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Abstract—Hyperproperties have shown to be a powerful tool
for expressing and reasoning about information-flow security
policies. In this paper, we investigate the problem of statistical
model checking (SMC) for hyperproperties. Unlike exhaustive
model checking, SMC works based on drawing samples from
the system at hand and evaluate the specification with statistical
confidence. The main benefit of applying SMC over exhaustive
techniques is its efficiency and scalability. To reason about
probabilistic hyperproperties, we first propose the temporal logic
HyperPCTL∗ that extends PCTL∗ and HyperPCTL. We show that
HyperPCTL∗ can express important probabilistic information-
flow security policies that cannot be expressed with HyperPCTL.
Then, we introduce SMC algorithms for verifying HyperPCTL∗

formulas on discrete-time Markov chains, based on sequential
probability ratio tests (SPRT) with a new notion of multi-
dimensional indifference region. Our SMC algorithms can handle
both non-nested and nested probability operators for any desired
significance level. To show the effectiveness of our technique,
we evaluate our SMC algorithms on four case studies focused
on information security: timing side-channel vulnerability in
encryption, probabilistic anonymity in dining cryptographers,
probabilistic noninterference of parallel programs, and the per-
formance of a randomized cache replacement policy that acts as
a countermeasure against cache flush attacks.

I. INTRODUCTION

Randomization has been a powerful tool in the design
and development of many algorithms and protocols that make
probabilistic guarantees in the area of information security.
Prominent examples such as quantitative information flow [35],
[43], probabilistic noninterference [32], and differential pri-
vacy [20] quantify the amount of information leakage and
the relation between two probabilistic execution traces of a
system. These and similar requirements constitute probabilistic
hyperproperties [3], [15]. They extend traditional trace prop-
erties from sets of execution traces to sets of execution traces
and allow for explicit and simultaneous quantification over the
temporal behavior of multiple execution traces. Probabilistic
hyperproperties stipulate the probability relation between in-
dependent executions.

Model checking, an automated technique that verifies the
correctness of a system with respect to a formal specification,
has arguably been the most successful story of using formal
methods in the past three decades. Since many systems have
stochastic nature (e.g., randomized distributed algorithms),
model checking of such systems has been an active area of
research. Temporal logics such as PCTL∗ [7] as well as model
checkers PRISM [36] and STORM [19] have been developed as

formalism and tools to express and reason about probabilistic
systems. However, these techniques are unable to capture and
verify probabilistic hyperproperties that are vital to reason
about quantified information-flow security.

The state of the art in specification and verification of
probabilistic hyperproperties is limited to the temporal logic
HyperPCTL [3]. The model checking algorithm for HyperPCTL
utilizes a numerical approach that iteratively computes the
exact measure of paths satisfying relevant sub-formulas. In
this context, we currently face two significant and orthogonal
gaps to apply verification of probabilistic hyperproperties
in practice:

• Expressiveness. First, HyperPCTL does not allow
(1) nesting of temporal operators, which is neces-
sary to express requirements such as performance
guarantees in randomized cache replacement protocols
that defend against cache-flush attacks, and (2) ex-
plicit quantification over execution paths, which is
necessary to reason about the probability of reaching
certain states.

• Scalability. Second, and perhaps more importantly,
numerical algorithms for probabilistic model check-
ing, including the one proposed in [3], tend to require
substantial time and space, and often run into serious
scalability issues. Indeed, these algorithms work only
for small systems that have certain structural proper-
ties. On top of this difficulty, another major challenge
in verifying hyperproperties is that the computation
complexity for exhaustive verification grows at least
exponentially in the number of quantifiers of the input
formula [3], [5], [10], [16].

In this work, our goal is to address the above stumbling
blocks (expressiveness and scalability) by investigating statis-
tical model checking (SMC) [4], [37], [38] for hyperproperties
with probabilistic guarantees. To this end, we first introduce on
discrete-time Markov chains the temporal logic HyperPCTL∗

that extends PCTL∗ [7] by (i) allowing explicit quantification
over paths, and HyperPCTL [3] by (ii) allowing nested proba-
bility and temporal operators. These two features are crucial in
expressing probabilistic hyperproperties, such as probabilistic
noninterference. Specifically, consider a probabilistic program
with a high-security input h ∈ {0, 1} and a low-security
output l ∈ {0, 1}. Probabilistic noninterference requires that
the probability of observing the low-security output l = 0 (or
l = 1) should be equal for two executions πh=0 and πh=1 that
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have the high-security input h = 0 and h = 1, respectively. In
other words, the high-security input cannot be inferred from
the low-security output through a probabilistic channel – i.e.,

Pπh=0(πh=0 outputs l = 0) = Pπh=1(πh=1 outputs l = 0)

This property involves the relation between two executions
πh=0 and πh=1, and cannot be expressed by non-hyper log-
ics, such as PCTL∗. We also illustrate that HyperPCTL∗ can
elegantly express properties such as generalized probabilistic
causation, countermeasures for side-channel attacks, proba-
bilistic noninterference, and probabilistic independence among
executions. In addition, the latter is an important performance
property for cache replacement policies that defend against
cache flush attacks and cannot be expressed in HyperPCTL, as
it requires using nested temporal operators.

To tackle the scalability problem, we turn to SMC – a
popular approach in dealing with probabilistic systems that
uses a sample-based technique, where one asserts whether
the system satisfies a property by observing some of its
executions [38], [39], [48]–[50]. The general idea of SMC
is to treat the problem of checking a temporal logic formula
on a probabilistic system as hypothesis testing [4], [42]. By
drawing samples from the underlying probabilistic system, the
satisfaction of the formula can be inferred with high confidence
levels. To the best of our knowledge, the work on SMC for
hyperproperties is limited to [47], where the authors propose an
SMC algorithm for hyperproperties for cyber-physical systems
using the Clopper-Pearson (CP) confidence intervals. In this
work, we propose another SMC algorithm for hyperproperties
using sequential probability ratio tests (SPRT) [46], which are
more efficient for statistical inference than using the confidence
intervals.

Developing SMC for HyperPCTL∗ formulas using SPRT
has significant challenges that do not appear in SMC for
non-hyper probabilistic temporal logics, such as PCTL∗. This
is caused by the fact that in HyperPCTL∗, one can express
complex probabilistic quantification among different paths.
Specifically, HyperPCTL∗ allows for:

• Probabilistic quantification of multiple paths. For
example, formula

P(π1,π2) (aπ1 U aπ2) > p (1)

means that the probability that an atomic proposition
a holds on a random path π1 until it becomes true on
another random path π2 is greater than some p ∈ [0, 1].

• Arithmetics of probabilistic quantification. For ex-
ample, formula

Pπ1 ( aπ1) + Pπ2( aπ2) > p (2)

stipulates that the sum of the probability that a finally
holds and the probability that a always holds, is greater
than some p ≥ 0.

• Nested probabilistic quantification. This is different
from nested probabilistic quantification in PCTL∗. For
example, formula

Pπ1
(
Pπ2 (aπ1 U aπ2) > p1

)
> p2, (3)

requires that for a (given) path π1, the probability that

(aπ1 U aπ2) holds for a random path π2, is greater
than some p1 ∈ [0, 1]; and, this fact should hold with
probability greater than some p2 ∈ [0, 1] for a random
path π1.

The different kinds of complex probabilistic quantification
among multiple paths cannot be handled by existing SMC
algorithms for non-hyper probabilistic temporal logics [4].

To use SPRT to handle the aforementioned challenges of
SMC requires a condition on the indifference regions. As a
simple example, to statistically infer if Pr(A) > p, for some
random event A, using SPRT from sampling, it is required
that the probability Pr(A) should not be too “close” to p; this
means that there exists some known ε > 0 such that Pr(A) /∈
(p − ε, p + ε), i.e., Pr(A) ≥ p + ε or Pr(A) ≤ p − ε. This
is a common assumption used for many SMC techniques [4],
[42]. Therefore, it is sufficient to test between the two most
indistinguishable cases Pr(A) /∈ p − ε and Pr(A) /∈ p +
ε. The interval (p − ε, p + ε) is usually referred to as the
indifference region. In this work, we propose new conditions
on the indifference regions that enable the use of SPRT in the
SMC of HyperPCTL∗.

For the SMC of arithmetics of probabilistic quantifications
in (2), we consider the hypothesis testing problem:

H0 :
(
Pπ1 ( aπ1),Pπ2( aπ2)

)
∈ D,

H1 :
(
Pπ1 ( aπ1),Pπ2( aπ2)

)
∈ Dc,

(4)

where D = {(p1, p2) ∈ [0, 1]2 | p1 + p2 > p} and
Dc is its complement set. To handle the joint probability(
Pπ1 ( aπ1),Pπ2( aπ2)

)
in (4), we propose a novel multi-

dimensional extension of the standard SPRT. Specifically, we
first generalize the notion of the indifference region (namely,
the parameter ε) to a multi-dimensional case. This new no-
tion of indifference region ensures that our multi-dimensional
SPRT algorithm provides provable probabilistic guarantees for
any desired false positive αFP ∈ (0, 1) and false negative
αFN ∈ (0, 1) ratios. Then we note that the hypotheses H0 and
H1 in (4) are composite, which contains infinitely many simple
hypotheses. To use SPRT, which mainly deal with simple
hypotheses, on the two composite hypotheses, we propose a
geometric condition to identify the two most indistinguishable
simple hypotheses from H0 and H1, respectively. We show
that if the SPRT can distinguish these two simple hypotheses,
then any two simple hypotheses from H0 and H1 can be
distinguished by the same test.

For the SMC of probabilistic quantification of multiple
paths in (1), we note that the SMC of probabilistic quantifica-
tion of multiple parallel paths can be handled by generalizing
the common SPRT to tuples of samples. For the SMC of
nested probabilistic quantification in (3), we can perform a
compositional analysis for the probabilistic error in the SMC
of the sub-formulas, to yield the global false positive and false
negative ratios, in the same way as [47].

Finally, based on the above new statistical inference algo-
rithms, we design SMC algorithms for HyperPCTL∗. These
algorithms are fully implemented and evaluated by four
prominent case studies.1 Specifically, we apply our SMC
algorithms to analyze: (i) the time side-channel vulnerability

1The simulation code is available at [18].
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in encryption [1], [14], [45], (ii) probabilistic anonymity in
dining cryptographers [13], (iii) probabilistic noninterference
of parallel programs [30], and (iv) the performance of a random
cache replacement policy [12] that defends against cache flush
attacks. Our results show that the proposed SMC algorithms
provide the correct answer with high confidence levels in all
cases while requiring very short analysis times.

Organization: The rest of the paper is organized
as follows. We introduce HyperPCTL∗ in Section II. The
expressiveness of HyperPCTL∗ is discussed in Section IV,
before illustrating its application in Section III. Our SMC
algorithms for HyperPCTL∗ are introduced in Section V. We
present our case studies and experimental results in Section VI.
Related work is discussed in Section VII, before concluding
remarks in Section VIII.

II. THE TEMPORAL LOGIC HYPERPCTL∗

We begin with some notation. We denote the set of natural
and real numbers by N and R, respectively. Let N∞ = N ∪
{∞}. For n ∈ N, let [n] = {1, ... , n}. The cardinality of a set
is denoted by |·|. For n ∈ N, we use s = (s1, ... , sn) to denote
a tuple. We use S = s(0)s(1) ... to denote a sequence, and the
i-suffix of the sequence is denoted by S(i) = s(i)s(i+ 1) · · · .
For any set D ⊆ Rn, we denote its boundary, interior, closure
and complement by ∂D, D◦, D, and Dc, respectively.

Our proposed temporal logic HyperPCTL∗ is an extension
of PCTL∗ [7] that enables handling hyperproperties. It also
can be viewed as a variation of HyperPCTL [3] that allows for
nested temporal and probability operators. In this section, we
introduce the formal syntax and semantics of HyperPCTL∗; its
relation with PCTL∗, HyperLTL and HyperPCTL is discussed
in the next section.

A. Syntax

HyperPCTL∗ formulas are defined by the grammar

ϕ ::= aπ | ϕπ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U≤k ϕ | ρ on ρ (5)
ρ ::= f(ρ, ... , ρ) | Pπ (ϕ) | Pπ (ρ) (6)

where

• a ∈ AP is an atomic proposition;

• π is a (fresh) random path variable from an infinite
supply of such variables Π;2

• and U≤k are the ‘next’ and ‘until’ operators,
respectively, where k ∈ N∞ is the time bound and
U≤∞ means “unbounded until”;

• on ∈ {<,>,=,≤,≥}, which allows comparing prob-
abilities among different random paths;

• Pπ is the probability operator for a tuple of random
path variables π = (π1, ... , πn) for some n ∈ N, and

• f : Rn → R is an n-ary elementary function,3
with constants being viewed as a 0-ary function. This

2Technically, using a non-fresh path variable can be allowed. However, to
avoid possible confusion about the meaning of the HyperPCTL∗ formulas,
we only use fresh path variables here.

3Elementary functions are defined as a sum, product, and/or composition of
finitely many polynomials, rational functions, trigonometric and exponential
functions, and their inverse functions.

enables expressing arithmetic operations and entropy
from probabilities.

HyperPCTL∗ can be viewed as a probabilistic adaptation
of HyperLTL [16]. Following the terminology of HyperLTL
(and more generally, the first-order logic [21]), in a given
HyperPCTL∗ formula, we call a path variable free if it has not
been associated by a probability operator; otherwise, the path
variable is quantified. For example, in a HyperPCTL∗ formula
Pπ1(aπ1 U aπ2), the path variable π1 is quantified and the path
variable π2 is free. Mostly, we are interested in HyperPCTL∗

formulas with all the path variables quantified.

Additional logic operators are derived as usual: true ≡
aπ ∨ ¬aπ , ϕ ∨ ϕ′ ≡ ¬(¬ϕ ∧ ¬ϕ′), ϕ ⇒ ϕ′ ≡ ¬ϕ ∨ ϕ′,
≤k ϕ ≡ true U≤k ϕ, and ≤k ϕ ≡ ¬ ≤k ¬ϕ. We denote
U≤∞, ≤∞, and ≤∞ by U , , and , respectively. We
represent a 1-tuple by its element, i.e., σ(π) and P(π) are
written as σπ and Pπ , respectively.

B. Semantics

We consider the semantics of HyperPCTL∗ on discrete-time
Markov chains (DTMCs) with their states labeled by a set of
atomic propositions AP. Formally, a DTMC is a tuple M =
(S, sinit,T,AP, L) where

• S is the finite set of states, and sinit the initial state;

• T : S × S → [0, 1] is the transition probability
function, where for any state s ∈ S, it holds that∑

s′∈S
T(s, s′) = 1;

• AP is the set of atomic propositions, and

• L : S → 2AP is a labeling function.

An example DTMC labeled by the atomic propositions {a1,
a2} is illustrated in Figure 2. A path of a DTMC M =
(S, sinit,T,AP, L) is of the form S = s(0)s(1) · · · , such that
for every i ∈ N, s(i) ∈ S and T(s(i), s(i+ 1)) 6= 0. By
Paths(s), we denote the set of paths that start from state s,
while Paths(M) denotes the set of all paths of DTMC M.

The semantics of HyperPCTL∗ formulas is described in
terms of the interpretation tuple (M, V ), where

• M = (S, sinit,T,AP, L) is a DTMC, and

• V : Π → Paths(M) is a path assignment, mapping
each (random) path variable to a concrete path of M,
starting from the initial state sinit by default.

We denote by J·KV the instantiation of the assignments V on
a HyperPCTL∗ formula. The judgment rules for semantics of
a HyperPCTL∗ formula ϕ are detailed in Figure 1, where

1) V [·] denotes the revision of the assignment V by the
rules given in [·].

2) V (i) is the i-shift of path assignment V , defined by
V (i)(π) = (V (π))(i).

3) By the second rule, associating the path variable π to
the formula ϕ assigns the value of all path variables
in ϕ to V (π). For a given (M, V ), the satisfaction
of ϕ is preserved, if the free path variables in ϕ

3



(M, V ) |= aπ iff a ∈ L
(
V (π)(0)

)
(M, V ) |= ϕπ iff (M, V [π′ 7→ V (π)]) |= ϕ
(M, V ) |= ¬ϕ iff (M, V ) 6|= ϕ
(M, V ) |= ϕ1 ∧ ϕ2 iff (M, V ) |= ϕ1 and (M, V ) |= ϕ2

(M, V ) |= ϕ iff (M, V (1)) |= ϕ
(M, V ) |= ϕ1 U≤k ϕ2 iff there exists i ≤ k such that

(
(M, V (i)) |= ϕ2

)
∧
(
for all j < i. (M, V (j)) |= ϕ1

)
(M, V ) |= ρ on ρ iff (M, V ) |= JρKV on JρKV
Jf(ρ, ... , ρ)KV = f

(
JρKV , ... , JρKV

)
JP(π1,...,πn)(ϕ)KV = Pr

{(
Si ∈ Paths(V (πi)(0)

)
i∈[n] : (M, V [πi 7→ Si for all i ∈ [n]]) |= ϕ

}
JP(π1,...,πn)(ρ)KV = Pr

{(
Si ∈ Paths(V (πi)(0)

)
i∈[n] : (M, V [πi 7→ Si for all i ∈ [n]]) |= ρ

}
Fig. 1. Semantics of HyperPCTL∗.

are replaced by π. (The quantified path variables are
unaffected, as discussed in Point 4) below.)
For example, the following formulas are semantically
equivalent – i.e., the truth value of the formulas on
both sides are identical for any given (M, V ),

(aπ1)π2 ≡ aπ2 ,

( aπ1)π2 ≡ aπ2 ,

(aπ1 U aπ2)π3 ≡ aπ3 U aπ3 .

In particular, in the first above equivalence, π2 in
(aπ1)π2 can replace π1, since π1 is a free random path
variable and obtain aπ2 . However, these two formulas
would not be equivalent if π1 was not free.

4) In the last two rules, the probability Pr is taken for
an n-tuple of sample paths (S1, ... , Sn) to instantiate
π, and “:” means ‘such that’. The evaluation of
the probability operator JP(π1,...,πn)(ϕ)KV means to
(re)draw the random path variables π1, ... , πn from
their current initial states on the DTMC M (regard-
less of their current assignment by V ), and evaluate
the satisfaction probability of ϕ. Thus, following
Point 3), the quantified path variables are unaffected
by the association of new path variables and we have
the following semantic equivalence:(

Pπ1 (aπ1 U aπ2)
)π3 ≡ Pπ1(aπ1 U aπ3),(

P(π1,π2) (aπ1 U aπ2)
)π3 ≡ P(π1,π2)(aπ1 U aπ2).

In particular, in the first equivalence, π3 in (Pπ1(aπ1 U aπ2))π3

can replace π2, since π2 is free, obtaining Pπ1(aπ1 U aπ3).
However, π3 cannot replace π1, as π1 is quantified by the
probability operator.

C. Discussion on HyperPCTL∗

Consider the DTMC M in Figure 2, and the following
HyperPCTL∗ formula:

ϕ = P(π1,π2)
(

(aπ1
1 ∧ aπ2

1 ) ∧ (aπ1
2 ∧ aπ2

2 )
)
> 1/6.

The formula claims that two (independently) random paths π1
and π2 from sinit = s0 satisfy (aπ1

1 ∧a
π2
1 ) ∧ (aπ1

2 ∧a
π2
2 ), i.e.,

both paths should satisfy a1 in their initial state and satisfy a2
(later) at the same time with probability greater than 1/6. By
calculation from Figure 2, this probability is 1/4, so we have
M |= ϕ.

s0

{a1}

s1

{}
s2

{}

s3

{a2}
1

1
2

1
2

1

1

Fig. 2. HyperPCTL∗ example on DTMC M.

sinit
π1

s

π3

sinit

π2

Fig. 3. Computation trees for (7). The dashed arrows show other possible
sample values of the path variables to illustrate the probabilistic computa-
tion tree.

HyperPCTL∗ can generate complex nested formulas. We
explain this using two formulas. First consider the formula:

Pπ1

( (
P(π2,π3)

(
aπ2 U (aπ3)π1

)
> c2

))
> c1. (7)

The formula (7) states that with probability greater than c1, we
can find a path π1, such that finally from some state s on π1,
with probability greater than c2, we can find a pair of paths
(π2, π3) from the pair of states (sinit, s) to satisfy “aπ2 until
aπ3”. That is, the computation tree of π3 is a subtree of the
computation tree of π1 (rooted at sinit), since π3 in (aπ3)π1 is
in the scope of π1. On the other hand, since π2 is indexed by
π1, its computation tree is rooted at sinit (see Figure 3). The
inner subformula P(π2,π3)

(
aπ2 U (aπ3)π1

)
> c2 in (7) involves

the probabilistic computation trees of π2 and π3, as shown by
the dotted box in Figure 3.

Now, consider the formula:

Pπ1

( (
P(π2,π3)

(
aπ2 U aπ3

)
> c2

)π1
)
> c1. (8)

It requires that with probability greater than c1, we can find
a path π1, such that finally from some state s on π1, with
probability greater than c2, we can find a pair of paths (π2, π3)
from the state s that satisfy “aπ2 until aπ3”. That is, the

4



sinit
π1

π2

π3

Fig. 4. Computation trees for (8). The dashed arrows show other possible
sample values of the path variables to illustrate the probabilistic computa-
tion tree.

computation tree of π2 and π3 (rooted at s) is a subtree of the
computation tree of π1, rooted at sinit (see Figure 4). Again,
the inner subformula P(π2,π3)

(
aπ2 U aπ3

)
> c2 in (8) involves

the probabilistic computation trees of π2 and π3, as shown by
the dotted box in Figure 4.

III. APPLICATIONS OF HYPERPCTL∗

In this section, we illustrate the application of HyperPCTL∗

by four examples related to information-flow security, ranging
from timing attacks, scheduling of parallel programs, commu-
nication protocols, and computer hardware. These examples
cannot be properly handled by existing temporal logics.

A. Side-channel Vulnerability

Timing side-channel attacks are possible if an attacker can
infer the secret values, which are set at the second step of
an execution, by observing the execution time of a program.
To prevent such attacks, it is required that the probability of
termination within some k ∈ N steps should be approximately
equal for two (random) executions π1 and π2, where the secret
values are S1 and S2, respectively:

Pπ1
(
( Sπ1

1 )⇒ ( ≤k
Fπ1)

)
≈ε Pπ2

(
( Sπ2

2 )⇒ ( ≤k
Fπ2)

)
,

(9)

where the label F represents the end of execution, the next
operator signifies that the secret is established in the first step
of execution, and ≈ε stands for approximately equal within
some ε > 0. If (9) holds, then an attacker cannot infer the the
secret values from whether the program terminates in k steps.

B. Probabilistic Noninterference

Probabilistic noninterference [32] establishes the connec-
tion between information theory and information flow by
employing probabilities to address covert channels. Intuitively,
it requires that the probability of every low-observable trace
pattern is the same for every low-equivalent initial state. For
example, consider the parallel composition of the following
n-threads:

Thk : for ik = 1 to (h+ 1)× k
do {... ; l← (k mod 2)}, (10)

where k ∈ [n] and l ∈ {0, 1} is a publicly observable output.
The secret input h is randomly set to 0 or 1 with probability
0.5. At each step, the processor randomly chooses one thread
among the unfinished threads with equal probability and exe-
cutes one iteration of the for-loop (including the assignment
of l), until all the n threads are finished. Clearly, the (random)
execution of this n-thread program can be represented by a
DTMC, where the states are labeled by the values of all the

variables. Starting from the initial state, it sets the value of h
at the second step and then executes the threads until finished.
The termination states are labeled by F.

As the threads have different numbers of loops depending
on h and the scheduling is uniformly random, the whole
process is more likely to terminate at a thread with more loops,
whose thread number is partially indicated by l. This opens
up the possibility that by observing l, an attacker can infer
the difference in the number of loops among the threads, and
hence infer h. On the other hand, the attack cannot happen
if the probability of observing L0 : l = 0 (or L1 : l = 1) is
approximately equal, regardless of H0 : h = 0 or H1 : h = 1
– i.e., the value of h cannot be inferred from the value of l.
This is formally defined in HyperPCTL∗ by:

Pπ1

(
( H0

π1)⇒
(

(Fπ1 ∧ L0π1)
))

≈ε Pπ2

(
( H1

π2)⇒
(

(Fπ2 ∧ L0π2)
))
,

(11)

and

Pπ1

(
( H0

π1)⇒
(

(Fπ1 ∧ L1π1)
))

≈ε Pπ2

(
( H1

π2)⇒
(

(Fπ2 ∧ L1π2)
))
,

(12)

where ≈ε stands for approximately equal within ε and the next
operator signifies that the secret is established in the first step
of execution. In (11), π1 is a random execution of the program,
where it sets h = 0 at the second step and finally yields l = 0
and π2 is a random execution of the program, where it sets
h = 1 at the second step and finally yields l = 0; and similarly
for (12).

C. Dining Cryptographers

Several cryptographers sit around a table having dinner.
Either one of the cryptographers or, alternatively, the National
Security Agency (NSA) must pay for their meal. The cryp-
tographers respect each other’s right to make an anonymous
payment but want to find out whether the NSA paid. So they
decide to execute the following protocol:

• Every two cryptographers establish a shared one-bit
secret by tossing an unbiased coin and only informs
the cryptographer on the right of the outcome.

• Then, each cryptographer publicly states whether the
two coins that it can see (the one it flipped and the
one the left-hand neighbor flipped) agree if he/she did
not pay.

• However, if a cryptographer actually paid for dinner,
then it instead states the opposite – disagree if the
coins are the same and agree if the coins are different.

• An even number of agrees indicates that the NSA
paid, while an odd number indicates that a cryptogra-
pher paid.

The protocol can be modeled by a DTMC with the states
labeled by the values of the Boolean variables mentioned
below. In addition, the state labels Ci for i = 1, 2, 3 indicate
that cryptographer i paid, and C0 indicates that the NSA paid.
The common shared secret between two cryptographers i and
j is indicated by the label Sij . The final result of the process is

5



indicated by a Boolean variable P, where P if a cryptographer
paid, and ¬P otherwise. We define an information-flow security
condition that given that some cryptographer paid, the proba-
bility that either cryptographer i or j paid are (approximately)
equal irrespective of the common shared secret between them,
i.e., the results of the coin tosses. This is specified by the
following HyperPCTL∗ formula:

Pπ1
(

(¬Sπ1
ij ∧ Pπ1)

)
≈ε Pπ2

(
(Sπ2
ij ∧ Pπ2)

)
≈ε Pπ3

(
(¬Sπ3

ij ∧ Pπ3)
)
≈ε Pπ4

(
(Sπ4
ij ∧ Pπ4)

)
.

(13)

where ≈ε stands for approximately equal within ε. In (13),
π1 is a random execution of the protocol, where the common
shared secret between two cryptographers i and j is set to
Sij during the execution and the final return is P – i.e. some
cryptographer paid; and similarly for π2, π3, and π4.

D. Randomized Cache Replacement Policy

Cache replacement policies decide which cache lines are
replaced in case of a cache miss. Randomized policies employ
random replacement as a countermeasure against cache flush
attacks. On the negative side, they also introduce performance
losses. Following [12], we model a cache as a Mealy machine
with the access sequence as the input. Each state of the Mealy
machine represents a unique configuration of the cache, i.e.,
the cache lines stored. The transition of the Mealy machine
captures a random replacement policy that for access to
memory data in address b, (i) if it is already stored in the
cache, return Hit H; (ii) if it is not stored and the cache has
free space, return Miss M and write b in free space, and (iii) if
b is not stored and the cache is full, then returns Miss H, and
randomly overwrite a line (with uniform distribution) with b.

The performance requirement of such a policy is that,
from an empty cache, after N steps (when the cache almost
fills), in a time window of T , the probability of observing T
consecutive H should be greater than that of observing H only
T − 1 times in that window. This is formally expressed as:

Pπ1( (N) ≤T Hπ1) > Pπ2( (N) ϕπ2) + ε, (14)

where ε > 0 is a parameter, ϕπ2 means there is one M for N
consecutive accesses, formally expressed as

ϕπ2 =
(
Mπ2 ∧ Hπ2 ∧ ... ∧ (T−1) Hπ2

)
∨ ... ∨

(
Hπ2 ∧ ... ∧ (T−2) Hπ2 ∧ (T−1) Mπ2

)
where B indicates the initial state of an empty cache, and

(N) represents the N -fold composition of . In (14), π1
is a random execution of the cache replacement policy, where
starting from the step N , there are T consecutive hits H; π2 is
a random execution, where starting from the step N , there is
only one miss M for the next T steps.

E. Generalized Probabilistic Causation

HyperPCTL∗ can express conditional probabilities over
multiple independent computation trees, which is not possible
in HyperPCTL [3]. Probabilistic causation [34] asserts that
if the cause ψπ happens, the probability of occurring an
effect ϕπ should be higher than the probability of occurring
ϕπ when ψπ does not happen. Here, we allow the cause and

s

π1

π1(1)

π2

Fig. 5. Computation trees for (16). The dashed arrows show other possible
sample values of the path variables to illustrate the probabilistic computa-
tion tree.

effect to be hyperproperties to capture probabilistic causality
between security properties, e.g., the existence of a side-
channel (see Section III-A) results in another side-channel. We
can specify that for any two premises (i.e., initial states), ψπ
probabilistically causes ϕπ as follows:

Pπ1(ψπ1 ∧ ϕπ1)

Pπ2(ψπ2)
>

Pπ3(¬ψπ3 ∧ ϕπ3)

Pπ4(¬ψπ4)
. (15)

In (15), π1 is a tuple of random executions where both the
cause ψ and effect ϕ hold; π2 a tuple of random executions
where the cause ψ holds. Thus, the left-hand side of (15)
is the conditional probability of the effect, when the cause
holds. Similarly, the right-hand side of (15) is the conditional
probability of the effect, when the cause does not hold.

The cause and effect in (15) can themselves be hyper-
properties. For instance, the cause can be the violation of
probabilistic noninterference (i.e., (11)) and the effect can be
a breach of safety. That is, leakage of information increases
the probability of compromising safety. This probabilistic
causation of hyperproperties cannot be expressed by PCTL∗

or any of its existing extensions including [6].

IV. RELATION TO OTHER TEMPORAL LOGICS

In this section, we illustrate the expressive power of
HyperPCTL∗ by comparing it with PCTL∗ [7], HyperPCTL [3],
and HyperLTL [16].

A. Relation to PCTL∗

In a PCTL∗ formula, a probability operator implicitly
incorporates a single random sample path drawn from a
(probabilistic) computation tree. In HyperPCTL∗, such random
path variables are explicitly specified. For example, checking
the nested PCTL∗ formula

PJ1
(

(PJ2(ϕ))
)
,

involves two random sample paths from a root computation
tree (for PJ1 ) and a sub computation tree (from the second state
of the first path for PJ2 ), respectively. Thus, in order to specify
this formula in HyperPCTL∗, we need to explicitly employ
two random path variables π1 and π2 for the two probability
operators, where sub-formula ϕ is checked on π2 of the sub
computation tree, whose root is randomly given by π1(1) (see
Figure 5). Hence, sub-formula (PJ2(ϕ)) is checked on π1.
The corresponding HyperPCTL∗ formula is:

Pπ1
(

(Pπ2(ϕπ2) ∈ J2)π1
)
∈ J1. (16)

Formally, we first show that HyperPCTL∗ subsumes PCTL∗.
This is done by providing the set of rules to translate every
PCTL∗ formula to a HyperPCTL∗ formula. We use the syntax
and semantics of the PCTL∗ from Appendix A.

Theorem 1: HyperPCTL∗ subsumes PCTL∗.
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Proof: We prove this statement by showing that any
PCTL∗ formula can be transformed into a HyperPCTL∗ formula
with the same meaning. In other words, for any given DTMC,
the satisfaction/dissatisfaction of the formula is preserved
during the transformation.

Given a DTMC M, the satisfaction of a PCTL∗ state
formula Φ (as defined in Appendix A) transforms into the
satisfaction of a HyperPCTL∗ formula by

M |= Φ if and only if (M, V ) |= T (Φ, π), (17)

for any path assignment V . In (17), the PCTL∗ state formula
Φ implicitly involves a random path (more precisely, a random
computation tree), which is explicitly named by π in the
corresponding HyperPCTL∗ formula. The transformation T is
defined inductively as follows:

• T (a, π) = aπ

• T (¬ϕ, π) = ¬T (ϕ, π)

• T (¬Φ, π) = ¬T (¬Φ, π)

• T (ϕ1 ∧ ϕ2, π) = T (ϕ1, π) ∧ T (ϕ2, π)

• T (Φ1 ∧ Φ2, π) = T (Φ1, π) ∧ T (Φ2, π)

• T ( ϕ, π) = T (ϕ, π)

• T (ϕ1 U≤k ϕ2, π) = T (ϕ1, π) U≤k T (ϕ2, π)

• T (PJ(ϕ), π) =
(
Pπ′

(T (ϕ, π′)) ∈ J
)π

with π′ 6= π,

where Φ is a PCTL∗ state formula, ϕ is a PCTL∗ path
formula (as defined in Appendix A). The correctness of the
transformation follows directly from the semantics of the
logics. The transformation (17) holds for any path assignment
V , since it can be shown that the path variables in T (Φ, π)
are all (probabilistically) quantified and actually do not receive
assignment from V .

Next, we show that HyperPCTL∗ strictly subsumes PCTL∗.
Specifically, we construct a DTMC and a HyperPCTL∗ for-
mula, and show that this formula cannot be expressed
by PCTL∗.

Theorem 2: HyperPCTL∗ is strictly more expressive than
PCTL∗ with respect to DTMCs.

Proof: Consider the DTMC shown in Figure 6 and the
following HyperPCTL∗ formula:

ϕ =

(
Pπ1
(
initπ1 ⇒ (aπ1

1 ∧ aπ1
2 )
)

Pπ2
(
initπ2 ⇒ aπ2

2

) =
1

2

)
.

Now, we prove that ϕ cannot be expressed in PCTL∗. By
the syntax and semantics of PCTL∗, it suffices to show that
ϕ cannot be expressed by a formula P(ψ), where ψ is a
PCTL∗ path formula derived by concatenating a set of PCTL∗

state formulas Φ1, ... ,Φn with ∧,¬, or the temporal operators.
These state formulas are either true or false in the states s0, s1,
s2, and s3. Thus, the satisfaction of ψ defines a subset of the
paths Paths(s0) = {s0sω1 , s0sω2 , s0sω3 } in the DTMC. Since
every path in Paths(s0) is taken with probability 1/3, formula
P(ψ) can only evaluate to a value in {0, 1/3, 2/3, 1}. However,
by the semantics of HyperPCTL∗, the fractional probability
on the right side of the implication has value 1/2; thus, ϕ
evaluates to true and cannot be expressed by P(ψ) in PCTL∗.

s0

{init}

s1

{a1}

s2

{a2}

s3

{a1, a2}

1
3

1
3

1
3

1 1 1

Fig. 6. DTMC where HyperPCTL∗ strictly subsumes PCTL∗.

B. Relation to HyperPCTL

Similar to HyperPCTL [3], HyperPCTL∗ allows probability
arithmetics and comparison. For example, the HyperPCTL∗

formula

ϕ =
(
Pπ1 ( aπ1)− Pπ2( aπ2) > c

)
for some c ∈ R means the satisfaction probability of “finally
a” is greater at least by c on a random path variable π1 than
another random path variable π2. But in general, HyperPCTL
and HyperPCTL∗ do not subsume each other.

Theorem 3: On DTMCs, HyperPCTL∗ strictly subsumes
HyperPCTL.

Proof: From Theorem 2, HyperPCTL∗ subsumes PCTL∗.
However, HyperPCTL does not subsume PCTL∗ [3]. Thus,
HyperPCTL does not subsume HyperPCTL∗.

More specifically, HyperPCTL cannot express the satis-
faction probability of a formula with more than two nested
temporal operators. For example, the HyperPCTL∗ formula
P(π1,π2,π3)(aπ1

1 U (aπ2
2 U aπ3

3 )) cannot be expressed by Hyper-
PCTL. This is similar to the fact that PCTL cannot express the
satisfaction probability of an LTL formula with more than two
nested temporal operators (but PCTL∗ can).

On the other hand, HyperPCTL∗ contains all the syntactic
rules of HyperPCTL, except for the (existential and universal)
state quantifications [3]. A HyperPCTL formula with state
quantifications can be expressed by HyperPCTL∗ by enumer-
ating over the finite set of states of the DTMC. For example,
HyperPCTL can specify that “there exists a state s, such that
P(π1,π2)(aπ1 U aπ2) > p, where the initial state of π1, π2 is s.”
To express this in HyperPCTL∗, we introduce an extra initial
state that goes to all the states S of DTMC with probability
1/|S|. Then, the HyperPCTL specification can be expressed by∨

s∈S
P(π1,π2)

( (
(sπ1 ∧ sπ2) ∧ (aπ1 U aπ2)

))
> p/|S|,

where “ ” appears because the paths π1, π2 now start from
the new initial state.

C. Relation to HyperLTL

A HyperLTL formula can have multiple path variables. For
example, let

ϕhltl = aπ1
1 U aπ2

2

be a HyperLTL subformula (i.e., without path quantification),
meaning that a1 is true on π1 until a2 is true on π2. Like
PCTL∗, which allows for reasoning over the satisfaction prob-
ability of LTL formulas, HyperPCTL∗ allows for reasoning over
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the satisfaction probability of HyperLTL formulas. For example,
HyperPCTL∗ subformula P(π1,π2)(ϕhltl) > c means that the
satisfaction probability of the HyperLTL formula ϕhltl is greater
than c. Moreover, in HyperPCTL∗, a HyperLTL formula can be
probabilistically quantified in multiple ways. Specifically, the
path variables of the HyperLTL formula can be quantified at one
time, or one-by-one in a certain order. For example, instead
of quantifying the HyperLTL formula ϕ in a one-shot way for
ϕhltl, HyperPCTL∗ also allows formula

ψ1 = Pπ1
(
Pπ2 (ϕhltl) > c2

)
> c1.

This means that the probability for finding path π1 should be
greater than c1, such that the probability for finding another
path π2 to satisfy ϕhltl is greater than c2. By flipping the order
of the probabilistic quantification for π1 and π2, we derive the
formula

ψ2 = Pπ2
(
Pπ1 (ϕhltl) > c2

)
> c1.

Clearly, the meaning of ψ1 and ψ2 is different, showing the
significance of the order of the probabilistic quantification.

V. STATISTICAL MODEL CHECKING

In this section, we design statistical model checking (SMC)
algorithms for HyperPCTL∗ formulas on labeled discrete-time
Markov chains. As with previous works on SMC [4], [38],
[41], we focus on handling probabilistic operators by sampling.
The temporal operators can be handled in the same way as for
HyperLTL [16], and thus will not be discussed here.

A. Challenges in Developing SMC for HyperPCTL∗

To statistically verify HyperPCTL∗, the main challenge is
to use sequential probability ratio tests (SPRT) to handle the
following issues:

• Probabilistic quantification of multiple paths. Con-
sider the following formula:

Pπ (ϕ) > p, (18)

where π = (π1, ... , πn) is a tuple of path variables.
Unlike the conventional SMC techniques, evaluating
such a formula requires drawing multiple samples (we
assume the truth value of ϕ can be determined, given
the sample value for π).

• Arithmetics of probabilistic quantifications. Con-
sider the following formula:

f
(
Pπ1 (ϕ1), ... ,Pπn(ϕn)

)
> p,

where for i ∈ [n], πi is a tuple of path variables
and the truth value of ϕi can be determined, given
the sample value for πi. Equivalently, this can be
expressed as(

Pπ1 (ϕ1), ... ,Pπn(ϕn)
)
∈ D, (19)

where

D = {(x1, ... , xn) ∈ [0, 1]n | f(x1, ... , xn) > p}.

This can be viewed as an application of the cur-
rying technique in first-order logic that builds the
equivalence between functions and relations [21]. In

addition, since the functions f is elementary from the
syntax of HyperPCTL∗, the boundary of the domain
D is also elementary.

• Nested probabilistic quantification. Consider the
following formula:

Pπ1 Pπ2 · · · Pπn (ϕ) > p, (20)

where i ∈ [n], πi is a tuple of path variables and
the truth value of ϕ can be determined, given the
sample value for all πi. This type of formula poses
a challenge since the multiple paths drawn for each
probability operator can be different from its previous
or next operator.

These probabilistic quantifications are unique to HyperPCTL∗,
therefore, they are not directly supported by existing statistical
model checking algorithms designed for non-hyper probabilis-
tic temporal logics [4]. In the next subsections, we address
these challenges.

B. Probabilistic Quantification of Multiple Parallel Paths

Consider the formula (18) again. We denote the satisfaction
probability of the subformula ϕ in (18) for a given DTMCM
and path assignment V by:

pϕ =Pr
{(
Si ∈ Paths

(
V (πi)(0)

))
i∈[n]

:(
M, V

[
πi 7→ Si for all i ∈ [n]

])
|= ϕ

}
.

(21)

Following the standard procedure [4], [37], to simplify our
discussion, we first assume that ϕ is a bounded-time spec-
ification, i.e., its truth value can be evaluated on the finite
prefixes of the sample paths. Unbounded-time specifications
can be handled similarly with extra considerations on the time
horizon. In addition, we make the following assumption on the
indifference region.

Assumption 1: The satisfaction probability of ϕ is not
within the indifference region (p − ε, p + ε) for some ε > 0;
i.e.,

pϕ /∈ (p− ε, p+ ε). (22)

From Assumption 1, to statistically verify (18), it suffices
to solve the following hypothesis testing (HT) problem:

H0 : pϕ ≤ p− ε, H1 : pϕ ≥ p+ ε. (23)

The hypotheses H0 and H1 in (23) are composite since each of
them contains infinitely many simple hypotheses of the form
H0 : pϕ = p0 and H1 : pϕ = p1, respectively, where p0 ∈
[0, p− ε] and p1 ∈ [p+ ε, 1].

To handle composite hypotheses with SPRT, a common
technique is to consider the two most “indistinguishable”
simple hypotheses

H0 : pϕ = p− ε, H1 : pϕ = p+ ε (24)

from the two composite hypotheses in (23), respectively.
From [41], if existing samples can test between p − ε and
p+ ε for some given statistical errors, then these samples are
sufficient to test between p−ε and pϕ with the true satisfaction
probability pϕ ∈ [p + ε, 1] (or between p + ε and pϕ with
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Algorithm 1 SMC of Pπ(ϕ) > p.
Require: Desired FP and FN ratios αFP and αFN, indifference

parameter ε.
1: N ← 0, T ← 0.
2: while True do
3: N ← N + 1.
4: Draw a tuple of sample paths SN (from the DTMC).
5: if ϕ is true on SN then
6: T ← T + 1.
7: end if
8: Update λ(p+ ε) and λ(p− ε) by (25).
9: Check the termination condition (27).

10: end while

the true satisfaction probability pϕ ∈ [0, p − ε]) for the same
statistical errors (see Appendix D for details).

Remark 1: The indifference region assumption is neces-
sary. If ε = 0, then H0 and H1 in (24) will be identical.

To statistically test between H0 and H1 from (24), suppose
we have drawn N statistically independent sample path tuples
S1, ... , SN for the path variable π from the DTMC. Let T
be the number of sample path tuples, for which ϕ is true.
This is similar to the statistical model checking of PCTL∗

(see Appendix D for detailed description), except that the truth
value of ϕ needs to be evaluated for tuples of paths instead of
single paths. Let us define, for x ∈ (0, 1), the log-likelihood
function as

λ(x) = ln
(
xT (1− x)N−T

)
, (25)

then λ(p − ε) and λ(p + ε) are the log-likelihood of the two
hypotheses H0 and H1 in (24), respectively. As the number of
sample path tuples N increase, the log-likelihood ratio λ(p+
ε) − λ(p − ε) should increase (with high probability) if H1

holds, and should decrease if H0 holds. To achieve desired
the false positive (FP) and false negative (FN) ratios αFP and
αFN, respectively, defined by4:

αFP = Pr
(
assert H1 |H0 is true

)
,

αFN = Pr
(
assert H0 |H1 is true

)
,

(26)

the SPRT algorithm should continue sampling, i.e., increase
the number of samples N , until one of the two following
termination conditions hold [46]:

{
assert H0, if λ(p− ε)− λ(p+ ε) > ln 1−αFN

αFP
,

assert H1, if λ(p+ ε)− λ(p− ε) > ln 1−αFP

αFN
.

(27)

This process is summarized by Algorithm 1.

C. Arithmetics of Probabilistic Quantifications

Now, consider formula (19). We denote the satisfaction
probability of Pπi(ϕi) for each i ∈ [n] for a given DTMC
M and path assignment V by:

pϕi
= Pr

{(
Sl ∈ Paths

(
V (πl)(0)

))
l∈[ki]

:(
M, V

[
πl 7→ Sl for all l ∈ [ki]

])
|= ϕi

}
,

(28)

4Here, Pr(· | ·) stands for the conditional probability.

where
πi = (πi1, ... , πiki), ki = |πi|.

Again, we assume that each ϕi is a bounded-time specification,
as we did for (21). This problem can be converted into the
(multi-dimensional) HT problem in Rn by

H0 : pϕ ∈ D, H1 : pϕ ∈ Dc, (29)

where D is as defined in (19), Dc is the complement of D,
and pϕ = (pϕ1

, ... , pϕn
).

We now propose a novel SPRT algorithm for this n-
dimensional HT problem, by extending the common SPRT
algorithm from Section V-B to multi-dimension. By following
the same idea, we first generalize the notion of indifference
regions to the multi-dimensional case. Based on this, we
propose a geometric condition to identify the two most in-
distinguishable cases r and q from the test regions D and Dc,
such that it suffices to consider the HT problem:

H ′0 : pϕ = r, H ′1 : pϕ = q. (30)

Once q and r in (30) are known, then we can solve it in
the same way as done in Section V-B. Specifically, in (19),
for each i ∈ [n], we draw N sample path tuples for the path
variable πi from the DTMC and let Ti be the number of sample
path tuples, for which ϕi is true. Consider the log-likelihood
function defined as

λ(x) = ln

( ∏
i∈[n]

xTi
i (1− xi)N−Ti

)
, (31)

where x = (x1, ... , xn) ∈ (0, 1)n. Clearly, λ(r) and λ(q) are
the log-likelihood of the two hypotheses in (30), respectively.
So, an SPRT algorithm can be constructed based on the log-
likelihood ratio λ(r) − λ(q) (or equivalently λ(q) − λ(r)).
Below, we explain how to derive q and r.

Multi-Dimensional Indifference Region

To ensure that we can find different values for q and r
in (30) (so that H0 and H1 are not identical), we introduce a
multi-dimensional version of the indifference region assump-
tion. It ensures that the two test regions in (29) are separated, as
formally stated below. This is similar to the case in Section V-B
(see Assumption 1 and Remark 1).

Assumption 2: The test region D is convex and there exists
convex D0, D1 ⊆ [0, 1]n, such that D0 ⊆ D ⊆ D1, and the
Hausdorff distance dH(D0, D1) > 0, where

dH(X,Y ) = max
{

sup
x∈X

inf
y∈Y
‖x− y‖2, sup

y∈Y
inf
x∈X
‖x− y‖2

}
.

For simplicity, we assume that the boundaries of D0 and D1

are respectively defined by the boundary equations

F0(x) = 0, and F1(x) = 0, (32)

where x ∈ Rn, and F0 and F1 are elementary functions.5

In general, there exist D0 and D1 such that D0 ⊆ D ⊆ D1,
when pϕ is not on the boundary of the test region D, i.e.,

5For example, if the boundary of D0 is a circle of radius 0.2 centered at
(0.5, 0.5), then the elementary function F0(p1, p2) = (p1 − 0.5)2 + (p2 −
0.5)2 − 0.22.
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D0 D1 D
c
1DpMLE

r

q

Fig. 7. Given the test region D, we assume there exists an indifference region
formed by D1\D0. If pMLE from (35) satisfies pMLE ∈ D0, then we find
r ∈ D0 by (41) and q ∈ Dc

1 by (37).

Fig. 8. Partition of a non-convex test region.

pϕ /∈ ∂D. Using Assumption 2, we derive the HT problem for
verifying (29)

H0 : pϕ ∈ D0, H1 : pϕ ∈ Dc
1, (33)

where pϕ = (pϕ1
, ... , pϕn

). As illustrated in Figure 7, the re-
gion D1\D0 is the indifference region, keeping pϕ statistically
distinguishable from the boundary of the test region D. Again,
the HT problem (33) is composite.

Remark 2: From Assumption 2, if D = D′, where D
and D′ are respectively the closure of D and D′, then
verifying (Pπ1ϕ1, ... ,Pπnϕn) ∈ D is equivalent to verifying
(Pπ1ϕ1, ... ,Pπnϕn) ∈ D′. Thus, they will not be differentiated
in the rest of the paper.

Remark 3: The condition that the test region D is convex
in Assumption 2 is only technical. If D is non-convex, then
we can divide D into several convex subregions, and convert
the HT problem (29) into several sub-problems with convex
test regions. From example, the non-convex test region D
illustrated in Figure 8 can be divided into the union of two
convex test regions DI and DII . Therefore, to test if pϕ ∈ D,
it suffices to test if pϕ ∈ DI or pϕ ∈ DII , and the overall
statistical test error is the sum of errors of these two sub-tasks.

Identifying Most Indistinguishable Simple Hypotheses

To solve the HT problem (33), suppose that we have drawn
N sample path tuples for each path variable πi (i ∈ [n]). Let
Ti be the number of sample path tuples, for which ϕi is true.
Then, we have

Ti ∼ Binom(N, pϕi
). (34)

The maximal likelihood estimator (MLE) of pϕ is

pMLE = (pMLE
1 , ... , pMLE

n ) =
(T1
N
, ... ,

Tn
N

)
. (35)

If pMLE ∈ D0, then intuitively we should assert the hypothesis
H0 against H1. The statistical error of this assertion can be
measured by the likelihood ratio λ(r)−λ(q) for some r ∈ D0

and q ∈ Dc
1, which will be decided below. Specifically, to

assert H0 (or H1) with certain desired FP and FN ratios, the
likelihood ratio should be greater (or less) than some threshold,
which is (only) a function of the given FP and FN ratios (see
Appendix D).

As illustrated in Figure 7, we can identify q ∈ Dc
1 by

maximizing the likelihood for the (simple) hypothesis pϕ = q
for any q ∈ Dc

1. Intuitively, since any other simple hypothesis
in pϕ ∈ Dc

1 yields a larger likelihood ratio, to use SPRT to
solve the HT problem (33), it suffices to only consider the
simple hypothesis pϕ = q from the composite hypothesis pϕ ∈
Dc

1. This is formally stated below.

Lemma 1: If pMLE ∈ D0, to assert H0 (against H1) in the
HT problem (33), it suffices to assert this H0 (against H ′1) in
the HT problem

H0 : pϕ ∈ D0, H ′1 : pϕ = q, (36)

where q is given by

q = argmaxx∈Dc
1
λ(x), (37)

with λ(·) being the log-likelihood ratio given by (31).

Proof: Given any possible value of pϕ ∈ D0, for any
q′ ∈ Dc

1, and any likelihood ratio threshold B > 0, we have

λ(pϕ)− λ(q) > B =⇒ λ(pϕ)− λ(q′) > B,

where q is given by (37). Thus, for given sample paths (from
(34)), if the SPRT algorithm asserts H0 for the HT prob-
lem (36), then it should also assert H0 for the HT problem (33).
The two assertions have the same statistical errors because they
use the same likelihood ratio threshold B.

To obtain q from (37), by the convexity of the test region
D1 and the function λ(·), the maximum is achieved at the
boundary of D1. That is, from (32) it holds that

F1(q) = 0. (38)

In addition, by the first-order condition of optimality under
the constrained (38), the maximum of q is achieved when the
direction of the gradient ∇λ(q) aligns with the normal vector
∇F1(q) of the boundary. That is, for some c 6= 0 it holds that

∇F1(q) = c∇λ(q) =
(c(pMLE

i − qi)
qi(1− qi)

)
i∈[n]

. (39)

Given q from Lemma 1, we identify r ∈ D0 by minimizing
the Kullback-Leibler divergence from the hypothesis pϕ = r
to the hypothesis pϕ = q for any r ∈ D0, as illustrated in
Figure 7. Generally, the Kullback-Leibler divergence measures
the hardness of using SPRT to distinguish between two simple
hypotheses [46]. Thus, to use SPRT to solve the HT prob-
lem (36), it suffices to only consider the simple hypothesis
pϕ = r from the composite hypothesis pϕ ∈ D0. This is
formally stated below.

Lemma 2: If pMLE ∈ D0, to assert H0 (against H ′1) in the
HT problem (36), it suffices to assert this H ′0 (against H ′1) in
the HT problem

H ′0 : pϕ = r, H ′1 : pϕ = q, (40)

where using q from (37), we have

r = argminx∈D0
K(x‖q), (41)

10
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c
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q

Fig. 9. Given the indifference region formed by D1\D0, if pMLE from (35)
satisfies pMLE ∈ Dc

1, then we find r ∈ D0 by (44) and q ∈ Dc
1 by (45).

where the Kullback-Leibler divergence is given by

K(x‖q) =
∑
i∈[n]

xi ln
(xi
qi

)
+ (1− xi) ln

(1− xi
1− qi

)
.

Proof: We defer the proof to Theorem 4.

To solve r from (41), by the convexity of the test region
D0 and the function K(·‖q), the maximum is achieved at the
boundary of D0, i.e.,

F0(r) = 0. (42)

In addition, by the first-order condition of optimality under
the constraint (42), the maximum of r is achieved when the
direction of the gradient ∇rK(r‖q) aligns with the normal
vector ∇F0(r) of the boundary – i.e., for some c 6= 0, it
holds that

∇F0(r) =
(
c
(

ln(
ri
qi

)− ln(
1− ri
1− qi

)
))
i∈[n]

. (43)

When dH(D0, D1)→ 0, we have r − q → 0, and thus

∇F0(r)→
( c(ri − qi)
qi(1− qi)

)
i∈[n]

.

The case that pMLE ∈ D1 can be handled in the same way.
As shown in Figure 9, we can first derive r in the same way
as (37) by

r = argmaxx∈D0
λ(x), (44)

Then, using r from (44), we derive q in the same way as (41);
i.e.,

q = argminx∈Dc
1
K(x‖r). (45)

Thus, to achieve the FP and FN ratios αFP and αFN, the
SPRT algorithm should continue sampling until one of the
following termination conditions is satisfied:{

assert H0, if pMLE ∈ D0 and λ(r)− λ(q) > ln 1−αFN

αFP

assert H1, if pMLE ∈ Dc
1 and λ(q)− λ(r) > ln 1−αFP

αFN

(46)
The above discussion is summarized by Theorem 4 and
Algorithm 2.

Theorem 4: Under Assumption 2, Algorithm 2 terminates
with probability 1, and its FP and FN ratios are no greater
than αFP and αFN.

Proof: Without loss of generality, we consider pϕ ∈ D0;
the same applies to the case pϕ ∈ Dc

1. By the central
limit theorem, as the number of samples increases (N →
∞), the probability that pMLE ∈ D1\D0 converges to 0.

Algorithm 2 SMC of (M, V ) |= (Pπ1ϕ1, ... ,Pπnϕn) ∈ D.

Require: Desired FP/FN ratios αFP/αFN, test regions D0, D1.
1: N ← 0, Ti ← 0,∀i ∈ [n].
2: while True do
3: N ← N + 1.
4: for i ∈ [n] do
5: Draw a tuple of sample paths Si.
6: if ϕi is true on Si then
7: Ti ← Ti + 1.
8: end if
9: end for

10: Compute pMLE by (35).
11: if pMLE ∈ D0 then
12: Compute q and r by (37), (41) (via (38), (39), (42),

and (43)).
13: else if pMLE ∈ Dc

1 then
14: Compute r and q by (44), (45).
15: else
16: Continue.
17: end if
18: Compute λ(q) and λ(r) by (31).
19: Check the termination condition (46).
20: end while

In addition, the expected value of the log-likelihood ratio
E(λ(r)−λ(q))→∞, and thus the probability that (46) is not
yet satisfied, converges to 0. Therefore, Algorithm 2 terminates
with probability 1.

Now, we prove the FP and FN ratios of Algorithm 2.
By (41), for any r′ ∈ D0, the expectation of the log-likelihood
ratio satisfies

Epϕ=r′
(
λ(r′)− λ(q)

)
= K(r′‖q)

≥ K(r‖q) = Epϕ=r(λ(r)− λ(q)),

for K from (41). Therefore, for any B > 0, we have

Prpϕ=r′(λ(r′)− λ(q) > B) ≥ Prpϕ=r(λ(r)− λ(q) > B).

This implies that for any possible value of pϕ ∈ D0, the
probability of asserting H0 by (46) using the SPRT is not less
than that of pϕ = r, which is 1 − αFP. Therefore, Lemma 2
and Theorem 4 hold.

Remark 4: For computing (37) and (41), one can ei-
ther use optimization or solve it via the necessary condi-
tions (38), (39), (42), and (43), which may have analytic
solutions as the boundary functions F0(·) and F1(·) are ele-
mentary functions (especially when F0(·) and F1(·) are linear
functions). Since solving the optimization problem at every
iteration can be inefficient for some cases this, we can reduce
the frequency of computing the significance level by drawing
samples in batches.

D. Nested probabilistic quantification

The nested probabilistic quantification in HyperPCTL∗ can
be handled in the same way as [47]. Thus, the nested prob-
ability operators in (20) can be handled in the same way as
done in [47], and we omit describing it here.
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VI. CASE STUDIES AND EVALUATION

We evaluated the presented SMC algorithms on the case
studies described in Section III. It is important to highlight that
all these HyperPCTL∗ specifications are currently not verifiable
by existing probabilistic model checkers and SMC tools. The
simulations were performed on a laptop with Intel® Core™ i7-
7820HQ, 2.92GHz Processor with 32GB RAM. The simulation
code is available at [18]. The assertions of the proposed SMC
algorithms are compared with “the correct answers”, which
are derived by extensive simulations or exhaustive solutions.
These “the correct answers” are also used to check the validity
of the indifference region assumption on the case studies. The
running time, number of samples, and the accuracy of the pro-
posed algorithms (Number of correct assertions / Number of
total assertions) are estimated based on 100 runs for each SMC
task. The results are presented in Tables I to IV, respectively.
In all the setups, the estimated accuracy agrees with the fixed
desired significance levels (αFP = αFN = 0.01), except for
one case in Table III. This is because of the statistical error
of the estimated accuracy using only 100 runs. The average
execution time in the worst case is less than 30 seconds.

A. Side-channel Vulnerability

We verified the correctness of the HyperPCTL∗ specifi-
cation (9) on GabFeed chat server [1]. The authentication
algorithm in this version of GabFeed has been reported to have
a side channel vulnerability that leaks the number of set bits
in the secret key [45]. The vulnerability can be exploited by
the attacker by observing the execution time across different
public keys, as discussed in Section III; hence, as with [45],
we verify the security policy (9) for a selection of security
keys. We instrumented the source code to obtain the execution
time for a combination of the secret key and public key, and
generate a trace in a discrete-time fashion. For a given secret
key, we select a random public key and generate a trace from
it. Using this approach we were able to show the existence of
side-channel – i.e., the negation of (9) holds with confidence
level 0.99. The results are shown in Table I.

B. Probabilistic Noninterference

We showed the violation of specification (11) for N ∈
{20, 50, 100} threads (the results are similar for l = 1). The
obtained results are presented in Table II. The total number of
states of the DTMC is at least N !, so we simulate it using a
transition-matrix-free approach to meet the memory constraint.
As the significance level decreases, namely a more accurate
assertion is asked for, the sample cost and the running time
increase accordingly.

C. Security of Dining Cryptographers

We verified the correctness of the specification (13) with
i = 1, j = 2 on the model provided by [2] for N ∈
{100, 1000} cryptographers and approximate equivalence pa-
rameter ε ∈ {0.2, 0.1, 0.0.5}. The obtained results are summa-
rized in Table III. The total number of states of the DTMC
is at least 2N , and we simulate it with a transition-matrix-
free approach. As the approximate equivalence parameters
increases, the specification is increasingly relaxed, so the
sample cost and the running time decrease accordingly.

D. Randomized cache Replacement Policy

We verified the correctness of the specification (14) for the
performance of random replacement cache policy described in
Section III. The performance of random replacement policy
is evaluated on random memory accesses from a normal
distribution with variance less than the cache size, to emulate
the locality of reference. With the random replacement policy
and the random access sequence, the dynamics of the cache
modeled by the Mealy machine described in Section III can
be captured by a DTMC.

We consider the paths of the DTMC with labels H or M,
depending on the outcome of the cache access. We compared
the probability of all hits to the probability of seeing a single
miss M on a fully associative cache with 256 lines for a program
of 1024 blocks. This can easily be extended to set associative
cache with arbitrary program size. The results are shown in
Table IV. We observe that the algorithm takes longer time for
T = 20 than T = 10. This is because, for shorter T , the
probability of observing all hits H is more than the probability
of observing a miss M. As the trace length increases, these
probabilities become closer.

VII. RELATED WORK

To the best of our knowledge, the only existing SMC
algorithm for hyper temporal logics is the one proposed
in [47]. It handles complex probabilistic quantifications similar
to HyperPCTL∗ but using a multi-dimensional extension of
Clopper-Pearson confidence interval, whereas, in this paper,
our focus is on SPRT. Moreover, the application domain
of [47] is on timed hyperproperties and cyber-physical systems,
whereas, here, we concentrate on applications in information-
flow security. This algorithm provides provable probabilistic
guarantees for any desired false positive αFP ∈ (0, 1) (the
probability of wrongly claiming a false formula to be true)
and false negative αFN ∈ (0, 1) (the probability of wrongly
claiming a true formula to be false).

Randomization is used in different contexts to quantify the
amount of information leak as well as to provide probabilistic
guarantees about the correctness of security policies. A classic
example is probabilistic noninterference [31], [32], which re-
quires that high-security input should not change the probabil-
ity of reaching low-security outputs. There has been extensive
work in this area including using probabilistic bisimulation
to reason about probabilistic noninterference in multi-threaded
programs [40]. Another prominent line of work is quantitative
information flow [35], [43], which relates information theory to
independent executions of a system and uses different notions
of entropy to quantify the amount information leaked across
different executions.

Recently, there has been significant progress in automati-
cally verifying [17], [27]–[29] and monitoring [5], [9], [11],
[25], [26], [33], [44] HyperLTL specifications. HyperLTL is
also supported by a growing set of tools, including the model
checker MCHyper [17], [29], the satisfiability checkers EAHy-
per [24] and MGHyper [22], and the runtime monitoring tool
RVHyper [25]. Synthesis techniques for HyperLTL are studied
in [23] and in [8].
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τ ε δ Acc. No. Samples Time (s)

60 0.05 0.01 1.00 5.5e+02 0.54
60 0.05 0.001 1.00 5.5e+03 5.76
60 0.1 0.01 1.00 6.1e+02 0.60
60 0.1 0.001 1.00 6.2e+03 7.16
90 0.05 0.01 1.00 3.7e+02 0.46
90 0.05 0.001 1.00 3.7e+03 4.94
90 0.1 0.01 1.00 4.1e+02 0.48
90 0.1 0.001 1.00 4.1e+03 5.37

120 0.05 0.01 1.00 3.8e+02 6.96
120 0.05 0.001 1.00 2.2e+03 11.24
120 0.1 0.01 1.00 3.8e+02 6.05
120 0.1 0.001 1.00 2.3e+03 9.46

TABLE I. SHOWING THE VIOLATION OF TIMING SIDE CHANNEL VULNERABILITY FOR DIFFERENT COMBINATIONS OF TIME THRESHOLDS τ SECONDS,
APPROXIMATE EQUIVALENCE PARAMETER ε AND INDIFFERENCE REGION δ BASED ON THE AVERAGE OF 100 RUNS.

N δ Acc. No. Samples Time (s)

20 0.01 1.00 7.7e+02 0.49
20 0.001 1.00 7.6e+03 6.45
50 0.01 1.00 7.0e+02 0.48
50 0.001 1.00 6.8e+03 6.39

100 0.01 1.00 6.5e+02 0.54
100 0.001 1.00 6.6e+03 7.10

TABLE II. SHOWING THE VIOLATION OF PROBABILISTIC NONINTERFERENCE FOR DIFFERENT COMBINATIONS OF NUMBER OF THREADS N AND
INDIFFERENCE REGION δ, BASED ON THE AVERAGE OF 100 RUNS.

N ε Acc. No. Samples Time (s)

100 0.05 1.00 1.0e+03 0.91
100 0.1 1.00 5.2e+02 0.39
100 0.2 1.00 2.8e+02 0.14

1000 0.05 0.98 1.1e+03 3.27
1000 0.1 1.00 5.5e+02 1.52
1000 0.2 1.00 2.8e+02 0.69

TABLE III. VERIFYING THE SECURITY OF DINING CRYPTOGRAPHERS FOR DIFFERENT COMBINATIONS OF NUMBER OF CRYPTOGRAPHERS N AND
APPROXIMATE EQUIVALENCE PARAMETER ε FOR INDIFFERENCE REGION δ = 0.01, BASED ON THE AVERAGE OF 100 RUNS.

T ε δ Acc. No. Samples Time (s)

10 0.05 0.01 1.00 1.1e+02 0.13
10 0.05 0.001 1.00 1.0e+03 2.56
10 0.01 0.01 1.00 1.2e+02 0.14
10 0.01 0.001 1.00 1.2e+03 2.79
20 0.05 0.01 1.00 6.0e+02 1.49
20 0.05 0.001 1.00 6.2e+03 16.73
20 0.01 0.01 0.99 1.2e+03 2.97
20 0.01 0.001 1.00 1.1e+04 28.99

TABLE IV. VERIFYING THE PERFORMANCE OF RANDOM REPLACEMENT POLICY FOR DIFFERENT COMBINATIONS OF TRACE LENGTH (T ) AND
APPROXIMATION PARAMETER (ε) AND INDIFFERENCE REGION (δ), BASED ON THE AVERAGE OF 100 RUNS.

VIII. CONCLUSION

In this paper, we studied the problem of statistical model
checking (SMC) of hyperproperties on discrete-time Markov
chains (DTMCs). First, to reason about probabilistic hyper-
properties, we introduced the probabilistic temporal logic
HyperPCTL∗ that extends PCTL∗ by allowing explicit and si-
multaneous quantification over paths. In addition, we proposed

an SMC algorithm for HyperPCTL∗ specifications on DTMCs.
Unlike existing SMC algorithms for hyperproperties based on
Clopper-Pearson confidence interval, we proposed sequential
probability ratio tests (SPRT) with a new notion of indifference
margin. Finally, we evaluated our SMC algorithms on four
case studies: time side-channel vulnerability in encryption,
probabilistic anonymity in dining cryptographers, probabilistic
noninterference of parallel programs, and the performance of
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a random cache replacement policy.

For future work, we are currently developing SMC algo-
rithms for verification of timed hyperproperties in probabilistic
systems. Another interesting research avenue is developing
exhaustive model checking algorithms for HyperPCTL∗. One
can also develop symbolic techniques for verification of
HyperPCTL∗ specifications. We also note that our approach
has the potential of being generalized to reason about the
conformance of two systems (e.g., an abstract model and its
refinement) with respect to hyperproperties.
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[12] P. Cañones, B. Köpf, and J. Reineke, “Security analysis of cache
replacement policies,” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 189–209.

[13] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, vol. 1, no. 1, 1988.

[14] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 875–890.

[15] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[16] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in Principles of
Security and Trust, 2014, vol. 8414, pp. 265–284.

[17] N. Coenen, B. Finkbeiner, C. Sánchez, and L. Tentrup, “Verifying
hyperliveness,” in Proceedings of the 31st International Conference on
Computer Aided Verification (CAV), 2019, pp. 121–139.

[18] CPSL@Duke, https://gitlab.oit.duke.edu/cpsl/hpctls, 2020.
[19] C. Dehnert, S. Junges, J. Katoen, and M. Volk, “A storm is coming: A

modern probabilistic model checker,” in Proc. CAV 2017, ser. LNCS,
vol. 10427, 2017, pp. 592–600.

[20] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, Aug. 2014.

[21] H. Enderton and H. B. Enderton, A mathematical introduction to logic.
Elsevier, 2001.

[22] B. Finkbeiner, C. Hahn, and T. Hans, “MGHyper: Checking satisfiability
of HyperLTL formulas beyond the ∃∗∀∗ fragment,” in Proceedings
of the 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA), 2018, pp. 521–527.

[23] B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup, “Syn-
thesizing reactive systems from hyperproperties,” in Proceedings of the
30th International Confer ence on Computer Aided Verification (CAV),
2018, pp. 289–306.

[24] B. Finkbeiner, C. Hahn, and M. Stenger, “Eahyper: Satisfiability, im-
plication, and equivalence checking of hyperproperties,” in Proceedings
of the 29th International Conference on Computer Aided Verification
(CAV), 2017, pp. 564–570.

[25] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “RVHyper: A
runtime verification tool for temporal hyperproperties,” in Proceedings
of the 24th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2018, pp. 194–200.

[26] ——, “Monitoring hyperproperties,” Formal Methods in System Design
(FMSD), vol. 54, no. 3, pp. 336–363, 2019.

[27] B. Finkbeiner, C. Hahn, and H. Torfah, “Model checking quantitative
hyperproperties,” in Proceedings of the 30th International Conference
on Computer Aided Verification, 2018, pp. 144–163.

[28] B. Finkbeiner, C. Müller, H. Seidl, and E. Zalinescu, “Verifying security
policies in multi-agent workflows with loops,” in Proceedings of the
15th ACM Conference on Computer and Communications Security
(CCS), 2017.

[29] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model
checking HyperLTL and HyperCTL*,” in Proceedings of the 27th
International Conference on Computer Aided Verification (CAV), 2015,
pp. 30–48.

[30] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy. IEEE, 1982, pp.
11–11.

[31] J. W. Gray III, “Probabilistic interference,” in Proceedings of the 1990
IEEE Symposium on Security and Privacy (S&P), 1990, pp. 170–179.

[32] ——, “Toward a mathematical foundation for information flow secu-
rity,” Journal of Computer Security, vol. 1, no. 3-4, pp. 255–294, May
1992.

[33] C. Hahn, M. Stenger, and L. Tentrup, “Constraint-based monitoring of
hyperproperties,” in Proceedings of the 25th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2019, pp. 115–131.

[34] C. Hitchcock, “Probabilistic Causation,” in The Stanford Encyclopedia
of Philosophy, fall 2018 ed., 2018.
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APPENDIX

We recap the temporal logics relevant to this paper with
the notations adapted to that of HyperPCTL∗, and introduce
the basics on the statistical model checking of PCTL∗ using
the sequential probability ratio test (SPRT).

A. PCTL∗

Syntax: The syntax of PCTL∗ [7] consists of state
formulas Φ and path formulas ϕ that are defined respectively
over the set of atomic propositions AP by:

Φ ::= a | ¬Φ | Φ ∧ Φ | PJ (ϕ)

and
ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U≤k ϕ

where a ∈ AP, and J ⊆ [0, 1] is an interval with ratio-
nal bounds.

Semantics: The satisfaction relation |= of the PCTL∗

state and path formulas is defined for a state and a path of a
labeled DTMC M respectively by

(M, s) |= a iff a ∈ L(s)
(M, s) |= ¬Φ iff (M, s) 6|= Φ
(M, s) |= Φ1 ∧ Φ2 iff (M, s) |= Φ1 and (M, s) |= Φ2

(M, s) |= PJ(ϕ) iff Pr
(
(M, s) |= ϕ

)
∈ J

and
(M, S) |= Φ iff (M, S(0)) |= Φ
(M, S) |= ¬ϕ iff (M, S) 6|= ϕ
(M, S) |= ϕ1 ∧ ϕ2 iff (M, S) |= ϕ1 and (M, S) |= ϕ2

(M, S) |= ϕ iff (M, S(1)) |= ϕ
(M, S) |= ϕ1 U≤k ϕ2 iff there exists i ≤ k such that(

(M, S(i)) |= ϕ2

)
∧(

for all j < i, (M, S(j)) |= ϕ1

)
where S(i) is the i-suffix of path S.

B. HyperLTL

Syntax: HyperLTL [16] formulas are defined over the
set of atomic propositions AP respectively by:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

and
ϕ ::= aπ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ

where a ∈ AP.

Semantics: The semantics of HyperLTL is defined for a
trace assignment V : Π→ (N→ 2AP) by:

V |= aπ iff a ∈ L(V (π(0)))
V |= ∃π. ψ iff there exists S ∈ T

such that V [π 7→ S] |= ψ
V |= ∀π. ψ iff for all S ∈ T

such that V [π 7→ S] |= ψ
V |= ¬ϕ iff V 6|= ϕ
V |= ϕ1 ∧ ϕ2 iff V |= ϕ1 and V |= ϕ2

V |= ϕ iff V (1) |= ϕ
V |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that(

T, V (i) |= ϕ2

)
∧(

for all j < i, we have V (j) |= ϕ1

)
where V (i) is the i-shift of path assignment V , defined by
V (i)(π) = (V (π))(i).

C. HyperPCTL

Syntax: HyperPCTL [3] formulas are defined over the
set of atomic propositions AP respectively by:

ψ ::= aσ | ∃σ. ψ | ∀σ. ψ | ¬ψ | ψ ∧ ψ | p on p

p ::= P(ϕ) | c | p+ p | p− p | p · p

ϕ ::= ψ | ψ U≤k ψ

where a ∈ AP, c ∈ Q and on∈ {<,>,≤,≥,=}.
Semantics: The satisfaction relation |= of HyperPCTL

is defined for state and path formulas of a labeled DTMC M
respectively by:

(M, X) |= aσ iff a ∈ X(σ)
(M, X) |= ∃σ. ψ iff there exists s ∈ S

such that X[σ 7→ s] |= ψ
(M, X) |= ∀σ. ψ iff for all s ∈ S

such that X[σ 7→ s] |= ψ
(M, X) |= ¬ψ iff (M, X) 6|= ψ
(M, X) |= ψ1 ∧ ψ2 iff (M, X) |= ψ1

and (M, X) |= ψ2

(M, X) |= p1 on p2 iff Jp1K(M,X) on Jp1K(M,X)
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JcK(M,X) = c
Jp1 + p2K(M,X) = Jp1K(M,X) + Jp2K(M,X)

Jp1 − p2K(M,X) = Jp1K(M,X) − Jp2K(M,X)

Jp1 · p2K(M,X) = Jp1K(M,X) · Jp2K(M,X)

JP(ϕ)K(M,X) = Pr
{

(Si ∈ Paths(X(πi))i∈[n] |
(M,S) |= ϕ

}
(M,S) |= ϕ iff (M,S(1)) |= ϕ
(M,S) |= ϕ1 U≤k ϕ2 iff there exists i ≤ k such that(

(M,S(i)) |= ϕ2

)
∧(

for all j < i, (M,S(i)) |= ϕ1

)
where S = (S1, ... , Sn) and S(i) = (S1(i), ... , Sn(i)).

D. Statistical Model Checking of PCTL∗

The key issue in the statistical model checking of PCTL∗

is to deal with the probabilistic operator by sampling [4], [37].
Specifically, consider the satisfaction of a PCTL∗ formula

(M, s) |= P[0,p](ϕ) (47)

where ϕ is a linear temporal logic formula and p ∈ (0, 1)
is a given real number. From the semantics of PCTL∗ in
Appendix A, it means that the satisfaction probability

pϕ = Pr
(
(M, s) |= ϕ

)
(48)

of ϕ for a given model M with the initial state s satisfies

pϕ ≤ p

For simplicity, we assume ϕ is bounded-time and contains no
probabilistic operator, thus its truth value can be decided on
finite-length sample paths of M. Unbounded-time non-nested
formulas can be handled similarly with extra considerations.

To statistically infer (47), the assumption of an indifference
region is usually adopted [4], [37]. That is, there exists ε > 0,
such that the satisfaction probability pϕ from (48) satisfies

pϕ /∈ (p− ε, p+ ε), (49)

where (p − ε, p + ε) ⊆ [0, 1]. The interval (p − ε, p + ε)
is commonly referred to as the indifference region. By the
assumption (49), to statistically model check (47), it suffices
to consider the hypothesis testing (HT) problem

H0 : pϕ ≤ p− ε,
H1 : pϕ ≥ p+ ε.

(50)

and infer whether H0 or H1 holds by sampling.

The HT problem (50) is composite, since it contains
(infinitely) many simple HT problems:

Hp0
0 : pϕ = p0,

Hp1
1 : pϕ = p1.

(51)

where p0 and p1 can take values from [0, p− ε] and [p+ ε, 1],
respectively. Intuitively, among all the possible values of p0
and p1, the following is the most “indistinguishable”:

Hp−ε
0 : pϕ = p− ε,

Hp+ε
1 : pϕ = p+ ε.

(52)

(We will discuss the meaning of “indistinguishable” later.)

To solve the hypothesis testing problem (52), we draw
statistically independent sample paths S1, S2, ... from the given
modelM with the initial state s. For N such samples, the log-
likelihood of observing N such sample paths under the two
hypotheses Hp−ε

0 and Hp+ε
1 , are respectively λ(p − ε) and

λ(p+ ε), where

λN,T (p) = ln
(
pT (1− p)N−T

)
. (53)

Accordingly, the log-likelihood ratio of the two hypotheses is

ΛN,T (p+ ε, p− ε) = λ(p+ ε)− λ(p− ε). (54)

Clearly, as ΛN,T (p+ ε, p− ε) increases, Hp+ε
1 is more likely

to be true, and the less statistical error is made when we assert
Hp+ε

1 is true; and vice versa.

The sequential probability ratio test (SPRT) explicitly tells
us how to make these assertions from ΛN,T to achieve certain
levels of statistical errors [46]. The statistical errors are for-
mally given by the probability of falsely asserting Hp+ε

1 while
Hp−ε

0 holds, and the probability of falsely asserting Hp−ε
0

while Hp+ε
1 holds:

αFP = Pr
(
SPRT assert Hp+ε

1 |Hp−ε
0 is true

)
,

αFN = Pr
(
SPRT assert Hp−ε

0 |Hp+ε
1 is true

)
,

where αFP and αFN are called false positive (FP) and false
negative (FN) ratios. When αFP = αFN, we may also refer to
them as the significance level.

To achieve the given desired αFP and αFN, the SPRT is
implemented sequential – i.e., it continuously draws samples
until the following condition is satisfied:{

assert Hp−ε
0 , if ΛN,T (p+ ε, p− ε) < ln αFP

1−αFN

assert Hp+ε
1 , if ΛN,T (p+ ε, p− ε) > ln 1−αFP

αFN

(55)

It can be proved that this SPRT algorithm always terminates
with probability 1 and it strictly achieves the desired αFP and
αFN [46].

Finally, we discuss the “indistinguishability”. Suppose the
true satisfaction probability satisfies pϕ ∈ [p+ ε, 1]. (The case
pϕ ∈ [0, p− ε] is similar.) Following (55), if the SPRT asserts
Hp+ε

1 for certain N and T , then we have that

ΛN,T (pϕ, p− ε) > ln
1− αFP

αFN
.

This means that if N and T are sufficient to assert Hp+ε
1

against Hp−ε
0 with the desired αFP and αFN, then they are

sufficient to assert Hpϕ
1 against Hp−ε

0 . In other words, p+ε is
the worst case. Similarly, if the SPRT asserts Hp−ε

0 , then we
can show that

ΛN,T (pϕ, p− ε) < ln
αFP

1− αFN
,

and the same argument follows. For more detailed discussions,
please refer to [41].
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