler.

Second, the logic described in the Coq is slightly more general than the one described in the paper. In

the Coq version the ground generalized principal has a label attached to it. Originally we added ground-

level labels to accommodate features that we left for future work, but we do not need them for this version
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of FLAFOL. To show that this is a generalization, for any FLAFOL proof without ground labels, we can

simply assign the same ground label to every belief in the proof and acquire a valid proof in the Coq version.

Third, we have two representations of our logic. The first is an (untyped) term language with the appro-

priate typing rules, and the second is a dependent inductive type. The untyped version eases reasoning about

equality, reduces compilation time, and makes proving the admissibility of weakening and substitution eas-

ier. The typed version is easier to write automation tactics for. We have proved that both representations are

equivalent.

Details of Cut Admissibility Proof. In NormalForm.v we define a normal form for FLAFOL proofs.

The cut-elimination procedure uses normalization as an essential step.8 A proof is in normal form if all rules

which do not manipulate formulae are higher in the proof tree than those which do. Formally, we define 2

normal forms, first and second normal form, which represent “might use formula-manipulating rules” and

“will not use formula manipulating rules”, respectively. A proof is in first normal form if, when a rule which

manipulates something other than a formula is used, all subproofs above that rule are in second normal form,

while a proof is in second normal form it if never uses any rules which manipulate formulae. The main result

in this file is that every FLAFOL proof has a normal form.

Theorem 8 (FLAFOL Normal Form). If Γ ⊢ ϕ @ g is provable in FLAFOL, then it is provable with a proof

in normal form.

Lastly the file Cut.v contains the cut-elimination procedure. First we normalize both proofs. If they’re

both in First Normal Form but not in Second Normal Form, we proceed as Pfenning suggests in [Pfe95]:

nested triple induction on the formula being cut and on both proofs. If one of them is in Second Normal

Form we use a different procedure. This procedure consists of getting the dual rule to the last rule used in

the proof that is in Second Normal Form (e.g. VARL for the VARR case) and make it the last rule to the

other proof. Due to the covariant-contravariant nature of these rules and their duals, this is always possible.

For more details see lemmas Cut h1MCR and Cut h2MCR in Cut.v

Non-Interference. In Speaksfor.vwe define the relations SF, CanInfl, define the function G and prove

Theorem 6. The compatible supercontexts rules are defined in CompatibleSuperContext.v. Finally,

the Coq proof of Non-Interference is in Noninterference.v; it closely follows the pen-and-paper proof

sketched in Section 6.

Simulation. The file Simulation.v contains the definition of the function ⊙ a proof of the Simulation

Theorem (Theorem 3).

D The Full FLAFOL Proof System

The full FLAFOL proof system can be found in Figure 13.

E Compatible Supercontexts

Figure 14 contains the full rules for compatible super-contexts.

8In the literature, “normal proof” refers to a cut-free proof, rather than a proof in FLAFOL’s normal form.
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AX
Γ, ϕ @ g ⊢ ϕ @ g

WEAKENING
Γ ⊢ ψ @ g

Γ, ϕ @ g′ ⊢ ψ @ g

CONTRACTION
Γ, (ϕ @ g), (ϕ @ g) ⊢ ψ @ g′

Γ, ϕ @ g ⊢ ψ @ g′
EXCHANGE

Γ, (ϕ @ g1), (ψ @ g2),Γ
′ ⊢ χ @ g

Γ, (ψ @ g2), (ϕ @ g1),Γ
′ ⊢ χ @ g

FALSEL
Γ,False @ g ⊢ ϕ @ g · g′

TRUER
Γ ⊢ True @ g

ANDL
Γ, (ϕ @ g), (ψ @ g) ⊢ χ @ g′

Γ, (ϕ ∧ ψ @ g) ⊢ χ @ g′
ANDR

Γ ⊢ ϕ @ g Γ ⊢ ψ @ g

Γ ⊢ ϕ ∧ ψ @ g

ORL
Γ, ϕ @ g ⊢ χ @ g′ Γ, ψ @ g ⊢ χ @ g′

Γ, (ϕ ∨ ψ @ g) ⊢ χ @ g′
ORR1

Γ ⊢ ϕ @ g

Γ ⊢ ϕ ∨ ψ @ g
ORR2

Γ ⊢ ψ @ g

Γ ⊢ ϕ ∨ ψ @ g

IMPL
Γ ⊢ ϕ @ 〈〉 Γ, ψ @ g ⊢ χ @ g′

Γ, (ϕ→ ψ @ g) ⊢ χ @ g′
IMPR

Γ, ϕ @ 〈〉 ⊢ ψ @ g

Γ ⊢ ϕ→ ψ @ g

FORALLL
Γ, ϕ[x 7→ t] @ g ⊢ ψ @ g′

Γ, (∀x :σ. ϕ @ g) ⊢ ψ @ g′
FORALLR

Γ ⊢ ϕ @ g x /∈ FV(Γ, g)

Γ ⊢ ∀x :σ. ϕ @ g

EXISTSL
Γ, ϕ @ g ⊢ ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

Γ, (∃x :σ. ϕ @ g) ⊢ ψ @ g′
EXISTSR

Γ ⊢ ϕ[x 7→ t] @ g

Γ ⊢ ∃x :σ. ψ @ g

SAYSL
Γ, ϕ @ g · p〈ℓ〉 ⊢ ψ @ g′

Γ, p says
ℓ
ϕ @ g ⊢ ψ @ g′

SAYSR
Γ ⊢ ϕ @ g · p〈ℓ〉

Γ ⊢ p says
ℓ
ϕ @ g

SELFL
Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ψ @ g′′

Γ, (ϕ @ g · p〈ℓ〉 · p〈ℓ〉 · g′) ⊢ ψ @ g′′
================================= SELFR

Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

Γ ⊢ ϕ @ g · p〈ℓ〉 · p〈ℓ〉 · g′
=======================

VARL

Γ, (ϕ @ g · p〈ℓ′〉 · g′) ⊢ ψ @ g′′

Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ℓ ⊑ ℓ′ @ g · p〈ℓ′〉

Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ψ @ g′′
VARR

Γ ⊢ ϕ @ g · p〈ℓ′〉 · g′ Γ ⊢ ℓ′ ⊑ ℓ @ g · p〈ℓ〉

Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

FWDL

Γ, (ϕ @ g · q〈ℓ〉 · g′) ⊢ χ @ g′′

Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉
Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

Γ, ϕ @ g · p〈ℓ〉 · g′ ⊢ χ @ g′′
FWDR

Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

Γ ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉
Γ ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

Γ ⊢ ϕ @ g · q〈ℓ〉 · g′

FLOWSTOREFL
Γ ⊢ ℓ ⊑ ℓ @ g

FLOWSTOTRANS
Γ ⊢ ℓ1 ⊑ ℓ2 @ g Γ ⊢ ℓ2 ⊑ ℓ3 @ g

Γ ⊢ ℓ1 ⊑ ℓ3 @ g

CRVAR
Γ ⊢ CanRead(p, ℓ2) @ g Γ ⊢ ℓ1 ⊑ ℓ2 @ g

Γ ⊢ CanRead(p, ℓ1) @ g

CWVAR
Γ ⊢ CanWrite(p, ℓ2) @ g Γ ⊢ ℓ2 ⊑ ℓ1 @ g

Γ ⊢ CanWrite(p, ℓ1) @ g

Figure 13: Full FLAFOL Proof System
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CSCREFL
Γ ≪ Γ ⊢ ϕ @ g

CSCUNION
∆1 ≪ Γ ⊢ ϕ @ g ∆2 ≪ Γ ⊢ ϕ @ g

∆1 ∪∆2 ≪ Γ ⊢ ϕ @ g

CSCCONTRACTION
∆ ≪ Γ, (ϕ @ g), (ϕ @ g) ⊢ ψ @ g′

∆ ≪ Γ, ϕ @ g ⊢ ψ @ g′

CSCEXCHANGE
∆ ≪ Γ, (ϕ @ g1), (ψ @ g2),Γ

′ ⊢ χ @ g

∆ ≪ Γ, (ψ @ g2), (ϕ @ g1),Γ
′ ⊢ χ @ g

CSCANDL
∆ ≪ Γ, (ϕ @ g), (ψ @ g) ⊢ χ @ g′

∆ ≪ Γ, (ϕ ∧ ψ @ g) ⊢ χ @ g′

CSCANDR1
∆ ≪ Γ ⊢ ϕ @ g

∆ ≪ Γ ⊢ ϕ ∧ ψ @ g
CSCANDR2

∆ ≪ Γ ⊢ ψ @ g

∆ ≪ Γ ⊢ ϕ ∧ ψ @ g

CSCORL1
∆ ≪ Γ, ϕ @ g ⊢ χ @ g′

∆ ≪ Γ, (ϕ ∨ ψ @ g) ⊢ χ @ g′
CSCORL2

∆ ≪ Γ, ψ @ g ⊢ χ @ g′

∆ ≪ Γ, (ϕ ∨ ψ @ g) ⊢ χ @ g′

CSCORR1
∆ ≪ Γ ⊢ ϕ @ g

∆ ≪ Γ ⊢ ϕ ∨ ψ @ g
CSCORR2

∆ ≪ Γ ⊢ ψ @ g

∆ ≪ Γ ⊢ ϕ ∨ ψ @ g

CSCIMPL1
∆ ≪ Γ, ψ @ g ⊢ χ @ g′

∆ ≪ Γ, (ϕ→ ψ @ g) ⊢ χ @ g′
CSCIMPL2

∆ ≪ Γ ⊢ ϕ @ 〈〉

∆ ≪ Γ, (ϕ→ ψ @ g) ⊢ χ @ g′

CSCIMPR
∆ ≪ Γ, ϕ @ 〈〉 ⊢ ψ @ g

∆ ≪ Γ ⊢ ϕ→ ψ @ g
CSCFORALLL

∆ ≪ Γ, ϕ[x 7→ t] @ g ⊢ ψ @ g′

∆ ≪ Γ, (∀x :σ. ϕ @ g) ⊢ ψ @ g′

CSCFORALLR
∆ ≪ Γ ⊢ ϕ @ g x /∈ FV(Γ, g)

∆ ≪ Γ ⊢ ∀x :σ. ϕ @ g

CSCEXISTSL
∆ ≪ Γ, ϕ @ g ⊢ ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

∆ ≪ Γ, (∃x :σ. ϕ @ g) ⊢ ψ @ g′
CSCEXISTSR

∆ ≪ Γ ⊢ ϕ[x 7→ t] @ g

∆ ≪ Γ ⊢ ∃x :σ. ϕ @ g

CSCSAYSL
∆ ≪ Γ, ϕ @ g · p〈ℓ〉 ⊢ ψ @ g′

∆ ≪ Γ, p says
ℓ
ϕ @ g ⊢ ψ @ g′

CSCSAYSR
∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ〉

∆ ≪ Γ ⊢ p says
ℓ
ϕ @ g

CSCSELFL
∆ ≪ Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ψ @ g′′

∆ ≪ Γ, (ϕ @ g · p〈ℓ〉 · p〈ℓ〉 · g′) ⊢ ψ @ g′′
====================================== CSCSELFR

∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ〉 · p〈ℓ〉 · g′
=============================

CSCVARL
∆ ≪ Γ, (ϕ @ g · p〈ℓ′〉 · g′) ⊢ ψ @ g′′ Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ℓ ⊑ ℓ′ @ g · p〈ℓ′〉

∆ ≪ Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ ψ @ g′′

CSCVARR
∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ′〉 · g′ Γ ⊢ ℓ′ ⊑ ℓ @ g · p〈ℓ〉

∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ〉 · g′

CSCFWDL

∆ ≪ Γ, (ϕ @ g · q〈ℓ〉 · g′) ⊢ χ @ g′′ Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉
Γ, (ϕ @ g · p〈ℓ〉 · g′) ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

∆ ≪ Γ, ϕ @ g · p〈ℓ〉 · g′ ⊢ χ @ g′′

CSCFWDR
∆ ≪ Γ ⊢ ϕ @ g · p〈ℓ〉 · g′ Γ ⊢ CanRead(q, ℓ) @ g · p〈ℓ〉 Γ ⊢ CanWrite(p, ℓ) @ g · q〈ℓ〉

∆ ≪ Γ ⊢ ϕ @ g · q〈ℓ〉 · g′

Figure 14: Compatible Supercontext Rules
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