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Abstract—Election verifiability aims to ensure that the outcome
produced by electronic voting systems correctly reflects the
intentions of eligible voters, even in the presence of an adversary
that may corrupt various parts of the voting infrastructure.
Protecting such systems from manipulation is challenging because
of their distributed nature involving voters, election authorities,
voting servers and voting platforms. An adversary corrupting
any of these can make changes that, individually, would go
unnoticed, yet in the end will affect the outcome of the election.
It is, therefore, important to rigorously evaluate whether the
measures prescribed by election verifiability achieve their goals.
We propose a formal framework that allows such an evaluation in
a systematic and automated way. We demonstrate its application
to the verification of various scenarios in Helios and Belenios,
two prominent internet voting systems, for which we capture
features and corruption models previously outside the scope
of formal verification. Relying on the Tamarin protocol prover
for automation, we derive new security proofs and attacks
on deployed versions of these protocols, illustrating trade-offs
between usability and security.

Index Terms—electronic voting, verifiability, verification.

I. INTRODUCTION

Towards symbolic models. Election verifiability has emerged
over the years as a crucial property for ensuring that the
outcome of an electronic voting system correctly reflects the
intention of eligible voters [1]–[5]. In parallel, we have seen a
series of real-world attacks on election verifiability in deployed
systems [6]–[10] as well as the development of formal models
for its security foundations [5], [11]–[14]. An important factor
contributing to the success of formal models for other classes
of security protocols has been their ability to provide tool
support for finding attacks or security proofs. See [15] for
a recent survey and [16], [17] for an illustration in the case
of secure messaging protocols. Of particular interest is fully
automated verification, which relies on the so-called symbolic
model used in tools like ProVerif [18] and Tamarin [19]. A
first feature of the symbolic model is the perfect cryptography
assumption, whereby messages and processes are represented
in abstract calculus [20]. A second feature is that security
properties are typically defined by a conjunction of trace
formulas, relating events in an execution trace. In defining a
symbolic model for election verifiability, the main challenge
is that each individual trace formula can only mention a fixed
number of events in a trace, while taken together they should

imply a global property of end-to-end verifiability, referring
to an unbounded number of voters and ballots. Then we
say the symbolic formulas are a set of sound verification
conditions for verifiability. We call this property soundness
in the following. Another property we expect from symbolic
models is generality, i.e. the ability to cover a large class of
protocols and realistic corruption scenarios.

Between theory and practice. Existing symbolic models and
security proofs for election verifiability [13], [14], [21] make
certain assumptions opening a gap with the way e-voting pro-
tocols are deployed, used and corrupted in practice. Consider
the case of Helios [22]–[24] and Belenios [25], [26], two
prominent internet voting systems that are also within the
scope of previous work. These systems allow revoting and
allow voters to verify their vote at any time during the voting
phase, while existing symbolic models disallow revoting. The
definition of election verifiability in [27] (using the more
expressive computational model of EasyCrypt [28]) allows
revoting, but voters can verify their votes only at the end of the
voting phase. Another limitation of current formal models (that
allow machine-assisted proofs) is their particular handling of
corruption. Even the most general models, i.e. those of [27]
and [21], do not consider the case when all election authorities
are corrupted, which is, informally, conceived as the end goal
of end-to-end verifiability. Moreover, considering Belenios, the
two paradigmatic corruption scenarios (corrupted registrar or
corrupted server) are subject to two different formal definitions
in [27] and [21]. An immediate problem is one of generality,
making it a challenge to apply their definitions to other systems
and corruption models. Another problem is that, while the two
corruption scenarios in Belenios are symmetric and expected
to provide the same degree of security, we show that they do
not. Indeed, concrete attacks are possible in one scenario and
not in the other - incidentally when revoting is allowed and
voters verify their ballots anytime.
Existing symbolic models do not allow dynamic corruption

and do not provide any guarantee for corrupted voters. The
computational model of [27] allows dynamic corruption, yet
still does not provide any guarantee for corrupted voters.
We argue that such a guarantee is desirable (like receipt-
freeness with respect to privacy [29]) and should be within



the scope of the definition. The formal notion of corruption
(i.e. leaked voter credentials) may, in practice, cover several
different scenarios (e.g. credentials leaked by a storage device);
appropriate procedures may allow effective verifiability even
for such inadvertently corrupted voters, or for voters subject
to dynamic corruption, e.g. after voting. Indeed, we show that
this stronger property is achievable for example in Helios and
Belenios.

Previous work. The first symbolic model for election verifia-
bility was proposed by Kremer et al. [13], but the scenarios to
which it applies assume that all voters are honest and verify
their votes. Moreover, although the protocol models in [13]
are symbolic - being specified in an abstract process algebra -
the formulas used for specifying the security properties cannot
be expressed in ProVerif/Tamarin. They are global properties
referring to an unbounded number of events in a trace. The
challenge for symbolic verifiability is, relying on universal
quantification over events in a trace, to obtain a sound model
for end-to-end verifiability within the standard class of trace
formulas accepted by ProVerif/Tamarin.

A type-based symbolic model, also covering privacy proper-
ties and applied to Helios, is proposed by Cortier et al. in [14],
which does not cover revoting and the associated notion of
end-to-end verifiability is weaker than the one later proposed
for Belenios in [21]: it only states that the multiset of verified
votes for honest voters should be part of the final outcome. In
general, we need a complete characterisation of the outcome,
also limiting the multiset of adversarial votes, even for systems
like Helios, which may be considered to provide weaker
verifiability than Belenios. A first reason is that Helios can,
in fact, achieve a verifiability property like Belenios, if one
makes the assumption that the voting server and registrar are
trusted (Belenios splits the trust between the two). A second
reason is that, as we show, even when both of these parties
are corrupted, Helios (and Belenios) can achieve a meaningful,
complete notion of end-to-end verifiability. In order to prevent
the clash attacks of [6], the model of [14] considers a property
ensuring that ballots constructed by distinct voters are distinct.
This focuses on a particular aspect of clash attacks, and we
show that, when revoting is allowed, they are possible even
under this restriction.

The symbolic model of verifiability that comes closest to
our goals is the one by Cortier et al. [21], designed to verifi-
ability for a variant of Belenios (a model for privacy is also
analysed in [21]). It allows automated symbolic analysis for
an unbounded number of parties, relying on sound verification
conditions that can be checked by Tamarin. It has, however,
several limitations in terms of generality: distinct corruption
scenarios relating to election authorities are covered by distinct
symbolic verifiability definitions, making it hard to use for
new protocols and corruption scenarios; to obtain soundness,
it disallows dynamic corruption of voters and it does not
provide guarantees for corrupted voters; it does not take into
account revoting, which, as we show, can be exploited by
the adversary. The absence of clash attacks is not directly

implied by symbolic verifiability in [21], but follows from
additional (trust) assumptions, which vary according to the
corruption scenario that is considered (honest server or honest
registrar). More generally, these assumptions together with
symbolic verifiability are shown to imply end-to-end verifiabil-
ity. Intuitively, any verifiable electronic voting system should
ensure the absence of clash attacks, and we show that making
it explicitly part of symbolic verifiability requirements can
entail end-to-end verifiability, without assumptions specific to
various corruption scenarios.
Our contributions. Extending the definition from [21], we
propose a general symbolic definition for election verifiability:
− it allows a unified, modular framework to test different
versions of the same protocol with respect to various corrup-
tion abilities of the adversary; it has in its scope a general
class of voting protocols and is, at the same time, suitable for
automated protocol verification tools;
− it takes into account revoting;
− it captures classic clash attacks, as well as a more general
class of clash attacks, where the clash is only on public
credentials, without requiring a clash on ballots;
− it implies end-to-end verifiability in a generic frame-
work, without requiring scenario-specific trust assumptions as
in [21]. The implication relies on a minimal set of restrictions
that are justifiable by public audits on a bulletin board, and it
provides end-to-end verifiability guarantees even in presence
of dynamic corruption, assuming voters have successfully
verified their vote.
We apply our definition to the automated verification (with

the Tamarin prover) of multiple scenarios in Helios and
Belenios, considering various sets of corrupted components
and individual verification procedures. For both protocols,
we discover new attacks in some scenarios and derive new
security proofs in others - the latter, notably, also for the
scenarios when all election authorities are corrupted. The
crucial factor delineating proofs from attacks, in the same
corruption scenario, is the individual verification procedure,
illustrating some trade-offs between usability and security.
A particular class of attacks that we (re)discover are clash

attacks, where the verifiability mechanism of the system can
be subverted so that ballots and credentials of two voters
clash, facilitating ballot stuffing [6]. We show that against
some versions of Helios, including the one currently deployed
online, a clash attack can be performed by a significantly
weaker adversary than the one of [6]. Indeed, it is sufficient
to corrupt the authorities that assign public credentials and
authenticate voters, and to rely on the way revote ballots are
processed and verified by honest parties in the system, while
the attack of [6] also assumes a corrupted voting platform.
In Belenios, when the voting server is honest, it performs

some consistency checks between voter identities and public
credentials, in order to ensure that a clash attack is not
possible. However, our analysis shows that these checks are
not as effective as expected. They can be subverted in order
to mount clash attacks, ballot reordering attacks and ballot
stuffing attacks. The main problem comes, again, from revoting



and also from the fact that the relation between voters and their
public credentials is not known by the server beforehand.
Paper structure. Section II contains preliminaries for e-voting
protocols and formal verification with Tamarin. Section III
contains our formal framework and definition for election
verifiability, which are applied to Helios and Belenios in
Section IV.

II. PRELIMINARIES

We present the general structure of typical electronic voting
protocols, that we aim to formalise and capture within the
scope of our definition. Then we introduce the symbolic
framework of Tamarin, that constitutes the foundation of our
formalisation.

A. Verifiable electronic voting protocols
Bulletin board. The main component of an electronic voting
protocol is a so-called bulletin board, which we denote by
BB. The BB records information regarding the execution of
the protocol and can be used by voters to verify that their
ballots are correctly recorded by the voting server. Any party
can also audit it to verify that the election is executed as
expected. The BB should satisfy two basic assumptions: (i)
public availability, i.e. anyone can read its contents anytime;
(ii) immutability, i.e. it can only be updated by adding content
to it, and data cannot be removed or changed after it is
published. We note that realising a perfect BB is still an active
area of research [30]. We distinguish different parts of the BB
by annotations suggestive of the role they play for electronic
voting:

∙ BBkey - for the public key of the election;
∙ BBcand - for the set of eligible candidates;
∙ BBreg - for the set of registered eligible voters;
∙ BBtally - to represent the set of ballots to be tallied.

Setup and registration. A voting protocol assumes a set
of eligible candidates v1,… , vk and a set of eligible voters
represented by identities id1,… , idn. When these identities
should remain private, public credentials cr1,… , crn are used
to record ballots for the corresponding voters on BB. We note
that the public credential can be equal to the voter identity,
i.e. we can have cri = idi. At registration time, voters obtain
their (private) id, their public credential cr, and any additional
private credentials which will be used by election authorities
to authenticate voters. Moreover, the public key of the election
is generated by authorities and posted on BB.
Voting procedure. A voter uses a voting platform (e.g.
browser) to construct a ballot b, encoding the desired vote,
and post it to a voting server. The server may authenticate
voters and validate ballots before publishing them on BB.
Verification procedures. Voters can perform certain proce-
dures in order to ensure that their vote is correctly recorded
by the system. Typically, procedures instruct voters to check
that tracking information they obtained after voting is present
next to their credentials on BB.

Ballot tallying. Assume BBtally at the end of the vot-
ing phase contains (cr1, b1),… , (crn, bn). Cryptographic tech-
niques based on mixnets [31]–[33] or homomorphic encryp-
tion [34]–[36] allow to compute the outcome corresponding
to b1,… , bn in a universally verifiable and privacy-preserving
way.
Assumptions. In the presentation above, and in order to specify
our symbolic definition of verifiability, we make the following
assumptions about the class of e-voting protocols that we
consider:

∙ each ballot on BBtally is associated to a public credential
cr;

∙ the vote v recorded in a ballot b is uniquely determined
given the public key of the election pk.

These assumptions are true for a significant class of protocols,
including Helios [22]–[24] and Belenios [25], [26] that we
present in detail. Other positive examples are Selene [37]
and the Norwegian voting system [38]. There are, however,
some negative examples. The first assumption is not true
for JCJ/Civitas [39], [40] and for a version of Helios with
detached aliases [6], since there is no way to publicly link
tallied ballots to public credentials. The second assumption
is not true when votes are encoded with perfectly hiding
commitments, used e.g. in [41], [42] to obtain everlasting
privacy. To formalise the second assumption, we use the
notation open(b, pk) to represent the vote determined by b and
pk. Previous symbolic models for verifiability in e-voting also
use similar assumptions and notation [14], [21]. In the next
example, we consider a simple protocol to illustrate our class
of protocols and definition. It can be seen as a basic version
of Helios, for which we will describe a more detailed model
in Section IV.

Example 1. Assume two election authorities: one responsible
for generating election keys and tallying ballots, called trustee,
and one responsible for registration and ballot casting, called
server. We assume there is a portion of the bulletin board,
called BBcast, that records all ballots cast by voters:
Setup. The trustee generates a key pair (sk, pk) and publishes
pk on BBkey. For each voter id, the server generates a public
credential cr and a password pwd. It publishes cr on BBreg.
Each eligible voter obtains ⟨id, cr, pwd⟩.
Voting. The voter, relying on the voting platform, generates
a ballot b = enc(v, pk, r), for some desired vote v and fresh
randomness r. The voter authenticates with pwd and b is
submitted to the server.
Verification. The ballots are posted on BBcast and voters can
check it to ensure their ballot is present.
Tally. The last ballot corresponding to each credential
on BBcast is recorded in BBtally. If BBtally consists of
(cr1, b1),… , (crn, bn) and pk is the public key of the election,
then the result is open(b1, pk),… , open(bn, pk).

In the previous example, as well as in Helios and Belenios,
there are a few deployment options to consider for BBcast
when revoting is allowed:



− Show only the last ballot cast. If a voter with public
credential cr casts ballots b1,… , bm, then BBcast will display
(cr, bm), i.e. the last ballot cast by the voter. This is the version
currently deployed online in Helios [24] and Belenios [25].
− Show all ballots cast. For a cr as above, BBcast will show
(cr, b1),… , (cr, bm), i.e. all ballots that were cast by cr. In that
case, it should be clear for the voter which ballot is considered
to be the last one for the corresponding cr.
− Verify anytime. Voters can inspect BBcast anytime after
voting to ensure it contains their ballot. This is the version
currently deployed online in Helios [24] and Belenios [25].
− Verify after voting ends. Voters are instructed to verify
the bulletin board only after the voting phase has ended. In
this case voters verify their ballots directly on BBtally, after
computed from BBcast. Abstaining voters may verify that there
is no ballot present on BBtally associated to their credential.

B. Formal verification with Tamarin
We present the (multiset) rewriting framework as instanti-

ated by Tamarin, referring to [43], [44] for more details. To
represent cryptographic primitives and messages, we consider
a set of function symbols  endowed with a set of equations  .
A message (also called a term) is built by applying functions
symbols from  to variables from an infinite set  , constants
from  , names from an infinite set  or, iteratively, to other
messages built in this way. Certain names may be specified to
be fresh and private in an execution trace, as explained below.
Equalities between terms are implicitly interpreted as being
modulo  .

Example 2. Let

 = {pk, enc, dec, h, sign, ver, proof1, proof2, ver1, ver2}

and  be the set of following equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) (∀i) ver1(proof1(enc(xi, y, z), z, ⟨x1,… , xk⟩),

enc(xi, y, z), y, ⟨x1,… , xk⟩) = ok,
(3) ver(sign(x, y), x, pk(y)) = ok,
(4) ver2(proof2(enc(x, y, z), z,w), enc(x, y, z),w) = ok.

A term enc(m, pk(k), r) represents a ciphertext where m is the
plaintext, k is the private key, whose public counterpart is
pk(k), and r is the randomness used by the encryption algo-
rithm. Equations (1) and (3) specify the standard properties of
asymmetric encryption and digital signatures. Cryptography is
assumed perfect: there is no other way to derive messages
other than applying function symbols and equations. The
proof1 symbol models a zero-knowledge proof showing that the
corresponding plaintext is within a certain range ⟨x1,… , xk⟩
and that the public encryption key is equal to y. The set of
equations (2) models the corresponding verification procedure.
The proof2 symbol models a zero-knowledge proof that allows
a party to link a constructed ciphertext to a given term w.
In our model for Helios, we use the theory corresponding to
equations (1)-(2), and for Belenios the full theory correspond-
ing to (1)-(4).

The set of symbols is extended with fact symbols to repre-
sent adversarial knowledge, protocol state, freshness informa-
tion, etc. A fact is represented by F(t1,… , tk), where F is a fact
symbol and t1,… , tk are terms. There are the following special
fact symbols: K - for attacker knowledge; Fr - for fresh data; In
and Out - for protocol inputs and outputs. Other symbols may
be added as required, e.g. for representing the protocol state.
Facts can be persistent (used in the execution any number of
times) or linear (used at most once). The notation !F is used
in Tamarin to distinguish persistent facts, but all facts in our
models can be assumed persistent, thus, we do not use this
notation in the paper to avoid clutter.

A multiset rewriting rule is defined by [L]−−[M ]→[N],
where L,M,N are multisets of facts called respectively
premises, actions and conclusions. To ease protocol specifi-
cation, we extend the syntax of multiset rules with variable
assignments and equality constraints, i.e. we can write rules of
the form [L]−−[ E,M ]→[N] where L may contain expressions
x = t to define local variables and E is a set of equations of
the form u = v. For two multisets of facts M0,M1 and rule
R = [L]−−[ E,M ]→[N] we say thatM1 can be obtained from
M0 by applying the rule R, instantiated with a substitution � if:
(1) every equality in E� is true; (2) every fact in L� is included
in M0; (3) M1 is obtained from M0 by removing linear facts
included in L� and adding all facts from N�. There are three
special classes of rules in Tamarin: network deduction rules
specify that the adversary obtains protocol outputs, provides
protocol inputs, knows public data and does not know fresh
data; intruder deduction rules allow the adversary to apply
functions and exploit their equational properties (a function
can be declared private if the adversary is not supposed to use
it); protocol rules allow to specify the behaviour of honest
parties.

Example 3. Consider the set of rules Qkeys:
(1) [ Fr(k) ]−−[ Key(k) ]→[ Sk(k), Pk(pk(k)),Out(pk(k)) ]
(2) let c = enc(x, y, r) in

[ Sk(x), Pk(y), Fr(r) ]−−[ Enc(c) ]→[ Out(c) ]
(3) [ In(y), Sk(x) ]−−[ Dec(y) ]→[ Out(dec(y, x)) ]

The first rule models the generation of a fresh secret key
k, which is stored for later use in Sk(k), while its public
counterpart is also stored and output to the network. The
second rule outputs encryptions of stored secret keys. The third
rule specifies that any received message may be decrypted with
a stored secret key. The action facts Key(k), Enc(c) and Dec(y)
record the respective events in the execution trace. We use the
Tamarin let … in notation for assignments.

Traces and properties. For a rule R, we let act(R) be the
action facts of R. For a set of rules P , an execution trace is
defined by a sequence of multisets of facts M0,M1,… ,Mn
and a sequence of rules R1,… , Rn ∈ P such that, for every
i ∈ {1,… , n}, Mi can be obtained from Mi−1 by applying Ri
instantiated with a substitution �i. We define:

∙ facts(�, i) = act(Ri)�i if Ri is a protocol or network de-
duction rule. This represents the fact that certain actions



took place at timepoint i.
∙ facts(�, i) = {K(v�i)} if Ri is an intruder deduction rule
with conclusion {K(v)}. This represents the fact that the
adversary knows v�i at timepoint i.

We consider a set of timepoint variables, denoted by
i, j, l,…, which will be interpreted over rational numbers. A
trace atom is either a term equality t1 = t2, or a timepoint
ordering i ≺ j, or a timepoint equality i = j, or an action fact
F@i for a fact F and timepoint i. A trace formula is a first-
order logic formula obtained from trace atoms by applying the
usual quantification and logical connectives. The satisfaction
relation � ⊧ Φ, for a trace � and a trace formula Φ, whose
variables are all bounded, is defined recursively as expected,
with the following notable case: � ⊧ F@i if and only if
F ∈ facts(�, i).

For a set of rules P , we let tr(P ) be the set of traces of R.
For trace formulas Ψ,Φ, we let:

P ⊧ Φ iff ∀� ∈ tr(P ). � ⊧ Φ,
P ; Ψ ⊧ Φ iff ∀� ∈ tr(P ). � ⊧ Ψ⇒ Φ.

For verification of security properties, (P ; Ψ) is typically
a protocol specification and Φ the property to be verified.
Having the component Ψ in a protocol specification can help to
express in a concise way some properties that protocol parties
should ensure along an execution trace.

Example 4. Continuing Example 3, the formula
Φsec ∶ ∀x, i. Key(x)@i ⇒ ¬(∃j. K(x)@j) says that, if a
term x is a secret key generated by the first rule, then there
is no timepoint at which the intruder knows it. We have
Qkeys ̸⊧ Φsec, since the third rule in Qkeys may decrypt
messages published by the second rule. The restriction
Ψkeys ∶ ∀x, i. Dec(x)@i⇒ ¬(∃j. Enc(x)@j) models a global
check performed by the decrypting party ensuring that the
message x that is received was not produced by the second
rule, and then we have (Qkeys; Ψkeys) ⊧ Φsec.

Notation. To simplify presentation, we adopt ProVerif no-
tation that omits connectives ∃,∀,@. A simplified formula
F1(x1, x2)⇒ F2(y1, y2) represents ∀x1, x2, i. F1(x1, x2)@i ⇒
∃y1, y2, j. F2(y1, y2)@j. More generally, variables to the left
of ⇒ are universally quantified and those to the right are
existentially quantified, and quantifiers are always applied to
action facts. For example, F(x)⇒ F1(y) ∨ ¬F2(y) represents
∀x, i. F(x)@i ⇒ ∃y, j. F1(y)@j ∨ ¬(∃y, j. F2(y)@j). We may
still use @ when we need to express a timepoint relation. We
note, on this occasion, that our models can also be adapted to
ProVerif if needed.

III. FORMAL MODELS FOR ELECTION VERIFIABILITY

We need two specifications for formal verification:  - for
the considered e-voting protocol, including the procedures for
honest parties and the corruption abilities of the adversary;
and Φ - for the the desired security property.  will be defined
based on multiset rewriting rules and restrictions, while Φ will
be a conjunction of trace formulas referring to executions of
 .

Fig. 1: Individual verification procedures.

R0
ver ∶ voter verifies the receipt on BBcast

[ Voted(id, cr, v, b),BBcast(cr, b) ]
−−[ Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

R1
ver ∶ voter verifies the receipt on BBtally

[ Voted(id, cr, v, b),BBtally(cr, b) ]−−[ Verif ied(id, cr, v) ]→[ ]

R2
ver ∶ voter verifies there is no ballot on BBtally

[ Reg(id, cr),BBtally(cr, ⊥) ]−−[ Verif ied(id, cr, ⊥) ]→[ ]

R0ver can be combined with restrictions below:

Ψlast ∶ the verified ballot is currently the last on BB
BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧
VerB(id, cr, b) @l ∧ i ≺ l ∧ j ≺ l ⇒ j ≺ i ∨ b = b′

Ψmine ∶ all ballots currently on BB are cast by id
VerB(id, cr, b) @i ∧ BBcast(cr, b′) @j ∧ j ≺ i
⇒ VoteB(id, cr, b′) @l

Specification Voter instructions

1 ∶ (R0ver,Ψlast) verify the last ballot in BBcast

2 ∶ (R0ver,Ψlast ∧ Ψmine) as 1, and ensure all ballots are own

3 ∶ (R1ver) verify the ballot directly on BBtally

4 ∶ (R2ver) verify abstention directly on BBtally

A. Verifiable e-voting specifications
A protocol component is a pair (,Ψ), where  is a set

of protocol rules and Ψ is a conjunction of restrictions, i.e.
trace formulas that may restrict the execution of rules from 
under certain conditions.

Definition 1. An e-voting specification  is a triple of protocol
components ( , ,), where

∙  specifies the voting protocol procedures,
∙  specifies the individual verification procedures,
∙  specifies the corruption abilities of the adversary.

If  =
(

(R ,Ψ ), (R ,Ψ ), (R,Ψ)
)

, then  ⊧ Φ if and
only if R ∪ R ∪ R; Ψ ∧ Ψ ∧ Ψ ⊧ Φ.

While  may also be considered as part of the protocol
specification  , we treat it separately since we analyse the
security properties that are ensured by various verification
procedures  in the context of the same basic protocol  with
various adversaries . We note that  may also include public
verification checks that can be performed by any external party
on the bulletin board. When considering particular adversaries,
care should be taken that restrictions from  are still justified
for the considered corruption scenario; if not, they should
be removed, resulting in a specification ( ′, ,). Next, we
discuss and illustrate in more detail each component of a
specification ( , ,).

Example 5. Continuing Example 1, we present certain rules
and restrictions that model protocol procedures :



Setup. First rule models the trustee actions, and the second
rule the server’s:

[ Fr(sk) ]−−[ BBkey(pk(sk)) ]→[ Sk(sk),BBkey(pk(sk)) ]

[ Id(id), Fr(cr), Fr(pwd) ]−−[ BBreg(cr) ]→
[ Reg(id, cr), Pwd(id, pwd) ]

The facts Reg(id, cr) and Pwd(id, pwd) represent a voter with
identity id that is communicated the public credential cr and
the password pwd at registration. The fact Sk(sk) represents
the storage of the secret key by the trustee.
Voting. First rule models the voting platform actions, and the
second rule the server’s:

let b = enc(v, pkey, r); a = h(⟨id, pwd, b⟩) in

[ BBcand(v),BBkey(pkey), Fr(r),Reg(id, cr), Pwd(id, pwd) ]
−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→
[ Voted(id, cr, v, b),Out(⟨id, b, a⟩) ]

let a′ = h(⟨id, pwd, b⟩) in

[ In(⟨id, b, a⟩),Reg(id, cr), Pwd(id, pwd) ]
−−[ a′ = a,BBcast(cr, b) ]→[ BBcast(cr, b) ]

We record events Vote and VoteB for later use.
Tally. To model that the last ballot cast for each cr is recorded
in BBtally, we use a rule and a restriction:

[ BBcast(cr, b) ]−−[ BBtally(cr, b) ]→[ BBtally(cr, b) ]

BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧ BBtally(cr, b) @l
⇒ j ≺ i ∨ b = b′

This operation is publicly verifiable on BB; adding the above
restriction to the model does not mean we trust the server to
perform the operation correctly.

In Figure 1, we present rules and restrictions for individual
verification procedures  that we consider for our case studies.
The premises of River contain two facts: one referring to a ballot
cast by the voter, and one referring to one present on BB. A
basic verification step performed in the rule ensures that these
two ballots match. Further verification steps are enabled by
the action fact VerB, which records some relevant parameters.
The restrictions Ψ ∈ {Ψlast,Ψmine} can then express further
requirements. The procedure 1 represents the scenario where
voters are instructed (or allowed by BB) to verify only the last
ballot cast for their credential on BB. 1 can be augmented
to 2 using an additional test, modelled by Ψmine, ensuring
that all ballots cast on BB belong to the voter performing the
verification. 3 and 4 are performed directly on BBtally after
it is computed from BBcast. In practice, voters actually check
a hash of the ballot, rather than the full ballot, but we omit
this for simplicity.

When modelling an adversary against election verifiability,
it is standard to assume that it may corrupt voters, trustees
and the communication network. In addition, the adversary
may control other parties: registrars, voting servers, voting
platforms, etc. We model all such abilities by a set of cor-
ruption rules , which is a parameter of our definition, and
is an addition to the standard network and intruder deduction
rules.

Example 6. Continuing Example 5, we present adversarial
corruption rules for the trustee, the server and the voter. A
corrupted trustee allows the adversary to generate the secret
key sk of the election, whereas a corrupted server allows
the adversary to control the generation and distribution of
credentials, as well as direct ballot casting on the bulletin
board:

[ In(sk) ]−−[ BBkey(pk(sk)) ]→[ Sk(sk),BBkey(pk(sk)) ]

[ In(⟨id, cr, cr′⟩), Fr(pwd) ]−−[ BBreg(cr′) ]→
[ Reg(id, cr), Pwd(id, pwd) ]

[ In(⟨cr, b⟩) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

The second rule models a partial compromise where the
password is generated honestly, while the public credential
adversarially: cr is received by the voter, and a possibly
different cr′ is published on the bulletin board.
Corrupted voters reveal their credentials to the adversary:

[ Reg(id, cr), Pwd(id, pwd) ]−−[ Corr(id, cr) ]→
[ Out(⟨id, cr, pwd⟩) ]

Any subset of these rules can define the adversary component
 complementing protocol procedures  and verification
procedures  in an e-voting specification.

The following definition captures formally the class of
protocols that falls within the scope of our verifiability def-
inition. It relies on events that are informally introduced in
Section II-A, relating to the set of registered public credentials,
the set of eligible candidates, the multiset of cast votes, the
multiset of verified votes, the multiset of votes in the result,
and the set of corrupted voters.

Definition 2. An e-voting specification ( , ,) is verifiable
if it relies on fact symbols

BBkey,BBcand,BBreg,BBtally,Vote,Verif ied,Corr

to record the following events:
– BBkey(y): the term y is recorded on BB as being the

public key of the election;
– BBcand(v): the candidate v is recorded on BB as eligible;
– BBreg(cr): the public credential cr is recorded on BB as

corresponding to an eligible voter;
– BBtally(cr, b): the ballot b is recorded on BB as to be

tallied for the respective public credential;
– Vote(id, cr, v): a voter with private identity id and public
credential cr casts a vote v;

– Verif ied(id, cr, v): a voter with private identity id and
public credential cr has successfully performed the veri-
fication procedure related to a vote v;

– Corr(id, cr): all private credentials associated to (id, cr)
are leaked to the adversary.

In addition, we require that the equational theory contains a
private function symbol open, and equations associated to it,
such that open(b, y) = v if and only if b is a valid encoding
of the vote v with respect to the public key y.



Example 7. We refer to Examples 5 and 6 and to Figure 1 for
an illustration of how events from Definition 2 can be added
to an e-voting specification. We complete the requirements of
Definition 2 by defining the equation open(enc(x, y, z), y) = x
for the private symbol open.

B. Symbolic election verifiability
Revoting policy. If a voter with credentials ⟨id, cr, pwd⟩ casts
several votes v1… , vm, only one of these votes, say vi, will
be counted in the final outcome, according to the revoting
policy in place. If the individual verification procedure is
appropriate for the revoting policy, then it should be the case
that Verif ied(id, cr, vj) is true in an execution trace if and only if
vj = vi. In consequence, all successfully verified votes would
be part of the final outcome. However, some systems may
allow weaker verification procedures, which can only ensure
that a given ballot is present on BBcast. In that case, the
formal definition of verifiability needs to consider additional
constraints that should be satisfied in order for the verified vote
to be counted. We use a (parameterised) formula Ω(id, cr, v)
to add the respective constraints for a given triple (id, cr, v). In
this paper, we are interested in two natural revoting policies:
Ωlast and Ωok from Figure 2. Ωlast specifies that if the verified
vote v is the last one cast, then it is counted. Ωok is set to be
always true, and this requires any verified vote to be counted.

Definition 3. Consider the trace formulas from Figure 2. For
⋄ ∈ {◦, ∙}, we define Φ⋄

E2E
= Φiv ∧ Φeli ∧ Φcl ∧ Φ⋄res. We

say that a verifiable e-voting specification  satisfies symbolic
election verifiability if and only if  ⊧ Φ⋄

E2E
.

∙ Φiv corresponds to individual verifiability, stating the fact
that a successful verification should imply that the correspond-
ing vote is counted as intended in the outcome. Formally,
Φiv requires that any ballot b claimed to represent a voter’s
choice in the final tally contains the vote expected by the voter.
Moreover, by public audits, it can be ensured that there is
always a ballot recorded on BBtally for every registered public
credential cr; this can be the empty ballot ⊥ if there is no
ballot cast for cr.
∙ Φeli ensures that, for every voter, successful verification
implies that the corresponding public credential is registered as
eligible on the bulletin board, and therefore will be accounted
for in the final tally. Conversely, every tallied ballot should
correspond to a registered credential.
∙ Φcl specifies that no clash should occur on public credentials:
two distinct voters that successfully verify their ballots should
have distinct public credentials.
∙ Φ⋄res circumscribes adversarial influence on the final result,
relying on Φ⋄

adv
as parameter. We expect the adversary  to be

able to cast votes for corrupted voters. The strongest version
of Φ⋄res, obtained when ⋄ = ∙, specifies that all other votes
should be cast by honest voters. Proving Φ∙res may require trust
assumptions about election authorities, as we show for Helios
and Belenios. To analyse verifiability in stronger scenarios,
e.g. when the authorities are corrupted, we consider a weaker

Fig. 2: Symbolic election verifiability.

Formulas defining symbolic E2E

Φiv ∶ Verif ied(id, cr, v) ∧ Ω(id, cr, v) ∧ BBtally(cr, b)
∧ BBkey(y)⇒ v = open(b, y)

Φeli ∶ Verif ied(id, cr, v) ∨ BBtally(cr, b)⇒ BBreg(cr)
Φcl ∶ Verif ied(id, cr, v) ∧ Verif ied(id′, cr, v′)⇒ id = id′

Φ⋄
res ∶ BBtally(cr, b) ∧ b ≠ ⊥ ∧ BBkey(y)

⇒ ( Vote(id, cr, v) ∧ v = open(b, y) ) ∨ Φ⋄
adv
(cr)

Two possible cases for Φ⋄
adv

Φ∙
adv
(cr) ∶ Corr(id, cr)

Φ◦
adv
(cr) ∶ Corr(id, cr) ∨ ¬Verif ied(id, cr, v′)

Examples of revote policies Ω

Ωok(id, cr, v) ∶ true

Ωlast(id, cr, v) ∶ Vote(id, cr, v) @i ∧ Vote(id, cr, v′) @j
⇒ j ≺ i ∨ v = v′

Additional property for homomorphic tally

Φcand ∶ BBtally(cr, b) ∧ b ≠ ⊥ ∧ BBkey(y)
⇒ BBcand(open(b, y))

Possible weakening of individual verifiability

Φh
iv
∶ ¬Corr(id, cr) ⇒ Φiv(id, cr)

Assumptions to achieve multiset-based E2E

Ψtally1 ∶ BBreg(cr)⇒ BBtally(cr, b)
Ψtally2 ∶ BBtally(cr, b) @i ∧ BBtally(cr, b′) @j ⇒ i = j

version of Φ⋄res, Φ
◦
res, additionally allowing to cast ballots for

voters who do not verify their votes. For illustration, consider
a few scenarios where votes from a particular voter may not
be counted: (i) the voter does not vote; (ii) the submitted
ballot is dropped by ; (iii) revoting is allowed, and the
submitted ballot is replaced by . In all these cases, the
voter can perform the verification procedure associated to the
voter choice (abstention or vote). Φ◦

adv
says that the adversary

can cast a vote for the respective public credential only if
the voter did not perform the verification procedure, or if
its outcome was negative, in which case accountability and
dispute resolution mechanisms should be applied [11], [45].

∙ Φcand is for the particular case when the tally is based
on homomorphic encryption. Then, we need to ensure that
ballots encode valid votes, otherwise the adversary may submit
multiple votes within a single ballot, annulling the benefits of
Φ⋄res. For systems where each ballot is decrypted individually,
like those based on mixnets, invalid votes can be removed
directly from the outcome.

∙ Φh
iv
is Φiv that is applied only to voters whose credentials

are not leaked. For some systems and procedures, only this



weaker version may be ensured. For Helios, we see examples
of procedures that achieve Φiv as well as examples that only
achieve weak individual verifiability.
Comparison with [21]. The properties defining Φ⋄

E2E
are

similar in nature to properties defining symbolic verifiability
in [21]. There are, however, important differences that allow
us to overcome the limitations discussed in the introduction:
− we introduce cr as an argument in Vote and Verif ied, and
we remove id as an argument in BBtally. In [21], these are
Vote(id, v), Verif ied(id, v) and BBtally(id, cr, b). Our version
of Vote and Verif ied makes a stronger connection between
these events and public information on BB. In the same spirit,
removing id from BBtally makes the verifiability property more
transparent (the connection to id is only known to the voting
server in [21]).
− the hidden link between id and cr in BBtally requires [21] to
come up with additional restrictions (which vary according to
the corruption scenario, and are justified by trust assumptions)
in order to make a formal and consistent connection between
the public information in BBtally and voter information in Vote
and Verif ied. In our case, this connection is directly provided
by the public credential cr used both by voter and the public
bulletin board. We demonstrate the generality of our approach
by applying it to various scenarios in Helios and Belenios,
where we only need to switch between Φ∙res and Φ

◦
res to choose

the appropriate level of security.
− there is one simple consistency property that we need to
ensure between cr and id, which is formalised by Φcl. It is a
property that should intuitively hold for any system, and it can
be proved instead of taken as a trust assumption.
− we capture revoting by introducing a revote policy Ω and,
more generally, a systematic way of linking Verif ied events to
other events in the execution trace.
− we argue that the stronger version of individual verifiability
that we propose, Φiv, should be preferred to Φh

iv
whenever

possible. It allows to derive verifiability guarantees even for
voters who are dynamically or unwillingly compromised.
On the strength of definitions. When the event BBtally(cr, b)
occurs in a trace, the formula Φ∙res, used in the strong version of
our definition, says that b can be cast by the adversary only if a
voter that receives cr at registration is corrupted. On the other
hand, in the case of a dishonest registrar, the definition in [21]
allows b to be cast by the adversary as soon as any corrupted
voter convinces the honest server to accept a ballot for cr.
This means that, instantiated for this corruption scenario, our
definition is stronger than [21], since the circumstances under
which it tolerates a corrupted cast for cr are more strict. As
a consequence, we find an attack on Φ∙res for Belenios in this
case, while it is proved secure with respect to the definition
in [21]. One may consider that Φ∙res is too strong and we
note that, under appropriate verification procedures, Belenios
satisfies Φ◦res in this scenario, i.e. the weaker version of our
definition. However, the attack we find on Φ∙res does also have
a notable impact on security: since the server enforces the
consistency between voters and their public credentials, an

honest voter would be permanently prevented from casting a
ballot if another voter has already used the public credential.
We also find other practical attacks on Belenios, unrelated to
the strength of Φ∙res.

C. Multiset-based election verifiability
As in [14], [21], [27], we introduce a definition of end-to-

end verifiability that is based on multisets. We use this defi-
nition to argue the soundness of symbolic verifiability under
realistic assumptions. Specifically, we aim for assumptions that
can be enforced by public audits on the bulletin board, and do
not represent additional trust assumptions. We consider the
two assumptions from Figure 2, where Ψtally1 requires that
for each registered credential there has to be a corresponding
ballot (possibly ⊥) recorded for the tally phase, and Ψtally2
requires that there is at most one ballot recorded for each
credential. Both restrictions can be ensured relying on the
basic assumption of a public bulletin board, where the list
of registered credentials is published at setup time and the list
of ballots to be tallied is published at the end of the voting
phase. We let ΨE2E = Ψtally1 ∧ Ψtally2.
We denote multisets by ⦃a1,… , an⦄, where each element ai

may have multiple occurrences. A ⊎ B represents the disjoint
union of multisets A and B, where multiplicities of common
elements of A and B add up. For an execution trace �, revote
policy Ω and ⋄ ∈ {◦, ∙}, we define the following sets and
multisets:

Ver(�) = ⦃(cr, v) | ∃id. � ⊧ Verif ied(id, cr, v)
∧ Ω(id, cr, v) ∧ v ≠ ⊥⦄

Vervote(�) = ⦃v | ∃cr. (cr, v) ∈ Ver(�)⦄
Vercr(�) = {cr | ∃v. (cr, v) ∈ Ver(�)}
Adv⋄(�) = {cr | � ⊧ Φ⋄

adv
(cr)} (adversarial credentials)

Result(�) = ⦃open(b) | ∃cr. � ⊧ BBtally(cr, b) ∧ b ≠ ⊥)⦄

Definition 4 is a slight generalisation of definitions in
[21], [27]: it accounts for revoting; it extends the notion of
corrupted voters (covering Φ∙

adv
) to a generic notion defined

by Φ⋄
adv

(covering both Φ∙
adv

and Φ◦
adv

); it offers end-to-end
verifiability benefits also to corrupted voters that have verified
their vote. In summary, it says that the final result can be
partitioned into: votes that have been verified, votes that have
not been verified, and additional votes that may be cast by the
adversary. Moreover, for each of these sets, there are associated
constraints.

Definition 4. Let Ω be a revoting policy. We say that a trace �
satisfiesMS⋄E2E, for ⋄ ∈ {◦, ∙}, if there exist multisets V1, V2, V3
such that Result(�) = V1 ⊎ V2 ⊎ V3 and
1) V1 = Vervote(�),
2) V2 = ⦃v1,… , vl⦄ and there are mutually distinct

cr1,… , crl such that ∀i ∈ {1,… , l},
∙ ∃idi. � ⊧ Vote(idi, cri, vi), and
∙ cri ∉ Vercr(�) ∪ Adv⋄(�),

3) |V3| < | Adv⋄(�) ⧵ Vercr(�) |.
We denote this by � ⊩ MS⋄E2E.



Intuitively, we have: 1) all of the verified votes should be
part of the final outcome; 2) if a credential is not adversarial,
and there is a vote counted for that credential, there can be at
most one such vote and it comes from an honest execution of
the voting procedure; 3) the number of any additional votes
that is part of the final result is bounded by the number of
adversarial credentials. In (2) and (3), we exclude credentials
for which some voter verified their vote, since these have been
counted in (1).

Theorem 1. For every trace � and ⋄ ∈ {◦, ∙}, we have � ⊧
Φ⋄

E2E
∧ ΨE2E ⟹ � ⊩ MS⋄E2E, where

Φ⋄
E2E

= Φiv ∧ Φeli ∧ Φcl ∧ Φ⋄res,
ΨE2E = Ψtally1 ∧ Ψtally2.

The proof is given in Appendix A.

Corollary 1. For any e-voting specification  and ⋄ ∈ {◦, ∙},
we have

 ⊧ Φ⋄
E2E

∧  ⊧ ΨE2E ⟹  ⊩ MS⋄E2E.

We note that, in order to capture a weaker notion of end-
to-end verifiability for honest voters, one can define Φ⋄

E2Eh
=

Φh
iv
∧ Φeli ∧ Φcl ∧ Φ⋄res. Then, a corresponding notion

MS⋄E2Eh has to be defined in order for a soundness result as in
Corollary 1 to be shown.

IV. VERIFICATION OF HELIOS AND BELENIOS

Helios [6], [22]–[24] and Belenios [25], [26] are extensions
of the simple protocol from Example 1 in order to obtain
better usability and security properties. The main differences
between these protocols are the ballot structure and the role
of a special party, called registrar, responsible in Helios and
Belenios for generating public credentials and distributing
them to voters. They also share a common structure, that is
reflected in protocol components for their specification.

A. Common protocol structure and components
Apart from voters V, the parties in these protocols are

administrator A, trustees T, registrar VR, voting server VS,
voting platform VP and election auditors EA. VR and VS are
usually subsumed by the same party in Helios.
Setup phase. A determines the list of eligible candidates
and voters id1,… , idn, VR generates public credentials, VS
generates passwords, T generate the election key. We have:

BBkey ∶ pk; BBcand ∶ v1,… , vk; BBreg ∶ cr1,… , crn

on the bulletin board. In this phase, each voter id obtains a
public credential cr and a password pwd.
Helios with identities. The administrator in Helios can decide
to have the public credential equal to the voter identity, i.e.
cr = id. In practice, the voter identity can be the real name of
the voter, and the cast ballot is displayed on the bulletin board
next to it. Our symbolic models also apply in this case.

Voting phase. The voter interacts with VP to construct a ballot
b and authenticate with respect to VS using the password
obtained in the setup phase. Our symbolic model abstracts
the password-based authentication between VP and VS with
the help of a hash function, thereby assuming the underlying
authentication protocol to be perfect (i.e. only holder of
pwd can submit ballots for id). Specifically, VP computes
a = h(⟨id, pwd, b⟩) and posts ⟨id, b, a⟩ to VS, which matches
it with ⟨id, cr, pwd⟩ and publishes b on BBcast next to cr.
Individual verification procedures for both Helios and Be-
lenios, are as discussed in Section II-A and presented in
Figure 1. We note that the current deployment of these
protocols shows only the last ballot cast for each credential on
the bulletin board and voters can verify their ballot anytime
[24], [25]. With respect to Figure 1, this means that: 1 is
the procedure regularly used; 3 and 4 can be used (voters
can check their ballots after the results have been released);
and 2 cannot be used (since previously cast ballots are not
visible).
Tally phase. The last ballot present on BBcast for each
credential is chosen for BBtally. We have:

BBtally ∶ (cr1, b1),… , (crn, bn),

where b = ⊥ if no ballot was cast for cr. The ciphertexts
corresponding to non-empty ballots on BBtally are tallied by
T, who announce the final result along with a zero-knowledge
proof that it corresponds to input ciphertexts.
Adversarial models. In addition to the generic facts required
by Definition 2 and described in Section III, the protocol
specifications for Helios and Belenios use the following facts
to model the protocol state:
– Sk(x): to represent the secret key of the election;
– Reg(id, cr): to represent that a voter with private identity

id is communicated the public credential cr;
– Reg(id, cr, skey): for Belenios, we override Reg to include
a private signing key skey, where cr is the corresponding
public verification key;

– Pwd(id, pwd): to represent that the voter receives the
password pwd for connecting to the server;

– VoteB(id, cr, b): to represent that the voter has cast a ballot
b encoding the desired vote;

– VScast(id, b): to represent that the ballot b is received by
VS for the respective id.

These facts are also used in rules and restrictions that model
the corruption abilities of the adversary in Figure 3. Corrupted
trustees, voters and server are modelled as in Example 6.
The rule VR

reg corrupts registration, allowing the adversary
to construct, allocate and communicate credentials to voters.
Adversarial inputs are not constrained (in particular we may
have cr′ ≠ cr), letting the adversary choose the desired attack
strategy, e.g. for mounting a clash attack. The rule VS

cast models
a corrupted server that forgoes the prescribed way of validating
ballots before casting them on BB. The rule VP

vote represents
a corrupted voting platform which allows the adversary to
select the randomness used in the ballot encoding the vote.



Fig. 3: Adversarial models for Helios and Belenios.

T
key
∶ corrupt trustee to control the secret key
[ In(sk) ]−−[ BBkey(pk(sk)) ]→[ Sk(sk),BBkey(pk(sk)) ]

V
corr ∶ corrupt voter to reveal credentials (no skey in Helios)

[ Reg(id, cr, skey), Pwd(id, pwd) ]
−−[ Corr(id, cr) ]→[ Out(⟨id, cr, skey, pwd⟩) ]

VS
cast ∶ corrupt server to stuff ballots

[ In(⟨cr, b⟩) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

VR
reg ∶ corrupt registration of credentials (no skey in Helios)

[ In(⟨id, cr, skey, cr′⟩) ]−−[ BBreg(cr′) ]→
[ Reg(id, cr, skey),BBreg(cr′) ]

VP
vote ∶ corrupt platform to choose randomness

rule RVP
vote where Fr(r) is replaced by In(r)

Ψorder ∶ ensure ballots are delivered in the right order
VoteB(id, cr, b) @i ∧ VoteB(id, cr, b′) @j ∧
VScast(id, b) @k ∧ VScast(id, b′) @l ∧ i ≺ j ⇒ k ≺ l

Specification Corrupted parties

1 ∶ T
key
,V

corr,Ψorder trustees and voters

2 ∶ T
key
,V

corr,
VS
cast trustees, voters and server

∗
3 ∶ 

T
key
,V

corr,
VR
reg ,Ψorder trustees, voters and registrar

4 ∶ T
key
,V

corr,
VR
reg ,

VS
cast trustees, voters, registrar and server

5 ∶ T
key
,V

corr,
VR
reg ,

VS
cast, trustees, voters, registrar, server

VP
vote and voting platform

∗ : 3 does not apply to Helios.

Restrictions can be used to reduce the adversarial power,
when it is justified by the considered scenario. For example,
if the server is honest and a voter casts multiple ballots,
we can assume that they are processed by the server in the
right order. We can model this by the restriction Ψorder used
in conjunction with the corresponding adversarial rules. We
assemble these rules in five adversarial models i that we
consider for verification. The registrar in Helios is also in
charge of authenticating voters (that is, it plays the role of
VR and VS), thus the adversary 3 (only corrupting VR) does
not naturally apply to it. The adversary 2, however, does
apply to the variant of Helios in [23], where a special party
is in charge of posting ballots and managing the BB.

B. Helios specification and verification
We perform automated verification of several scenarios,

finding both security proofs and attacks with Tamarin (which
typically takes less than 10 minutes to terminate). Each
scenario is formally defined as an e-voting specification
( ,i,j) assembling a protocol component  ∈ { ,}
(corresponding to Helios or Belenios), an individual verifica-
tion procedure i from Figure 1 and adversarial corruption
rules j from Figure 3. The Tamarin code is available online

[46] and details for  and  are in Appendix B. The
specification  is similar to Example 5, the most notable
additions being rules that model the actions of the adminis-
trator and of election auditors. The administrator rules allow
to determine a set of facts Id(id1),… , Id(idn), respectively
BBcand(v1),… ,BBcand(vk), that represent the set of eligible
voters, respectively eligible candidates. These rules take their
input from the environment, allowing to cover any desired
scenario within the Tamarin exploration space.

In addition to the encryption of the vote, the ballot is
accompanied by a zero-knowledge proof if a homomorphic
tally is used, as in the current deployment of Helios. There-
fore, we extend the ballot structure as b = ⟨c, pr1⟩, where
c = enc(v, pk, r) and pr1 = proof1(c, r, ⟨v1,… , vk⟩). The zero-
knowledge proof pr1 shows that the encrypted vote v is
within the valid range ⟨v1,… , vk⟩. To model the cryptographic
primitives, we consider the symbols pk, enc, dec, h, proof1, ver1
and the equations (1)-(2) described in Example 2. We note
that, in order to use the zero-knowledge proof equations (2) in
Tamarin, we have to fix in advance the number of candidates.
This is only required for proving Φcand, which is specific to the
systems using homomorphic encryption; all other properties
do not require the zero-knowledge proof and can be analysed
without fixing the number of candidates apriori. The specifi-
cation  includes a restriction that corresponds to a test that
can be performed by election auditors on BB to ensure that all
cast ballots encode valid votes and correspond to registered
credentials:

Ψcast ∶ BBcast(cr, ⟨c, pr1⟩)⇒ BBreg(cr) ∧ BBkey(pkey) ∧
BBcand(vlist) ∧ ver1(pr1, c, pkey, vlist) = ok

For applying the security definition, we adapt the equa-
tion for open according to the ballot structure in Helios:
open(⟨enc(v, pk, r), pr1⟩, pk) = v. Verification results obtained
with Tamarin are presented in Table I, where ( ,i,j)
is represented by [i,j]. We discuss some notable results
for each corruption scenario. Recall that Φ⋄

E2E
= Φiv ∧ Φeli ∧

Φcl ∧ Φ⋄res, where ⋄ = ◦ corresponds to weak, while ⋄ = ∙
corresponds to strong verifiability. Unless otherwise specified,
the revoting policy is Ωok from Figure 2.
We recall that Helios is subject to ballot stuffing attack by a

corrupted server: it can add ballots for abstaining voters and,
when revoting is allowed, it can also do it for voters that voted
and verified their vote immediately after casting.
Adversary 1. If the procedure 1 is used, corrupted voters
are subject to a violation of individual verifiability, thus we
have ( ,1,i) ̸⊧ Φiv for any i, since i can use the voter
password to cast a ballot after the voter has verified. For
honest voters, we can prove ( ,1,1) ⊧ Φh

iv
when used

with revoting policy Ωlast. All other properties are provable for
1, hence we have ( ,1,1) ⊧ Φh

iv
∧ Φeli ∧ Φcl ∧ Φ∙res,

amounting to an end-to-end verifiability property for honest
voters. We also have ( ,i,1) ⊧ Φ∙

E2E
, for i ∈ {3, 4},

guaranteeing end-to-end verifiability even for corrupted voters.
Adversary 2. We have ( ,i,2) ̸⊧ Φ∙res for any i, which
represents the well-known ballot stuffing attack in Helios



TABLE I: Verifiability Analysis of Helios

[i,j]∕�type Φ†
iv

Φeli Φcl Φ∙res Φ◦res

[i,1], i ∈ {1, 2} 3⋆ 3 3 3 3

[i,1], i ∈ {3, 4} 3 3 3 3 3

[i,2], i ∈ {1, 2} 7× 3 3 7 7

[i,2], i ∈ {3, 4} 3 3 3 7 3

[1,4] 7× 3 7 7 7

[2,4] 7× 3 3 7 7

[3,4] 3 3 3 7 3

[4,4] 3 3 7 7 3

[1,5] 7× 3 7 7 7

[2,5] 7× 3 ?∗ 7 7

[i,5], i ∈ {3, 4} 3 3 7 7 3

† : Revote policies: Ωlast for 1,2 and Ωok for 3,4.
⋆ : Verification is for Φh

iv
with revote policy Ωlast.

× : Φh
iv
is also violated.

∗ : Tamarin execution does not terminate.

when the server is corrupted. On the positive side, we have
( ,i,2) ⊧ Φ◦E2E, for i ∈ {3, 4}.

Adversary 4. We have ( ,3,4) ⊧ Φ◦E2E, which repre-
sents the first automated proof of end-to-end verifiability for
Helios when the server is fully corrupted. We note that 3 is
the procedure performed after the voting phase, whereas 1
represents the procedure currently deployed and used in [24].
For 1, in addition to the ballot stuffing attack (as for 2), we
find ( ,1,4) ⊧̸ Φcl. This corresponds to a new version
of the clash attack of [6], originally applicable by 5. The
attack scenario is presented in AS1 . It can be seen that, if
the registrar assigns the same credential to two voters, they
can both be happy with their verification results, by verifying
BBcast at different points in time. Election auditors cannot
detect any irregularity on BB, since the public sequence of
ballots is consistent with revoting performed by cr1. VS can
then stuff a ballot for cr2, in order to create the impression
that ballots from all voters have been taken into account.

The attack AS1 is particularly effective when BBcast shows
only the last ballot cast for each credential, as in the current
deployment. We note however that other deployment options
for BBcast also suffer from similar attacks. For example,
assume all ballots cast by each voter are published on the
bulletin board. Then, adapting the above scenario, after id2
casts b2 we have (cr1, b1), (cr1, b2) ∈ BBcast. The voter id2
has a chance to spot that there is a problem related to cr1.
However, depending on how the bulletin board is presented
to id2 and on the actual voter instruction, the attack may
still be undetected. An interesting version of this attack is
when id1 and id2 choose to abstain. In that case, they can
still verify the bulletin board to ensure that there is no ballot
cast in their name. A corrupted registrar giving the same cr1
to id1, id2 can, again, cast an adversarial ballot. This entails
( ,4,4) ⊧̸ Φcl. Remarkably, this attack is more difficult

Attack Scenario AS1 (clash attack by 4)

1. VR creates cr1, cr2, and gives cr1 to both V(id1) and
V(id2), resulting in Reg(id1, cr1) and Reg(id2, cr1).

2. V(id1) posts a ballot b1 and verifies (cr1, b1) ∈ BBcast.
3. V(id2) posts a ballot b2 and verifies (cr1, b2) ∈ BBcast.
4. EA sees (cr1, b1) followed by (cr1, b2) on BBcast.
Outcome: only one ballot will be tallied for id1 and id2.

Attack Scenario AS2 (clash attack by 5)

1. Same operation as AS1 .
2. VP prepares the same ballot b for V(id1) and V(id2).
3. V(id1) posts the ballot b and verifies (cr1, b) ∈ BBtally.
4. V(id2) posts the ballot b and verifies (cr1, b) ∈ BBtally.
Outcome: only one ballot will be tallied for id1 and id2.

to prevent than before.
Our analysis shows that some procedures that protect par-

ticipating voters do not protect the abstainers. The attack AS1
can be prevented by 3, i.e. verifying ballots directly on
BBtally, or by 2, i.e. using the restriction Ψmine to ensure all
ballots on BBcast are recognised as theirs by voters. However,
it is not possible to prevent clash attack on abstaining voters;
(i) there is no ballot on BBcast, thus Ψmine does not apply in
that case, (ii) verification on BBtally also does not help, since
two abstaining voters would both be happy seeing no ballot.
Adversary 5. We capture the clash attack of [6], presented
in AS2 . There are some notable differences from the scenario
of AS1 : voters id1 and id2 are assumed to vote for the same
candidate; VP of both voters is assumed corrupted; the attack is
possible even when revoting is disallowed and voters perform
the stronger verification procedure 3. Here, the adversary also
needs to create a clash on ballots, and not only on public
credentials, since there is at most one ballot on BBtally for
each credential. That is where it relies on the voting platform.
Helios with identities. We note that the clash attacks by 4
and 5 do not apply when we have cr = id, since we assume
a trusted administrator that assigns unique identities to voters.

C. Belenios specification and verification
The Belenios voting protocol is an extension of Helios

in order to ensure stronger security properties when some
election authorities may be corrupted [26]. The most important
change in Belenios with respect to Helios is the addition of
signatures in order to attest that ballots come from eligible
voters associated to a given credential. The zero-knowledge
proof in Belenios has an additional feature, ensuring the
ciphertext in the ballot is linked to a given public credential.
Symbolically, we represent this additional feature relying on
new symbols proof2, ver2 and we use equations (1)-(4) from
Example 2 to model all cryptographic properties required for
Belenios.



TABLE II: Verifiability Analysis of Belenios

[i,j]∕�type Φ†
iv

Φeli Φcl Φ∙res Φ◦res

[i,1], i ∈ {1, 2} 7× 3 3 3 3

[i,1], i ∈ {3, 4} 3 3 3 3 3

[i,2], i ∈ {1, 2} 7× 3 3 3 3

[i,2], i ∈ {3, 4} 3 3 3 3 3

[1,j ], j ∈ {3, 4} 7× 3 7 7 7

[2,j ], j ∈ {3, 4} 7× 3 3 7 7

[3,j ], j ∈ {3, 4} 3 3 3 7 3

[4,j ], j ∈ {3, 4} 3 3 7 7 3

[1,5] ?∗ 3 7 7 7

[2,5] ?∗ 3 ?∗ 7 7

[i,5], i ∈ {3, 4} 3 3 7 7 3

† : Revote policies: Ωlast for 1,2 and Ωok for 3,4.
× : Φh

iv
is also violated.

∗ : Tamarin execution does not terminate.

The registrar VR has the special role of generating a key
pair - a signing key skey and corresponding verification key
cr - for each eligible voter. The ballot constructed by VP
contains, in addition to the ciphertext c, a signature s on c with
respect to skey as well as the zero-knowledge proof(s). That
is, we have b = ⟨c, s, pr1, pr2⟩ in our symbolic representation.
VP sends ⟨id, cr, b, a⟩ to VS, which authenticates the voter
and checks the validity of the signature and of proofs. In
addition, it records (id, cr) in a log, for which the following
consistency property is ensured throughout the execution of
the election: (id, cr) ∈ log ∧ (id, cr′) ∈ log ⇒ cr = cr′ and
(id, cr) ∈ log ∧ (id′, cr) ∈ log ⇒ id = id′. We should note
that it is the voter who communicates the pair (id, cr) to VS,
and not the registrar.
The protocol specification  is similar to  , following

the differences sketched above. For example, we have an
extended version of Ψcast, in order to model the fact that
election auditors also check signatures to ensure the valid-
ity of ballots on BBcast. We also have a restriction Ψlog
to model the consistency property ensured for the log on
server. For applying the security definition, we adapt the
equation for open according to the ballot structure in Belenios:
open(⟨enc(v, pk, r), s, pr1, pr2⟩, pk) = v. Verification results ob-
tained with Tamarin are presented in Table II. We discuss
some notable results in each scenario. For illustrating attacks,
we consider two voters id1 and id2.

Adversary 1. We expect weak individual verifiability to hold
with revote policy Ωlast, as in the case of Helios. However,
we find (,1,1) ⊧̸ Φh

iv
. This can be explained by the

attack scenario presented in AS1, where we assume id1 and
id2 have public credentials cr1 and cr2, respectively, and that
the adversary controls the communication network. The step 3
of the attack is possible because b2 contains a valid signature
with respect to cr1 and VS is not aware that cr1 corresponds to
id1. This attack is not possible in Helios since the registrar and

Attack Scenario AS1 (ballot reordering by 1)

1. V(id1) casts a ballot b1 followed by another ballot b2.
2.  blocks b1 and b2, corrupts V(id2) and casts b2

using credentials (id2, cr1).
3. VS accepts b2 coming from (id2, cr1) and publishes
(cr1, b2) on BBcast.

4. V(id1) successfully verifies (cr1, b2) ∈ BBcast.
5.  casts b1 using credentials (id2, cr1).
6. VS accepts b1 and publishes (cr1, b1) on BBcast.
Outcome: b1 is tallied for cr1, even if b2 is the last ballot

was cast and verified by id1.

the server agree on the correspondence between identities and
credentials, and therefore corrupted voters cannot cast ballots
for any credential other than theirs. We note that [26] also
mentions a potential alternative design for Belenios where
the registrar communicates the log to the server before the
election starts. That version would not suffer from this attack,
and the ballot stuffing attack by3 shown below would be less
serious. The version we analyse was preferred for deployment
since it promises everlasting privacy, yet it does pose new
problems as we show.
Adversary 2. We obtain (,i,2) ⊧ Φ∙E2E for i ∈ {3, 4},
showing that Belenios indeed satisfies a stronger verifiability
property than Helios in this case. We note, however, that
the case with 1 corresponds to the currently recommended
procedure in Belenios [25], [26]. We should be able to prove
(,1,2) ⊧ Φh

iv
∧ Φeli ∧ Φcl ∧ Φ∙res, but a variant of the

ballot reordering attack presented for 1 prevents this, i.e. we
have (,1,2) ⊧̸ Φh

iv
and (,1,2) ⊧ Φeli ∧ Φcl ∧ Φ∙res.

Adversary 3. We expect (,i,3) ⊧ Φ∙res, however we
find (,i,3) ⊧̸ Φ∙res, for any i. The weaker property Φ

◦
res is

also not satisfied for i ∈ {1, 2}. Before presenting the attacks,
we should mention (and rule out) some trivial attacks by a
corrupted VR, which consist in distributing to the voter a
cr that is not on BBreg, or a skey that does not correspond
to cr. These attacks can be detected by audits before the
election. The attack that we find, presented in AS2, can only
be observed by the voter while trying to cast a ballot, and it
is more difficult to make VR accountable for it. In addition,
the adversary does not have to control the communication
network for this attack. Formally, the formula Φ∙res is violated
as we obtain BBtally(cr1, b) and cr1 does not correspond to
a corrupted voter and b does not correspond to an honest
execution of the voting procedure. In practice, the consequence
is that the voter id1 is not able to cast a vote, no matter what
infrastructure is used.
We have (,i,3) ⊧̸ Φh

iv
∨ Φ◦res for i ∈ {1, 2}. Indeed,

we have the scenario AS3 as a variation of the previous attack,
but where we have to assume that the adversary controls
the communication network. Reminiscent from Helios, we
also find the clash attack on empty ballots in this case, i.e.



Attack Scenario AS2 (weak ballot stuffing by 3)

1. VR registers V(id1) and V(id2) with Reg(id1, cr1, skey1)
and Reg(id2, cr2, skey2) respectively.

2.  corrupts V(id2) and VR and obtains ⟨pwd2, skey1⟩.
3.  casts a ballot b using the credentials (id2, cr1).
4. VS accepts b and publishes (cr1, b) on BBcast.
5. V(id1) casts a ballot b with credentials (id1, cr1).
6. VS sees inconsistency in logs: (id2, cr1) vs. (id1, cr1),

and does not accept b, or any other ballot from V(id1).
Outcome: id1 cannot vote, instead, b is tallied for cr1.

Attack Scenario AS3 (strong ballot stuffing by 3)

1-2. Same steps as AS2.
3. V(id1) casts a ballot b using the credentials (id1, cr1).
4.  blocks b, casts it using the credentials (id2, cr1).
5. VS accepts b and publishes (cr1, b) on BBcast.
6. V(id1) successfully verifies (cr1, b) ∈ BBcast.
7.  casts another ballot b for (id2, cr1).
8. VS accepts b and publishes (cr1, b) on BBcast.
Outcome: b is tallied for cr1, even if b is the only

ballot that was cast and verified by id1.

(,4,3) ⊧̸ Φcl. Moreover, we find (,1,3) ⊧̸ Φcl,
which is not expected. It can be explained by the fact that, like
in the case of individual verifiability, we require resistance to
clash attacks even if some of the targeted voters are corrupted.
We then find a clash attack against two voters, presented in
AS4, where one is honest and the other is corrupted.
Comment on results for 2 and 3. We note that AS2 and
AS4 are not attacks against the definitions of [21], [27], since
there is a corrupted voter involved in casting the tallied ballot.
On the other hand, AS1 and AS3 are attacks against their
definitions, since the honest voter successfully verified a ballot
and this ballot was not tallied as it should be. The attacks
are missed by the symbolic analysis of [21] because it does
not consider revoting. They are missed by the computational
analysis of [27] because it assumes that voters verify their
ballots only after the voting phase, corresponding to 3 in
our case, while [27] leaves open the question of security for
1, which is exploited by these attacks. Although our analysis
shows negative results for 1 in the presence of both 2 and
3, there are important differences between these cases. In
the case of 3, we have substantial attacks that we do not
know how to fix immediately. In the case of 2, although the
results of our analysis are negative for Φh

iv
(the cause being a

ballot reordering attack like AS1), we think the answer could
be positive if, as suggested in [27], an appropriate audit of BB
is performed and voters are asked to verify each of their ballots
after casting. Note also that Φ∙res is satisfied for 2, showing
ballot stuffing is impossible, independently of the verification

Attack Scenario AS4 (clash attack by 3)

1. VR registers V(id1) and V(id2) with the same ⟨cr, skey⟩.
2. V(id2) submits ballot b2 and verifies (cr, b2) ∈ BBcast.
3. V(id1) submits ballot b1.
4.  blocks b1, corrupts V(id2) and submits b1 in the

name of V(id2).
5. VS accepts b1, seeing no inconsistency in logs and

publishes (cr, b1) on BBcast.
6. V(id1) successfully verifies (cr, b1) ∈ BBcast.
Outcome: only one ballot will be tallied for id1 and id2,

even if both perform a successful verification.

procedure. This is not the case for 3, where ballot stuffing
is possible even for voters that verified their ballots (with 1).
Adversary 4. When both the server and the registrar are
corrupted, we find, as expected, the same results for Belenios
as for Helios. Most notably, we have the positive result
(,3,4) ⊧ Φ◦E2E.
Adversary 5. We have (,i,4) ⊧̸ Φ◦E2E for any i, since
we recover the classic clash attack as in Helios.

V. CONCLUSION AND FUTURE WORK

We have introduced a symbolic framework that allows to
use automated tools in order to evaluate end-to-end election
verifiability for a large class of protocols and corruption
models. It is more expressive than all existing symbolic
frameworks. We have applied it to new scenarios in Helios
and Belenios, and with the Tamarin prover, we have discovered
new attacks and new security proofs. In general, our results
show that the deployed versions of these systems do not satisfy
the desired level of security, yet we prove positive results,
sometimes under appropriate verification procedures, showing
that a higher level of security is possible as well. Finding the
right balance between usability and security can be seen as
the main open question for future work.
There are also challenges concerning the symbolic model. A

limitation of our definition is that we cannot handle protocols
where there are no public credentials associated to ballots on
the bulletin board. There are some examples that are excluded
as a consequence, most notably JCJ/Civitas [39], [40]. We need
public credentials in order to make an injective correspondence
between tallied ballots and earlier events in the trace. A way
forward could be injective correspondence assertions, which
are supported by ProVerif. Tamarin does not directly provide
this feature and would require an encoding. A more general
notion of ballot opening is also needed to handle systems with
everlasting privacy, where one cannot directly extract votes
from ballots [41], [42].
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APPENDIX

A. Proof of Theorem 1
Lemma 1. For any trace � and terms cr, v such that � ⊧
Φiv ∧ Φeli ∧ Ψtally1 and � ⊧ Verif ied(id, cr, v) ∧ Ω(id, cr, v),
we have � ⊧ BBtally(cr, b) ∧ v = open(b), for some term b.

Proof. From � ⊧ Verif ied(id, cr, v) and � ⊧ Φeli, we deduce
� ⊧ BBtally(cr, b), for some term b. Putting this together with
� ⊧ Verif ied(id, cr, v) ∧ Ω(id, cr, v) and applying � ⊧ Φiv, we
deduce � ⊧ BBtally(cr, b) ∧ v = open(b) as required.

Theorem 1. For every trace � and ⋄ ∈ {◦, ∙}, we have � ⊧
Φ⋄

E2E
∧ ΨE2E ⟹ � ⊩ MS⋄E2E, where

Φ⋄
E2E

= Φiv ∧ Φeli ∧ Φcl ∧ Φ⋄res,
ΨE2E = Ψtally1 ∧ Ψtally2.

Proof. Assume � ⊧ ΨE2E ∧ Φ⋄E2E. Let R = ⦃(cr, v) | � ⊧
BBtally(cr, b) ∧ b ≠ ⊥ ∧ v = open(b)⦄. Note that, by
definition, Result(�) = ⦃v | (cr, v) ∈ R⦄. Let us define:

R1 = R ∩ Ver(�),
R2 = R′2 ⧵ Ver(�),
R3 = R′3 ⧵ Ver(�),
R′2 = R ∩ ⦃(cr, v) | ∃id. � ⊧ Vote(id, cr, v), cr ∉ Adv⋄(�)⦄,
R′3 = R ∩ ⦃(cr, v) | cr ∈ Adv⋄(�)⦄.

For i ∈ {1, 2, 3}, let Vi = ⦃v | ∃cr. (cr, v) ∈ Ri⦄. We show
that V1, V2, V3 satisfy the requirements of Definition 4. First,
let us show that Result(�) = V1 ⊎V2 ⊎V3. By definition, this is
equivalent to showing R = R1 ⊎ R2 ⊎ R3. From � ⊧ Φ⋄res, we
deduce that, for each (cr, v) ∈ R, we have one of two cases: (i)
either ∃id. � ⊧ Vote(id, cr, v); (ii) or � ⊧ Φ⋄

adv
(cr). Therefore,

we have (cr, v) ∈ R′2 or (cr, v) ∈ R′3. Since R
′
2 ∩ R

′
3 = ∅

and R′2, R
′
3 ⊆ R, we can then deduce R = R′2 ⊎ R

′
3. Next, by

definition of R2, R3, we have R′2 = R2 ⊎ (R′2 ∩ Ver(�)) and
R′3 = R3 ⊎ (R

′
3 ∩ Ver(�)). Moreover, we have:

R1 = R ∩ Ver(�)
= (R′2 ⊎ R

′
3) ∩ Ver(�)

= (R′2 ∩ Ver(�)) ⊎ (R′3 ∩ Ver(�)).

Therefore, we can conclude R = R1⊎R2⊎R3 and Result(�) =
V1 ⊎ V2 ⊎ V3.
Next, we show that each of V1, V2, V3 satisfies respectively

1), 2), 3) from Definition 4:

1) We show V1 = Vervote(�). By definition, we have V1 ⊆
Vervote(�). Let us show that Vervote(�) ⊆ V1. For any v ∈
Vervote(�), let s be the number of times v occurs in Vervote(�).
We show that the number of times v occurs in the multiset
V1 is at least s. Consider the list of all (id1, cr1),… , (ids, crs)
such that ∀i ∈ {1,… , s}, � ⊧ Verif ied(idi, cri, v). By definition
of Ver(�) and by the definition of s, for any i ≠ j, we have
(idi, cri) ≠ (idj, crj). Therefore, if idi = idj, we must have cri ≠
crj. Moreover, from � ⊧ Φcl, we also have idi ≠ idj ⇒ cri ≠ crj.
Thus, we can conclude that, for any i ≠ j, we have cri ≠ crj.
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For every i ∈ {1,… , s}, from � ⊧ Φiv ∧ Φeli ∧ Ψtally1
and (cri, v) ∈ Ver(�), by Lemma 1, we deduce
� ⊧ BBtally(cri, bi) ∧ v = open(bi). Therefore, by definition
of R1, we have ⦃cr1, v),… , (crs, v)⦄ ⊆ R1. Moreover, from
i ≠ j ⇒ cri ≠ crj, we can then deduce that all (cri, v)
are distinct, and therefore, the multiplicity of v in V1 is at
least s. Thus, we can conclude that V1 = Vervote(�) as required.

2) We show the required property for V2. Let
R2 = ⦃(cr1, v1),… , (crl, vl)⦄. From � ⊧ Ψtally2, we know that
cr1,… , crl are mutually distinct. By definition of R2, for all
i ∈ {1,… , l}, we have cri ∉ Ver(�) ∪Adv⋄(�) and there exists
idi such that � ⊧ Vote(idi, cri, vi).

3) We show |V3| < | Adv⋄(�) ⧵ Vercr(�) |. By definition, we
have |V3| = |R3| and

R3 = (R ∩ R′3) ⧵ Ver(�) ⊆ R ∩ (R
′
3 ⧵ Ver(�)).

From � ⊧ Ψtally2, we have for all cr, |⦃v | (cr, v) ∈ R3⦄| ≤
|⦃v | (cr, v) ∈ R⦄| ≤ 1. Therefore, by definition of Adv⋄(�)
and R′3, we can deduce |R3| < | Adv⋄(�) ⧵ Vercr(�) | and
conclude |V3| < | Adv⋄(�) ⧵ Vercr(�) |.

B. Helios and Belenios specification details
The details for the Helios specification are in Figure 4 and

for the Belenios specification are in Figure 5 on the following
pages.



Fig. 4: Protocol components for Helios specification.

(a) Protocol specification  = ( ,Ψ).

Rules are labelled with corresponding protocol parties
A,T,V,VR,VS,VP,EA as introduced in Section IV.

SETUP PHASE

RT
key
∶ generate election secret and public keys
[ Fr(sk) ]−−[ BBkey(pk(sk)) ]→
[ Sk(sk),BBkey(pk(sk)),Out(pk(sk)) ]

RA
cand

∶ determine candidates to be elected
let vlist = ⟨v1,… , vk⟩ in

[ In(vlist) ]−−[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]→
[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]

RA
id
∶ determine identities eligible to vote
[ In(id) ]−−[ ]→[ Id(id) ]

RVR∕VS
reg ∶ register voter with credential and password

[ Id(id), Fr(cr), Fr(pwd) ]−−[ BBreg(cr) ]→
[ Reg(id, cr), Pwd(id, pwd),BBreg(cr),Out(cr) ]

RVS
bb
∶ setup initial BBcast for registered voters
[ BBreg(cr) ]−−[ BBcast(cr, ⊥) ]→[ BBcast(cr, ⊥) ]

VOTING PHASE

RVP
vote ∶ construct a ballot, authenticate and send it to VR∕VS

let c = enc(v, pkey, r); pr1 = proof1(c, r, vlist);
b = ⟨c, pr1⟩; a = h(⟨id, pwd, b⟩) in

[ BBcand(v),BBkey(pkey), Fr(r),Vlist(vlist),Reg(id, cr),
Pwd(id, pwd) ]−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→
[ Voted(id, cr, v, b),Out(⟨id, b, a⟩) ]

RVR∕VS
cast ∶ authenticate voter, verify and publish ballot

let b = ⟨c, pr1⟩; a′ = h(⟨id, pwd, b⟩) in

[ In(⟨id, b, a⟩),BBkey(pkey),Vlist(vlist),Reg(id, cr),
Pwd(id, pwd) ] −−[ a′ = a, ver1(pr1, c, pkey, vlist) = ok,
VScast(id, b),BBcast(cr, b) ]→ [ BBcast(cr, b) ]

TALLY PHASE

RVS∕EA
tally

∶ VS selects ballots for tally; can be audited by EA
[ BBcast(cr, b) ]−−[ BBtally(cr, b) ]→[ BBtally(cr, b) ]

ΨVS∕EA
cast ∶ ensure ballot validity; can be audited by EA

BBcast(cr, b) ⇒ BBreg(cr) ∧ ( b ≠ ⊥ ⇒ b = ⟨c, pr1⟩ ∧
BBkey(pkey) ∧ Vlist(vlist) ∧ ver1(pr1, c, pkey, vlist) = ok )

ΨVS∕EA
tally

∶ the last ballot added to BB is selected for tally
BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧
BBtally(cr, b) @l ⇒ j ≺ i ∨ b = b′

(b) Individual verification procedures for  .

R0
ver ∶ voter verifies the ballot on BBcast

[ Voted(id, cr, v, b),BBcast(cr, b) ]
−−[ Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

R1
ver ∶ voter verifies the ballot on BBtally

[ Voted(id, cr, v, b),BBtally(cr, b) ]
−−[ Verif ied(id, cr, v) ]→[ ]

R2
ver ∶ voter verifies there is no ballot on BBtally

[ Reg(id, cr),BBtally(cr, ⊥) ]
−−[ Verif ied(id, cr, ⊥) ]→[ ]

R0ver can be combined with restrictions below:

Ψlast ∶ the verified ballot is currently the last on BB
BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧
VerB(id, cr, b) @l ∧ i ≺ l ∧ j ≺ l ⇒ j ≺ i ∨ b = b′

Ψmine ∶ all ballots currently on BB were cast by id
VerB(id, cr, b) @i ∧ BBcast(cr, b′) @j ∧ j ≺ i
⇒ VoteB(id, cr, b′) @l

(c) Adversarial corruption rules against  .

T
key
∶ corrupt trustee to control the secret key
[ In(sk) ]−−[ BBkey(pk(sk)) ]→[ Sk(sk),BBkey(pk(sk)) ]

V
corr ∶ corrupt voter to reveal credentials

[ Reg(id, cr), Pwd(id, pwd) ]−−[ Corr(id, cr) ]→
[ Out(⟨id, cr, pwd⟩) ]

VS
cast ∶ corrupt server to stuff ballots

[ In(⟨cr, b⟩) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

VR
reg ∶ corrupt registration of public credential

[ In(⟨id, cr, cr′⟩), Fr(pwd) ]−−[ BBreg(cr′) ]→
[ Reg(id, cr), Pwd(id, pwd),BBreg(cr′) ]

VP
vote ∶ corrupt platform to choose randomness

rule RVP
vote where Fr(r) is replaced by In(r)

Ψorder ∶ ensure ballots are delivered in the right order
VoteB(id, cr, b) @i ∧ VoteB(id, cr, b′) @j ∧
VScast(id, b) @k ∧ VScast(id, b′) @l ∧ i ≺ j ⇒ k ≺ l



Fig. 5: Protocol components for Belenios specification.

(a) Protocol specification  = (,Ψ).

SETUP PHASE

RT
key
∶ generate election secret and public keys
[ Fr(sk) ]−−[ BBkey(pk(sk)) ]→
[ Sk(sk),BBkey(pk(sk)),Out(pk(sk)) ]

RA
cand

∶ determine candidates to be elected
let vlist = ⟨v1,… , vk⟩ in

[ In(vlist) ]−−[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]→
[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]

RA
id
∶ determine identities eligible to vote
[ In(id) ]−−[ ]→[ Id(id) ]

RVR
reg ∶ register voter with signature pair

let cr = pk(skey) in

[ Id(id), Fr(skey) ]−−[ BBreg(cr) ]→
[ Reg(id, cr, skey),BBreg(cr),Out(cr) ]

RVS
pwd

∶ generate password for voter authentication
[ Id(id), Fr(pwd) ]−−[ ]→[ Pwd(id, pwd) ]

RVS
bb
∶ setup initial BBcast for registered voters
[ BBreg(cr) ]−−[ BBcast(cr, ⊥) ]→[ BBcast(cr, ⊥) ]

VOTING PHASE

RVP
vote ∶ construct a ballot, authenticate and send it to VS

let c = enc(v, pkey, r); s = sign(c, skey);
pr1 = proof1(c, r, vlist); pr2 = proof2(c, r, cr);
b = ⟨c, s, pr1, pr2⟩; a = h(⟨id, pwd, cr, b⟩) in

[ BBcand(v),BBkey(pkey), Fr(r),Vlist(vlist),Reg(id, cr, skey)
Pwd(id, pwd) ]−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→
[ Voted(id, cr, v, b),Out(⟨id, cr, b, a⟩) ]

RVS
cast ∶ authenticate voter, verify and publish ballot

let b = ⟨c, s, pr1, pr2⟩; a′ = h(⟨id, pwd, cr, b⟩) in

[ In(⟨id, cr, b, a⟩),BBkey(pkey),Vlist(vlist),BBreg(cr),
Pwd(id, pwd) ] −−[ a′ = a, ver(s, c, cr) = ok,
ver1(pr1, c, pkey, vlist) = ok, ver2(pr2, c, cr) = ok,
Log(id, cr),VScast(id, b),BBcast(cr, b) ]→ [ BBcast(cr, b) ]

TALLY PHASE

RVS∕EA
tally

∶ VS selects ballots for tally; can be audited by EA
[ BBcast(cr, b) ]−−[ BBtally(cr, b) ]→[ BBtally(cr, b) ]

ΨVS
log
∶ logs are checked to ensure consistency
Log(id, cr) @i ⇒ ¬( Log(id, cr′) @j ∧ cr ≠ cr′ ) ∧
¬( Log(id′, cr) @j ∧ id ≠ id′ )

ΨVS∕EA
cast ∶ ensure ballot validity; can be audited by EA

BBcast(cr, b)⇒ BBreg(cr) ∧ ( b ≠ ⊥ ⇒ b = ⟨c, s, pr1, pr2⟩
∧ BBkey(pkey) ∧ Vlist(vlist) ∧ ver(s, c, cr) = ok
∧ ver1(pr1, c, pkey, vlist) = ok ∧ ver2(pr2, c, cr) = ok )

ΨVS∕EA
tally

∶ the last ballot added to BB is selected for tally
BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧
BBtally(cr, b) @l ⇒ j ≺ i ∨ b = b′

(b) Individual verification procedures for .

R0
ver ∶ voter verifies the receipt on BBcast

[ Voted(id, cr, v, b),BBcast(cr, b) ]
−−[ Verif ied(id, cr, v),VerB(id, cr, b) ]→[ ]

R1
ver ∶ voter verifies the receipt on BBtally

[ Voted(id, cr, v, b),BBtally(cr, b) ]
−−[ Verif ied(id, cr, v) ]→[ ]

R2
ver ∶ voter verifies there is no ballot on BBtally

[ Reg(id, cr, skey),BBtally(cr, ⊥) ]
−−[ Verif ied(id, cr, ⊥) ]→[ ]

R0ver can be combined with restrictions below:

Ψlast ∶ the verified ballot is currently the last on BB
BBcast(cr, b) @i ∧ BBcast(cr, b′) @j ∧
VerB(id, cr, b) @l ∧ i ≺ l ∧ j ≺ l ⇒ j ≺ i ∨ b = b′

Ψmine ∶ all ballots currently on BB are cast by id
VerB(id, cr, b) @i ∧ BBcast(cr, b′) @j ∧ j ≺ i
⇒ VoteB(id, cr, b′) @l

(c) Adversarial corruption rules against .

T
key
∶ corrupt trustee to control the secret key
[ In(sk) ]−−[ BBkey(pk(sk)) ]→[ Sk(sk),BBkey(pk(sk)) ]

V
corr ∶ corrupt voter to reveal credentials

[ Reg(id, cr, skey), Pwd(id, pwd) ]
−−[ Corr(id, cr) ]→[ Out(⟨id, cr, skey, pwd⟩) ]

VS
cast ∶ corrupt server to stuff ballots

[ In(⟨cr, b⟩) ]−−[ BBcast(cr, b) ]→[ BBcast(cr, b) ]

VR
reg ∶ corrupt registration of public / secret credentials

[ In(⟨id, cr, skey, cr′⟩) ]−−[ BBreg(cr′) ]→
[ Reg(id, cr, skey),BBreg(cr′) ]

VP
vote ∶ corrupt platform to choose randomness

rule RVP
vote where Fr(r) is replaced by In(r)

Ψorder ∶ ensure ballots are delivered in the right order
VoteB(id, cr, b) @i ∧ VoteB(id, cr, b′) @j ∧
VScast(id, b) @k ∧ VScast(id, b′) @l ∧ i ≺ j ⇒ k ≺ l


