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Abstract—Traffic analysis attacks pose a major risk for online
security. Distinctive patterns in communication act as finger-
prints, enabling adversaries to de-anonymise communicating

parties or to infer sensitive information. Despite the attacks
being known for decades, practical solution are scarce. Network
layer countermeasures have relied on black box padding schemes
that require significant overheads in latency and bandwidth to
mitigate the attacks, without fundamentally preventing them, and
the problem has received little attention in the language-based
information flow literature. Language-based methods provide a
strong foundation for fundamentally addressing security issues,
but previous work has overwhelmingly assumed that interactive
programs communicate over secure channels, where messages
are undetectable by unprivileged adversaries. This assumption
is too strong for online communication where packets can be
trivially observed by eavesdropping. In this paper we introduce
SELENE, a small language for principled, provably secure
communication over channels where packets are publicly observ-
able, and we demonstrate how our program level defence can
reduce the latency and bandwidth overheads induced compared
with program-agnostic defence mechanisms. We believe that
our results constitute a step towards practical, secure online
communication.

Index Terms—Traffic analysis, noninterference, language-
based security

I. INTRODUCTION

Work on traffic analysis attacks has shown that many

systems and services are vulnerable to de-anonymisation and

loss of secrecy by producing distinctive patterns in their

network traffic. Traffic analysis has particularly been studied

in the context of anonymous communication and website

fingerprinting [12, 16, 22, 23, 28, 29, 32]. Defence strategies

against website fingerprinting are commonly done at the

network level [12], and rely on constant rate padding, where

source traffic is morphed to fit a predefined target pattern

[19]. Constant rate padding can be applied in a black box

fashion, making it an intuitively appealing technique against

website fingerprinting. However, it often falls short in practice

as achieving a high degree of security introduces intolerable

bandwidth and latency overheads for many applications [17],

such as anonymous, low-latency browsing and communication

[18] and privacy preserving IoT devices [1]. Cherubin et

al. argue that the application layer defences against traffic

analysis are more natural as they act directly on the objects

that are fingerprinted at the network level, while defences at

lower layers must model legitimate traffic in order to generate

convincing traffic padding [12].

Website fingerprinting is not the only attack made possible

by traffic analysis. Online services that process sensitive in-

formation are now ubiquitous and previous work has shown

that many such services are vulnerable to attack, as their

communication behaviour reveals system secrets. Analysis by

Chen et al. suggests that the scope of the issue is industry-

wide [11]. Their study finds that design features used for

creating reactive sites generate characteristic traffic patterns

that allow an adversary to infer highly detailed, sensitive

user information. They demonstrate this vulnerability across

a number of high-profile websites, e.g. they are able to infer

which illness a user selects on an online health site, and argue

that traffic analysis attacks pose an unprecedented threat to

the confidentiality of user information processed by online

systems, and that this information is often far more sensitive

than identifying which website a user visits as studied in

anonymity research.

Language-based information flow methods provide prin-

cipled ways of enforcing that the observable behaviour of

a program does not depend on secrets. The language-based

approach is appealing as the security condition of noninter-

ference [20] can be provably enforced using a type system.

O’Neill et al. formulate a noninterference condition for inter-

active programs [27], where programs communicate over in-

and output channels. Their condition requires that input on

secret channels does not influence output on public channels.

This condition has been used in a breadth of other work

[3, 8, 10, 13, 14, 21, 31]. Unfortunately, the models used

in these works assume that messages on secret channels are

invisible to adversaries. Other work models Internet commu-

nication using expressly public channels [25]. This makes

the security results inapplicable for reasoning about online

services and distributed programs where secret information

is shared between remote, trusted entities. The only other

work we are aware of, that allows an adversary to observe

the communication behaviour of a program on non-public

channels, is by Sabelfeld and Mantel [30]. They consider

encrypted channels that protect message contents, but do not

hide message presence, and give a timing-sensitive security

condition. Their security condition does not consider the size

of messages, which can be exploited in traffic analysis attacks,

and their semantics lets the blocking behaviour of receives on

encrypted channels be public by letting number of available

messages be public.
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Even simple interactions are not secure when messages can

be eavesdropped. We demonstrate this using four example

programs that each highlight a different source of leaking. In

the following examples we consider a simple two point lattice

with elements {L, H} and ordering L ⊑ L, L ⊑ H, and H ⊑ H,

and adopt the convention that low variables start with l and

high variables start with h. For simplicity, we assume that

Public is a channel at level L and all other channels, e.g.

Alice, Bob, are at level H. We first consider a program, where

a number of messages are sent depending on the value of a

secret variable:

1 /* Program 1 - Message count */
2 h_count = 0;
3 while ( h_count < h_secret )
4 do {
5 out (Alice ,1) ;
6 h_count = h_count + 1;
7 }

Program 1 satisfies the common security conditions of pre-

vious works, as the value of secret variable h_secret only

influences secret output (line 5). However, if traffic can be

eavesdropped, the program is trivially insecure. By counting

the number of messages sent, an adversary can easily infer the

exact value of the secret, as the number of messages depends

on the secret.

We assume that each message is tagged with recipient

information and that the adversary can observe both the size

of each message and the time at which it was sent, i.e., the

adversary is timing-sensitive. These assumptions lead us to

naturally identify three other sources of leaks exemplified by

the following programs, where respectively the recipient, the

size, and the timing of messages leak secrets. These programs

would commonly be considered secure in previous work.

1 /* Program 2 - Recipient of message */
2 if (h) then {
3 out (Alice , 42) ;
4 } else {
5 out (Bob , 42) ;
6 }

1 /* Program 3 - Size of message */
2 if (h) then {
3 out (Alice , "Hello ");
4 } else {
5 out (Alice , "");
6 }

1 /* Program 4 - Time of message */
2 if (h) then {
3 out (Alice , 42) ;
4 } else {
5 sleep (100) ;
6 out (Alice , 42) ;
7 }

As the above examples suggest, many convenient patterns

in writing interactive programs are no longer secure when

messages can be eavesdropped.

In this paper, we show that program level padding can

be used for provably secure confidentiality against attackers

observing the network trace. We do this by introducing SE-

LENE, a Statically Enforced Language for Equivalence of

Network Events. SELENE is a simple imperative programming

language, that allows programmatic control over traffic shap-

ing. We show that well-typed programs in SELENE satisfy

timing-sensitive, progress-sensitive non-interference. We use a

knowledge-based definition of non-interference [4] and show

that an adversary learns no secrets by observing runs of well-

typed programs. We assume that communication channels

are partly observable. Namely, we assume that the presence

of messages and the associated meta-information is publicly

visible, while the contents of messages is only visible to

trusted parties.

Our strategy for preventing traffic analysis attacks is to pro-

vide programmatic control over traffic shaping. We do this by

splitting message sending into two distinct concepts: message

allocation and message population. To this end, SELENE uses

two novel language primitives, schedule and queue, that

respectively allocate a number of packets to be sent on a

channel and add to a buffered output queue for a channel. This

simple strategy allows for utilising program level information

to keep latency and bandwidth overheads low when compared

with black-box padding. This property is particularly beneficial

for resource constrained systems. However, the strategy also

comes with a downside, namely a restriction to when new

traffic may be scheduled.

We present the formal semantics of the language in Section

II, but here present a few program examples possible in the

language.

Consider a scenario where a doctor has asked a patient

to take a home-test for an illness and to return the result.

Depending on the result, the doctor may make a referral to

a specialist clinic. Any message sent from the doctor to the

clinic is publicly observable and plainly sending a referral will

naturally leak that the patient returned a positive test result.

However, if the doctor commits ahead of time to sending some

message to the clinic, regardless of the results of the test, the

confidentiality of the patient’s information can be protected.

1 /* Program 5 - Referral */
2 // Size of int
3 l_size = sizeof (0) ;
4

5 // Send to specialist in 300 time units
6 schedule(Clinic ,l_size ,300) ;
7

8 // Get id and test result from patient
9 h_id = in( Patient );

10 h_is_positive = in( Patient );
11

12 if ( h_is_positive) then {
13 queue (Clinic , h_id);
14 } else {
15 skip ;
16 }

On line 6, the doctor schedules a send to the clinic in 300

time units. They await messages from the patient containing

id number (line 9) and the test result (line 10), and if positive,

the doctor queues a referral to the clinic (line 13). This strategy

is somewhat optimistic as it may take more than 300 time units
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for the patient to send the result to the doctor. In this case,

or in case the test result is negative, nothing will be queued

to the clinic before the send occurs. If the queue is empty at

the time of a scheduled send, dummy packets are sent instead.

When, to whom, and how much the doctor sends is thereby

made public, while what the doctor sends is kept secret.

As a second example, we consider the password checker in

Program 6.

1 /* Program 6 - Password checker */
2 string h_password ;
3 int h_token ;
4 l_size_ok = sizeof ( h_token );
5 l_size_bad = sizeof ("LOGIN FAILED ");
6

7 schedule(Alice , max (l_size_ok , l_size_bad ) ,100) ;
8 h_guess = in(Alice );
9 if ( h_guess == h_password ) then {

10 queue (Alice , h_token );
11 } else {
12 queue (Alice ,"LOGIN FAILED ");
13 }

The password checker stores a secret password and returns

a token to be used as proof of authority upon receiving a

successful guess. The password checker schedules bandwidth

for sending either the token or a login failure message by using

the maximum of the two sizes. By scheduling the response

before the guess is received, the program does not leak whether

a valid guess was received, let alone whether the guess was

correct.

As a final example, we consider a small popularity poll.

Alice wishes to know whether her opinion that dogs are better

than cats is shared by a majority of people. She sets up a

simple online voting service running Program 7 below:

1 /* Program 7 - Popinion */
2 /* Alice asks : Are cats or dogs better ?
3 Vote: Cats = 1, Dogs = -1 */
4 int h_my_vote ;
5 l_tally = 0;
6 l_count = 0;
7

8 while ( l_count < 10)
9 do {

10 l_vote = in( Public );
11 if ( l_vote == -1 || l_vote == 1) then {
12 l_tally = l_tally + l_vote ;
13 } else {
14 skip;
15 }
16 l_count = l_count + 1;
17 }
18

19 // Size of the longest message
20 l_size = sizeof ("Most disagree ");
21 schedule(Alice , l_size , 100);
22

23 if ( h_my_vote * l_tally > 0) then {
24 queue (Alice , " Most agree ");
25 } else if ( h_my_vote * l_tally < 0) then {
26 queue (Alice , " Most disagree ");
27 } else {
28 queue (Alice , "Tie ");
29 }

The voting service stores Alice’s secret choice in variable

h_my_vote, tallies ten votes from a public channel, and

schedules sending to Alice using the size of the longest

message and time based on an estimate of what is needed

for the branching. Inferring upper bounds on the time needed

for queuing is orthogonal to the work in this paper and we

opt for using simple estimates. Finally, the service computes

whether a majority agrees or disagrees with Alice and sends

a corresponding message. We observe that no bandwidth is

needed until ten votes have been received by the service.

Since it cannot be determined statically when this occurs our

approach reduces the traffic overhead induced compared with

constant rate padding schemes as it allows scheduling of traffic

on an as-needed basis, as long as the program context is public.

The main contributions of this paper are:

∙ We spotlight the gap in the assumptions made in the

language-based information flow literature for interactive

programs and the channels available for real-world, online

communication.

∙ We introduce SELENE, a language for using channels

with observable traffic information in a principled and

provably secure way, thereby recovering the strong secu-

rity guarantees of language-based techniques.

∙ We introduce a novel model that combines program and

runtime behaviour in a single small-step semantics, and

give a knowledge-based security condition for timing-

sensitive, progress-sensitive noninterference.

∙ We provide a progress-sensitive type system using both

values of a fixed size type and values of a variable size

type.

∙ We prove soundness of our type system, thereby obtaining

a static guarantee that well-typed programs in SELENE

do not leak via traffic patterns.

The remainder of this paper is structured as follows. In

Section II we specify the threat model and provide the syntax

and semantics of SELENE. We define attacker knowledge

and give a strong security condition against traffic analysis

attacks in Section III. We present the security type system for

SELENE and prove it sound in Section IV. Finally, we discuss

our work in Section V and give related work in Section VI,

before we conclude in Section VII.

II. SECURITY MODEL AND LANGUAGE

This section presents our model and the syntax and seman-

tics of our language.

A. Security model

SELENE is an interactive, imperative language for single

threaded, interactive programs with blocking receives. The

language is largely standard, apart from our message sending

primitives and command sizeof for computing the size of

a value. We assume a standard security lattice  of security

levels l, with distinguished top and bottom elements, ⊤ and

⊥, lattice ordering ⊑, and least upper bound operation ⊔. Each

variable has a fixed security level that does not change during

execution.

As is standard in prior work on information flow control,

we focus on confidentiality at the local node. Remote nodes
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trusted at some level l are also trusted to appropriately protect

information sent to them up to level l. We further assume that

remote nodes are also running SELENE programs. We model

incoming traffic using lists. This modelling choice was shown

equivalent to functional strategies for modelling deterministic,

interactive programs by Clark and Hunt [13]. To this end, we

consider an input environment I mapping each channel to a

(possibly empty) list of input packets and let program values

be obtainable from a sequence of packets corresponding to the

value. For simplicity, we identify channels by their security

level.

We observe that traffic analysis attacks exploit patterns in

traffic to make inferences about the secret state of a system

without requiring that the adversary can read the contents

of packets. We therefore make the simplifying assumption

that the contents of packets are sufficiently protected against

adversaries, e.g. by using encryption, but allow the adversary

to observe the presence, recipient, and time of packets. We

assume that packets are of fixed size, thereby transforming

the question of packet size into a question of packet count.

B. Threat model

We consider interactive, distributed programs that commu-

nicate with remote network nodes. We consider an active

adversary who is trusted at a security level ladv, who knows

the program being run on the local node, and who knows initial

secrets up to level ladv. Additionally, the adversary eavesdrops

on incoming and outgoing encrypted communication of the

local node, observing packet presence, timing, and the re-

mote communication party. Communication on a channel is

encrypted corresponding to the security level of the channel,

and the adversary can decrypt and read packets on channels

up to security level ladv. The objective of the adversary is to

refine their knowledge on initial secrets.

C. The language and program semantics

e ∶∶= n ∣ s ∣ x ∣ e ⊕ e

c ∶∶= x = e ∣ c; c ∣ skip ∣ sleep(e) ∣ x = sizeof(e)

∣ if e then c else c ∣ while e do c

∣ x = in(l) ∣ schedule(l, e, e) ∣ queue(l, e)

Figure 1. Syntax of the language

Figure 1 presents the syntax of our language. We explain

the formal semantics and explain the nonstandard features.

We use a big-step semantics for evaluating expressions and

assume these take unit time. The rules are standard and are

given in Fig. 2. We let ⊕ range over total operations on

arithmetic expressions. The values of our language are integers

n and strings s. We let Int denote the set of integers and

String denote the set of strings and let Val = Int ⊎ String.

v ∈ Val

⟨v, m⟩ ⇓ v

m(x) = v

⟨x, m⟩ ⇓ v

⟨e1, m⟩ ⇓ v1 ⟨e2, m⟩ ⇓ v2 v = v1 ⊕ v2

⟨e1 ⊕ e2, m⟩ ⇓ v

Figure 2. Semantics for evaluating expressions

Programs are typed using fixed typing environment Γ. We

write Γ(x) = �@l to denote that variable x has type � and

security level l. The types of our language are int and stringl,

where l is the security level of the size of the string. Input

packets either contain (part of) an input value, or are dummy.

We write v
j

N
to denote the j’th of N packets encoding value

v and let ∙ denote dummy packets.

For evaluating program commands c we use a small-step

semantics transition ⟨c, m, I⟩ ts
←←←←←←←→� ⟨c′, m′, I ′⟩, where m is a

memory, I is an input environment, and � is a program event

generated by the step. Program steps take place at a time

ts, however they do not increment time. We instead define

a global semantics on top of the program semantics and let

global steps increment time. We discuss the global semantics

shortly. Program events can be empty, denoted by �, or an

assignment, enqueue, scheduling, or input event as given by

the following grammar:

� ∶∶= � ∣ a(x, v) ∣ q(l, v) ∣ s(l, n, n) ∣ i(l, x, v)

Fig. 3 presents the stepping rules of our program operational

semantics.

SizeOf: Command sizeof evaluates an expression to ob-

tain a value and returns the number of packets needed to

store that value. This is useful as the language requires the

programmer to explicitly schedule the number of packets they

wish to send. We assume a fixed packet size �, and assume

that all integers are of fixed size, and that the size of a string

is dependent on the length of the string.

In: The transitions of our small-step semantics for program

commands are parametric in timestamps ts, allowing us to

model blocking by conditioning transitions on ts. We model

network input using primitive x = in(l). To preserve the

type of variable x, the input primitive determines whether

m(x) is an integer or a string value, captured by set A in

rule IN, and uses this as argument for auxiliary function

choose (Fig. 4), along with the packet sequence for channel

l and timestamp ts. Function choose is a partial function,

modelling the potential for blocking. The choose function adds

packets of the appropriate type to an accumulator used for

decoding an input value, and steps over packets of other type,

discarding any dummy packets. It returns a decoded value and

the remaining packet sequence for the channel if successful.
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ASSIGN

⟨e, m⟩ ⇓ v

⟨x = e, m, I⟩ ts
←←←←←←←→a(x,v) ⟨stop, m[x ↦ v], I⟩

SIZEOF

⟨e, m⟩ ⇓ v n =

⌈
size(v)

�

⌉

⟨x = sizeof(e), m, I⟩ ts
←←←←←←←→a(x,n) ⟨stop, m[x ↦ n], I⟩

SKIP

⟨skip, m, I⟩ ts
←←←←←←←→� ⟨stop, m, I⟩

SEQ-1

⟨c1, m, I⟩
ts
←←←←←←←→� ⟨c′

1
, m′, I ′⟩ c′

1
≠ stop

⟨c1; c2, m, I⟩
ts
←←←←←←←→� ⟨c′

1
; c2, m

′, I ′⟩

SEQ-2

⟨c1, m, I⟩
ts
←←←←←←←→� ⟨stop, m′, I ′⟩

⟨c1; c2, m, I⟩
ts
←←←←←←←→� ⟨c2, m′, I ′⟩

SLEEP

⟨e, m⟩ ⇓ w w ≥ 0 r = ts +w

⟨sleep(e), m, I⟩ ts
←←←←←←←→� ⟨await(r), m, I⟩

AWAIT

ts ≥ r

⟨await(r), m, I⟩ ts
←←←←←←←→� ⟨stop, m, I⟩

IF-T

⟨e, m⟩ ⇓ v v ≠ 0

⟨if e then c1 else c2, m, I⟩
ts
←←←←←←←→� ⟨c1, m, I⟩

IF-E

⟨e, m⟩ ⇓ 0

⟨if e then c1 else c2, m, I⟩
ts
←←←←←←←→� ⟨c2, m, I⟩

WHILE

⟨while e do c, m, I⟩ ts
←←←←←←←→� ⟨if e then c; while e do c else skip, m, I⟩

IN

A ∈ {Int, String} m(x) ∈ A I(l) = p⃗ (v, q⃗) = choose(p⃗, A, ts, [])

⟨x = in(l), m, I⟩ ts
←←←←←←←→i(l,x,v) ⟨stop, m[x ↦ v], I[l ↦ q⃗]⟩

SCHEDULE

⟨e1, m⟩ ⇓ n ⟨e2, m⟩ ⇓ w w ≥ 0 t = ts +w

⟨schedule(l, e1, e2), m, I⟩
ts
←←←←←←←→s(l,n,t) ⟨stop, m, I⟩

QUEUE

⟨e, m⟩ ⇓ v

⟨queue(l, e), m, I⟩ ts
←←←←←←←→q(l,v) ⟨stop, m, I⟩

Figure 3. Local operational semantics

choose(p⃗, A, t, acc) ≜

⎧
⎪⎪⎨⎪⎪⎩

(v, p⃗) if acc = v 1
N

∷ … ∷ v N
N

(vr, r⃗) if p⃗ = (t′, v
j

N
) ⋅ q⃗ s.t. v ∈ A and t′ ≤ t and choose(q⃗, A, t, acc ∷ v

j

N
) = (vr, r⃗)

(vr, (t
′, v

j

N
) ⋅ r⃗) if p⃗ = (t′, v

j

N
) ⋅ q⃗ s.t. v ∉ A and t′ ≤ t and choose(q⃗, A, t, acc) = (vr, r⃗)

(vr, r⃗) if p⃗ = (t′, ∙ ) ⋅ q⃗ s.t. t′ ≤ t and choose(q⃗, A, t, acc) = (vr, r⃗)

Figure 4. Choose function

We let the packets be annotated with timestamps and require

that all packets corresponding to a value have been received

before the value can be obtained. That is, the timestamp of

the final packet must be at or before the timestamp in the

transition of the in command. If no value can be retrieved,

the program blocks and cannot step.

We model internal input (e.g. reading files) only abstractly,

by considering them bound in program variables.

Schedule and queue: The schedule command takes three

arguments; a channel, a number of packets to be sent, and

a delay before sending the packets. This issues a request to

the runtime system. We describe the runtime system shortly.

Command queue takes a channel and an expression as argu-

ments and evaluates the expression to obtain a value. It then

instructs the runtime system to add the value to a buffered

output queue associated with the channel.
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Internal commands: Commands await and stop are only

used internally and are therefore not part of the language

syntax. Command await is reached from command sleep

and blocks for a specified duration of time. Command stop

denotes a final program configuration that cannot step any

further.

D. The runtime and the global semantics

A key feature of our model is the global configuration

modelling the language runtime. The runtime maintains the

output queues in output environment O and processes the

packet schedule �. We present a small-step semantics for

the global transitions in Fig. 5. We explain the interaction

between the program configuration and global configuration in

more detail. We let the global configuration contain a program

configuration and require that the program steps whenever

possible. For the sake of brevity, we let P denote a program

configuration ⟨c, m, I⟩. Program steps are done by rule G-

STEP and emit a possibly empty event �. We let the program

communicate updates to the runtime through schedule and

queue events. To this end, we apply update function upd (Fig.

6) to the schedule and output environment using event �. If

the program step emits a queue event q(l, v), value v is split

into a number of packets based on the size of the value, and

the packets are added to the buffered output queue for channel

l. If the program step emits a schedule event s(l, n, t), we

use function rsv to reserve time in the schedule for a number

of packets on a channel by recursively adding to dom(�).
We assume that the schedule is never full, i.e. the function

will terminate having scheduled all n packets. We make the

simplifying assumption that at most one packet can be sent in

any single step and formally model the schedule as a partial

function from timestamps to channels.

To model packets being sent, we extend the grammar for

events with runtime events �. The runtime emits an empty

event if the schedule is undefined for the current timestamp,

otherwise we use function send defined below to obtain

an event corresponding to the first packet in the scheduled

channel’s output queue, and an updated output environment.

If no packets are queued on the channel, an empty dummy

packet is generated and sent.

send(O,l) ≜

{
(o(l, p), O[l ↦ q⃗]) if O(l) = p ⋅ q⃗

(o(l, ∙ ), O) if O(l) = []

To combine program generated events � with runtime gener-

ated events � we let global events  be a triple (ts ∶ �, �),
where ts is the timestamp of the event. The observations an

attacker makes on a run of a program are given by a trace

of global events, each containing the timestamp of the step,

leading to a timing-sensitive model. While a network attacker

does not observe program events �, maintaining them in global

events is nevertheless useful, as it allows us to more easily

reason about the exact state of a run. In Section III, we define

our security condition in terms of an attacker that does not

observe program events, i.e., that observes all program events

as the empty event �.

We extend the grammar as follows:

� ∶∶= � ∣ o(l, p)

 ∶∶= (ts ∶ �, �)

The global configuration maintains clock ts that is incre-

mented for each step. If a program configuration is blocking,

that is, if it cannot take a step at the current timestamp, but

has not stopped with command stop, the global configuration

steps by G-BLOCK, processing the runtime and incrementing

the clock. Finally, G-STOP allows the global configuration to

continue processing the runtime after the program configura-

tion has reached command stop, provided there are scheduled

packets left to process.

III. SECURITY CONDITION

In this section we present the security condition for timing-

sensitive, progress-sensitive noninterference.

We define our security condition using the knowledge-based

approach [2]. The insight of this approach is to consider

what an attacker observes during the execution of a program

and define knowledge as the set of initial states that are

consistent with seeing the execution up to this point. The

security condition is then defined as a bound on how much

the knowledge is allowed to change for each step of the

execution. In this paper we do not consider declassification and

we therefore require that attacker knowledge does not change

with new observations.

A. Auxiliary definitions

We define attacker knowledge and timing-sensitive,

progress-sensitive noninterference in terms of an equivalence

relation on program configurations and the attacker observable

trace emitted from a run. We give these auxiliary definitions

before proceeding to define the security condition.

To denote that two memories are equivalent up to ladv we

write m ≈ladv
m′ (Definition 1).

Definition 1 (Memory equivalence up to level). Two mem-

ories m and m′ are equivalent up to level ladv, written

m ≈ladv
m′, if for all x ∈ dom(Γ) both the following hold:

1) Γ(x) = �@l ∧ l ⊑ ladv ⟹ m(x) = m′(x)

2) Γ(x) = stringl′@l ∧ l′ ⊑ ladv ⟹ size(m(x)) =
size(m′(x))

This definition captures that the values of attacker observ-

able variables must have the same value, and that the size of

the value of variables must be the same if the size is attacker

observable.

We overload the notation and write I ≈ladv
I ′ to denote that

two input environments are equivalent up to ladv (Definition

2). The definition requires equality of incoming packets on

attacker observable channels, and uses relation ≈net
ladv

for high

channels, requiring that these receive packets at the same

timestamps. This captures an attacker that can observe the

presence of incoming packets on all channels and when they

arrive, but who cannot read the contents of packets on high
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G-STEP

P
ts
←←←←←←←→� P ′ (O′, �′) = upd(O, �, �) (�, O″) =

{
(�, O′) if ts ∉ dom(�′)

send(O′,l) if �′(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P
′, O″, �′, ts + 1⦊

G-BLOCK

∄P ′ ∶ P
ts
←←←←←←←→� P ′ P = ⟨c, m, I⟩ c ≠ stop (�, O′) =

{
(�, O) if ts ∉ dom(�)

send(O,l) if �(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P ,O
′, �, ts + 1⦊

G-STOP

P = ⟨stop, m, I⟩ ∃ts′ ∈ dom(�) ∶ ts′ ≥ ts (�, O′) =

{
(�, O) if ts ∉ dom(�)

send(O,l) if �(ts) = l

⦉P ,O, �, ts⦊ →→(ts∶�,�) ⦉P ,O
′, �, ts + 1⦊

Figure 5. Global operational semantics

split(v) ≜ v 1
N
⋅… ⋅ v N

N
where N =

⌈
size(v)

�

⌉

rsv(�,l, n, t) ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�r if n > 0 and t ∉ dom(�) and

rsv(�[t ↦ l],l, n − 1, t+ 1) = �r

�r if n > 0 and t ∈ dom(�) and

rsv(�,l, n, t + 1) = �r

� if n ≤ 0

upd(O, �, �) ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(O′, �) if � = q(l, v), split(v) = p⃗,

O(l) = q⃗, and O[l ↦ (q⃗ ⋅ p⃗)] = O′

(O, �′) if � = s(l, n, t) and

rsv(�,l, n, t) = �′

(O, �) otherwise

Figure 6. Runtime function

channels. We assume that incoming packets are sent by other

SELENE programs and hence are of fixed size.

Definition 2 (Input environment equivalence up to level). Two

input environments I and I ′ are equivalent up to level ladv,

written I ≈ladv
I ′, if

l ⊑ ladv ⟹ I1(l) = I2(l)
l ⋢ ladv ⟹ I1(l) ≈

net
ladv

I2(l)

I1 ≈ladv
I2

where ≈net
ladv

is defined by

[] ≈net
ladv

[]

p⃗ ≈net
ladv

q⃗

(t, p1) ⋅ p⃗ ≈net
ladv

(t, p2) ⋅ q⃗

We lift equivalences to program configurations in a straight

forward way in Definition 3.

Definition 3 (Program configuration equivalence up to level).

Two program configurations ⟨c1, m1, I1⟩ and ⟨c2, m2, I2⟩ are

equivalent up to level ladv, written

⟨c1, m1, I1⟩ ≈ladv
⟨c2, m2, I2⟩

if it holds that c1 = c2, m1 ≈ladv
m2, and I1 ≈ladv

I2.

We overload the notation even further and write O ≈ladv
O′

to denote that two output environments are equivalent up to

ladv (Definition 4).

Definition 4 (Output environment equivalence up to level).

Two output environments O1 and O2 are equivalent up to level

ladv, written O1 ≈ladv
O2, if

l ⊑ ladv ⟹ O1(l) = O2(l)

O1 ≈ladv
O2

Next, we define runtime event projections. Runtime event

projection captures the observable parts of output events emit-

ted by the runtime. We write ⌊�⌋ladv
to denote the projection

of runtime event � to level ladv (Definition 5). We introduce a

new event capturing the sending of packets with unobservable

content. We extend the grammar for runtime events as follows:

� ∶∶= … ∣ o(l,−)
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Runtime event o(l, p) projects to o(l,−) if the level of the

channel does not flow to the level being projected to. This

captures the assumption that the contents of packets can be

securely hidden by cryptography, while the presence of packets

and their recipient remain visible.

Definition 5 (Runtime event projection). The projection of

runtime event � to level ladv, written ⌊�⌋ladv
, is defined as

⌊�⌋ladv
= �

⌊o(l, p)⌋ladv
=

{
o(l, p) if l ⊑ ladv

o(l,−) if l ⋢ ladv

We write � ↾ ladv to denote the filtering of trace � to what

is visible at level ladv (Definition 6). We use this to restrict

attacker knowledge to the steps where observable events are

emitted. This allows us to consider secure programs such as

if h then sleep(10) else skip, as no output occurs af-

ter branching on the secret. We let trace filtering fix the empty

event � as the program event component, thereby removing all

program events emitted. This captures a network attacker, that

only obtains new information by observing packets being sent.

Definition 6 (Trace filtering). The filtering of a trace � to

level ladv, written � ↾ ladv, is defined as

� ↾ ladv = �

(�′ ⋅ (ts ∶ �, �)) ↾ ladv ={
�′ ↾ ladv ⋅ (ts ∶ �, ⌊�⌋ladv

) if ⌊�⌋ladv
≠ �

�′ ↾ ladv otherwise

As two final building blocks, we let Oinit denote the initially

empty output environment and let �init denote the initially

empty schedule. That is,

∀l ∈  ∶ Oinit(l) = []

dom(�init) = ∅

B. Knowledge and noninterference

Using the above we define the knowledge of an attacker

at level ladv after observing trace � . This definition follows

the style of other knowledge-based security conditions [5],

and intuitively states that an attacker may not refine their

knowledge by observing new events.

Definition 7 (Attacker knowledge). Given a program config-

uration P , such that ⦉P ,Oinit, �init, 0⦊ →→∗
� ⦉P ′, O′, �′, ts′⦊,

the attacker knowledge at level ladv is the set of program

configurations P2, that are consistent with observations at that

level:

k(P , �,ladv) ≜

{P2 ∣ P ≈ladv
P2 ∧

⦉P2, Oinit, �init, 0⦊ →→∗
�2

⦉P ′
2
, O′

2
, �′

2
, ts′

2
⦊ ∧

(� ↾ ladv) = (�2 ↾ ladv)}

Using the definition of attacker knowledge we define timing-

sensitive, progress-sensitive noninterference.

Definition 8 (Timing-sensitive, progress-sensitive noninterfer-

ence). Given program configuration P such that

⦉P ,Oinit, �init, 0⦊ →→
∗
�⋅ ⦉P

′, O′, �′, ts′⦊

the run satisfies timing-sensitive, progress-sensitive noninter-

ference if for all ladv it holds that

k(P , � ⋅ ,ladv) ⊇ k(P , �,ladv)

This definition states that memories and input environments

considered possible before observing global event  are also

considered possible after observing  , capturing that the ad-

versary learns nothing by observing the event. To demonstrate

the security condition, we rewrite Program 3 from Section I

in the syntax of SELENE. We consider one run where secret

variable h is set to 1 and another where it is set to 0, and

assume that n+1 packets are needed to send a string of length

n.

1 /* Program 3b */
2 if (h) then {
3 queue (Alice , "Hello ");
4 size = sizeof (" Hello ");
5 schedule(Alice ,size ,0) ;
6 } else {
7 queue (Alice , "");
8 size = sizeof ("");
9 schedule(Alice ,size ,0) ;

10 }

In the first run, 6 packets are scheduled and sent on channel

Alice in order to send the string. In the second run, only

a single packet is scheduled and sent. As the presence of

every packet is observable to the attacker, they can distinguish

between the two runs when a second packet is sent, hence

violating Definition 8.

IV. ENFORCEMENT

In this section we present the security type system for

SELENE and prove that all runs of well-typed programs satisfy

timing-sensitive, progress-sensitive noninterference. Despite

considering an attacker that observes only network events,

timing-sensitivity makes the attacker quite strong. We settle for

a rather restrictive type system that is secure against a stronger,

internal attacker and we use this to show security for a network

attacker. Previous work on noninterference for interactive pro-

grams by O’Neill et al. [27] achieves a more permissive type

system by assuming a timing-insensitive attacker, disallowing

high-loops, and assuming that new input is always available,

thereby ruling out high-divergence of programs. Unfortunately,

timing-insensitive attacker models are insufficient for external

attackers, such as the network attacker we consider, as we

cannot restrict an attacker’s access to timing channels.

As our security condition is timing-sensitive and progress-

sensitive, our typing judgements are progress-sensitive. They

are of the form

Γ, pc ⊢ c ∶ pc′

where pc is the program counter before typing the command

and pc′ is the program counter after. As we do not consider pc-

declassification in this paper, the program counter never goes
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down. This leads to so-called pc-creep, which significantly

restricts the programs that can be written in the language.

We leave it to future work to explore language primitives for

mitigating this and to investigate the security impact of pc-

declassification on traffic analysis attacks.

A. Type system

The definitions of memory equivalence and event projection

in Section III implicitly require a well-formedness condition

on security types of variables in Γ. We now formally state this

condition and assume for the rest of the paper that all variables

in Γ have well-formed security types.

⊢wf int@l

l′ ⊑ l

⊢wf stringl′@l

The intuition behind the well-formedness condition is that

knowing a value implies knowing its size, but not the other

way around. Next, we define subtyping relation <∶. The

relation is straight forward, using lattice ordering ⊑ on size

levels as a condition on strings.

int <∶ int

l1 ⊑ l2

stringl1 <∶ stringl2

We write � ↗ l to denote raising type � to at least level l.

This is used to account for pc-taint when assigning strings,

to prevent string size from leaking secrets. This allows us to

concisely write the conditions for the typing rules.

� ↗ l ≜

{
int if � = int

string(l⊔l′) if � = stringl′

The type system for expressions is presented in Fig. 7. The

rules are standard, except for the rule for string expressions.

This rule follows from the well-formedness condition on

security types, and intuitively as the string appears in the

program text, hence the size of the string is public.

n ∈ Int

Γ ⊢ n ∶ int@⊥

s ∈ String

Γ ⊢ s ∶ string⊥@⊥ Γ ⊢ x ∶ Γ(x)

Γ ⊢ e1 ∶ int@l1 Γ ⊢ e2 ∶ int@l2

Γ ⊢ e1 ⊕ e2 ∶ int@l1 ⊔ l2

Figure 7. Type system for expressions

We present our type system for commands in Fig. 8 and

explain the nonstandard rules.

SizeOf: Rule T-SIZEOF expresses that the size of an integer

value may be assigned to a variable conditioned only by pc.

This is intuitively safe as integers have fixed size. The size of

a string value may be assigned to a variable if the variable is

at least as secret as the least upper bound of pc and the size

level of the string.

In: Rule T-IN is similar to input rules in previous work. We

require that the level of pc flows to the level of the channel l.

This is to preserve low equivalence of the input environment

during steps under high pc. As a non-standard condition, the

rule uses type raising and the subtyping relation to require

�x ↗ l <∶ �x. For �x = int, this condition is trivially

satisfied by the definitions. For �x = stringl′ , this condition

corresponds to the condition l ⊑ l′. Intuitively, we consider

both the size and the value of a received strings to be as secret

as the level of the channel.

Schedule and queue: Rule T-SCHEDULE restricts schedule

commands to public pc and restricts the integer arguments to

also be public. These conditions are natural, as we assume that

traffic is publicly observable. As a consequence of progress-

sensitive typing, a schedule command cannot occur after the pc

has been tainted. The queuing of messages is by rule T-QUEUE

less restrictive, and is akin to rules for sending in previous

information flow literature.

We note in particular that Programs 5, 6, and 7 from Section

I are typeable by the typing rules, while the rewritten Program

3b from Section III is not as it performs scheduling after

branching on a high variable.

B. Program configuration

We show soundness of our security type system in a number

of steps. We show that the type system of SELENE is secure

against a stronger, internal attacker and show that this implies

security against an external attacker. This is intuitively safe as

the external attacker has weaker observational power.

We begin by defining well-formedness conditions on mem-

ories (Definition 9) and program configurations (Definition

10). These conditions are standard. We define memory m to

be well-formed with respect to typing environment Γ in the

straight forward way.

Definition 9 (Well-formedness of memory w.r.t. a typing

environment). Given a memory m and a typing environment

Γ, we say that m is well-formed w.r.t. Γ if for all x ∈ dom(Γ)
we have

(1) m(x) ∈ Int ⟹ Γ(x) = int@l

(2) m(x) ∈ String ⟹ Γ(x) = stringl′@l

We define program configuration ⟨c, m, I⟩ to be well formed

with respect to a typing environment Γ and program counters

pc, pc′ if c is stop of if c is typable, and if m is well-formed

with respect to Γ.

Definition 10 (Well-formedness of program configurations).

We say that program configuration ⟨c, m, I⟩ is well-formed

w.r.t. a typing environment Γ and levels pc, pc′ when both the

following hold:

(1) either c is stop or the program is well-typed, i.e., Γ, pc ⊢

c ∶ pc′

(2) m is well-formed w.r.t. Γ

Steps of the program preserve well-formedness by Lemma

1. The proof can be found in the Appendix.
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T-ASSIGN

Γ ⊢ e ∶ �e@le �e ↗ pc <∶ �x
Γ(x) = �x@lx le ⊔ pc ⊑ lx

Γ, pc ⊢ x = e ∶ pc

T-SKIP

Γ, pc ⊢ skip ∶ pc

T-SLEEP

Γ ⊢ e ∶ int@l

Γ, pc ⊢ sleep(e) ∶ pc ⊔ l

T-SIZEOF

Γ ⊢ x ∶ int@lx Γ ⊢ e ∶ �e@le pc ⊑ lx �e = stringl′ ⟹ l′ ⊑ lx

Γ, pc ⊢ x = sizeof(e) ∶ pc

T-AWAIT

Γ, pc ⊢ await(r) ∶ pc

T-IF

Γ ⊢ e ∶ int@l Γ, pc ⊔ l ⊢ c1 ∶ pc′ Γ, pc ⊔ l ⊢ c2 ∶ pc″

Γ, pc ⊢ if e then c1 else c2 ∶ pc′ ⊔ pc″

T-SEQ

Γ, pc ⊢ c1 ∶ pc′ Γ, pc′ ⊢ c2 ∶ pc″

Γ, pc ⊢ c1; c2 ∶ pc″

T-WHILE

Γ ⊢ e ∶ int@l Γ, pc ⊔ l ⊢ c ∶ pc′

Γ, pc ⊢ while e do c ∶ pc′

T-IN

Γ ⊢ x ∶ �x@lx pc ⊑ l �x ↗ l <∶ �x l ⊑ lx

Γ, pc ⊢ x = in(l) ∶ l

T-SCHEDULE

pc = ⊥ Γ ⊢ e1 ∶ int@⊥ Γ ⊢ e2 ∶ int@⊥

Γ, pc ⊢ schedule(l, e1, e2) ∶ pc

T-QUEUE

Γ ⊢ e ∶ �e@le le ⊔ pc ⊑ l

Γ, pc ⊢ queue(l, e) ∶ pc

Figure 8. Type system for commands

Lemma 1 (Preservation of well-formedness). Let Γ be a typing

environment, pc, pc′ be two levels, and ⟨c, m, I⟩ be a program

configuration, such that the ⟨c, m, I⟩ is well-formed w.r.t. Γ,

pc, and pc′. Suppose this configuration takes a step

⟨c, m, I⟩ ts
←←←←←←←→� ⟨c′, m′, I ′⟩

Then there exists pc″ such that pc ⊑ pc″ ⊑ pc′ and such that

the resulting program configuration ⟨c′, m′, I ′⟩ is well-formed

w.r.t. Γ, pc″, and pc′.

To reason about what an internal attacker learns from

observing a run, we define projection of program events �

to level ladv (Definition 11) capturing the attacker observable

changes to the internal state of the system. As our model

distinguishes between the secrecy levels of the size of a string

and its value, we extend the grammar for program events with

an event capturing that a string of size s was assigned to

variable x.

� ∶∶= … ∣ |a|(x, s)

As program event projection is similar to runtime event

projection, we use similar notation, but annotate with a bullet

to signify that these relate to internal state.

Definition 11 (Program event projection). The projection of

program event � to level ladv, written ⌊�⌋∙
ladv

, is defined as

⌊�⌋∙
ladv

= �

⌊s(l, n, w)⌋∙
ladv

= s(l, n, w)

⌊a(x, v)⌋∙
ladv

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a(x, v) if Γ(x) = �@l s.t. l ⊑ ladv

|a|(x, s) if Γ(x) = stringl′@l

s.t. l ⋢ ladv ∧ l′ ⊑ ladv

∧ size(v) = s

� otherwise

⌊q(l, v)⌋∙
ladv

=

{
q(l, v) if l ⊑ ladv

� if l ⋢ ladv

⌊i(l, x, v)⌋∙
ladv

=

{
i(l, x, v) if l ⊑ ladv

� if l ⋢ ladv

We define internal trace filtering using program event pro-

jection in the straight forward way. We again filter out global

events where no observable program or runtime events are

emitted to prevent the attacker from observing termination.
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Definition 12 (Internal trace filtering). The internal filtering

of a trace � at level ladv, written � ↾∙ ladv, is defined as

� ↾∙ ladv = �

(�′ ⋅ (ts ∶ �, �)) ↾∙ ladv =

⎧
⎪⎨⎪⎩

�′ ↾∙ ladv ⋅ (ts ∶ ⌊�⌋∙
ladv

, ⌊�⌋ladv
) if ⌊�⌋∙

ladv
≠ �

or ⌊�⌋ladv
≠ �

�′ ↾∙ ladv otherwise

Using internal trace filtering, we define internal knowledge.

This definition mirrors attacker knowledge, except for using

internal trace filtering, thereby giving additional power to the

attacker.

Definition 13 (Internal knowledge). Given a program con-

figuration P , such that ⦉P ,Oinit, �init, 0⦊ →→∗
� ⦉P ′, O′, �′, ts′⦊,

internal knowledge at level ladv is the set of program config-

urations P2, that are consistent with observations at that level:

k∙(P , �,ladv) ≜

{P2 ∣ P ≈ladv
P2 ∧

⦉P2, Oinit, �init, 0⦊ →→
∗
�2

⦉P ′
2
, O′

2
, �′

2
, ts′

2
⦊ ∧

(� ↾∙ ladv) = (�2 ↾
∙ ladv)}

Lemma 2 captures that an internal attacker is indeed

stronger than an external attacker by giving internal knowledge

as a lower bound on attacker knowledge. This lemma allows

us to relate the result we obtain for an internal attacker to

the external attacker we consider in our threat model, thereby

enabling us to show the type system of SELENE sound with

respect to Definition 8. We refer to the Appendix for the proof.

Lemma 2 (Internal knowledge refines external knowledge).

For any program configuration P , trace � , and level ladv,

the knowledge of an external attacker is less precise than the

knowledge of an internal attacker. That is,

k(P , �,ladv) ⊇ k∙(P , �,ladv)

In defining the knowledge of a network attacker in Section

III, we defined equivalence of input environments (Definition

2) by relating only environments whose high channels receive

packets at the same timestamps. However, while the network

attacker observes incoming packets, they do not observe if or

when the packets are consumed by the program internally. For

this reason, program steps do not need to preserve equivalence

by Definition 2. To relate input environments internally we

define internal equivalence (Definition 14) as equality of

packet sequences on attacker observable channels.

Definition 14 (Internal input environment equivalence up

to level). Two input environments I and I ′ are internally

equivalent up to level ladv, written I ≈∙
ladv

I ′, if

l ⊑ ladv ⟹ I1(l) = I2(l)

I1 ≈
∙
ladv

I2

Definition 14 is strictly weaker than Definition 2, which we

state as Lemma 3.

Lemma 3 (Network input equivalence implies internal input

equivalence). For any input environments I1, I2, equivalence

by Definition 2 implies equivalence by Definition 14. That is,

I1 ≈ladv
I2 ⟹ I1 ≈

∙
ladv

I2

Proof: Immediate from the definitions.

We now present our noninterference lemma for program

configurations (Lemma 4). It says that given a level ladv and

a program configuration that takes a step emitting some event

�, then all configurations equivalent at ladv either take a step,

emitting an equivalent event �′, and are again equivalent at

ladv; or the configuration can be typed with a high pc and has

no observable effects at level ladv.

Lemma 4 (Program step noninterference). Given a level ladv

and a command c and Γ, pc, pc′ such that c is well-formed

w.r.t Γ, pc, pc′, if

⟨c, m1, I1⟩
ts
←←←←←←←→�1

⟨c′, m′
1
, I ′

1
⟩

then for any memory m2 such that m1 ≈ladv
m2 and input

environment I2 such that I1 ≈
∙
ladv

I2, we have that one of the

following holds

1) either ⟨c, m2, I2⟩
ts
←←←←←←←→�2

⟨c′, m′
2
, I ′

2
⟩ such that ⌊�1⌋∙ladv

=

⌊�2⌋∙ladv
and m′

1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2
.

2) or ⌊�1⌋∙ladv
= � and there is pc″ such that pc″ ⋢ ladv

and Γ, pc″ ⊢ c ∶ pc′ and m1 ≈ladv
m′
1

and I1 ≈
∙
ladv

I ′
1

We refer the interested reader to the Appendix for the proof

and supporting lemmas.

C. Global configuration

We take the next step towards showing soundness of the

type system by using Lemma 4 to show single-step nonin-

terference of global configurations. Lemma 5 tells us that

for any level ladv and any two equivalent runs, if one run

takes a step producing global event  , then the other run

also takes an equivalent step, or the two runs diverge with

high pc. We do not require that all events emitted after

divergence are unobservable to the adversary. Instead, we

allow runtime events to still be observable. This is intuitively

safe as the runtime behaviour is fully determined by the

program events, and no observable program events may be

emitted after divergence. To simplify reasoning for divergent

runs, we use a configuration with command stop in the second

condition. This configuration serves as an anchor, allowing us

to reason about the observable behaviour of any two equivalent

configurations by showing they behave the same as the stop-

configuration. To satisfy this condition, the configuration must

produce no observable program event or changes to memory

or input environment, and produces output if and only if the

stop-configuration produces equivalent output.

Lemma 5 (Global step noninterference). Given a level ladv

and a command c and Γ, pc, pc′ such that c is well-formed

w.r.t Γ, pc, pc′, if

⦉⟨c, m1, I1⟩, O1, �, ts⦊ →→(ts∶�1,�1)
⦉⟨c′, m′

1
, I ′

1
⟩, O′

1
, �′, ts′⦊
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then for any memory m2 such that m1 ≈ladv
m2; input

environment I2 such that I1 ≈
∙
ladv

I2; and output environment

O2 such that O1 ≈ladv
O2, we have that one of the following

holds

1) either

⦉⟨c, m2, I2⟩, O2, �, ts⦊ →→(ts∶�2,�2)
⦉⟨c′, m′

2
, I ′

2
⟩, O′

2
, �′, ts′⦊

such that each of the following hold

a) ⌊�1⌋∙ladv
= ⌊�2⌋∙ladv

b) ⌊�1⌋ladv
= ⌊�2⌋ladv

c) m′
1
≈ladv

m′
2

d) I ′
1
≈∙
ladv

I ′
2

e) O′
1
≈ladv

O′
2

2) or there is pc″ such that pc″ ⋢ ladv and c is well-formed

w.r.t Γ, pc″, pc′, and such that each of the following hold

a) ⌊�1⌋∙ladv
= �

b) m1 ≈ladv
m′
1

c) I1 ≈
∙
ladv

I ′
1

d) � = �′

e) �1 ≠ � if and only if there are �2 and O′
2

such that

⌊�1⌋ladv
= ⌊�2⌋ladv

, O′
1
≈ladv

O′
2
, and

⦉⟨stop, m2, I2⟩, O2, �, ts⦊

→→(ts∶�,�2)
⦉⟨stop, m2, I2⟩, O′

2
, �, ts′⦊

We again refer to the Appendix for the proof.

D. Soundness of security type system

Using the above results, we are now ready to state our

soundness theorem (Theorem 1). It says that any well-typed

program satisfies timing-sensitive, progress-sensitive noninter-

ference (Definition 8).

Theorem 1 (Soundness). Given a typing environment Γ,

two levels pc, pc′, and a program configuration P that is

well-formed w.r.t Γ, pc, pc′, the run ⦉P ,Oinit, �init, 0⦊ →→∗
�

⦉P ′, O′, �′, ts′⦊ satisfies Definition 8.

The proof is by induction in the number of steps and uses

Lemma 5 to infer that if the run emits an event observable

by an internal attacker, then all runs of equivalent program

configurations must as well, hence the internal attacker does

not learn anything. Using Lemma 2 we conclude that the

network attacker equally does not learn anything. The full

proof of Theorem 1 is omitted here and can be found in the

Appendix.

As noted in Section IV, Programs 5, 6, and 7 from Section

I are typeable by the typing rules and hence by Theorem 1 we

obtain a proof that they satisfy Definition 8 and do not leak

by their output behaviour.

V. DISCUSSION

A. Publicly observable traffic

By our chosen strategy and the assumption that network

activity can be eavesdropped, we arrive at a number of restric-

tions on how output channels can be used. Our strategy does

not permit the scheduling of new messages after the program

counter has been raised. Nevertheless, Program 7 in Section

I demonstrates how dynamic scheduling is possible after

receiving input, provided the input is received on a non-secret

channel. This allows lower bandwidth overheads compared

with constant rate padding schemes, by only scheduling traffic

when needed. While it is unsurprising that it is safe to only

schedule as needed while in a low context, this intuitive fact

is difficult to prove correct without a principled, formal model

like we present in this paper.

B. Limitations and future work

In this paper we have opted for simple and explicit packet

scheduling via programmer written commands, allowing us

to use the IFC system to prevent leaks from both message

contents and message presence. Our model and the primitives

presented are not intended as a full solution for preventing

traffic analysis attacks, but rather aim to bring attention to an

as yet unsolved problem, and serve as a step towards providing

practical and provably safe usage of channels susceptible to

eavesdropping. A significant limitation of our model is that

the progress-sensitive nature of the type system makes compo-

sition of programs difficult. A pc-declassification mechanism

would alleviate this issue, but the security impact of allowing

such mechanism must be fully understood. To focus our

model, we have deliberately not included a pc-declassification

primitive in the language.

Other strategies for setting up packet schedules may be vi-

able. In particular, we note that patterns in publicly observable

input traffic may be used when deciding the shape of output

traffic. However, we note that for receives with public blocking

behaviour, the employed strategy should not incur significant

overheads or hinder the ability to reply. As such, static pre-

processing of a target program to determine a packet schedule

is not viable.

VI. RELATED WORK

Sabelfeld and Mantel [30] also consider the problem of

sending secret messages over publicly observable channels

as part of a distributed program. They consider concurrent

programs that communicate over low channels that are fully

observable; encrypted channels where the number of messages

is observable, but size and contents is not; and high channels

where both message presence and contents are secret. They

define a timing-sensitive security definition using strong low-

bisimulation, requiring that the number of encrypted messages

sent is the same between any two related runs in lockstep. The

channels they consider model communication with specific

endpoints at nodes – rather than with nodes themselves – and

they do not contain dummy messages. Consequently, the block-

ing behaviour of receives on encrypted channels is public,

and encrypted channels in their work do not correspond with

non-public channels of our work whose blocking behaviour is

non-public. The authors discuss the practical implications of

different communication primitives. They argue that receives

on channels that exhibit secret blocking behaviour is not

12



secure and non-blocking receives should be used instead, while

receives on channels that exhibit public blocking behaviour

should use blocking receives to prevent busy waiting.

Zhang et al. [36] propose a general language-based mech-

anism for controlling timing channels based on the idea

of predictive migitation [6]. While both their approach and

ours rely on the idea of scheduling observable events, they

are orthogonal. A distinguishing property of the predictive

mitigation is that because of its generality the only allowed

modification to program semantics is delaying of the messages.

In contrast, our approach – where we focus on the network

attacker – allows us to use dummy messages, preventing the

delays caused by mispredictions.

As noted in Section V, a pc-declassification mechanism

could be used to alleviate some of the restrictions imposed by

SELENE’s progress-sensitive type system. Bay and Askarov

[9] give a formal condition on how much attacker knowledge

is allowed to change as a result of pc-declassification by

bounding it using the so-called progress-knowledge. We leave

adapting their approach to SELENE as future work. Vassena

et al. [33] propose a dynamic language-level IFC system that

supports deterministic parallel thread execution. Such a system

could retain a public context thread, potentially mitigating the

need for explicit pc-declassification.

Oblivious programming languages such as ObliVM [24] and

Obliv-C [35] allow programmers to write protocols for secure

computations, where multiple parties can perform computation

collaboratively without revealing their input via produced

trace, e.g. instructions, memory accesses, and values of public

variables. To achieve security, such languages commonly

simulate the execution of non-chosen branches in conditional

statements and publicly bound and pad the number of loop iter-

ations and the number of bits needed to represent secret values.

While the goal of oblivious programming languages overlaps

with ours at a high level, care is needed for adapting the

techniques to our model. Generally speaking, these languages

do not allow loop guards or blocking behaviour to be non-

public. Our model allows the size of network messages to be

kept secret by sending them as a series of (potentially dummy)

packets. Consequently, the blocking behaviour of the receive

primitive for non-public channels in SELENE is inherently

non-public. A solution used in the oblivious approach is to tag

values with a public, conservative upper bound on their size.

This gives weaker confidentiality, but if acceptable appears a

viable solution for the problem we discuss in this paper and

we leave application of oblivious programming techniques as

future work.

Previous work has examined the possibility of traffic anal-

ysis attacks revealing sensitive user information and actions

across various settings.

Browsers: Chen et al. [11] and Miller et al. [26] both

consider the traffic patterns generated by user interactions on

webpages. Miller et al. present an attack against the HTTPS

deployments of industry-leading websites spanning multiple

sectors. Their attack was able to identify pages within a

site with high accuracy, exposing personal details including

medical conditions and financial affairs. They propose a de-

fence mechanism that pads contiguous bursts of traffic up to

per-website, predefined thresholds. Their analysis shows that

the proposed defence mechanism outperforms site-agnostic

approaches that pad the sizes of all packets to global, nearest

threshold values. Chen et al. find that the potential for traffic

analysis attacks is exacerbated by design features for dynamic,

reactive websites such as AJAX GUI widgets, which often

generate distinctive traffic in response to user interactions.

Cherubin et al. [12] consider website fingerprinting defences

at the application layer and introduce ALPaCA, a server side

defence for use with Tor. ALPaCA works by transforming site

content to conform to average site content, as analysed across

multiple Tor sites. Their analysis shows that ALPaCA reduces

website fingerprinting accuracy from 69.6% to 10%.

Phones and apps: Conti et al. [15] and Wang et al. [34]

both consider attacks on users of Android smartphones. Conti

et al. present a machine learning assisted traffic analysis attack

that infers user actions in apps with high precision and high

recall, e.g., opening a profile page on Facebook or posting a

message on Twitter. Wang et al. present a packet level attack on

encrypted Android traffic. By collecting and analysing a small

amount of wireless traffic, they are able to determine which

apps smartphone users are using. Their analysis shows that

apps are more susceptible to traffic analysis attacks than online

services accessed over browsers, as apps tend to generate more

distinct patterns of traffic.

Bahramali et al. [7] show that also instant messaging clients

are susceptible to traffic analysis attacks despite using state-

of-the-art encryption. They demonstrate an attack capable of

identifying members and administrators of IM channels with

high accuracy, using only low-cost traffic analysis techniques.

They attribute this to the fact that major IM operators do not

use mechanisms for obfuscating genuine traffic, arguing their

reluctance is due to the performance and usability impact of

deploying such techniques.

In the home: Zhang et al. [37] present an attack for inferring

user activities by eavesdropping on WLAN traffic. They con-

sider online activities such as web browsing, chatting, gaming,

and watching videos. They use a hierarchical classification

system based on machine learning algorithms and show that

their system can distinguish different online applications with

roughly 80% accuracy when given 5 seconds of traffic, and

roughly 90% accuracy when given 1 minute of traffic.

Apthorpe et al. [1] consider home IoT devices and attacks

inferring when a device is used, thereby revealing sensitive

user information such as sleep patterns and when the user

is home. They introduce stochastic traffic padding, which

decreases attacker confidence by uniformly shaping upload and

download traffic during user activities, and injecting equivalent

traffic patterns at random times to hide when the device is in

use.

VII. CONCLUSION

In this paper we consider language-based mitigation of

traffic analysis attacks. We observe four traits on messages
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sent that may leak secret information, namely presence, re-

cipient, size, and time. This observation informed the de-

sign of SELENE, a small imperative language for interactive

programs. The type system of SELENE enforces principled,

provably secure communication over channels where packets

are publicly observable. The key insight of the language is a

novel primitive that provides programmatic control over traffic

shaping thereby allowing for reduced overheads in latency and

bandwidth compared with black box techniques. We give a

formal, timing-sensitive, progress-sensitive security condition

based on the knowledge-based approach and prove our type

system sound. We believe that our model faithfully captures

online communication constraints, and that our results con-

stitute a step towards practical, secure online communication.

We believe the security risks of traffic analysis attacks against

confidentiality are significant and that work on language-based

information flow for interactive programs must be mindful of

the assumptions being made about the security of commu-

nications channels. We welcome and encourage future work

to explore language-based techniques for providing strong

security guarantees against traffic analysis attacks.
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APPENDIX

A. Local configuration

Lemma 6 (Progress-sensitive typing). Let Γ be a typing environment, pc, pc′ two levels and c a command. If Γ, pc ⊢ c ∶ pc′

then pc ⊑ pc′.

Proof: By induction on c and monotinicity of ⊑.

Lemma 1 (Preservation of well-formedness). Let Γ be a typing environment, pc, pc′ be two levels, and ⟨c, m, I⟩ be a program

configuration, such that the ⟨c, m, I⟩ is well-formed w.r.t. Γ, pc, and pc′. Suppose this configuration takes a step

⟨c, m, I⟩ ts
←←←←←←←→� ⟨c′, m′, I ′⟩

Then there exists pc″ such that pc ⊑ pc″ ⊑ pc′ and such that the resulting program configuration ⟨c′, m′, I ′⟩ is well-formed

w.r.t. Γ, pc″, and pc′.

Proof: The proof proceeds by induction on the structure of c.

Case skip: By SKIP we observe that c′ is stop and m = m′, hence we are done.

Case c1; c2: We case analyse on whether c′ = c2. If c′ = c2, we observe that c′ was produced using SEQ-2 was taken and

are done by the induction hypothesis, T-SEQ, Lemma 6. If c′ ≠ c2, we observe that c′ was produced using SEQ-1 and

are done by the induction hypothesis and T-SEQ.

Case x = e: By ASSIGN we have that c′ is stop and m′ = m[x ↦ v] where ⟨e, m⟩ ⇓ v. Observing that T-ASSIGN is the

only applicable typing rule we have that x ∈ dom(Γ) and te <∶ tx by which we conclude that m is well-formed w.r.t. Γ
and we are done.

Case x = sizeof(e): By SIZEOF we observe c′ is stop and m′ = m[x ↦ n] where ⟨e, m⟩ ⇓ v and n =
⌈

size(v)

�

⌉
and hence

n ∈ Int. By T-SIZEOF we have Γ ⊢ x ∶ Int@lx, and hence m is well-formed w.r.t. Γ and we are done.

Case await(r): By AWAIT we observe that c′ is stop and m′ = m, hence we are done.

Case sleep(e): By SLEEP we observe that c′ is await(r) for some r and m′ = m. As command await is trivially typed, we

are done.

Case if e then c1 else c2: We observe that m′ = m as neither IF-T nor IF-E alters the memory. We proceed by case

analysis of ⟨e, m⟩ ⇓ 0, in both cases we are done by applying T-IF.

Case while e do c: We observe that WHILE transitions to a conditional branching with m′ = m. For the first branch, we

observe that by T-WHILE we have Γ ⊢ e ∶ Int@l and Γ, pc⊔ l ⊢ c ∶ pc′ hence we are done by T-IF using the induction

hypothesis. For the other branch we are done by T-IF and T-SKIP using the induction hypothesis.

Case x = in(l): By IN we have that c′ is stop and m(x) ∈ A. We also have m′ = m[x ↦ v] for some v ∈ A by definition

of the choose function. Hence m′ is well-type w.r.t. Γ and we are done.

Case schedule(l, e1, e2): By SCHEDULE we observe that c′ is stop and m′ = m, hence we are done.

Case queue(l, e): By QUEUE we observe that c′ is stop and m′ = m, hence we are done.

Lemma 7 (High program steps have only high effects). Given an attacker level ladv, a typing environment Γ, two levels pc, pc′

such that pc ⋢ ladv, and a program configuration ⟨c, m, I⟩ such that Γ, pc ⊢ c ∶ pc′ and a timestamp ts such that

⟨c, m, I⟩ ts
←←←←←←←→� ⟨c′, m′, I ′⟩

then ⌊�⌋∙
ladv

= � and m ≈ladv
m′ and I ≈∙

ladv
I ′.

Proof: We proceed by induction on command c.

Case skip: Trivially done by SKIP, observing that m = m′, I = I ′ and � = �.

Case c1; c2: We case on whether c′ = c2. If false, we observe that the only matching rule in the operational semantics is

SEQ-1 and are done by applying the induction hypothesis. If true, we observe that the only matching rule in the operational

semantics is SEQ-2 and we are done by applying the induction hypothesis.

Case x = e: We observe by ASSIGN that I = I ′ and have that � = a(x, v) and m′ = m[x ↦ v]. We must show m ≈ladv
m′

and ⌊a(x, v)⌋∙
ladv

= �.

By T-ASSIGN we have (a) Γ ⊢= �e@le, (b) Γ(x) = �x@lx, (c) �e ↗ pc <∶ �t and (d) le ⊔ pc ⊑ lx, hence in particular

lx ⋢ ladv. We case on �x to pick the corresponding projection. If �x = int we have ⌊�⌋∙
ladv

= � and are done by

observing that condition both conditions for memory equivalence is satisfied hence m ≈ladv
m′. If �x = stringl′ we have

by definition of ↗ and <∶ that l′ ⋢ ladv hence ⌊�⌋∙
ladv

= � and we are done by observing m ≈ladv
m′ by definition of

memory equivalence.
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Case x = sizeof(e): We observe by SIZEOF that I = I ′ and � = a(x, n) where n =
⌈

size(v)

�

⌉
for some v such that ⟨e, m⟩ ⇓ v

and m′ = m[x ↦ v]. We must show m ≈ladv
m′ and ⌊a(x, n)⌋∙

ladv
= �.

By T-SIZEOF we have (a) Γ ⊢ x ∶ int@lx, (b) Γ ⊢ e ∶ �e@le, (c) pc ⊑ lx, and (d) �e = stringl′ ⟹ l′ ⊑ lx. By (a)

and the definition of memory equivalence we have m ≈ladv
m′. By (c) and assumption pc ⋢ ladv we have (e) lx ⋢ ladv

hence by definition of internal event projection we have ⌊a(x, n)⌋∙
ladv

= � and we are done.

Case await(r): Trivially done by AWAIT, observing that m = m′, I = I ′ and � = �.

Case sleep(e): Trivially done by SLEEP, observing that m = m′, I = I ′ and � = �.

Case if e then c1 else c2: We case on ⟨e, v⟩ ⇓ 0. If true then by IF-T, we observe that m = m′, I = I ′, and � = � and

we are done. Analogously by IF-E if false.

Case while e do c: Trivially done by WHILE, observing that m = m′, I = I ′, and � = �.

Case x = in(l): We observe by IN that I(l) = p⃗, choose(p⃗, A, ts, []) = (v, q⃗), � = i(l, x, v), m′ = m[x ↦ v], and

I ′ = I[l ↦ q⃗]. We must show ⌊i(l, x, v)⌋∙
ladv

= �, m ≈ladv
m′, and I ≈∙

ladv
I ′.

By T-IN we have (a) Γ ⊢ x ∶ �x@lx, (b) pc ⊑ l, (c) �x ↗ l <∶ �x, and (d) l ⊑ lx. By (b) and pc ⋢ ladv we have

(e) l ⋢ ladv and hence by definition of internal event projection have ⌊i(l, x, v)⌋∙
ladv

= � and by definition of the choose

and input environment equivalence have I ≈∙
ladv

I ′. To show memory equivalence, we observe that by (d) and we have

lx ⋢ ladv and the first condition of memory equivalence is satisfied. To see that the second condition is satisfied we case

on �x = stringl′ . If false, we are done. If true, we have by (c) and the definition of ↗ and <∶ that l ⊑ l′ and hence

l′ ⋢ ladv hence the second condition is satisfied and we have m ≈ladv
m′ and we are done.

Case schedule(l, e1, e2): By T-SCHEDULE we have pc = ⊥, leading to contradiction ⊥ ⋢ ladv, hence this case is impossible.

Case queue(l, e): We observe by QUEUE that m = m′, I = I ′, and we have that � = q(l, v) such that ⟨m, e⟩ ⇓ v. We must

show O ≈ladv
O′ and ⌊q(l, v)⌋∙

ladv
= �.

By T-QUEUE we have (b) Γ ⊢ e ∶ �e@le and (c) le ⊔ l ⊑ l. By (c) and assumption pc ⋢ ladv we have (d) l ⋢ ladv,

hence by definition of internal event projection we have ⌊q(l, v)⌋∙
ladv

= �.

Lemma 8 (Noninterference for expressions). Given an attacker level ladv, a typing environment Γ and two memories m1 and

m2 such that m1 ≈ladv
m2, and an expression e such that Γ ⊢ e ∶ �@l, such that ⟨e, m1⟩ ⇓ v1 and ⟨e, m2⟩ ⇓ v2, then we have

that

∙ l ⊑ ladv ⟹ v1 = v2
∙ � = stringl′ ∧ l′ ⊑ ladv ⟹ size(v1) = size(v2).

Proof: By induction on typing derivation Γ ⊢ e ∶ �@l using the definition of m1 ≈ladv
m2.

Lemma 4 (Program step noninterference). Given a level ladv and a command c and Γ, pc, pc′ such that c is well-formed w.r.t

Γ, pc, pc′, if

⟨c, m1, I1⟩
ts
←←←←←←←→�1

⟨c′, m′
1
, I ′

1
⟩

then for any memory m2 such that m1 ≈ladv
m2 and input environment I2 such that I1 ≈∙

ladv
I2, we have that one of the

following holds

1) either ⟨c, m2, I2⟩
ts
←←←←←←←→�2

⟨c′, m′
2
, I ′

2
⟩ such that ⌊�1⌋∙ladv

= ⌊�2⌋∙ladv
and m′

1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2
.

2) or ⌊�1⌋∙ladv
= � and there is pc″ such that pc″ ⋢ ladv and Γ, pc″ ⊢ c ∶ pc′ and m1 ≈ladv

m′
1

and I1 ≈
∙
ladv

I ′
1

Proof: The proof is by induction on the structure of command c.

Case skip: Trivially possible for both runs in with c′ = stop and �1 = �2 = �. We are done by observing that no updates

are made to memory or input environment.

Case c1; c2: There must be c′
1

such that

⟨c1, m1, I1⟩
ts
←←←←←←←→�1

⟨c′
1
, m′

1
, I ′

1
⟩

and hence

⟨c1; c2, m1, I1⟩
ts
←←←←←←←→�1

⟨d, m′
1
, I ′

1
⟩

where

d =

{
c2 if c′

1
= stop

c′
1
; c2 otherwise
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By T-SEQ we have Γ, pc ⊢ c1 ∶ pc″ and Γ, pc″ ⊢ c2 ∶ pc′. By induction hypothesis we have two cases for the second

run. Either we have

⟨c1; c2, m2, I2⟩
ts
←←←←←←←→�2

⟨d, m′
2
, I ′

2
⟩

such that m′
1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2

and ⌊�1⌋∙ladv
= ⌊�2⌋∙ladv

and we are done by the first condition. Or we have that

m1 ≈ladv
m′
1

and I1 ≈
∙
ladv

I ′
1

and ⌊�1⌋∙ladv
= �, and existence of pc‴ such that pc‴ ⋢ ladv and Γ; pc‴ ⊢ c1 ∶ pc″. By this

we have that Γ; pc‴ ⊢ c1; c2 ∶ pc′ and we are done by the second condition.

Case x = e: Trivially possible for both runs in one with c′ = stop. We observe that no updates are made to input environment.

By T-ASSIGN we have Γ ⊢ x ∶ �x@lx and Γ ⊢ e ∶ �e@le such that �e ↗ pc <∶ �x and le ⊔ pc ⊑ lx. As by ASSIGN

we have �1 = a(x, v1) s.t. ⟨e, m1⟩ ⇓ v1 we consider the three cases for the internal event projection.

If ⌊a(x, v1)⌋∙ladv
= a(x, v1) then by definition of internal event projection we have lx ⊑ ladv and hence by Lemma 8 have

⟨e, m2⟩ ⇓ v2 s.t. v1 = v2 and hence �2 = �1. As m′
1
= m1[x ↦ v1] and m′

2
= m2[x ↦ v2] we are done by definition of

memory equivalence.

If ⌊a(x, v1)⌋∙ladv
= |a|(x, s1) where s1 = size(v1) then by definition of internal event projection we have �e = stringl′

such that l′ ⊑ ladv and hence by Lemma 8 have ⟨e, m2⟩ ⇓ v2 s.t. size(v1) = size(v2) and hence ⌊�2⌋∙ladv
= ⌊�1⌋∙ladv

. As

m′
1
= m1[x ↦ v1] and m′

2
= m2[x ↦ v2] we are done by definition of memory equivalence.

If ⌊a(x, v1)⌋∙ladv
= � then by definition of internal event projection we have lx ⋢ ladv and hence ⌊�2⌋∙ladv

= ⌊�1⌋∙ladv
. We

are done by definition of memory equivalence.

Case x = sizeof(e): Trivially possible for both runs in one with c′ = stop. We observe that no updates are made to input

environment.

By T-SIZEOF we have Γ ⊢ x ∶ int@lx and Γ ⊢ e ∶ �e@le such that le ⊔ pc ⊑ lx. As by SIZEOF we have �1 = a(x, n1)

s.t. ⟨e, m1⟩ ⇓ v1 and n1 =
⌈

size(v1)

�

⌉
we consider the two cases for the internal event projection.

If ⌊a(x, n1)⌋∙ladv
= a(x, n1) then by definition of the internal event projection we have lx ⊑ ladv. By T-SIZEOF we

have that if �e = stringl′ then l′ ⊑ lx and by transitivity l′ ⊑ ladv. By Lemma 8 we have ⟨e, m2⟩ ⇓ v2 such that

size(v1) = size(v2), and hence ⌊�2⌋∙ladv
= ⌊�1⌋∙ladv

. We are done by the definition of memory equivalence.

If ⌊a(x, n1)⌋∙ladv
= � then by definition of internal event projection we have lx ⋢ ladv and hence ⌊�2⌋∙ladv

= ⌊�1⌋∙ladv
. We

are done by definition of memory equivalence.

Case await(r): It must be that r ≤ ts hence this transition is possible in both runs with c′ = stop. As no event is emitted,

we are done.

Case sleep(e): If pc′ ⊑ ladv then by SLEEP we have that if ⟨e, m1⟩ ⇓ w then

⟨sleep(e), m1, I1⟩
ts
←←←←←←←→� ⟨await(ts +w), m1, I1⟩

By T-SLEEP we have Γ ⊢ e ∶ int@l and pc′ = pc ⊔ l and by assumption pc′ ⊑ ladv we therefore have l ⊑ ladv. By

Lemma 8 this gives us ⟨e, m2⟩ ⇓ w and hence

⟨sleep(e), m2, I2⟩
ts
←←←←←←←→� ⟨await(ts +w), m2, I2⟩

If pc′ ⋢ ladv, we observe that by T-SLEEP we have Γ, pc′ ⊢ sleep(e) ∶ pc′ and we are done observing that by SLEEP,

�1 = �, and memory and input are unchanged.

Case if e then c1 else c2: By T-IF we have Γ ⊢ e ∶ int@l and Γ; pc ⊔ l ⊢ c1 ∶ pc1 and Γ; pc ⊔ l ⊢ c2 ∶ pc2 such

that pc′ = pc1 ⊔ pc2. If l ⊔ ladv, then by Lemma 8 we have some v such that ⟨e, m1⟩ ⇓ v and ⟨e, m2⟩ ⇓ v, hence both

runs transition to the same command and we are done by observing �1 = �2 = � and memory and input environments

are unchanged. If l ⋢ ladv we observe again by T-IF that Γ, pc ⊔ l ⊢ if e then c1 else c2 ∶ pc′ and we are done.

Case while e do c: Trivial.

Case x = in(l): By T-IN we observe that pc′ = l. If l ⊑ ladv, then by definition of input environment equivalence and

function choose we have that both runs obtain same input value at the same time, therefore producing same events and

making same updates to the input environment. We are done by definitions of memory equivalence and input environment

equivalence.

If l ⋢ ladv, we observe that by T-IN we have Γ,l ⊢ x = in(l) ∶ l. By IN we have some v, q⃗ such that �1 = i(l, x, v),
m′
1
= m1[x ↦ v] and I ′

1
= I1[l ↦ q⃗] and by definition of the choose function have I1 ≈∙

ladv
I ′
1
. By definition internal

event projection we have ⌊�1⌋∙ladv
= � and we are done by definition of memory, satisfying the second condition.

Case schedule(l, e1, e2): Trivially possible in both runs updating only schedules. By T-SCHEDULE we have Γ ⊢ e1 ∶ int@⊥

and Γ ⊢ e2 ∶ int@⊥ hence by Lemma 8 we have a,w such that ⟨e1, m1⟩ ⇓ a and ⟨e1, m2⟩ ⇓ a, and ⟨e2, m1⟩ ⇓ w and

⟨e2, m2⟩ ⇓ w. As �1 = s(l, a, w) = �2 we are done.
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Case queue(l, e): Trivially possible in both runs updating only output environments. By QUEUE we have ⟨e, m1⟩ ⇓ v1 and

�1 = q(l, v1). We consider the two cases of the internal event projection.

If ⌊q(l, v1)⌋∙ladv
= q(l, v1) then by definition of the internal event projection we have l ⊑ ladv. By T-QUEUE we have

Γ ⊢ e ∶ �e@le and le ⊔ pc ⊑ l hence in particular le ⊑ ladv and therefore by Lemma 8 we have ⟨e, m2⟩ ⇓ v2 such that

v1 = v2 by which we have �2 = �1 and we are done.

If ⌊q(l, v1)⌋∙ladv
= � then by definition of internal event projection we have l ⋢ ladv, and therefore also ⌊�2⌋∙ladv

= � and

we are done.

B. Global configuration

Lemma 9 (High update preserves equivalence). For any level l,ladv, program event �, output environments O,O′, and

schedule �, if ⌊�⌋∙
ladv

= � and upd(O, �, �) = (O′, �′) then O ≈ladv
O′ and �′ = �.

Proof: By definition of upd, internal event projection and output environment equivalence.

Lemma 10 (Sending preserves output environment equivalence). For any levels l,ladv, schedule �, timestamp ts, and output

environments O1, O2 such that O1 ≈ladv
O2, if �(ts) = l, send(O1,l) = (�1, O

′
1
) and send(O2,l) = (�2, O

′
2
) then O′

1
≈ladv

O′
2

and ⌊�1⌋ladv
= ⌊�2⌋ladv

.

Proof: If l ⊑ ladv then by definition of output environment equivalence we have O1(l) = O2(l) hence send(O1,l) =
send(O2,l) which concludes the case.

If (a) l ⋢ ladv, then there is p1, q⃗1 such that send(O1,l) = (o(l, p1), q⃗1) and p2, q⃗2 such that send(O2,l) = (o(l, p2), q⃗2). By

(a) and by definition of event projection, we have ⌊o(l, p1)⌋ladv
= o(l,−) = ⌊o(l, p2)⌋ladv

and by (a) and definition of output

environment equivalence we have O1[l ↦ q⃗1] ≈ladv
O2[l ↦ q⃗2] which concludes the case.

Lemma 5 (Global step noninterference). Given a level ladv and a command c and Γ, pc, pc′ such that c is well-formed w.r.t

Γ, pc, pc′, if

⦉⟨c, m1, I1⟩, O1, �, ts⦊ →→(ts∶�1,�1)
⦉⟨c′, m′

1
, I ′

1
⟩, O′

1
, �′, ts′⦊

then for any memory m2 such that m1 ≈ladv
m2; input environment I2 such that I1 ≈

∙
ladv

I2; and output environment O2 such

that O1 ≈ladv
O2, we have that one of the following holds

1) either

⦉⟨c, m2, I2⟩, O2, �, ts⦊ →→(ts∶�2,�2)
⦉⟨c′, m′

2
, I ′

2
⟩, O′

2
, �′, ts′⦊

such that each of the following hold

a) ⌊�1⌋∙ladv
= ⌊�2⌋∙ladv

b) ⌊�1⌋ladv
= ⌊�2⌋ladv

c) m′
1
≈ladv

m′
2

d) I ′
1
≈∙
ladv

I ′
2

e) O′
1
≈ladv

O′
2

2) or there is pc″ such that pc″ ⋢ ladv and c is well-formed w.r.t Γ, pc″, pc′, and such that each of the following hold

a) ⌊�1⌋∙ladv
= �

b) m1 ≈ladv
m′
1

c) I1 ≈
∙
ladv

I ′
1

d) � = �′

e) �1 ≠ � if and only if there are �2 and O′
2

such that ⌊�1⌋ladv
= ⌊�2⌋ladv

, O′
1
≈ladv

O′
2
, and

⦉⟨stop, m2, I2⟩, O2, �, ts⦊

→→(ts∶�,�2)
⦉⟨stop, m2, I2⟩, O′

2
, �, ts′⦊

Proof: We case on the global step for the first run.

Case G-STEP: By Lemma 4 we have

(1) either ⟨c, m2, I2⟩
ts
←←←←←←←→�2

⟨c′, m′
2
, I ′

2
⟩ such that ⌊�1⌋∙ladv

= ⌊�2⌋∙ladv
and m′

1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2

(2) or ⌊�1⌋∙ladv
= � and there is pc″ such that pc″ ⋢ ladv and Γ; pc″ ⊢ c ∶ pc′ and m1 ≈ladv

m′
1

and I1 ≈
∙
ladv

I ′
1

If (1), we inspect ⌊�1⌋∙ladv
. If ⌊�1⌋∙ladv

= � then we apply Lemma 9 in both runs to get O′
1
≈ladv

O1 ≈ladv
O2 ≈ladv

O′
2
.

We are done by Lemma 10 satisfying condition 1. If ⌊�1⌋∙ladv
≠ � we are done by definition of upd, observing that the

same update is made in each run, and by Lemma 10.
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If (2), we inspect ts ∈ dom(�).
If ts ∉ dom(�) then as ⌊�1⌋∙ladv

= � we get by Lemma 9 that O1 ≈ladv
O′
1
. Further, we have by definition of internal

event projection and definition of upd that �′ = �, hence ts ∉ dom(�′) and by definition of send we have �1 = � and we

are done satisfying condition 2.

If �(ts) = l we show that we satisfy condition 2 and consider each direction

(→) As the first run steps by G-STEP we have by Lemma 9 that upd(O1, �, �) = (O″
1
, �) such that O1 ≈ladv

O″
1

, and by

Lemma 10 have send(O″
1
,l) = (�1, O

′
1
) and send(O2,l) = (�2, O

′
2
) such that O′

1
≈ladv

O′
2

and ⌊�1⌋ladv
= ⌊�2⌋ladv

and

hence

⦉⟨stop, m2, I2⟩, O2, �, ts⦊ →→(ts∶�,�2)
⦉⟨stop, m2, I2⟩, O′

2
, �, ts′⦊

and we are done.

(←) As �2 ≠ �, the anchor-configuration steps G-STOP and we apply Lemma 9 in the first run and Lemma 10 in both

runs to get ⌊�1⌋ladv
= ⌊�2⌋ladv

and O′
1
≈ladv

O′
2

and we are done.

Case G-BLOCK: We have �1 = � and m1 = m′
1

and I1 = I ′
1

and O1 = O′
1

and � = �′. We consider the possible steps of the

second run.

Case G-STEP: We will show that condition 2 is satisfied. To this end, we first apply the induction hypothesis in the

second run to get pc″ such that pc″ ⋢ ladv and Γ; pc″ ⊢ c ∶ pc′. We proceed by inspecting ts ∈ dom(�).
If ts ∉ dom(�) then by definition of send we have �1 = � and we are done.

If �(ts) = l we consider each direction

(→) We have by Lemma 10 have send(O1,l) = (�1, O
′
1
) and send(O2,l) = (�2, O

′
2
) such that O′

1
≈ladv

O′
2

and

⌊�1⌋ladv
= ⌊�2⌋ladv

and hence

⦉⟨stop, m2, I2⟩, O2, �, ts⦊ →→(ts∶�,�2)
⦉⟨stop, m2, I2⟩, O′

2
, �, ts′⦊

and we are done.

(←) As �2 ≠ �, the anchor-configuration steps G-STOP and we apply Lemma 10 in both runs to get ⌊�1⌋ladv
= ⌊�2⌋ladv

and O′
1
≈ladv

O′
2

and we are done.

Case G-BLOCK: Immediate by Lemma 10.

Case G-STOP: Immediate by Lemma 10.

Case No step: It must be that ts ∉ dom(�) and hence by definition of send have �1 = � and we are done.

Case G-STOP: We have �1 = � and m1 = m′
1

and I1 = I ′
1

and O1 = O′
1

and � = �′. We consider the possible steps of the

second run.

Case G-STEP: We will show that condition 2 is satisfied. To this end, we first apply the induction hypothesis in the

second run to get pc″ such that pc″ ⋢ ladv and Γ; pc″ ⊢ c ∶ pc′. We proceed by inspecting ts ∈ dom(�).
If ts ∉ dom(�) then by definition of send we have �1 = � and we are done.

If �(ts) = l we consider each direction

(→) We have by Lemma 10 have send(O1,l) = (�1, O
′
1
) and send(O2,l) = (�2, O

′
2
) such that O′

1
≈ladv

O′
2

and

⌊�1⌋ladv
= ⌊�2⌋ladv

and hence

⦉⟨stop, m2, I2⟩, O2, �, ts⦊ →→(ts∶�,�2)
⦉⟨stop, m2, I2⟩, O′

2
, �, ts′⦊

and we are done.

(←) As �2 ≠ �, the anchor-configuration steps G-STOP and we apply Lemma 10 in both runs to get ⌊�1⌋ladv
= ⌊�2⌋ladv

and O′
1
≈ladv

O′
2

and we are done.

Case G-BLOCK: Immediate by Lemma 10.

Case G-STOP: Immediate by Lemma 10.

Case No step: It must be that ts ∉ dom(�) and hence by definition of send have �1 = � and we are done.

C. Soundness of security type system

Lemma 2 (Internal knowledge refines external knowledge). For any program configuration P , trace � , and level ladv, the

knowledge of an external attacker is less precise than the knowledge of an internal attacker. That is,

k(P , �,ladv) ⊇ k∙(P , �,ladv)

Proof: Given an P2 s.t. P ≈ladv
P2 and unfolding the definitions of attacker knowledge and internal knowledge we must

show

(� ↾∙ ladv) = (�2 ↾
∙ ladv) ⟹ (� ↾ ladv) = (�2 ↾ ladv)
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The proof is by induction on trace � .

Base case � = �: Immediate.

Inductive case � = �′ ⋅ (ts ∶ �, �): We have �2 = �′
2
⋅ (ts2 ∶ �2, �2) and have IH

(�′ ↾∙ ladv) = (�′
2
↾∙ ladv) ⟹ (�′ ↾ ladv) = (�′

2
↾ ladv)

By assumption, we have (�′ ⋅ (ts ∶ �, �) ↾∙ ladv) = (�′
2
⋅ (ts2 ∶ �2, �2) ↾∙ ladv) and hence ⌊�⌋∙

ladv
= ⌊�2⌋∙ladv

and

⌊�⌋ladv
= ⌊�2⌋ladv

and we consider the two results of the internal trace filtering:

Case (� ↾∙ ladv) = (�′ ↾∙ ladv): By definition of internal trace filtering have ⌊�⌋∙
ladv

= ⌊�⌋∙
ladv

= �, and hence definition

of trace filtering we have (� ↾ ladv) = (�′ ↾ ladv) and (�2 ↾ ladv) = (�′
2
↾ ladv) and we are done by IH.

Case (� ↾∙ ladv) ≠ (�′ ↾∙ ladv): We have ts = ts2 and hence (ts ∶ ⌊�⌋∙
ladv

, ⌊�⌋ladv
) = (ts2 ∶ ⌊�2⌋∙ladv

, ⌊�2⌋ladv
). From

this, we trivially get (ts ∶ �, ⌊�⌋ladv
) = (ts2 ∶ �, ⌊�2⌋ladv

) and are done by definition of trace filtering and IH.

Theorem 1 (Soundness). Given a typing environment Γ, two levels pc, pc′, and a program configuration P that is well-formed

w.r.t Γ, pc, pc′, the run ⦉P ,Oinit, �init, 0⦊ →→∗
� ⦉P ′, O′, �′, ts′⦊ satisfies Definition 8.

Proof: By Definition 8 and unfolding of program configuration P we are given a program c, initial memory m and initial

input environment I such that

⦉⟨c, m, I⟩, Oinit, �init, 0⦊ →→
∗
�⋅ ⦉⟨c′, m′, I ′⟩, O′, �′, ts′⦊

and must show that for any ladv we have

k(c, m, I, � ⋅ ,ladv) ⊇ k(c, m, I, �,ladv)

Let (m2, I2) ∈ k(c, m, I, �,ladv) and ladv be given. Unfolding the definition of attacker knowledge we have �2 such that

(� ↾ ladv) = (�2 ↾ ladv) and

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→∗
�2

⦉⟨c′
2
, m′

2
, I ′

2
⟩, O′

2
, �′

2
, ts′

2
⦊

We must show that

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→
∗
�2⋅2

⦉⟨c′
2
, m′

2
, I ′

2
⟩, O′

2
, �′

2
, ts′

2
⦊

such that (� ⋅  ↾ ladv) = (�2 ⋅ 2 ↾ ladv).
We do this by showing a stronger property using internal trace filtering and applying Lemma 2. We show that if

⦉⟨c, m1, I1⟩, Oinit, �init, 0⦊ →→n
� ⦉⟨c′

1
, m′

1
, I ′

1
⟩, O′

1
, �′, n⦊

→→ ⦉⟨c″1 , m″
1
, I″

1
⟩, O″

1
, �″, n + 1⦊

then one of the following holds

(1) either

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→n
�2

⦉⟨c′
2
, m′

2
, I ′

2
⟩, O′

2
, �′, n⦊

→→2
⦉⟨c″

2
, m″

2
, I″

2
⟩, O″

2
, �″, n + 1⦊

s.t. (� ⋅  ↾∙ ladv) = (�2 ⋅ 2 ↾
∙ ladv) and m″

1
≈ladv

m″
2

and I″
1
≈∙
ladv

I″
2

and O″
1
≈ladv

O″
2

(2) or there is n′ ≤ n

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→n′

�2
⦉⟨c′

2
, m′

2
, I ′

2
⟩, O′

2
, �′, n′⦊

s.t. (� ⋅  ↾∙ ladv) = (� ↾∙ ladv) = (�2 ↾
∙ ladv) and m″

1
≈ladv

m′
2

and I″
1
≈∙
ladv

I ′
2

and O″
1
≈ladv

O′
2

and ∄ts′ ∈ dom(�′) ∶

ts′ ≥ n and there is pc1, pc2 such that pc1 ⋢ ladv and pc2 ⋢ ladv and c′
1

is well-formed w.r.t Γ, pc1, pc′ and and c′
2

is

well-formed w.r.t Γ, pc2, pc′

In each case, the equality of traces using internal trace filtering and Lemma 2 gives us equality of traces using trace filtering

as desired.

The proof is by induction on n

Base case n = 0: Immediate by Definition 7, Definition 13, Lemma 3, and Lemma 5.

Inductive case n > 0: We apply the induction hypothesis and get

(1) either

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→n−1
�2

⦉⟨c′
2
, m′

2
, I ′

2
⟩, O′

2
, �′, n − 1⦊
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s.t. (� ↾ ladv) = (�2 ↾ ladv) and m′
1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2

and O′
1
≈ladv

O′
2

(2) or there is n′ ≤ n − 1

⦉⟨c, m2, I2⟩, Oinit, �init, 0⦊ →→n′

�2
⦉⟨c′

2
, m′

2
, I ′

2
⟩, O′

2
, �′, n′⦊

s.t. (� ↾ ladv) = (�2 ↾ ladv) and m′
1
≈ladv

m′
2

and I ′
1
≈∙
ladv

I ′
2

and O′
1
≈ladv

O′
2

and ∄ts′ ∈ dom(�′) ∶ ts′ ≥ n′ and there

is pc1, pc2 such that pc1 ⋢ ladv and pc2 ⋢ ladv and c′
1

is well-formed w.r.t Γ, pc1, pc′ and and c′
2

is well-formed w.r.t

Γ, pc2, pc′

If (1), then we are done by Lemma 5.

If (2), then by lemma 7 and transitivity we have m″
1
≈ladv

m′
2
, I″

1
≈∙
ladv

I ′
2
, and for 1 = (ts ∶ �1, �1) that ⌊�1⌋∙ladv

= �.

Hence by Lemma 9 and transitivity we have O″
1
≈ladv

O′
2

and �″ = �′. We are done by applying Lemma 1 in both runs.
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