
Verifying Accountability for
Unbounded Sets of Participants

(Full Version)
Kevin Morio and Robert Künnemann

CISPA Helmholtz Center for Information Security
Saarland Informatics Campus, Germany

Abstract—Little can be achieved in the design of security proto-
cols without trusting at least some participants. This trust should
be justified or, at the very least, subject to examination. One
way to strengthen trustworthiness is to hold parties accountable
for their actions, as this provides a strong incentive to refrain
from malicious behavior. This has led to an increased interest in
accountability in the design of security protocols.

In this work, we combine the accountability definition of
Künnemann, Esiyok, and Backes [24] with the notion of case tests
to extend its applicability to protocols with unbounded sets of
participants. We propose a general construction of verdict func-
tions and a set of verification conditions that achieve soundness
and completeness.

Expressing the verification conditions in terms of trace proper-
ties allows us to extend TAMARIN—a protocol verification tool—
with the ability to analyze and verify accountability properties in
a highly automated way. In contrast to prior work, our approach
is significantly more flexible and applicable to a wider range of
protocols.

I. INTRODUCTION

Holding parties accountable for their misconduct—most
often detection is deterrent enough—is an incentive to avoid
malicious behavior from the outset. Participants have to weigh
up whether an action is worth the consequences. Accountability
is applicable to a wide range of protocols, such as e-voting,
electronic payment processing, and electronic health care
transactions.

Künnemann, Esiyok, and Backes [24] proposed a protocol-
agnostic definition of accountability and an automated verifica-
tion technique. They consider accountability a meta-property
defined with respect to a security property ϕ. A protocol
that provides accountability for ϕ provides the information
necessary to determine whether ϕ has been violated and, if
so, which parties should be held accountable. The verdict
contains all groups of parties that are (jointly) accountable
for a violation. Verdicts are returned by a total function—the
verdict function—given the trace of a protocol execution.

To prove that a specified verdict function provides the
protocol with accountability for a security property, a set of
verification conditions must be verified. Künnemann, Esiyok,
and Backes [24] show that their proposed verification conditions
are sound and complete: If and only if all conditions hold, ac-
countability is provided. Expressing the verification conditions

This is an extended version of [28].

as trace properties allows them to exploit existing protocol
verification tools and achieve a high degree of automation.

However, the verdict function and verification conditions
they propose require the parties to be explicitly stated in each
verdict, thus inherently limiting the set of parties that can be
blamed. This restricts the expressiveness of the approach as in
almost all real-world protocols the same party can be involved
in multiple parallel sessions (e.g., TLS) or the number of
participants is not known a priori and can change dynamically
during the protocol execution (e.g., the Signal chat protocol).

In this work, we address this shortcoming by combining their
approach with the notion of case tests—an idea inspired by the
accountability tests of Bruni, Giustolisi, and Schuermann [20].
Case tests are trace properties with free variables, where
each free variable stands for a party that should be blamed
for a violation. This is in contrast to accountability tests,
where one test applies to one party and joint accountability
is not expressible. In contrast to an explicitly stated verdict
function, case tests can match multiple parts of a trace. The
verdict function is thus implicitly defined as the union of
groups of parties blamed by instances of the case tests. This
approach provides flexibility and allows—for the first time—
the analysis of protocols with unbounded sets of participants.
It also improves readability, as intuitively, each case test stands
for a specific way a violation can be triggered, in contrast to
the previous, explicit formulation of the verdict function, in
which all combinations of actions that constitute a violation
had to be captured.

We list our contributions as follows.
1) We derive a set of verdict-based verification conditions

based on the accountability definition of Künnemann,
Esiyok, and Backes [24] and show that they provide
soundness and completeness.

2) We introduce the notion of case tests and use them to
define verdict functions that are significantly more flexible
than previous ones.

3) We show how the verification conditions can be rewritten
using case tests and formalize requirements to encode them
in terms of trace properties. By proving their relation to
the verdict-based variant, we can transfer their soundness
and completeness to the encoded verification conditions.

4) We implemented our approach in TAMARIN by adding
the ability to define accountability lemmas and case tests.
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5) We showcase our methodology by extending previous
models of OCSP Stapling [29], [30], and Certificate
Transparency [31] to an unbounded number of parties,
and applying it to new models of mixnets and the e-voting
protocol MixVote/Alethea [22], [25].

The paper is structured as follows. Related work is discussed
in Section II and the accountability definition of Künnemann,
Esiyok, and Backes [24] is elucidated in Section III. We
show a sound and complete decomposition of accountability
into verification conditions in Section IV and introduce case
tests to define a general verdict function in Section V. We
elaborate on the counterfactual relation in Section VI and
present the verification conditions expressed as trace properties
in Section VII. In Section VIII, we explain the implementation
in TAMARIN. In Section IX, we describe the case studies,
evaluate our verification results, and compare them with the
results in the framework of [24]. We conclude in Section X.

II. RELATED WORK

In the security setting considered in this work, we regard ac-
countability as the ability to identify malicious parties. Different
approaches and notions of accountability have been proposed.
However, in previous works, these are only described informally
or tailored to specific protocols and security properties [3], [5],
[12], [17]. An emerging problem is the difficulty of defining
when a party’s behavior should be considered malicious and the
implications this has on completeness—holding all malicious
parties accountable.1

In the past, misbehaving and dishonest parties were treated
as equivalent. While this is a reasonable approximation for
some cryptographic tasks—for example, secure multi-party
computation—it is not suitable in the context of accountability.
Completeness would require identifying all dishonest parties,
but a dishonest party does not have to deviate or may behave
in a way that is indistinguishable from the protocol. Some
approaches [6], [7] in the distributed setting assume that
all communication is observable and classify any trace not
producible by honest parties as malicious behavior. In the
security setting, this assumption is impossible to satisfy and
the definition of malicious behavior unreasonable, as parties
may communicate through hidden channels and deviate in
harmless ways.

Haeberlen, Kouznetsov, and Druschel [6] propose Peer-
Review, a system which can detect Byzantine faults in the
distributed setting. The system requires that all communication
is observable which is a suitable assumption in a distributed
environment but unrealistic in the security setting.

Jagadeesan, Jeffrey, Pitcher, et al. [7] provide multiple
general notions of accountability based on an abstract labeled
transition system in the distributed setting. However, the authors
admit that “the only auditor capable of providing [complete-

1Note that this notion of completeness concerns what we would consider
the verdict. This is opposed to the completeness of the verification conditions
with respect to the accountability of a protocol, saying that all protocols that
provide accountability are recognized as correct by the verification conditions.

ness] is one which blames all principals who are capable of
dishonesty, regardless of whether they acted dishonestly or not.”

Küsters, Truderung, and Vogt [9] define accountability in
the symbolic and computational model using accountability
properties. These are specified in a formal language. Künne-
mann, Garg, and Backes [23] point out that these properties are
not expressive enough. Furthermore, they identify significant
weaknesses in the case of joint misbehavior.

Another approach is to consider protocol actions as the
actual causes for security violations [10], [15], [16]. However,
protocol actions may be causally related to a security violation
but still be harmless and without any malicious intent.

In recent work, Künnemann, Garg, and Backes [23] propose
a general protocol agnostic definition of accountability in which
the fact that a party deviated is considered a potential cause for a
security violation. Based on this approach, Künnemann, Esiyok,
and Backes [24] provide an automated verification technique
in the single-adversary setting. They define the a posteriori
verdict (apv), which given a trace of a protocol execution,
returns all groups of parties that are jointly accountable for
the security violation. If there exists a function—called the
verdict function—which coincides with the apv for all traces
of the protocol, the verdict function is said to provide the
protocol with accountability for a specified security property.
In their work, the verdict function uses a case distinction over
traces and specifies a verdict per case. This form requires
that the parties be explicitly stated in a verdict and thus fixes
the number of parties. Most protocols have a fixed number
of roles, but the same party can run many sessions with
different communication partners (e.g., several servers in TLS,
or partners in chat protocols).

Bruni, Giustolisi, and Schuermann [20] give a definition of
accountability based on the existence of per-party accountability
tests which decide whether the party should be held accountable
for a violation. A verdict is obtained by considering all parties
for which their test is positive as singleton sets. Since each
singleton verdict contains exactly one party, joint accountability
is not expressible. Moreover, as noted by Künnemann, Esiyok,
and Backes [24], there are some flaws in the criteria of their
definition allowing parties to be blamed even if the security of
a protocol cannot be violated or violations remain undetected
under certain circumstances.

III. BACKGROUND

We provide an overview of the notation and concepts we use
throughout this work and recall the accountability definition
of Künnemann, Esiyok, and Backes [24].

A. Preliminaries

a) Sets, sequences, and multisets: We denote the set of
integers {1, . . . , n} by [n], the power set of S by 2S and the set
of finite sequences of elements from S by S∗. For a sequence
s, we write si for the i-th element, |s| for the length of s, and
idx (x) :=

{
1, . . . , |s|

}
for the set of indices of s. We write ~s

to emphasize that s is a sequence. For a set A, we write A#

for the set of finite multisets of elements from A. We use the



superscript # to denote the usual operations on multisets. For
example, we write ∅# for the empty multiset and m1 ∪# m2

for the union of two multisets m1 and m2.
b) Terms: Cryptographic messages are modeled as ab-

stract terms. We specify an order-sorted term algebra with the
sort msg and two incomparable subsorts pub and fresh for
two countably infinite sets of public names (PN ) and fresh
names (FN ). We assume pairwise disjoint, countably infinite
sets of variables Vs for each sort s. The set of all variables V
is the union of the set of variables for all sorts Vs. We write
u : s when the name or variable u is of sort s. A signature
Σ is a set of function symbols, each with an arity. We write
f/n for a function symbol f with arity n. A subset Σpriv ⊆ Σ
consists of private function symbols which cannot be applied
by the adversary. The set of well-sorted terms constructed over
Σ, PN , FN , and V is denoted by TΣ. The subset of ground
terms—terms without variables—is denoted by MΣ. If Σ can
be inferred from context, we write T and M respectively.

c) Equational theories: An equation over the signature Σ
is an unordered pair {s, t} of terms t, s ∈ TΣ, written s w t or
s = t when the meaning can be inferred from context. Equality
is defined with respect to an equational theory E, a binary
relation =E induced by a finite set of equations which is closed
under the application of function symbols, bijective renaming
of names, and substitution of variables by terms of the same
sort. An equational theory E formalizes the semantics of the
function symbols in Σ. We say that two terms t and s are equal
modulo E iff t =E s. Set membership modulo E is denoted
by ∈E and defined as e ∈E S iff ∃e′ ∈ S. e′ =E e. The usual
operations on sets modulo E are defined accordingly.

Example 1 (Digital signatures). To model cryptographic
messages built using digital signatures, we use the signature

ΣDS = {sig/2, verify/3, pk/1, sk/1, true/0}

and the equational theory EDS generated by the equation

verify
(
sig(m, sk(i)),m, pk(sk(i))

)
= true . ♦

We assume that the signature Σ and the equational theory
E contain symbols and equations for pairing and projection.{
〈·, ·〉, fst/1, snd/1

}
⊆ Σ with

fst
(
〈x , y〉

)
= x, snd

(
〈x , y〉

)
= y .

We write 〈x1, 〈. . . , 〈xn−1, xn〉 . . . 〉 simply as 〈x1, . . . , xn〉.
d) Facts: We assume an unsorted signature Σfact which

is disjoint from Σ. The set of facts is defined by

F :=
{
F(t1, . . . , tn)

∣∣ ti ∈ T ,F ∈ Σkfact

}
,

where Σkfact denotes all function symbols of arity k in Σfact.
The set of ground facts is denoted by G.

e) Substitutions: A substitution σ is a well-sorted function
from variables V to terms TΣ that corresponds to the identity
function on all variables except on a finite set of variables.
Overloading notation, we call this finite set of variables the
domain of σ, which we denote by dom(σ). The image of
dom(σ) under σ is denoted by rng(σ). For the homomorphic

extension of σ to a term t or a trace formula ϕ, we write
tσ and ϕσ respectively. We write σ

[
v 7→ w

]
to denote the

update of σ at v such that σ
[
v 7→ w

]
(x) = w for x = v and

σ(x) otherwise. If σ is injective, we denote its inverse by σ−1.
We say that two substitutions σ, σ′ are equal modulo E if
dom(σ) = dom(σ′) and σ(x) = σ(x′) for all x in dom(σ).

f) Valuation: Each sort s is associated with a domain
Ds. The domain for temporal variables is the rational numbers
Dtemp := Q and the domains for messages are Dmsg :=M,
Dfresh := FN , and Dpub := PN . A function θ from V to
Q ∪M is a valuation if it respects sorts, that is, θ(Vs) ⊆ Ds

for all sorts s. We write tθ for the homomorphic extension of
θ to a term t.

g) Trace properties: Trace properties are sets of traces
which are specified by trace formulas in a two-sorted first-
order logic which supports quantification over messages and
timepoints.

Definition 1 (Trace formula). A trace atom is either false
⊥, a term equality t1 ≈ t2, a timepoint ordering i l j, a
timepoint equality i .= j, or an action F@i for a fact F ∈ F
and a timepoint i. A trace formula is a first-order formula
over trace atoms.

Definition 2 (Satisfaction relation). The satisfaction relation
(tr , θ) � ϕ between a trace tr , a valuation θ, and a trace
formula ϕ is defined as follows.

(tr , θ) � ⊥ never

(tr , θ) � F@i ⇐⇒ θ(i) ∈ idx (tr) ∧ Fθ ∈E trθ(i)

(tr , θ) � il j ⇐⇒ θ(i) < θ(j)

(tr , θ) � i
.
= j ⇐⇒ θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 ⇐⇒ t1θ =E t2θ

(tr , θ) � ¬ϕ ⇐⇒ not (tr , θ) � ϕ

(tr , θ) � ϕ1 ∧ ϕ2 ⇐⇒ (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s. ϕ ⇐⇒ there is u ∈ dom(s)

such that (tr , θ
[
x 7→ u

]
) � ϕ .

For completeness, we define

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

∀x : s. ϕ ≡ ¬(∃x : s. ¬ϕ)

ϕ1 =⇒· ϕ2 ≡ ¬ϕ1 ∨ ϕ2

ϕ1 ⇐⇒· ϕ2 ≡ ϕ1 =⇒· ϕ2 ∧ ϕ2 =⇒· ϕ1

We write t1 = t2, i < j, and i = j when the meaning is
clear from context. Timepoints are used to indicate the position
of facts in a trace. The free variables of ϕ are denoted by fv(ϕ)
which may be used as a set or sequence depending on the
context. We say ϕ is a ground formula if it does not contain
free variables, that is, fv(ϕ) = ∅. When ϕ is a ground formula,
we may write tr � ϕ since the satisfaction of ϕ is independent
of the valuation. The renaming of the free variables of ϕ by
a sequence ~v of equal length is denoted by ϕ

[
fv(ϕ) 7→ ~v

]
or

simply ϕ
[
~v
]
. We write ϕ

(
~x
)

to denote that the variables ~x are
bound in ϕ, that is, fv

(
ϕ(~x)

)
= fv(ϕ) \ ~x.



Definition 3 (Validity, satisfiability). Let Tr be a set of traces.
A trace formula ϕ is valid for Tr , written Tr �∀ ϕ, iff (tr , θ) �
ϕ for every trace tr ∈ Tr and every valuation θ. A trace
formula ϕ is satisfiable for Tr , written Tr �∃ ϕ, iff there
exists a trace tr ∈ Tr and a valuation θ such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr 6�∃ ¬ϕ.
h) Instantiations: An instantiation ρ is a substitution from

variables V to ground terms M. We say that ρ is grounding
with respect to a trace formula ϕ if ϕρ is a ground formula. For
two instantiations ρ, ρ′ we only consider equality modulo E
and simply write ρ = ρ′. In particular, all operations involving
instantiations are considered modulo E.

i) Accountability protocol: The conditions we derive are
independent of the formalism of choice. For now, we assume
a function traces from protocols to sets of ground traces, i.e.,
sequences of ground facts. Given a protocol P (e.g., a ground
process or a set of multiset-rewrite rules), ϕ is valid for P ,
written P �∀ ϕ, if traces(P) �∀ ϕ; ϕ is satisfiable for P ,
written P �∃ ϕ, if traces(P) �∃ ϕ.

An accountability protocol is a protocol P with a countably
infinite set of participants A. We assume that A ⊆M, that is,
a party can be any ground term. Due to the huge variety in
the design of protocols, we leave the concrete structure of this
process open. However, we require that each party which is not
trusted specifies a corruption procedure that emits a Corrupted
fact and reveals its secrets. The set of corrupted parties of a
trace t is defined by

corrupted(t) :=
{
A ∈ A

∣∣ Corrupted(A) ∈ t
}
.

In this work, we implicitly assume an accountability protocol
P . If not stated otherwise, quantification over traces is always
with respect to traces(P).

B. A Definition of Accountability

We review the accountability definition of Künnemann,
Esiyok, and Backes [24]. This definition holds parties account-
able for violations of a security property which is expressed
as a trace property ϕ. To allow any meaningful analysis, there
have to be at least two traces, one satisfying and one violating
the security property. Following intuition, if all parties adhere
to the protocol, the security property ϕ must hold. Otherwise,
either the protocol or ϕ is ill-defined.

If a violation occurred, i.e., ¬ϕ, at least one party must have
deviated from the protocol. Each party is either honest and
follows the protocol or dishonest and may deviate from its
specified behavior. The definition assumes a single adversary
controlling all dishonest parties (see [27] for a discussion of
this topic). An honest party becomes dishonest when it receives
a corruption message from the adversary and remains dishonest
for the rest of the protocol execution. We may refer to parties
as dishonest or corrupted interchangeably throughout this work.

A dishonest party does not have to deviate and may behave
in a way that is indistinguishable from the protocol. It is thus
impossible to detect all dishonest parties. Furthermore, parties
may deviate by communicating through hidden channels and

thus it is also impossible to detect all deviating parties. Instead,
Künnemann, Esiyok, and Backes [24] build on sufficient
causation [15], [21], and focus on parties that are the actual
cause of a violation. This requires protocols to be defined in
such a way that deviating parties leave publicly observable
evidence for security violations. In this sense, a protocol
provides accountability with respect to ϕ if we can determine
all parties for which the fact that they are deviating at all is a
cause for the violation of ϕ.

Assume a countably infinite set of parties A.2 Deviations of
a set of parties S ⊆ A are a cause for a violation iff

SC1: A violation occurred and the parties in S deviated.
SC2: If all deviating parties, except those in S, behaved

honestly, the same violation would still occur.
SC3: S is minimal; SC1 and SC2 hold for no strict subset

of S.

SC1 ensures that a violation has occurred and the parties in
S deviated. SC2 ensures that the parties in S are sufficient to
cause a violation. There may be other deviating parties not in
S, but their deviation has no influence on the violation. In this
vein, SC2 describes a situation which differs from the actual
observed events—called a counterfactual. SC3 ensures that
only minimal sets S are considered, that is, we always hold
the least number of parties accountable.

Example 2. Consider a protocol in which access to a central
user database is logged and each request must be signed. A
violation occurs whenever user data is leaked. The parties
involved are a manager M and two employees E1 and E2.
The manager can directly sign a request to get access to the
database and can thus cause a violation on its own. For the
employees to gain access, both need to sign a request. Assume
this is the case and a leak occurs. Then E1 and E2 are jointly
accountable. In the counterfactual scenarios in which only E1

or E2 deviates, a violation is not possible and thus SC2 is not
satisfied.

If parties M and E1 cause a violation, then SC1 and SC2
hold. However, as M can cause a violation on its own, which
also satisfies SC1 and SC2, SC3 does not hold. ♦

The counterfactual situations considered in SC2 cannot be
chosen arbitrarily. They have to be related to the actual situation
to obtain meaningful and justifiable results. This relationship
is specified by a counterfactual relation r. If (t, t′) ∈ r, also
written as r(t, t′), then the counterfactual trace t′ is related to
the actual trace t.

We only consider counterfactual traces if they do not consider
additional parties as corrupted, as these are not being causally
relevant for a security violation in the actual trace.

Definition 4 (Counterfactual relation). A counterfactual rela-
tion is a reflexive and transitive relation between traces s.t.:

r(t, t′) =⇒ corrupted(t′) ⊆ corrupted(t) (1)

2In contrast to [24] where a finite set of parties is assumed.



The a posteriori verdict (apv) specifies for a given trace all
minimal subsets of parties that are sufficient to cause a security
violation.

Definition 5 (A posteriori verdict). Let P be a protocol, t a
trace, ϕ a security property, and r a relation on traces. The a
posteriori verdict is defined by apvP,ϕ,r(t) :={

S
∣∣∣ t � ¬ϕ (R1)

∧ ∃ t′. r(t, t′) ∧ corrupted(t′) = S ∧ t′ � ¬ϕ (R2)

∧ @ t′′. r(t, t′′) ∧ corrupted(t′′) ( S ∧ t′′ � ¬ϕ
}

(R3)

We may leave out any of the subscripts P , ϕ, r if they can be
inferred from context. The output of the apv is called a verdict.

Example 3. In the situation of Example 2, the following
verdicts may be returned by the apv:

∅ The empty verdict—no violation and no
parties to blame.{

{M}
}

The manager leaked the data on its own.{
{E1, E2}

}
The employees colluded to leak the data.{

{M}, {E1, E2}
}

The manager as well as the employees
leaked the data. ♦

Each set S ∈ apvP,ϕ,r(t) satisfies SC1, SC2, and SC3.
R1 ensures that a violation occurred and therefore at least
one party in S deviated in t. If not all parties in S would
deviate, there would be a counterfactual trace t′′, where a strict
subset of S would deviate, thereby violating R3. Hence, SC1
is satisfied. SC2 is captured by R2, which ensures that there
exists a counterfactual trace t′, showing that the parties in S are
sufficient to cause a violation. SC3 follows directly from R3.

The following corollary shows that accountability with
respect to ϕ implies verifiability of ϕ. If no violation occurred,
no parties are blamed. If no parties are blamed, no violation
occurred.

Corollary 6. For all traces t, apvP,ϕ,r(t) = ∅ ⇐⇒ t � ϕ.

Proof. Assume t � ϕ. Then apvP,ϕ,r(t) = ∅ follows by
Definition 5. For the other direction, assume t � ¬ϕ. As r is
reflexive, R2 holds for t and S = corrupted(t). If S is already
minimal, there does not exist a trace t′′ which corrupts a strict
subset of S and thus apvP,ϕ,r(t) = {S} 6= ∅. If S is not
minimal, there exists a trace t′′ which corrupts S′ ( S. The
counterfactual trace t′ can then be instantiated with t′′ and S′.
If S′ is not minimal, this step can be repeated until a minimal
set S? is obtained. As the cardinality of the sets decreases in
each step, this approach is guaranteed to terminate. �

The apv can only be computed after the fact, that is, it
requires full knowledge of the actual trace t. The task of
an accountability protocol is to always compute the apv
without this information. For generality, we assume that an
accountability protocol comes with a total function that extracts
this information, the verdict function:

verdict(t) : traces(P)→ 22A
. (2)

Accountability is now defined in terms of the apv and
the verdict function. If the apv coincides for all traces with
the verdict function, the latter provides the protocol with
accountability for a security property ϕ.

Definition 7 (Accountability). A verdict function verdict
provides a protocol P with accountability for a security
property ϕ with respect to a relation r, if

∀ t ∈ traces(P). verdict(t) = apvP,ϕ,r(t) . (AccverdictP,ϕ,r )

Remark 1 (Counterfactual relation). Künnemann, Esiyok, and
Backes [24] note that there is no consensus in the causality
literature about how actual and counterfactual scenarios should
relate. They propose three approaches for relating actual and
counterfactual traces: By control flow, by kind of violation,
and the weakest relation with respect to (1). Our focus will
be on relating traces with the same kind of violations. As we
will discuss in Section VI, our method may also be used to
encode other relations. The axiomatic characterization in the
next section, however, is independent of the choice of r.

IV. AXIOMATIC CHARACTERIZATION

Accountability (Definition 7) requires that the apv coincides
with a given verdict function for all traces of the protocol. Since
the apv can only be computed after the fact and the number of
traces is most often infinite, this coincidence cannot be shown
directly. However, the definition of the apv imposes multiple
requirements on the verdicts returned by the verdict function.
In this section, we reformulate this requirement into five
equivalent verification conditions that are sound and complete.
Soundness allows us to prove that a verdict function provides
a protocol with accountability by verifying that all conditions
hold. Completeness ensures that if a verdict function provides
a protocol with accountability, then all conditions hold.

This axiomatic characterization bears resemblance to the
verification conditions presented by Künnemann, Esiyok, and
Backes [24], but is more general. It is valid for any counterfac-
tual relation and any verdict function. It is also simpler.3 These
axioms will help us derive verification conditions for unbounded
sets of participants in the next section in a systematic manner.

A verdict function verdict providing accountability for ϕ
and r is characterized by the following axioms.

Verifiability (Vϕ) This follows directly from Corollary 6.

∀ t. verdict(t) = ∅ ⇐⇒ t � ϕ

3More precisely, the present conditions (P) differ from the coarse-grained
conditions (C) [24, Section III] and the fine-grained condition (F) [24,
Section IV] as follows. The completeness condition in (F) was found to be
incompatible with the definition of the apv. Completeness in (P) is necessarily
weaker and in line with the requirements of the other conditions (sufficiency,
minimality, uniqueness). Verification is the same in all three. Sufficiency in (P)
is slightly weaker than sufficiency in (C) and (F), as it allows for the witness
trace to corrupt a subset of the blamed parties. Additionally, sufficiency in (P)
requires no violation, but this requirement is superfluous, as it follows from
verifiability. Sufficiency for composite verdicts in (F) follows from sufficiency
in (P). Uniqueness in (P) and uniqueness for singletons in (F) are the same.
Uniqueness in (C) is logically equivalent, but expressed differently. Minimality
in (P) is weaker than in (C). Minimality for composite verdicts in (F) can be
considered equivalent, but for singleton verdicts it vanishes, because it follows
from uniqueness in (F).



We require that whenever the verdict function returns an empty
verdict, the security property holds.

Minimality (MS) This follows directly from Corollary 13.

∀ t. S ∈ verdict(t) =⇒ @S′. S′ ∈ verdict(t) ∧ S′ ( S

We require that the verdict does not contain a strict subset of
one of its sets. Intuitively, this axiom ensures that we only
blame the least number of parties which caused a violation.

Sufficiency (SFS) This axiom is similar to R2 and guarantees
that each set of parties in a verdict is sufficient to cause a
violation on their own.

∀ t. S ∈ verdict(t) =⇒ ∃ t′. verdict(t′) =
{
S
}

∧ corrupted(t′) ⊆ S ∧ r(t, t′)

For each set of parties in a verdict, there exists a related trace
in which only a subset of these parties has been corrupted and
for which the verdict function returns a singleton verdict only
blaming these parties.

We could also define a slightly stronger sufficiency condition,
where we would require equality between the set of corrupted
parties and the set in the verdict, that is, corrupted(t′) = S.
Instead, we capture this requirement in its own condition—
uniqueness.4 With this approach, we get more precise infor-
mation when a condition does not hold.

Uniqueness (US) This condition guarantees that all parties
in a verdict have been corrupted; or in other words, no honest
parties are blamed for a security violation.

∀ t. S ∈ verdict(t) =⇒ S ⊆ corrupted(t)

The previous four conditions state the requirements that a
group of parties in the verdict must satisfy. The next condition
ensures that indeed all groups of parties which satisfy these
requirements are included in the verdict.

Completeness (CS)

∀ t.

[
∃ t′. verdict(t′) =

{
S
}

∧ corrupted(t′) ⊆ S ∧ r(t, t′)

]
(C1)

∧
(
@S′. S′ ∈ verdict(t) ∧ S′ ( S

)
(C2)

∧ S ⊆ corrupted(t) (C3)
∧ t � ¬ϕ (C4)

=⇒ S ∈ verdict(t)

We write SF, Vϕ, M, U, and C if the respective condition
holds for all S. We denote the conjunction of these conditions
by VCϕ or by VC if the security property can be inferred from
context.

Example 4. Consider the protocol described in Example 2

4The name goes back to the case distinction used in the verdict function
of Künnemann, Esiyok, and Backes [24], in which the condition ensures that
only a unique, sufficient, and minimal verdict exists for each case.

with the following verdict function.

verdict(t) =


{
{M}

}
if Access

(
M
)
@i ∈ t{

{E1, E2}
}

if Access
(
〈E1, E2〉

)
@i ∈ t

∅ otherwise
(3)

To prove that this verdict function provides accountability
for not leaking data, we have to verify that the verdict function
is indeed total and that all verification conditions hold. The
former follows directly from (3). For the latter, one would
show the following.
SFS : Knowing the signing key of the parties in the verdict is

sufficient to leak the data.
Vϕ: If no party accesses the data (the otherwise case in (3)),

no data can be leaked.
MS : Without any signing key or only the signing key of a

single employee, the data cannot be leaked.
US : Accessing and leaking the data requires corrupting the

respective parties.
CS : Each set of parties satisfying the above conditions is

included in the verdict. ♦

Theorem 8. For any protocol P , security property ϕ, and
verdict function verdict, verdict provides P with accountability
for ϕ iff VC.

Proof. In Appendix A, we show soundness and completeness
in two separate theorems. �

V. VERDICT FUNCTIONS FOR
UNBOUNDED SETS OF PARTICIPANTS

The structure of verdict functions proposed by Künnemann,
Esiyok, and Backes [24] and exemplified in Example 4
considers an explicit mapping from observations, i.e., sets
of traces, to verdicts. All parties that can occur in a verdict
are thus fixed a priori. This prohibits the analysis of several
protocol instances in parallel and is inadequate for protocols
such as TLS, where a single responder may react to incoming
requests from many clients.

If we allow for multiple protocol sessions and consider
the set of parties that participate to be unbounded, then, for
some protocols, we cannot bound the number of possible
verdicts or their size. Therefore, we must define the verdict
function indirectly. To this end, we lift the accountability tests
of Bruni, Giustolisi, and Schuermann [20], which determine
whether a given party is to blame, to case tests, which can
contain variables instead of concrete parties. Case tests are trace
properties with free variables. Each free variable is instantiated
with a party that should be blamed for a violation. A case test
ought to have at least one free variable and there should be at
least one trace where it applies.

Definition 9 (Case test). A case test τ is a trace property
which satisfies
(a) |fv(τ)| > 1 and
(b) ∃ t, ρ. t � τρ .

We say a case test τ matches a trace t if there exists an
instantiation ρ such that t � τρ. We say a case test τ matches



if the trace can be inferred from context. The verdict function
is now given as the union of all matches.

Definition 10 (Verdict function). Let C be a set of case tests.
The verdict function induced by C is given by

verdictC(t) :=
⋃
τ∈C

{
fv(τ)ρ

∣∣∣ ∃ρ. t � τρ} , (4)

where the union is modulo the equational theory E.

In the following, we assume a fixed set of user-defined case
tests which are denoted by C = τ1, . . . , τn and write verdict(t).

Example 5. Consider the protocol described in Example 2 in
the multi-session setting, that is, there may be multiple man-
agers, employees, and data leaks. There are two possibilities,
how a data leak can arise. Either by a manager or by two
colluding employees. We want to hold all groups of parties
accountable which are responsible for a leak. In contrast to the
single-session setting, the protocol must now provide evidence
which group of parties leaked the data. Only knowing the
parties which accessed the data is not sufficient to identify
the parties responsible for a violation. In the case of a single
violation, we would suspect all groups of parties that accessed
the data.

The security property indicates that neither a manager nor
employees leaked the data.

ϕ := @m, ei, ej , data, i. LeakManager(m, data)@i

∨ LeakEmployees(ei , ej , data)@i

We define the following two case tests.

τ1 := ∃data, i. LeakManager(m, data)@i

τ2 := ∃data, i. LeakEmployees(ei , ej , data)@i

We note that the identities of the manager (m) and employees
(ei, ej) are free in τ1 and τ2 respectively. Given a trace t where
two managers M1, M2 and each pair of employees E1, E2,
E3 caused a violation, the following instantiations exist for τ1
and τ2.

ρ
(1)
1 =

[
m 7→M1

]
ρ

(2)
1 =

[
m 7→M2

] ρ
(1)
2 =

[
ei 7→ E1, ej 7→ E2

]
ρ

(2)
2 =

[
ei 7→ E2, ej 7→ E3

]
ρ

(3)
2 =

[
ei 7→ E1, ej 7→ E3

]
We obtain all singleton verdicts of the trace by applying the

instantiations to the free variables of the case tests. Hence, the
complete verdict is

verdict(t) =
{
{M1}, {M2}, {E1, E2}, {E2, E3}, {E1, E3}

}
.
♦

This example also illustrates that case tests are well suited to
distinguish different kinds of a violation, which are identified
by the test and its instantiation. We can formalize this notion
by assigning each trace the set of case tests with their

corresponding satisfying instantiations.

Λ(t) :=
⋃
i∈[n]

{
(τi, ρ)

∣∣ ∃ρ. t � τiρ} (5)

We call a trace t single-matched if |Λ(t)| = 1 and multi-
matched if |Λ(t)| > 1.

Example 6. In the situation of Example 5, we obtain

Λ(t) =
{

(τ1, ρ
(1)
1 ), (τ1, ρ

(2)
1 ), (τ2, ρ

(1)
2 ), (τ2, ρ

(2)
2 ), (τ2, ρ

(3)
2 )
}
.
♦

We use the following corollary to justify switching between
the verdict-based notation of Section IV and the notation based
on case tests of this section.

Corollary 11. Definition 10 implies that for all traces t

S ∈ verdict(t) ⇐⇒ ∃ i, ρ. t � τiρ ∧ fv(τi)ρ = S .

We see that Λ(t) contains all the information to compute
the verdict for the trace t. Definition 10 implies

Λ(t′) ⊆ Λ(t) =⇒ verdict(t′) ⊆ verdict(t) . (6)

However, Λ provides a more precise picture, since the same
set in the verdict may be produced by multiple case tests and
instantiations.

We can now instantiate the verification conditions from
Section IV with case tests. If C is finite, we obtain a finite set
of conditions, all of which (except sufficiency) are predicates on
traces, but not yet trace formulas according to Definition 1. We
first apply Corollary 11 to each occurrence of S ∈ verdict(t)
and verdict(t) =

{
S
}

in the conditions. Since the original
conditions are parameterized by S, the resulting conditions
are parameterized by a case test τi and an instantiation ρ.
We reparameterize these conditions with a case test τi by
introducing quantifiers for the instantiations. As the set of case
tests is finite, we also replace quantification over case tests by
conjunctions and disjunctions. For an instantiation ρ, we have

∃ i. t � τiρ ⇐⇒
∨
i∈[n]

t � τiρ , (7)

and

∀ i. t � τiρ ⇐⇒
∧
i∈[n]

t � τiρ . (8)

Moreover, we split the equivalence in the verifiability
condition Vϕ. This step is not a technical requirement, but
we may gain more insight in case a condition does not hold.
Finally, we obtain the following intermediate representation.

Sufficiency (SFin
τi ) Assume a case test matches a trace t.

Then there exists a related trace t′ in which only the instantiated
parties are corrupted. Moreover, if multiple case tests match,
all sets of instantiated parties have to be the same. This ensures



Figure 1. Example: We consider t′ a valid counterfactual for t.

t
(τ1, ρ1) (τ2, ρ2) (τ3, ρ3)

t′

(τ2, ρ2)

that the verdict is a singleton.

∀ t, ρ. t � τiρ =⇒

∃ t′.
[ ∧
j∈[n]

∀ρ′. t′ � τjρ′ =⇒ fv(τi)ρ = fv(τj)ρ
′
]

∧ corrupted(t′) ⊆ fv(τi)ρ

∧ r(t, t′)

Verifiability Empty (VEin
ϕ ) If there is no case test that

matches, then the security property holds. This ensures that the
security property can only be violated in the ways described
by the case tests.

∀ t.
[ ∧
i∈[n]

@ρ. t � τiρ
]

=⇒ t � ϕ

Verifiability Nonempty (VNEin
ϕ,τi ) The condition requires

that if a case test matches, then the security property is violated.
This ensures that each case test describes a way to violate the
security property.

∀ t, ρ. t � τiρ =⇒ t � ¬ϕ

Minimality (Min
τi ) The condition ensures that, when a case

test matches, then no other case test matches with a strict
subset of the instantiated parties.

∀ t, ρ. t � τiρ =⇒
∧
j∈[n]

@ρ′. t � τjρ′ ∧ fv(τj)ρ
′ ( fv(τi)ρ

Uniqueness (Uin
τi ) The condition requires that the instantiated

parties of a case test have been corrupted. This ensures that
we do not blame honest parties for a security violation.

∀ t, ρ. t � τiρ =⇒ fv(τi)ρ ⊆ corrupted(t)

Remark 2. The completeness condition CS does not need to
be encoded as a trace property. We show in Lemma 21 that
it follows from VNEin

ϕ,τi , (6), and RE, a requirement on the
counterfactual relation we introduce in the next section.

VI. COUNTERFACTUAL RELATION

As we consider an unbounded number of sessions, we
can, in general, expect to have multiple causally independent
security violations in the same trace. Consider t in Figure 1,
where three case tests τ1, . . . , τ3 match. By VNEϕ, each match
implies a security violation by itself. For our counterfactual
analysis, we want to consider traces that contain only one of
these matches causally relevant. We require the counterfactual
relation to be compatible with this intuition, which we formalize

as follows. Note that neither condition restricts the relation for
non-violating traces. Indeed, the relation is irrelevant for the
apv of those (see Definition 5).

Relation Introduction (RI) For all i ∈ [n], traces t, t′ and
instantiations ρ

t � τiρ

∧ Λ(t′) =
{

(τi, ρ)
}

∧ corrupted(t′) = fv(τi)ρ ⊆ corrupted(t)

=⇒ r(t, t′) .

If there is at least one match in some trace t and we can
identify a trace t′ with the exact same match, corrupting no
more parties than t and exactly those indicated by the match,
then we consider t′ a relevant counterfactual.
Relation Elimination (RE) For all traces t, t′

r(t, t′) ∧ t � ¬ϕ ∧ t′ � ¬ϕ =⇒ Λ(t′) ⊆ Λ(t)

Intuitively, if t′ is a relevant counterfactual for t, then it
cannot have additional matches.

Künnemann, Esiyok, and Backes [24] discuss the lack of
a consensus in the causality literature about how actual and
counterfactual scenarios should relate. They consider three
frequently used relations: rk, where two traces relate if they
have a “similar kind” of violation; rc, where they need to have
the same control flow; and rw, which is the weakest possible
relation, where rw(t, t′) ⇐⇒ corrupted(t′) ⊆ corrupted(t).
Neither gives an indication of how to deal with several parallel
infractions in the same trace, but they give us a framework to
discuss the present proposal.

Considering the kind of violation, rk provides the most
promising interpretation of case tests. This notion originates
from criminal law and is used to solve causal problems with
the classical “what-if” by considering the event in question in
greater detail, e.g., by distinguishing death from shooting from
death from poisoning ([2, p. 188]; see also [1, p. 46]). As such,
this notion is informal and depends on intuition. Using case
tests, we could formalize rk using rΛ with rΛ(t, t′) iff

∅ 6= Λ(t′) ⊆ Λ(t) ∧ corrupted(t′) ⊆ corrupted(t) .

The counterfactual has a subset of the matches of the actual,
but at least one. rΛ is consistent with both RE and RI.

While rk is only informally defined, it is usually straight-
forward to apply it to a given protocol and a set of case tests.
Case by case, we can thus confirm that rΛ is a formalization
of rk. Each test and possible instance should mark a different
“kind” of violation.

By contrast, a direct adoption of the control flow aware
relation rc [11], [15], [23] would not allow for holding all
involved parties responsible, as the control flow of t′ (Figure 1)
is clearly different from t. If we relax the relation to accept
a counterfactual trace if its control flow is a prefix of the
actual control flow, we would only collect the parties involved
in the first violation, which is not our goal. We should thus
consider only the control flow per session, and allow the order



of sessions to be changed.5 This could be encoded by splitting
the case tests, so that each test applies only to a single per-
session control flow.

The weakest possible counterfactual relation rw can not
guarantee RE as a related trace could match a completely
different case test.

Example 7. In general, it is possible that two traces have the
same verdict, but are not related according to RE. Consider two
traces t, t′ such that Λ(t′) =

{
(τi, ρi)

}
and Λ(t′) =

{
(τj , ρj)

}
with fv(τi)ρi = fv(τj)ρj . Then verdict(t′) ⊆ verdict(t) but
Λ(t′) * Λ(t). In both traces, the same set of parties causes a
violation, but in t′ in the way described by τi and in t in the
way described by τj . ♦

In the soundness proof, we need RI to introduce the relation
which occurs in SFS but not in the trace properties. In the
completeness proof, we need RE to lift the verdict-based
verification conditions to the ones based on case tests. In this
way, the relation has to provide the expressiveness missing in
the verdict-based conditions.

VII. VERIFICATION CONDITIONS AS TRACE PROPERTIES

In this section, we bring the axioms from Section IV, which
we instantiated with case tests in the last section, into a form
that can be verified in an automated way. The most challenging
among these is sufficiency.

A. Subset relations

To encode minimality, sufficiency, and uniqueness, we need
to express the subset operator and the function corrupted
in terms of protocol actions. Let ~a = (a1, . . . , am) and ~b =
(b1, . . . , bn). The strict subset operator in Min

τi can be expressed
by

0

~a ( ~b
8

:=
[ ∧
i∈[m]

∨
j∈[n]

ai = bj

]
∧
[ ∨
j∈[n]

∧
i∈[m]

bj 6= ai

]
. (9)

The corruption of a party A is recorded as an action
Corrupted(A)@i in the trace. Hence, the subsets in SFin

τi and
Uin
τi can be expressed for a trace t by

corrupted(t) ⊆ ~a ⇐⇒ t �
0

Corrupted ⊆ ~a
8

(10)

~a ⊆ corrupted(t) ⇐⇒ t �
0

~a ⊆ Corrupted
8

(11)

where
0

Corrupted ⊆ ~a
8

:= ∀x , k. Corrupted(x )@k =⇒·
∨
i∈[m]

x = ai

0

~a ⊆ Corrupted
8

:=
∧
i∈[m]

∃k. Corrupted(ai)@k .

B. Sufficiency as a trace property

These encodings allow us to express all conditions as
trace properties, except one: SFin

τi . It has two particularities.
First, it is of the form ∀ t. ∃ t′. γ(t, t′), which classifies it

5As our execution model cannot capture the control flow of deviating parties,
this only concerns the trusted parties.

as a hyperproperty [8]. Since hyperproperties are in general
more expressive than trace properties, they cannot be directly
converted to the latter. Second, it is the only condition that
contains the counterfactual relation r.

To derive a trace property, we need to get rid of the
outermost universal quantifier and abstract the relation r. To
avoid the quantifier, we will focus on single-matched traces, i.e.,
traces with exactly one violation and introduce three additional
conditions. They ensure that there exists a single-matched trace
(a) for any case test, (b) for any instance thereof, and (c) that
matching assignments are always injective. These properties
can be considered well-formedness conditions on the case
tests and are automatically verified. They define a class of
protocols and case tests for which our trace properties are
sound and complete.6 To abstract the relation r, we make
use of the assumption introduced in Section VI, which is not
automatically verified.

We can express that a trace is single-matched as a trace
property SMτi (see Table I). For a trace t to be single-matched,
i.e., Λ(t) =

{
(τi, ρ)

}
, three conditions have to be satisfied.

First, τi has to match t; second, if it matches multiple times,
then all variable assignments have to be equal; and finally, no
other case test may match t. We write SM if SMτi holds for
all i ∈ [n].

With SMτi , (10), and RI, we can express the consequent of
SFin

τi as a trace property

∃ t, ρ. Λ(t) =
{

(τi, ρ)
}
∧ corrupted(t) ⊆ fv(τi)ρ (12)

This guarantees the existence of a single trace for each case test,
but not for all possible instantiations. We thus need to ensure
that if (12) holds for a single instantiation, then it also holds for
all possible instantiations. To achieve this, we first introduce
an additional requirement on the counterfactual relation, the
replacement property RPτi (see Table I).

Assuming SMτi holds, i.e., some single-matched t′ exists,
then RPτi ensures that for any multi-matched trace t with a
match for τi and ρ, there is a single-matched trace t′′ with the
same case test and instantiation as t. The property is slightly
more general, as t′ could corrupt more parties than necessary.
To illustrate this point: If t′ corrupts the minimal set of parties,
i.e., corrupted(t′) = fv(τi)ρ

′, then corrupted(t′′) = fv(τi)ρ.
We write RP if RPτi holds for all i ∈ [n]. In other words,
SM and RP ensure that there is a decomposition of each trace
that separates interleaving causally relevant events so they can
be regarded in isolation. A sufficient criterion is that traces
are closed under bijective renaming, which we can ensure
syntactically by verifying that no public names appear in the
protocol and that Corrupted actions contain only variables of
sort public.7

6Alternatively, they can be understood as part of the verification conditions.
In this case, we offer two sets of conditions, one that is sound and one that is
complete.

7This simple check applies to both multiset-rewrite rules and SAPiC
processes. A more refined syntactic condition is possible by allowing for
public names unless they are compared to variables that occur in verdicts. In
our case studies, we verified this condition by hand.



Table I
VERIFICATION CONDITIONS

name definition logical relation
su

ffi
ci

en
cy

(t
r.

pr
op

.)

SMτi
P �∃ ∃~v. τi

[
~v
]
∧
[
∀ ~w. τi

[
~w
]

=⇒· ~w = ~v
]
∧
[ ∧
j∈[n]\{i}

@~x. τj
[
~x
]]

SFtp ∧ VNEtp
ϕ ∧ Utp ∧ II ∧

RP =⇒ SF
(Lemma 19)

SF ∧ SM =⇒ SFtp

(Lemma 20)

IIτi
P �∀ ∀~v. τi

[
~v
]

=⇒·
∧

i∈idx(~v)

∧
j∈idx(~v)
j 6=i

vi 6= vj

SFtp
τi

P �∃ ∃~v. τi
[
~v
]
∧
[
∀ ~w. τi

[
~w
]

=⇒· ~w = ~v
]
∧
[ ∧
j∈[n]\{i}

@~x. τj
[
~x
]]

∧ ∀a, k. Corrupted(a)@k =⇒·
∨

`∈idx(~v)

a = ~v`

ot
he

r
co

nd
iti

on
s

(t
r.

pr
op

.)

VEtp
ϕ

P �∀
[ ∧
i∈[n]

@~v. τi
[
~v
]]

=⇒· ϕ

Vϕ ⇐⇒ VEtp
ϕ ∧ VNEtp

ϕ

(Lemma 16)VNEtp
ϕ,τi P �∀ ∀~v. τi

[
~v
]

=⇒· ¬ϕ

Mtp
τi

P �∀ ∀~v. τi
[
~v
]

=⇒·
∧
j∈[n]

@ ~w. τj
[
~w
]
∧

0

~w ( ~v
8

M ⇐⇒ Mtp

(Lemma 17)

Utp
τi

P �∀ ∀~v. τi
[
~v
]

=⇒·
∧

`∈idx(~v)

∃k. Corrupted(~v`)@k U ⇐⇒ Utp

(Lemma 18)

sy
nt

ac
tic RPτi

∀ t, t′, ρ, ρ′. t � τiρ ∧ Λ(t′) =
{

(τi, ρ
′)
}

=⇒ ∃ t′′. Λ(t′′) =
{

(τi, ρ)
}
∧ corrupted(t′′) = corrupted(t′)(ρ ◦ ρ′−1

)
BR =⇒ RP

BR ∀ t, σ : A ↔ A. t ∈ traces(P) =⇒ tσ ∈ traces(P)
A ⊆ PN ∧ fn(P ) ∩ PN = ∅

=⇒ BR
(Lemma 24)

To ensure that ρ′−1 is well defined, we require each free
variable to be instantiated with a distinct value. This can be
expressed as a trace property, Instance Injectivity II (see Table I).
We write II if IIτi holds for all i ∈ [n]. This condition is w.l.o.g.
If a case test violates II, it can be split into multiple case tests
for each coincidence of instantiated variables.

Example 8. Assume a case test τi with fv(τi) = {x, y, z} that
violates IIτi and all free variables coincide in any combination.
These are given by the partitions of the free variables.{

{x, y, z}
}{

{x}, {y, z}
}{

{y}, {x, z}
}

{
{z}, {x, y}

}{
{x}, {y}, {z}

}
We then need to split τi into five case tests in which the

variables in each group are replaced by a single variable. For
example, if y and z coincide, we replace each occurrence of
them by a new variable vy,z . ♦

Injectivity of the instantiations also ensures that the number
of instantiated variables corresponds to the number of free
variables. ∣∣fv(τi)ρ

∣∣ =
∣∣fv(τi)

∣∣
Example 9. Consider the situation of Example 5 and a trace
t in which a manager M1 and the employees E1, E2 cause a

violation. Assume there exist single-matched traces t1, t2 with

Λ(t1) =
{

(τ1,
[
m 7→M2

]
)
}

Λ(t2) =
{

(τ2,
[
ei 7→ E3, ej 7→ E4

]
)
}
,

where only the necessary parties are corrupted. By RPτ1 , there
exists a trace t′1 with

Λ(t′1) =
{

(τ1, [m 7→M1])
}

corrupted(t′1) = corrupted(t1)[M2 7→M1] = {M1} .

By RPτ2 , there exists a trace t′2 with

Λ(t′2) =
{

(τ2, [ei 7→ E1, ej 7→ E2])
}

corrupted(t′2) = corrupted(t2)[E3 7→ E1, E4 7→ E2]

= {E1, E2} . ♦

C. Soundness and Completeness

In this section, we defined the class of protocols and case
tests where we can express sufficiency as a trace property by
stating SM, II and RP. The latter can be checked syntactically,
while the first two can be verified directly.

Using the results we obtained above, we can now finally
define the verification conditions in terms of trace properties. In
the following, we assume P to be an accountability protocol.

We write SFtp, VEtp
ϕ , VNEtp

ϕ , Mtp, and Utp if the respective



Table II
SUFFIXES OF GENERATED LEMMAS

suffix condition

suff SFtp
τi

verif_empty VEtp
ϕ

verif_nonempty VNEtp
ϕ,τi

min Mtp
τi

uniq Utp
τi

inj IIτi
single SMτi

condition holds for all i ∈ [n]. We denote the conjunction of
these conditions by VCtp

ϕ or by VCtp if the security property
can be inferred from context.

We show the correctness of these conditions by relating
them to the axiomatic characterization from Section IV, which
has been proven equivalent to Definition 5 in Theorem 8.
Lemma 16 to Lemma 20 in Appendix B and Table I give a
nuanced picture of their relationship, which is useful to interpret
counterexamples (see also Appendix D). Theorem 22 and
Theorem 23 in Appendix B show soundness and completeness.

VIII. VERIFYING ACCOUNTABILITY USING TAMARIN

TAMARIN [13] is a protocol verification tool that supports
falsification and unbounded verification in the symbolic model.
Security protocols are specified using multiset-rewrite rules,
but support for specifying protocols in SAPiC [14] has recently
been added. This makes TAMARIN particularly suitable for
integrating our results. We extended TAMARIN with two
syntactical elements, case tests and accountability lemmas.
Case tests are specified by

test 〈name〉:
"〈τ〉"

where 〈name〉 is the name of the case test and 〈τ〉 is its formula.
Accountability lemmas are defined similarly to standard lemmas

lemma 〈name〉:
〈name1〉,...,〈namen〉 account(s) for "〈ϕ〉"

where 〈name〉 is the name of the lemma, 〈namei〉 are the
names of previously defined case tests, and 〈ϕ〉 is the security
property. The implementation allows defining an arbitrary
number of accountability lemmas. This is especially useful
when experimenting with different sets of case tests, discovering
potential attacks, and analyzing accountability properties in
general. The names of the lemmas generated for an account-
ability lemma have the following structure

〈lemma-name〉_〈case-test-name〉_〈suffix〉

where 〈suffix〉 is named according to Table II and
〈case-test-name〉 is not used for VEtp

ϕ . Each accountabil-
ity lemma consists of a set of case tests and a security property
and thus specifies a verdict function according to Definition 10.

We translate each accountability lemma into a set of standard
lemmas stating the trace properties SFtp

τi , VEtp
ϕ , VNEtp

ϕ,τi , M
tp
τi ,

Utp
τi , IIτi , SMτi . In Appendix F we show that all these lemmas

adhere to the guardedness requirement of TAMARIN provided
that the case tests are guarded. An accountability lemma holds
for a protocol P if TAMARIN can successfully verify all
generated lemmas and the replacement property RP holds. A
protocol can be specified in terms of multiset-rewrite rules or
as a SAPiC process.

When analyzing an accountability lemma, two outcomes
are possible. Either TAMARIN is able to verify all conditions
or at least one condition is violated. In the latter case, it can
be difficult to interpret the attack, depending on whether the
condition was necessary. To this end, we provide a detailed
decision diagram in Appendix D.

IX. CASE STUDIES

We demonstrate our methodology on eight case studies, four
from prior work [24] and four more in the domain of mixnets
and electronic voting. We summarize our findings in Tables III
and IV. For each case study, we provide the verification result
(X for successful verification, 7 if we found an attack), the
number of generated lemmas, and the time needed to verify
all lemmas (even if an attack is found).

Before describing the case studies, we want to emphasize
the importance of distinguishing between sessions, roles, and
parties. The number of sessions specifies how many instances
of a protocol can be executed in parallel. In each session,
there can be multiple roles—for example, a server or a client—
with different frequencies. Within a protocol trace, these roles
are instantiated with concrete party identifiers drawn from
a countably infinite set of public names. Depending on the
protocol, a party may participate in multiple sessions and each
session may be run by different sets of parties. Even if a
protocol has just one role, an unbounded number of parties
may be involved.

A. Case studies from [24]

We briefly recall the case studies from prior work [24].
WhoDunit illustrates a situation where a third party J cannot
provide a correct verdict. S sends some value to A and J and A
should forward it to J . We are interested in accountability for
J receiving the same value from A and S. Without signatures
it is impossible to distinguish between A tampering with the
message that it should forward and S sending different values
to A and J . The fixed version uses signatures to give evidence
of provenance. We extended the fixed version to an unbounded
number of parties in the roles of A and S. The original version
considers only a single communication session, hence both the
analysis with respect to rc and rw (see Section VI) run faster,
because they need to consider only a very small number of
possible interleavings (three protocol messages).

Certificate Transparency [31] is an accountability protocol
that provides transparency for a public key infrastructure. Kün-
nemann, Esiyok, and Backes [24] extended a simple model [20]
for a single certificate authority and a single logging authority.



Table III
VERIFICATION RESULTS FOR THE DMN AND MIXVOTE CASE STUDIES IN TWO FRAMEWORKS. WE COMPARE TYPE OF ATTACK

(7=ATTACK,X=VERIFICATION), NUMBER OF LEMMAS AND OVERALL VERIFICATION TIME.

Our proposal 1 role 2 roles 3 roles 4 roles 5 roles

Basic DMN (duplicate ciphertexts) — — X 13 26 s — —
DMN + message tracing (first) X 7 8 s X 7 124 s X 7 1373 s X 7 14 178 s X 7 134 160 s
DMN + message tracing (all) X 7 6 s 7 7 12 s 7 7 22 s 7 7 100 s 7 7 355 s
MixVote (unbounded) X 14 6 s — — — —

[24] 1 party 2 parties 3 parties 4 parties 5 parties

DMN + message tracing (first) X 7 7 s X 17 133 s X 46 2146 s X 149 23 827 s —∗ 544 —
DMN + message tracing (all) X 7 4 s 7 17 23 s 7 46 115 s 7 149 548 s 7 544 2922 s
MixVote (unbounded)∗∗ X 14 5 s X 34 58 s X 92 2721 s —∗ 298 — —∗ 1112 —
∗ No verification results due to memory exhaustion. ∗∗ Each party acts in the same role, that of the server.

Table IV
VERIFICATION RESULTS FOR CASE STUDIES FROM [24] IN THE UNBOUNDED SETTING.

Our proposal [24]

WhoDunit (fixed) X 7 52 s X (rc) 8 24 s
X (rw) 7 11 s

Certificate Transparency (extended) X 27 17 s X 31 21 s
OCSP Stapling (trusted resp.) X 7 1 s X 7 515 s
OCSP Stapling (untrusted resp.) 7 7 1 s 7 7 75 s

We adapted the model to allow for an unbounded number of
both, but otherwise adhered to their original formulation. We
observe a slight speed up in the verification, which is likely
due to the removal of logical redundancies in the axiomatic
characterization shown in Section IV. In contrast to WhoDunit,
the original model already considered an unbounded number
of interactions between concrete parties. Hence the proofs are
similarly structured.

OCSP Stapling [29] is a mechanism to attach signed Online
Certificate Status Protocol (OCSP [30]) messages during a TLS
handshake. The server’s goal is to provide evidence that their
certificate has not been revoked recently without the client
exposing their browsing behavior to the OCSP server. The
model from Künnemann, Esiyok, and Backes [24] used an
explicit clock process to model time. We extended their model
to an unbounded number of clients, TLS servers, and OCSP
servers. Moreover, we ported their SAPiC model to multiset-
rewrite rules to exploit a more effective modeling of timepoints,
improving the verification time by two orders of magnitude.
Otherwise, in particular concerning the communication, we
remained faithful to their modeling. The new model of
timepoints avoids the use of helping lemmas compared to three
required previously. It also reduces the verification time by
two orders of magnitude in the case the OCSP responder is
trusted and accountability holds and by at least one in case
the OCSP responder is untrusted.

B. Mixnets
Mixnets are a building block for many privacy-preserving

technologies, e.g., e-voting systems, anonymous messaging,
anonymous routing, and oblivious RAM (see a recent sur-
vey [26]). While basic mixnets are only suitable in the honest-
but-curious attacker model, they can be extended to provide
verifiability and even accountability.

In this work, we focus on basic decryption mix nets (basic
DMN) and their extension with message tracing (DMN +
message tracing) as proposed in [26]. To the best of our
knowledge, this case study provides the first automated formal
verification results for these kinds of DMNs.

In a DMN, each sender encapsulates their plaintext within
several layers of encryption using the last mix server’s public
key first and the first mix server’s public key last. Each
mix server decrypts the messages it receives, removing the
outermost layer. Each mix server shuffles the messages before
sending them to the next server on a public channel. For
accountability, we assume these messages to be stored on a
public append-only bulletin board that cannot be tampered with.

In basic DMNs, the ciphertexts on the bulletin board are
continuously checked for duplicates and, in the case of a
duplicate, the protocol is terminated. Depending on which
phase they were posted in, this audit correctly identifies the
responsible mix server or sender.

In DMNs with message tracing, the senders store the random
coins they used for encryption and each intermediate ciphertext
they produce. During the audit, each sender verifies for each



mixing step that their intermediate ciphertexts appears on the
bulletin board. If this is not the case, the sender in question
uses their stored random coins to prove that the mix server
misbehaved. We consider two cases of DMNs with message
tracing: in the first, the sender stops the audit once the first
misbehaving mix server is found. In the second variant, the
audit continues until the last mix server.

For this case study, we modeled basic DMNs and two
variants of DMNs with message tracing in TAMARIN. For
the former, we allow three mix server roles and two sender
roles. For the latter, we fix the number of sender roles to two,
and scale the number of mix server roles, the mix length, from
one to five. Note that there is still an unbounded number of
sessions with an unbounded number of potential senders and
mix servers in these roles, similar to how the Tor network fixes
the number of onion routers to three, but has millions of users.

For the basic DMN, we can show accountability for duplicate
ciphertexts when we limit the senders and mix servers to
only duplicate messages, but not submit otherwise dishonestly
generated messages. We define two case tests, one for senders,
which checks for duplicates in the senders’ output, and one for
mix servers, which checks for duplicates in the mix servers’
output including the final output. The tests hold any party
accountable that posts a ciphertext that has already been posted
on the bulletin board. Together, they provide accountability for
the property that no duplicates occur in the same phase of a
session.

For DMN with message tracing, we define a single case test
holding the mix servers accountable that have been identified
by a sender during the audit

τ := ∃sid , x , i . m = 〈sid , x 〉 ∧ B(m)@i , (13)

where B(〈sid ,m〉) denotes that a server blamed the mix server
m in session sid . We note that the variable m is free in the
case test. Hence, the parties in the verdict are pairs consisting
of a session identifier and a mix server. This allows a mix
server to be honest in one session and dishonest in another.

Up to a mix length of five, we can show accountability
when the senders/auditors only blame the first mix server they
catch cheating. This confirms an existing formal result in the
cryptographic model [18]. For the variant where they blame
all mix servers who have not posted the correct intermediate
ciphertext on the bulletin board, we find a counterexample
up to a mix length of five—with one exception. If there is
only one mix server role, this case is equivalent to the other
variant and accountability holds. For a mix length of two or
more, we find that uniqueness is violated, indicating that a mix
server can be blamed despite acting honestly. This happens
when a dishonest mix server tampers with the ciphertext in
one of the previous stages, as the mix servers down the line
will themselves produce ciphertexts that fail the audit.

For comparison and to evaluate the impact of using case tests
instead of defining the verdict function explicitly, we ported the
two variants of DMNs with message tracing to the framework
of [24]. First, we had to limit the number of sessions to one.
Listing all pairs of mix server identities (which include session

identifiers) would have been impossible.
Comparing the results of our approach with the results of

[24] in Table III, we see that they agree on the outcome. We
note, however, that while the number of generated lemmas
stays constant with an increasing number of mix servers in
our approach, they increase exponentially in the other. This
is, again, due to the explicit enumeration of all cases in the
verdict function in [24]. Even though we fix the identities to
the number of roles, i.e., M1 to M3 in the case of a mix
length of three, we have to account for each combination of
mix servers in the verdict function, e.g.,

verdict(t) :=



{
{M1}

}
if ωM1(t){

{M2}
}

if ωM2(t){
{M3}

}
if ωM3(t){

{M1}, {M2}
}

if ωM1,M2(t){
{M1}, {M3}

}
if ωM1,M3(t){

{M2}, {M3}
}

if ωM2,M3(t){
{M1}, {M2}, {M3}

}
if ωM1,M2,M3(t)

∅ otherwise ,

Here, each ωS is a trace property that is satisfied if and only if
the annotated mix servers in S are blamed. The number of cases
in the verdict function equals the cardinality of the powerset
of the set of “blameable” parties, which grows exponentially.
Hence, scalability is severely limited by this approach.

Thanks to the use of case tests, our approach permits the
specification of the verdict function independent of the number
of parties and even the number of mix server roles, keeping the
user’s specification effort minimal. Another consequence is that
the accountability lemmas we produce are actually the same.
We nevertheless observe an increase in verification time with
the mix length, but this is expected, as the backward-resolution
approach in TAMARIN has to explore a larger state space. While
a smarter encoding of the case study might be possible—we
tried several—this effect would likely occur when verifying
other properties, e.g., correspondence of output and input, in
the same model. Compared to the previous approach, we see
that the verification time is drastically reduced, sometimes
by a factor of five. This is despite the restriction to a fixed
set of parties and a single session for the previous approach.
The difference is more pronounced the longer the mixnet is,
which can be explained as follows: When the mix lengths
is increased, the search space for the backward-resolution is
increased, which, in both approaches, affects the verification
time per lemma. Since a lot more lemmas need to be proven
for the previous approach, the effect is amplified by a factor
that increases with the mix length.

C. Dispute resolution in MixVote

MixVote [25] adds a dispute resolution procedure to the
mixnet-based voting protocol Alethea [22].

We first give a high-level overview of the protocol. A voter H
uses their device D to compute their ballot by first encrypting
their vote under the voting authority’s (server S) public key



which is then signed by D. The voter casts their ballot b by
submitting it to some platform P , which forwards it over the
network to S. The ballot is verified by S by checking whether
it contains a signature corresponding to an eligible voter who
has not previously voted. In this case, b is added to the list
of recorded ballots [b]. S then signs b and sends it back to
H as an evidence that b was indeed received by the authority.
This evidence is kept by H in the case for later disputes.
Once the voting phase is over, S computes the tally of the
recorded ballots [b] by decrypting them using a mixnet. Finally,
S publishes the encrypted ballots and the decrypted votes on
the public bulleting board such that a voter can verify that
their ballot is included.

This case study shows that our approach can be applied to
existing specifications with minimal effort and is based on one
of the TAMARIN models from Basin, Radomirovic, and Schmid
[25] (mixvote_SmHh). In this model, the voting authority S
can be corrupted while the voters are honest. When corrupted,
the authority’s secret key is given to the adversary and the
incoming and outgoing channels are modeled as insecure. S
is partially trusted to sign and return a valid ballot received
from P . This model covers the case where a voter H claims
to have cast a ballot b while the authority S claims that this is
not the case.

The original model runs a single session of the protocol
with the identity of the server fixed to ‘S’. We extended the
model to support an unbounded number of sessions, used an
unreliable insecure channel from P to S, and added a corruption
mechanism for the server. Note that the restriction to a single
server role per session is a property of the protocol and not a
limitation of our approach.

We focus on the two properties protecting an honest voter
in the case of a dispute:

• VoterC : ensures that whenever an honest voter detects
that one of their ballots was not recorded correctly, they
can convince others that S is dishonest.

• TimelyP ensures that whenever an honest voter casts
a ballot, they cannot be prevented from continuing the
protocol until their ballot is recorded or they can convince
others that S is dishonest.

We define an accountability lemma for each property.
a) Accountability for VoterC : We first define the security

property, which is directly encoded in VoterC . Whenever an
honest voter H validates their ballot, it is indeed included in
the list of recorded ballots on the bulletin board.

ϕVoterC := ∀H , b, b1 , i . Verify(H , b, b1 )@i

=⇒· ∃BB , j . BBrec(BB , 〈‘b’, b〉)@j

We then define a case test which blames S whenever a ballot
is recorded on the bulletin board that has not been signed by
the voter’s device D and the verifiability check is reached.

b) Accountability for TimelyP : The security property
follows with a slight change from TimelyP . Whenever an
honest voter H casts a ballot and all relevant information is

published on the bulletin board, the ballot is indeed included
in the list of recorded ballots on the bulletin board.

ϕTimelyP := ∀H , b, i , j . Ballot(H , b)@i ∧ End@j

=⇒· ∃BB , k . BBrec(BB , 〈‘b’, b〉)@k
∧ i < k ∧ k = j

We define a case test which blames S whenever a ballot is
recorded on the bulletin board which has not been signed by
the voter’s device D and the point where the voter receives
their ballot from D is reached. We note that this case test is
the same as the one for VoterC with the exception of the
point in the protocol needed to be reached. Here, we have
to slightly strengthen the accountability lemma compared to
TimelyP . We move the requirement that the ballot is cast before
the voting ends (i < k) from the premise to the conclusion.
Otherwise, when a ballot is cast after the vote has ended, we
have a matching case test without a security violation, i.e., a
counterexample to VNEtp.

Our approach can automatically show that accountability
holds for the two properties described above without requiring
helping lemmas.

We ported the model to the framework of [24] to provide
a comparison with our approach. This version also supports
an unbounded number of sessions, but due to the restriction
on concrete party identifiers, we had to limit the set of parties
that could act as the server. We analyzed the protocol with
up to five distinct server parties and obtained results with up
to three. In the case of four and five identities, TAMARIN’s
search algorithm exceeded the amount of available memory.

The results in the framework of [24] agree with the results
of our approach, but the time needed to obtain them increases
exponentially with the number of parties, whereas the result
presented here holds for an unbounded number of parties.

For future work, it might be interesting to hold both the
voter and server accountable at the same time, by merging the
MixVote model that covers a dishonest voter and an honest
authority (mixvote_ShHm) with the one we investigated here.

X. CONCLUSION

In this work, we provide an automated verification method-
ology for accountability that supports an unbounded number
of participants, and thus an unbounded number of security
violations. This precludes explicit assignment of blame. We
therefore introduced case tests—a higher-level variant of Bruni,
Giustolisi, and Schuermann’s accountability tests— and used
them to define highly flexible verdict functions. Our approach
also improves readability, as we may consider each case test
as a specific manifestation of a violation. We showed how
the verdict-based verification conditions can be expressed
using case tests and finally be encoded in terms of trace
properties. Furthermore, we extended TAMARIN with the ability
to automatically generate these from accountability lemmas.
Our case studies demonstrate applications for transparency
protocols, revocation protocols, mixnets, and dispute resolution
in e-voting.
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APPENDIX

A. Proofs for Section IV
1) Helping lemmas: The following lemma will help us in

the soundness proof. Assume actual and counterfactual traces t,
t′ are related and S′ is a set in apv(t′). Then apv(t) is empty
or there exists a subset of S which is in apv(t).

Lemma 12. For all traces t, t′

r(t, t′) ∧ S′ ∈ apv(t′) =⇒ apv(t) = ∅
∨ ∃S. S ∈ apv(t) ∧ S ⊆ S′ .

Proof by contradiction. Assume r(t, t′), S′ ∈ apv(t′),
apv(t) 6= ∅ and there does not exist S ∈ apv(t) such that
S ⊆ S′. From the latter follows S′ /∈ apv(t). For this to be
the case, at least one of the three requirements in Definition 5
has to be violated. From apv(t) 6= ∅ follows with Corollary 6
that t � ¬ϕ. Thus R1 is satisfied. As S′ ∈ apv(t′), there exists
a trace t? such that

t? � ¬ϕ ∧ corrupted(t?) = S′ ∧ r(t′, t?) .

With r(t, t′) follows r(t, t?) and thus R2 is fulfilled. Therefore,
R3 cannot hold. Let t′′ be such that S = corrupted(t′′)
is minimal. Then S ∈ apv(t) and S ( S′. However, this
contradicts our assumption that no such set exists. �

It may seem unintuitive that either the apv is empty or for
each set of parties in the apv of the counterfactual trace a
subset of this set must exist in the apv of the actual trace. We
note that the minimality requirement of the apv is weaker in
the counterfactual trace than in the actual trace. The traces
related to t′ are a subset of the traces related to t and thus
there may be a trace related to t showing that a set S is not
minimal, but this trace is not necessarily related to t′.

From R3 of the apv, we derive that the apv does not contain
two sets where one is a strict subset of the other.

Corollary 13. For all traces t and sets S

S ∈ apv(t) =⇒ @S′. S′ ∈ apv(t) ∧ S′ ( S . (14)

Proof by contradiction. Assume (14) does not hold. Then there
exist S, S′ ∈ apv(t) with S′ ( S. From S′ ∈ apv(t) follows
the existence of a trace t′ such that

t′ � ¬ϕ ∧ corrupted(t′) = S′ ∧ r(t, t′) .

As S′ ( S this violates R3 with respect to S. �

2) Soundness and Completeness: We show that the verdict-
based verification conditions are sound and complete with
respect to Definition 7.

Theorem 14 (Soundness). For any protocol P , security
property ϕ, and verdict function verdict, if VC holds, then
verdict provides P with accountability for ϕ.

Proof. Assume VC holds. We show that for all traces t,
apv(t) = verdict(t). Let t be an arbitrary trace.

From Corollary 6 and Vϕ directly follows apv(t) = ∅ ⇐⇒
verdict(t) = ∅. Hence, we only have to consider nonempty
verdicts in the following. The proof consists of two parts. We
first show that apv(t) ⊆ verdict(t) and then verdict(t) ⊆
apv(t).

Assume S ∈ apv(t). To show that S ∈ verdict(t), we have
to prove that S satisfies C1 to C4.
C1: From R2 follows the existence of a trace t′ such that

t′ � ¬ϕ ∧ corrupted(t′) = S ∧ r(t, t′) .

It suffices to show that verdict(t′) =
{
S
}

. From Vϕ and
t′ � ¬ϕ follows verdict(t′) 6= ∅. Assume |verdict(t′)| > 2.
Then there exist S?, S?? such that

{
S?, S??

}
⊆ verdict(t′)

and S? 6= S??. By SFS? and SFS?? , there exist traces t?, t??

such that

verdict(t?) =
{
S?
}
∧ corrupted(t?) ⊆ S? ∧ r(t′, t?)

verdict(t??) =
{
S??
}
∧ corrupted(t??) ⊆ S?? ∧ r(t′, t??) .

From US? and r(t′, t?) follows S? ⊆ S. From US?? and
r(t′, t??) follows S?? ⊆ S. Since S? 6= S??, either S? ( S or
S?? ( S. However, as S ∈ apv(t), r(t, t?), and r(t, t??), this
would violate the minimality of S. Thus S? = S?? = S and
verdict(t′) =

{
S
}

.
C2: Assume C2 does not hold. Then there exists S′ ∈
verdict(t) such that S′ ( S. We argue that S′ ∈ apv(t) by
showing that all three requirements of Definition 5 are satisfied.
By SFS′ , there exists a trace t′ such that

verdict(t′) =
{
S′
}
∧ corrupted(t′) ⊆ S′ ∧ r(t, t′) .

From US′ follows S′ ⊆ corrupted(t′) and thus with the results
from above corrupted(t′) = S′. From Vϕ follows t′ � ¬ϕ.
Thus t′ satisfies R2. Since S ∈ apv(t), R1 is also satisfied. If
R3 would not be fulfilled, then there would exist a trace t′′

such that

t′′ � ¬ϕ ∧ corrupted(t′′) ( S′ ∧ r(t, t′′) .

As S′ ( S, this would violate the minimality of S. Thus R3
holds and S′ ∈ apv(t). However, this violates Corollary 13.
C3: By R2, there exists a trace t′ such that corrupted(t′) = S
and r(t, t′). From (1) follows S ⊆ corrupted(t).
C4: C4 follows directly from R1.

We now consider the reverse direction. Assume S ∈
verdict(t). To show that S ∈ apv(t), we have to prove that S
satisfies R1 to R3 of the apv.
R1: From Vϕ directly follows t � ¬ϕ.



R2: By SFS , there exists a trace t′ such that

verdict(t′) =
{
S
}
∧ corrupted(t′) ⊆ S ∧ r(t, t′) .

From US follows S ⊆ corrupted(t′) and thus corrupted(t′) =
S. From Vϕ follows t′ � ¬ϕ. Hence, t′ satisfies R2.
R3: Assume the r does not hold. Then there exists a trace t′

such that

t′ � ¬ϕ ∧ corrupted(t′) ( S ∧ r(t, t′) .

Let t′ be minimal with respect to S′ = corrupted(t′). Then
S′ ∈ apv(t′) and S′ ( S. Since r(t, t′), by Lemma 12,
apv(t) = ∅ or there exists S′′ ∈ apv(t) such that S′′ ⊆ S′. If
apv(t) = ∅, it follows from the former proof that verdict(t) =
∅, which contradicts our assumption that S ∈ verdict(t). In the
other case, the former proof implies S′′ ∈ verdict(t). However,
as S′′ ( S this violates MS . �

Theorem 15 (Completeness). For any protocol P , security
property ϕ, and verdict function verdict, if verdict provides
P with accountability for ϕ, then VC holds.

Proof. Assume that for all traces t, apv(t) = verdict(t). We
have to show that VC holds. Let t be an arbitrary trace. Vϕ
follows from apv(t) = verdict(t) and Corollary 6. Hence, we
only have to consider nonempty verdicts in the following.
SFS: Assume S ∈ apv(t) and S ∈ verdict(t). From R2
follows the existence of a trace t′ such that

t′ � ¬ϕ ∧ corrupted(t′) = S ∧ r(t, t′) .

It suffices to show that verdict(t′) =
{
S
}

. If verdict(t′) = ∅
and thus apv(t′) = ∅, then t′ � ¬ϕ which would violate
Corollary 6. Assume |verdict(t′)| > 2. Then there exist S?,
S?? such that

{
S?, S??

}
⊆ apv(t′) and S? 6= S??. By R2,

there exist traces t?, t?? such that

t? � ¬ϕ ∧ corrupted(t?) = S? ∧ r(t′, t?)
t?? � ¬ϕ ∧ corrupted(t??) = S?? ∧ r(t′, t??) .

From r(t′, t?) follows S? ⊆ S and from r(t′, t??) follows
S?? ⊆ S. Since S? 6= S??, either S? ( S or S?? ( S. However,
as S ∈ apv(t) and r(t, t?), r(t, t??), this would violate the
minimality of S. Thus S? = S?? = S and verdict(t′) =

{
S
}

.
Hence, SFS holds.
MS: Assume S ∈ apv(t) and S ∈ verdict(t). MS follows
from apv(t) = verdict(t) and Corollary 13.
US: Assume S ∈ apv(t) and S ∈ verdict(t). By R2, there
exists a trace t′ such that corrupted(t′) = S and r(t, t′). From
(1) follows S ⊆ corrupted(t).
CS: Let S be such that C1 to C4 are satisfied. Assume S /∈
verdict(t) and thus by assumption S /∈ apv(t). We provoke a
contradiction by showing that S satisfies R1 to R3.

From C4 directly follows R1.
From C1 follows the existence of a trace t′ such that

verdict(t′) =
{
S
}
∧ corrupted(t′) ⊆ S ∧ r(t, t′) .

By assumption apv(t′) =
{
S
}

and by R1 t′ � ¬ϕ. Along with
C3 follows corrupted(t′) = S and thus t′ satisfies R2.

Assume R3 does not hold. Then there exists a trace t′′ such
that

r(t, t′′) ∧ corrupted(t′′) ( S ∧ t′′ � ¬ϕ .

Let w.l.o.g. t′′ be a trace such that corrupted(t′′) = S′

is minimal. Then S′ ∈ apv(t) and S′ ( S. However, by
assumption it follows that S′ ∈ verdict(t) violating C2.

Hence, S ∈ verdict(t). �

B. Soundness and completeness of verification conditions

In the transformations we perform below, we use (7) to (11),
Definition 2, and Corollary 11.

Lemma 16 (Verifiability).

Vϕ ⇐⇒ VEtp
ϕ ∧ VNEtp

ϕ

Proof.

Vϕ
∀t≡ verdict(t) = ∅ ⇐⇒ t � ϕ
∀t≡
(
@ i, ρ. t � τiρ

)
⇐⇒ t � ϕ

∀t≡
[(∧
i∈[n]

@ρ. t � τiρ
)

=⇒ t � ϕ
]

∧
[(∨
i∈[n]

∃ρ. t � τiρ
)

=⇒ t � ¬ϕ
]

∀t≡
[(∧
i∈[n]

t � @~v. τi
[
~v
])

=⇒ t � ϕ
]

∧
[∧
i∈[n]

∀ρ.
(
t � τiρ =⇒ t � ¬ϕ

)]
∀t≡

(
t �
[(∧
i∈[n]

@~v. τi
[
~v
])

=⇒· ϕ
])

∧
∧
i∈[n]

(
t �
[
∀~v. τi

[
~v
]

=⇒· ¬ϕ
])

∀t≡ t �
0

VEtp
ϕ

8

∧
∧
i∈[n]

t �
0

VNEtp
ϕ,τi

8

≡ P �∀
0

VEtp
ϕ

8

∧
∧
i∈[n]

P �∀
0

VNEtp
ϕ,τi

8

≡ VEtp
ϕ ∧ VNEtp

ϕ �

Lemma 17 (Minimality).

M ⇐⇒ Mtp

Proof.

M ≡ ∀ t, S. S ∈ verdict(t) =⇒ @S′. S′ ∈ verdict(t)

∧ S′ ( S

≡ ∀ t, i, ρ. t � τiρ =⇒ @j, ρ′. t � τjρ′

∧ fv(τj)ρ
′ ( fv(τi)ρ

≡
∧
i∈[n]

∀ t, ρ. t � τiρ =⇒
∧
j∈[n]

(
@ρ′. t � τjρ′

∧ fv(τj)ρ
′ ( fv(τi)ρ

)



≡
∧
i∈[n]

∀ t. t �

[
∀~v. τi

[
~v
]

=⇒·
∧
j∈[n]

(
@ ~w. τj

[
~w
]

∧
0

~w ( ~v
8

)]

≡
∧
i∈[n]

∀ t. t �
0

Mtp
τi

8

≡
∧
i∈[n]

P �∀
0

Mtp
τi

8

≡ Mtp �

Lemma 18 (Uniqueness).

U ⇐⇒ Utp

Proof.

U ≡ ∀ t, S. S ∈ verdict(t) =⇒ S ⊆ corrupted(t)

≡ ∀ t, i, ρ. t � τiρ =⇒ fv(τi)ρ ⊆ corrupted(t)

≡
∧
i∈[n]

∀ t. t �
[
∀~v. τi

[
~v
]

=⇒·
0

~v ⊆ Corrupted
8

]
≡
∧
i∈[n]

∀ t. t �
0

Utp
τi

8

≡
∧
i∈[n]

P �∀
0

Utp
τi

8

≡ Utp �

Lemma 19 (Sufficiency—Soundness).

SFtp ∧ Utp ∧ II ∧ RP =⇒ SF

Proof. Let S ∈ verdict(t). By Corollary 11 there exists
a case test τi and an instantiation ρ such that t � τiρ
with fv(τi)ρ = S. By SFtp

τi there exists a trace t′ such
that Λ(t′) =

{
(τi, ρ

′)
}

and corrupted(t′) ⊆ fv(τi)ρ
′. Using

(τi, ρ) ∈ Λ(t) as a witness, from IIτi and RPτi follows the
existence of a single-matched trace t′′ with Λ(t′′) =

{
(τi, ρ)

}
and corrupted(t′′) = corrupted(t′)(ρ ◦ ρ′−1

). From the latter
follows corrupted(t′′) ⊆ S. It remains to show that t and t′′

are related. From Utp
τi follows S ⊆ corrupted(t′′) and thus

corrupted(t′′) = S. From Utp
τi follows S ⊆ corrupted(t). As

all requirements are fulfilled, we can apply RI to obtain r(t, t′′).
Hence,

verdict(t′′) = {S} ∧ corrupted(t′′) ⊆ S ∧ r(t, t′′) ,

and SFS holds. Since S has been arbitrary, the same argument
applies to all S, which shows SF. �

Lemma 20 (Sufficiency—Completeness).

SF ∧ SM ∧ V =⇒ SFtp

Proof. By SM there exists for each case test τi a single-matched
trace t such that Λ(t) =

{
(τi, ρ)

}
. Let S = fv(τi)ρ. From

Corollary 11 follows S ∈ verdict(t). By SFS there exists a
trace t′ such that

verdict(t′) =
{
S
}
∧ corrupted(t′) ⊆ S ∧ r(t, t′) .

From V follows t � ¬ϕ and t′ � ¬ϕ. Along with r(t, t′)
follows by RE that Λ(t′) ⊆ Λ(t). From Corollary 11 and
S ∈ verdict(t′) follows Λ(t′) =

{
(τi, ρ)

}
. Hence, with (10)

follows

t′ � ∃~v. τi
[
~v
]
∧
[
∀ ~w. τi

[
~w
]

=⇒· ~w = ~v
]

∧
[ ∧
j∈[n]\{i}

@~x. τj
[
~x
]]

∧
0

Corrupted ⊆ ~v
8

.

The same argument applies to each single-matched trace for
which there exists at least one for each case test by SM. This
shows SFtp. �

Lemma 21 (Completeness).

VNEtp
ϕ =⇒ C

Proof. From C1 follows the existence of a trace t′ such that

verdict(t′) =
{
S
}
∧ corrupted(t′) ⊆ S ∧ r(t, t′)

and from C4 follows t � ¬ϕ. From Corollary 11 follows
the existence of a case test τi and instantiation ρ such that
t′ � τiρ. And thus t′ � ¬ϕ by VNEtp

ϕ,τi . As all requirements
are satisfied, RE can be applied to obtain Λ(t′) ⊂ Λ(t). From
the latter follows with (6) that verdict(t′) ⊆ verdict(t) and
thus S ∈ verdict(t). �

With the results above, we can proof the central theorems
of this work—soundness and completeness of VCtp.

Theorem 22 (Soundness). For any protocol P , security
property ϕ, and case tests C = τ1, . . . , τn, if VCtp, II, and
RP hold, then verdictC provides P with accountability for ϕ.

Proof. Assume VCtp, II and RP hold. From Lemmas 16
to 19 follows VC. By Theorem 14 verdict provides P with
accountability for ϕ. �

Theorem 23 (Completeness). For any protocol P , security
property ϕ, and case tests C = τ1, . . . , τn, if verdictC provides
P with accountability for ϕ, and SM holds, then VCtp holds.

Proof. Assume verdict provides P with accountability for ϕ,
and SM holds. From Theorem 15 follows VC. By Lemmas 16
to 18 and 20 follows VCtp. �

C. Proof of sufficiency condition for BR

Arguments about syntactic conditions inherently depend on
the calculus. However, the high-level argument is the same for
both SAPiC and multiset-rewrite rules. Hence we first provide
a proof sketch, and then fully elaborate the proof for multiset-
rewrite rules.

Lemma 24.

A ⊆ PN ∧ fn(P) ∩ PN = ∅ =⇒ BR (15)

Proof sketch. Assume (15) does not hold. Then there exists
a bijection σ : A ↔ A and a trace t ∈ traces(P) such
that tσ /∈ traces(P). Since t 6=E tσ, there exists w.l.o.g.



an action F(m1, . . . ,mn)@k ∈ t for messages mi such that
F(m1, . . . ,mn)@k 6=E F(m1σ, . . . ,mnσ)@k. Hence, there
exists a j ∈ [n] such that mj 6=E mjσ. From A ⊆ PN and
the fact that σ is a bijection on PN , it follows that mj and
thus mjσ contain public names.

Since P does not contain public names by assumption,
the public names cannot be hardcoded and must arise from
variable realizations. For the same reason, these variables can
be compared to other messages, but not to public names, hence
the comparison results must be preserved under a bijective
renaming of public names.

Thus, whenever a message mi can be constructed in P , the
message miσ under the bijection σ can be constructed. This
argument extends to all messages in the action F and to all
actions in t. Hence, when t ∈ traces(P) then tσ ∈ traces(P)
which violates our assumption that BR does not hold. �

In the following, we assume that P is defined by a set of
multiset-rewrite rules {ru1, . . . , run}.

Proof. Assume (1) A ⊆ PN and (2) fn(P) ∩ PN = ∅.
Let σ : A ↔ A be an arbitrary bijection and t ∈ traces(P)
be an arbitrary trace. Each action F(m1ω, . . . ,mkω)@k ∈ t
corresponds to the application of a realized rule ri i = ruiω,
where F(m1ω, . . . ,mkω)@k ∈ ri i.a and ri i.a denotes the
multiset of actions in rule ri i. Note that the domain of ω are
variables and the domain of σ are public names.

To prove that tσ ∈ traces(P), it suffices to show that each
action F((m1ω)σ, . . . , (mkω)σ)@k ∈ tσ corresponds to the
application of a realized rule ri iσ. To this end, we show
that when a rule rui = (l, a, r) is applicable in state S with
realization ω producing actions aω and leading to state S′ = S\
lω∪rω, then rui is also applicable in state Sσ with realization
σ ◦ ω producing actions (aω)σ and leading to state S′σ.

Note that due to assumptions (1) and (2), all public names
in a realized rule ri i correspond to variables in rui, i.e., are
subterms of ω(v) for some variable in ri i. Thus σ ◦ ω gives
rise to a rule instance ri ′i = rui(σ ◦ ω).

Since ri i is applicable, we know that for each fact f ∈ lω,
there exists a fact f ′ ∈E S. Due to assumptions (1) and
(2), f ′σ ∈ Sσ and thus (lω)σ ⊆ Sσ. Hence, the rule ri ′i is
applicable in state Sσ leading to state

Sσ \ ((lω)σ) ∪ ((rω)σ) = (S \ lω ∪ rω)σ = S′σ .

Thus, tσ ∈ traces(P) and tσ is generated by the same
sequence of multiset-rewrite rules as t where each rule
application is substituted by σ. �

D. Implications of the Results

The implications of a failed condition are depicted in Fig-
ure 2. Each arrow in the diagram represents an implication; each
branch a disjunction. The implications follow from Lemmas 16
to 18 and 20, and Definition 7 as well as the definitions of
the respective conditions. For example, if ¬VNEtp

ϕ , we know
by Lemma 16 that ¬Vϕ. Hence, ¬VC and by Theorem 15
accountability is not provided.

Figure 2. Decision diagram for the requirements and verification conditions
defined in Section VII. Each edge represents an implication, each branch a
disjunction.

¬VCtp ¬SM ¬II

¬Utp ¬Mtp ¬VEtp
ϕ ¬VNEtp

ϕ ¬SFtp ¬RP

¬U ¬M ¬Vϕ ¬SF ¬SM

¬VC

¬Acc ¬Acc / Acc

¬VC

In the following, we discuss the meaning of each failed
condition and give hints on how to fix the problems.

a) Case ¬SFtp
τi : There does not exist a single-matched

trace for τi in which only a subset of the blamed parties is
corrupted. At least one party, which is needed to cause a
violation is not blamed. Accountability may still be provided.

Hint: Assume VNEtp
ϕ,τi . If ¬SMτi , we should solve this

problem first. In all single-matched traces of τi, there exists at
least one corrupted party which is not one of the instantiated
free variables of τi. It may be possible to revise τi by adding
additional free variables and action constraints such that all
parties needed for a violation are blamed by τi.

b) Case ¬VEtp
ϕ,τi: No case test holds, but the security

property is violated. This indicates that the case tests are not
exhaustive, that is, capture all possible ways to cause a violation.
Accountability is not provided.

Hint: The trace TAMARIN found as a counterexample may
give a hint for an additional case test or shows that the security
can be violated in an unintended way.

c) Case ¬VNEtp
ϕ,τi : The case test τi holds but the security

property is not violated. This indicates that there exists a trace
where τi is not sufficient to cause a violation. Accountability
is not provided.

Hint: The trace TAMARIN found as a counterexample may
give a hint to revise τi such that for all traces in which it holds
the security property is violated.

d) Case ¬Mtp
τi : There exists an instantiation of a case

test τj which blames strictly fewer parties than an instantiation
of τi in the same trace. Accountability is not provided.

Hint: Assume VNEtp
τi and VNEtp

τj . If both τi and τj are
necessary for VEtp

ϕ to hold, they need to be separated such that
they do not hold simultaneously. This can be accomplished by
replacing τi with τi ∧ ¬

(
τj ∧

0

fv(τj) ( fv(τi)
8)

.



e) Case ¬Utp
τi : A party is blamed by an instantiation of

τi but it has not been corrupted, thereby holding an honest
party accountable. Accountability is not provided.

Hint: Assume VNEtp
ϕ,τi . If ¬Mtp

τi , we should solve this
problem first. The trace TAMARIN found as a counterexample
shows which party is blamed without having been corrupted.
If the corresponding instantiated free variable can never be
corrupted, it can be quantified in τi to avoid being blamed. If
it can be corrupted for some traces, a closer look on τi and
the protocol is necessary.

f) Case ¬SMtp
τi : There does not exist a single-matched

trace for τi. Either
(i) there does not exist a trace where τi holds, or

(ii) τi always holds with multiple instantiations, or
(iii) for all traces there exist another case test which holds at

the same time
Accountability may still be provided.

Hint: Assume VNEtp
ϕ,τi . In case (i), τi may be ill-defined

or contains a logic error. In case (ii), if all the instantiations
are permutations of each other, a single-matched trace may be
obtained by making τi antisymmetric. Then for all instantiations
ρ, ρ’

t � τiρ ∧ t � τiρ′ ∧ fv(τi)ρ = fv(cti)ρ
′ =⇒ ρ = ρ′ .

If the instantiations are not permutations, at least two disjoint
groups of parties are always blamed. This requires a closer
look on τi and the protocol. In case (iii), it may be possible
to merge multiple case tests together for which then a single-
matched trace exists.

g) Case ¬IItpτi : The case test τi is not injective. There
exists an instantiation mapping distinct free variables to the
same party. Accountability may still be provided.

Hint: See Example 8 for a way to split τi.
We note that for the conditions SFtp

τi , Mtp
τi , Utp

τi , and SMτi ,
we assumed above that the case tests satisfy VNEtp

ϕ,τi . If this
is not the case, then the case test has a fatal error—it does not
always lead to a violation—which renders the other conditions
meaningless.

E. Stateful Applied Pi Calculus

In this appendix, we introduce the Stateful Applied Pi
Calculus—called SAPiC [14], [19]—which is an extension
to the well-known applied-π calculus [4]. In addition to the
functionality of the former calculus, SAPiC provides support
for accessing and updating an explicit global state.

In the following, we explain the syntax and semantics of
the calculus. The syntax of SAPiC is shown in Figure 3.

0:
The terminal process.

P |Q :
The parallel execution of the processes P and Q .

P + Q
External non-deterministic choice. If P or Q can reduce to

a process P ′ or Q ′, P + Q may reduce to either.

Figure 3. SAPiC syntax
〈P ,Q〉 ::= 0

| P |Q
| P + Q
| !P
| vn; P
| out([M ,]N ); P
| in([M ,]N ); P
| if M = N then P

[else Q ]
| event F; P
| insert M ,N ; P
| delete M ; P
| lookup M as x in P

[else Q ]
| lock M ; P
| unlock M ; P

〈M ,N 〉 ::= x , y , z ∈ V
| p ∈ PN
| n ∈ FN
| f(M1 , . . . ,Mk ), f ∈ Σk

!P
The replication of P allowing an unbounded number of

sessions in protocol executions. It is equivalent to P | !P .

vn; P
This construct binds the name n ∈ FN in P and models

the generation of a fresh, random value.

out([M ,]N ); P

in([M ,]N ); P
These constructs represent the output and input of a message

N on channel M respectively. The channel argument is optional
and defaults to the public channel c. In contrast to the applied-π
calculus [4], SAPiC’s input construct performs pattern matching
instead of variable binding.

if M = N then P [else Q ]
If M =E N , this process reduces to P and otherwise to Q .

The else-branch is optional and defaults to the 0 process.

event F; P
This construct leaves the fact F in the trace of the process

execution which is useful in the definition of trace formulas.

insert M ,N ; P
This construct associates the key M with the value N . An

insert to an existing key overwrites the old value.

delete M ; P
This construct removes the value associated to the key M .

lookup M as x in P [else Q ]
This construct retrieves the value associated to the key M

and binds it to x in P . If no value has been associated with
M , it reduces to Q .

lock M ; P
unlock M ; P

These constructs protect a term M from concurrent access
similar to Dijkstra’s binary semaphores. If M has been locked,
any subsequent attempt to lock M will be blocked until M



Figure 4. Deduction relation

a ∈ FN a /∈ ñ

v ñ.σ ` a
DNAME

vñ.σ ` t t =E t ′

vñ.σ ` t ′
DEQ

x ∈ dom(σ)

vñ.σ ` xσ
DFRAME

vñ.σ ` t1 . . . vñ.σ ` tk f ∈ Σk \ Σkpriv

vñ.σ ` f(t1 , . . . , tk )
DAPPL

has been unlocked. This is important if parallel processes read
and modify shared state.

a) Frames and deduction: During a protocol execution,
the adversary may compute new messages from observed ones.
This is formalized by a deduction relation and a frame. A
frame, denoted by vñ.σ, consists of a set of fresh names ñ
and a substitution σ. The fresh names are the secrets generated
by the protocol which are a priori unknown to the adversary
and the substitution represents the observed messages. The
deduction rules of Figure 4 allow the adversary
• to learn a free or public name if it is not a secret (DNAME),
• to obtain a message in the substitution (DFRAME),
• to derive a term equal modulo E to an already deduced

term (DEQ), or
• to apply a non-private function to already deduced terms

(DAPPL).

Definition 25 (Deduction). The deduction relation vñ.σ ` t
is defined as the smallest relation between frames and terms
according to the deduction rules in Figure 4.

b) Operational semantics: The semantics of SAPiC is
defined by a labeled transition relation between process config-
urations. A process configuration is a 5-tuple (X ,S,P, σ,L)
where
• X ∈ FN is the set of fresh names generated by the

processes;
• S : MΣ →MΣ is a partial function modeling the store;
• P is a multiset of ground processes representing the

processes executed in parallel;
• σ is a ground substitution modeling the messages output

to the environment;
• L ⊆MΣ is the set of currently active locks.
The transition relation is specified by the rules shown in Ta-

ble V. Transitions are labeled by sets of ground facts. Reducing
a process means that it can transition from a configuration c
to a configuration c′ with a set of facts {F1, . . . ,Fn} which is
denoted by c {F1,...,Fn}−−−−−−−→ c′. Empty sets and brackets around
singleton sets are omitted for clarity. We write −−→ for ∅−−→
and f−−→ for {f}−−→. An execution is a sequence of consecutive
configurations c1

F1−−→ . . . Fn−−→ cn. The trace of an execution
is the sequence of nonempty facts Fi. The reflexive transitive

closure of −−→, which are the transitions labeled by the empty
sets, is denoted by −−→∗ and f

==⇒ denotes −−→∗ f−−→−−→∗.
The set of traces of a process P contains all traces of possible
executions of the process.

Definition 26 (Traces of P ). Given a ground process P , the
traces of P are defined by

traces
(
P
)

=
{(

F1, . . . ,Fn

) ∣∣∣ c0 F1==⇒ . . .
Fn==⇒ cn

}
,

where c0 =
(
∅, ∅, {P}, ∅, ∅

)
is the initial process configuration.

F. Ensuring Guardedness

Trace properties in TAMARIN are specified by trace formu-
las from a guarded fragment of two-sorted first-order logic.
Guardedness imposes requirements on the structure of the trace
formulas. Universally and existentially quantified variables have
to be guarded by an action constraint directly after the quantifier
in which all the variables occur. For universally quantified trace
formulas, the outermost logical operator inside the quantifier
has to be an implication; for existentially quantified trace
formulas a conjunction. Formally, we can define guardedness
as follows.

Definition 27 (Guarded trace formula). A trace formula ϕ is
guarded if there exists a fact Action ∈ F and a trace formula
ψ such that

ϕ = ∃~x, i. Action(~x)@i ∧ ψ(~x) or (16)
ϕ = ∀~x, i. Action(~x)@i =⇒· ψ(~x) . (17)

In order for TAMARIN to verify the generated lemmas, we
have to ensure that they conform to either (16) or (17). Taking
a closer look on the defined trace properties in Section VII, we
see that a case test τi occurs in exactly three different kinds
of subformulas.

∃~v. τi
[
~v
]

(18)

∀~v. ¬τi
[
~v
]

(19)

∀~v. τi
[
~v
]

=⇒· γ(~v) (20)

Assume τi is guarded and has the form of (16). Expanding
τi in the above formulas yields

∃~v. ∃~x, i. Action(~x)@i ∧
(
ψ(~x)

)[
~v
]

≡ ∃~v, ~x, i. Action(~x)@i ∧
(
ψ(~x)

)[
~v
]

∀~v. ¬
(
∃~x, i. Action(~x)@i ∧

(
ψ(~x)

)[
~v
])

≡ ∀~v, ~x, i. Action(~x)@i =⇒· ¬
(
ψ(~x)

)[
~v
]

∀~v.
(
∃~x, i. Action(~x)@i ∧

(
ψ(~x)

)[
~v
])

=⇒· γ(~v)

≡ ∀~v, ~x, i. Action(~x)@i ∧
(
ψ(~x)

)[
~v
]

=⇒· γ(~v) .

All formulas are in the form of (16) or (17) and are thus
themselves guarded.

Assume τi is guarded and has the form of (17). Expanding
τi in the above formulas yields

∃~v. ∀~x, i. Action(~x)@i =⇒·
(
ψ(~x)

)[
~v
]



Table V
OPERATIONAL SEMANTICS OF SAPIC

current configuration (ci) label next configuration (ci+1)

P ∪# {0} −−→ P

P ∪# {P |Q} −−→ P ∪# {P ,Q}

P ∪# {!P} −−→ P ∪# {P , !P}

P ∪# {vn; P} −−→
X ∪ {n ′}
P ∪# {P{n′/n}}

if n ′ is fresh

P K(M )−−−−→ P if vX .σ ` M

P ∪# {out
(
M ,N

)
; P} K(M )−−−−→

P ∪# {P}
σ ∪ {N/x}

if x is fresh
and vX .σ ` M

P ∪# {in
(
M ,N

)
; P} K(〈M ,Nγ〉)−−−−−−−−−→ P ∪# {Pγ}

if vX .σ ` M , vX .σ ` Nγ

and γ is grounding for N

P ∪# {out
(
M ,N

)
; P , in

(
M ′,N ′

)
; Q} −−→ P ∪# {P ,Qγ}

if M =E M ′ and N =E N ′γ

and γ is grounding for N ′

P ∪# {if pr(M1 , . . . ,Mn ) then P else Q} −−→
P ∪# {P} if φpr{M1/x1 , . . . ,Mn/xn}

P ∪# {Q} otherwise

P ∪# {event F; P} F−−→ P

P ∪# {insert M ,N ; P} −−→
S
[
M 7→ N

]
P ∪# {P}

P ∪# {delete M ; P} −−→
S
[
M 7→ ⊥

]
P ∪# {P}

P ∪# {lookup M as x in P else Q ; P} −−→
P ∪# {P{V/x}}

if S(N ) =E V is defined
and N =E M

P ∪# {Q}
if S(N ) is undefined
for all N =E M

P ∪# {lock M ; P} −−→
P ∪# {P}
L ∪ {M}

if M /∈E L

P ∪# {unlock M ; P} −−→
P ∪# {P}
L \ {M ′ |M ′ =E M}

∀~v. ¬
(
∀~x, i. Action(~x)@i =⇒·

(
ψ(~x)

)[
~v
])

≡ ∀~v. ∃~x, i. Action(~x)@i ∧ ¬
(
ψ(~x)

)[
~v
]

∀~v.
(
∀~x, i. Action(~x)@i =⇒·

(
ψ(~x)

)[
~v
])

=⇒· γ(~v)

≡ ∀~v. ∃~x, i.
(
¬Action(~x)@i ∨

(
ψ(~x)

)[
~v
])

=⇒· γ(~v) .

We notice that none of the formulas has the form of (16)
or (17), since universal and existential quantifiers cannot be
combined. Trace formulas of this form are outside the guarded
fragment that TAMARIN can verify. However, a case test τi in
the form of (17) can be transformed into a case test τ ′i in the
form of (16) by adding guardedness constraints. We have

τ ′i
[
~v
]

=
[
∃k.

∧
`∈idx(~v)

Guarded(~v`)@k
]
∧ τi

[
~v
]
,

which is guarded and in the form of (16). If the protocol is

adapted to issue Guarded facts for all parties in A, then τ ′i is
equivalent to τi.

In summary, to ensure the guardedness of the generated
lemmas, it is sufficient to require that all case tests are guarded
and in the form of (16). Since a guarded case test can always be
transformed into this form, this is only a technical requirement
and does not limit the expressiveness of the case tests. Moreover,
we note that this is a sufficient but not necessary condition.
There are case tests that are not guarded themselves but the
generated lemmas are.
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