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Abstract

Fault-tolerant distributed systems move the trust in a single party to a majority of parties
participating in the protocol. This makes blockchain based crypto-currencies possible: they
allow parties to agree on a total order of transactions without a trusted third party. To trust
a distributed system, the security of the protocol and the correctness of the implementation
must be indisputable.

We present the first machine checked proof that guarantees both safety and liveness for
a consensus algorithm. We verify a Proof of Stake (PoS) Nakamoto-style blockchain (NSB)
protocol, using the foundational proof assistant Coq. In particular, we consider a PoS NSB in
a synchronous network with a static set of corrupted parties. We define execution semantics
for this setting and prove chain growth, chain quality, and common prefix which together
imply both safety and liveness.

1 Introduction

A Byzantine Agreement [LSP82] (BA) protocol allows a group to agree on a decision, even when
some of its members behave dishonestly. Such a protocol is required to satisfy

Safety all honest parties reach the same decision;
Liveness a decision is reached eventually.

This problem naturally extends to agreeing multiple times (multi-shot-consensus or just con-
sensus). Until 2008, the main algorithmic approach for achieving consensus was to collect a
majority of votes on a decision before taking the next decision. We will refer to protocols based
on this design as quorum-based protocols.

In 2008 Nakamoto’s Bitcoin protocol [Nak08] revolutionized the field by introducing a fun-
damentally different approach for solving the problem. Instead of letting parties agree on each
step of progress by multiple rounds of communication between them, Nakamoto introduced a
simple protocol where parties probabilistically take turns making individual progress and dis-
seminating this to all other parties. If parties often enough have time to see what other parties
have disseminated before they make progress, this protocol guarantees safety and liveness up
to a negligible probability of failure.

The protocol works by letting all parties maintain an order-preserving data-structure over
previous decisions (a block tree) and run a “lottery” to decide who is allowed to append the
next block to an existing chain in the block tree. Whenever there is a winner of the lottery, they
produce a block and disseminate it to all other parties. Parties receiving a block will perform a


http://arxiv.org/abs/2007.12105v2
mailto:sethomsen@cs.au.dk
mailto:spitters@cs.au.dk

series of checks to guarantee that the block is valid and that the party that produced the block
actually won the lottery; if all the checks are correct, the parties should append the new block
to their local block tree. A party will consider a slightly pruned version of their current longest
valid chain to be the ordering of blocks agreed upon. We call a protocol with a similar shape,
regardless of lottery mechanism, a Nakamoto-style Blockchain (NSB).

For an NSB there are three main properties that together ensure both liveness and safety [GKL15].
These are chain growth, chain quality and common prefiz. Chain growth says that the length
of the best chain of an honest party increases over time. Chain quality says that within a suffi-
ciently large consecutive chunk of blocks of a best chain some of them must be honest. Common
prefix says that the best chains of honest parties will be a prefix of each other if we remove
some blocks from the chain.

Because parties probabilistically make individual progress without waiting for a quorum,
the lottery needs to be configured in such a way that the time between winners of the lottery
must be long enough for blocks to propagate between parties. NSBs are therefore only secure
in a synchronous network [DLS88], where an upper bound on the time it takes to deliver a
message is known. Traditional quorum-based algorithms can be designed such that they are
secure in either a synchronous network or a partially-synchronous network [DLS88] where there
exists an unknown upper bound on message delivery time. The latter requires stronger honesty
assumptions.

Nakamoto’s original protocol was based on a lottery that assumes that the majority of the
computing power participating in the protocol behaves honestly. The lottery functions by re-
quiring that for a message (block) to be considered valid, the hash of the message needs to be
less than a certain threshold. To participate in the lottery parties will, therefore, try to append
different numbers to the messages they want to send, until they find a number which when
appended to the message gives a hash which is less than the threshold. Such a lottery is called
a Proof of Work lottery (PoW). Unfortunately, this design comes with a high power consump-
tion to provide a secure protocol, as honest parties need to “mine” more valid messages than
dishonest parties to ensure safety. This problem is solved by the introduction of a Proof of Stake
(PoS) lottery, where parties instead can prove that they have the right to create a message for
a particular round with their signature. This construction requires that the majority of stake
(for some deterministic calculation of “stake”) in the system behaves honestly.

Because consensus protocols are distributed, they are notoriously difficult to prove correct.
In fact, some protocols were claimed to be both safe and live and passed peer review, but were
later found to be either only safe or only live [AGGM™17].

Our work establishes both safety and liveness of a PoS NSB. To make our proofs indisputable
we model a PoS NSB protocol with an abstract lottery, provide precise execution semantics for
this, and reduce our proofs of safety and liveness for this protocol all the way to the axioms of
mathematics using the Coq proof assistant [Tea20]. The formalization can be found at

https://github.com/AU-COBRA/PoS-NSB.

The formalization uses Coq 8.11.2 with mathcomp 1.11.0 [GM10], finmap 1.5.0 and cog-equations
1.2.2 [SM19]. The mathematical components (mathcomp) library has been used to formalize
large parts of mathematics. It introduces a particular proof style that scales well to large
developments and revolves around small-scale-reflection, which we also use for this formalization.
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1.1 Contributions

We implement the behavior of honest parties participating in a PoS NSB with an abstract lottery
in Coq. We use this to define the semantics of the execution of the protocol in a synchronous
network accounting for the case when a static subset of parties behaves dishonestly. We prove
that the protocol is both safe and live assuming appropriate conditions on the hash-function and
the lottery, and restrictions on an adversary’s capability to produce honest signatures. We use
the methodology of abstract specification from programming languages. This allows us to focus
on the core combinatorial arguments that are used in the theory of secure distributed systems.
To enable this we make some simplifications about signature-schemes that are reminiscent of
symbolic cryptography. However, our analysis is not a consequence of a series of rewrite rules,
but instead we leverage Coq to discover and generalize non-trivial induction-invariants.
In particular, we contribute with the following:

1. We provide the first formalization of any consensus algorithm that ensures both safety
and liveness in a Byzantine setting. Specifically, we verify that a PoS NSB protocol with
an abstract lottery and a symbolic signature scheme ensures consensus. In order to do
so, we provide precise semantics for executions of distributed protocols with statically
corrupted parties in a synchronous network. As we treat the lottery and signature scheme
abstractly, we do not achieve computational security guarantees, but instead focus on the
combinatorial arguments which is common in distributed systems. We use the semantics
to formally prove both chain quality, chain growth and common prefix. Our theorems
for chain growth and chain quality only requires an honest majority (> %) of stake which
matches the bounds of earlier non-mechanized proofs whereas, for common prefix, our
proof requires an honest super-majority (> %)

2. In addition to the formalization, we develop a methodology for verifying protocols by
abstract functional interfaces, rather than specific non-optimized implementations. This
may seem to increase the gap between our formalized proof and a running implementation.
However, by using a precise abstract interface we clearly distinguish the correctness of
performant code and that of the protocol. We only focus on the latter and isolate the core
combinatorial arguments. As a side benefit our proof also works for a protocol that allows
participants to run different concrete implementations of this abstract interface. This
is a realistic scenario for a blockchain protocol where different parties might participate
with different devices. This methodology applies both to pen-and-paper proofs as well as
formalizations.

1.2 State of the Art

To provide context for this work, we give an overview of the state of the art. First, we provide an
overview of analysis of NSBs and next an overview of existing mechanized proofs for consensus
algorithms. In Section 6 we provide a broader comparison to other related work.

1.2.1 NSB Analysis

The first cryptographic analysis of a PoW NSB [GKL15] proved that the protocol underlying
Bitcoin satisfies both safety and liveness. In order to do so they introduced the properties chain
quality, chain growth and common prefix, which together imply both safety and liveness. Their
foundational analysis has been extended in several directions: The security has been analyzed
in the UC-model [BMTZ17] and the analysis has been modified to cover variations of how the



‘ Formalization ‘ Type ‘ Network ‘ Safety ‘ Liveness

Toychain [PS18§] PoW NSB Partially synchronous (-) -
Velasarios [RVVV18] | Quorum-based | Partially synchronous v -
Algorand [ACLT19] | Quorum-based | Partially synchronous v —
Gasper [ALP"20] Quorum-based | No execution semantics v (-)
This work PoS NSB Synchronous v v

Table 1: Overview of previous formalizations in Coq. The formalization of Gasper does not
provide execution semantics for the protocol, and so no network-model appears in their formal-
ization. By (—) we indicate that only very weak results has been proven about the property.
In particular, [PS18] only proves functional correctness and [ALP*20] only proves plausible
liveness.

best chain is selected with improved properties [KMM™'20]. Ren [Ren19] simplifies the original
analysis.

In a PoW lottery, a winning event is tied to a specific block, which means that only the
particular block that with a hash lower than the threshold will be considered valid by honest
players. In PoS, however, a winning event corresponds to a party being able to sign a block that
will be considered valid, which means that nothing prevents an adversary from signing multiple
different blocks. Due to this attack vector a PoS protocol is inherently more difficult to analyze.

The first analysis made for a PoS NSB, was for a lottery with a unique winner in each
round [KRDO17], which was followed up by an analysis of a lottery that allowed for multiple
winners in each round and was generalized to a weaker network model [DGKRI18]. Similar
analysis have later been performed in a composable framework [BGK 18] and the bounds have
been improved [BKM™20].

This work formalizes an analysis similar to previous PoW analysis, but adapts these to
work for a PoS lottery. Our proof roughly follows the proofs in [KMM™20], which in order
to analyze different rules for selecting the best chain rule, stated their analysis with a clear
separation of necessary conditions on the lottery and combinatorial arguments. The main
difference between our proof and theirs is in the proof of the common prefix property. This
argument is quite different for PoS than for PoW. Our proof revolves around the fact that the
block corresponding to an adversarial lottery ticket can appear at most once on each chain,
whereas their proof revolved around that an adversarial block can appear at most once across
all chains. This implies that our proof for common prefix requires % of the stake to be honest.
A % honesty bound can be obtained for PoS protocols [KRDO17, DGKR18, BKM*20] by more
complicated proofs revolving around the notion of characteristic strings.

1.2.2 Formalization of Consensus Protocols

Table 1 provides an overview of selected previous formalizations of consensus algorithms in Coq.

Formalization of NSBs Toychain [PS18] was the first verification effort towards formal
guarantees for any NSB (in particular a PoW NSB). They defined a relation on global states
and proved basic properties about the reachable global states. In a partially synchronous
network, they proved that if the system ends up in a state where no messages are waiting to
be delivered, then all clients agree on the current best chain. Although that is an important
property of the system it is not enough to argue about how the tree of blocks evolves when
the protocol is run, as it will probably never be the case that there are no messages in transit



(messages sent but not yet delivered). Toychain did not consider any Byzantine behavior and
only focused on functional correctness.

Our work takes the same approach as taken in Toychain, by defining a relation on reach-
able global states and proving properties for these reachable states. We do, however, model a
synchronous network instead of a partially synchronous one, in which stronger properties hold.

Toychain has been extracted and connected to OCaml-code [Pir19], which provides an exe-
cutable node with formal guarantees. Kaizen [KPM™19] extends the statements proven in [PS18]
to apply for an actual performant implementation of a NSB through a series of refinements and
transformations of the original code-base, at the cost of a slightly larger trusted computing base.
This work does, however, not improve on the statements proven in [PS18].

Probchain [GS19] aims to formalize the analysis from [GKL15], but they state that their
proofs are unfinished.

Formalization of quorum-based consensus Traditional (quorum-based) Byzantine fault-
tolerant (BFT) consensus algorithms are also used for blockchains. Velisarios [RVVV18] is a
general framework for formally proving quorum-based BFT algorithms secure in Coq. They
prove a safety property of a widely used BFT algorithm, PBFT [CL99], but do not prove
liveness.

A formalization of the Algorand consensus protocol [ACLT19] verifies safety of their BFT
algorithm. Their proof revolves around a transition relation on global states, which models a
partially synchronous execution of the protocol.

Ethereum is planning to use a BFT algorithm as a finality layer. The Casper finality layer
has been formally proven to achieve its safety property [NJH19] in the Isabelle proof assistant.
In Coq, Casper has been proven to be both safe and plausible live [PGPT18]. Plausible live is a
weaker form of liveness that ensures the protocol will never deadlock. This result was extended
to also cover the revised protocol Gasper which works with a dynamic set of validators [ALP*20].
The results are proven with an abstract model of quorums on a set of messages without explicitly
defining honest behavior and communication.

1.3 Paper Outline

The remainder of the paper is organized as follows. Section 2 describes our notation and
conventions. Section 3 describes how a PoS NSB functions. In Section 4 we will introduce the
formal setting for our protocol, present the requirements for an implementation of a blocktree,
define honest and adversarial behavior, and finally define reachable global states. Section 5 will
present our general results including both the formal theorems and intuition behind the formal
proofs. Section 6 will relate this work to previous work on formalizing distributed systems.
Finally, Section 7 concludes.

2 Notation

The set of natural numbers is denoted N = {0,1,2,...} and boolean values are denoted B =
{T, L}. We adopt conventions from mathcomp and let EQTYPE be a type with decidable equality
and FINTYPE be a type with a finite duplicate free enumeration.
A record type with the fields a and b of type N is defined by NATPAIR := {a: N,b : N}.
SEQ T is the type of lists of type T. [::] denotes the empty sequence, [:: ] the list with
the single element  and + the concatenation operator. We overload standard set notation for
filtering and cardinality of sets to also apply to sequences. We adopt notation from mathcomp.



We write =; to denote that two sequences have the same members. We write s; C s9 to denote
that each member in the sequence s also in ss.

We will use teletypefont for functions and variable names and SMALL CAPITALS for types.

CamelCase (capitalized) names are used for parameters of the formalization and types
whereas snake_ case is used for constructs explicitly defined within the formalization.

FileName ) term_name| are clickable links that directs to the formal definition of the described
concept.

3 The Protocol

We consider a static stake PoS NSB protocol similar to the one in [DGKR18]. This section
provides an informal description of the protocol, such that the description of the formal model
and the exact behavior of honest parties presented in Section 4 can be guided by intuition.

We discretize time into slots which we assume to be totally ordered: SLoT £ N. Each party
has access to a clock they can query for the current slot, a flooding network they can use to
flood messages to each other, and a lottery functionality they can query to check if they are
the winner of a slot. We say that a party that wins the lottery for a slot is a baker of this
slot. Blocks contain a slot number, a hash of the predecessor, a identifier of the baker, and a
signature. These are the content of messages send through the flooding network in the protocol.

Each party maintains a block tree that initially only contains a single block called the
Genesis Block. When a block b is added to the block tree it will be added as a successor to
the block in the tree with a hash that matches the predecessor of b. A path originating at the
Genesis Block in a block tree is called a chain.

The protocol proceeds in slots where each party will do the following for a slot:

1. Collect all previous blocks that they have received since the last round through the flooding
network and add these to their block tree if the signature is valid and the identifier of the
block corresponds to a winning party for the round.

2. Evaluate the lottery to check if they are a winner of this round. If they win this slot they
will:

(a) Calculate what their current longest chain is (disregarding blocks with a higher slot
number than the current slot)!. If there are multiple longest chains of equal length
they will use a tie-breaker of their choice to determine the one they consider the
best?.

(b) Create a new block that will include a hash to the head of their best chain, the
current slot, their identity, and their signature.

(c¢) Flood this new block using the flooding network.

The protocol ensures that the participants of the protocol will agree on the current longest
chain when removing a few blocks from the head of this chain. It is for the chains calculated
in this way we wish to ensure both safety and liveness. Specifically, we want to ensure that the
best chain of any party grows (chain growth), that honest blocks regularly are appended to this
chain (chain quality), and that this chain is both consistent among parties and persistent when
the protocol progresses (common prefix).

! Adversarial parties might choose to evaluate the lottery ahead of time and send these to honest parties.
2This tie-breaker is insignificant for the security of the protocol.
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4 Formal Model

We model the protocol described in Section 3 in a synchronous network with a static but active
adversary. This section describes in detail how this translates to the formal setting in which we
prove our results. First, we present the basic constructs and parameters of our protocol. Next,
we introduce the abstraction and specification of the block tree. Then we move on to describe
our specification of the actual protocol i.e., how honest parties should behave, the global state
of the entire system, and the formalization of the synchronous network. Finally, we put this
together to define a relation on what state are reachable from the initial state when running
the protocol with a fixed set of parties and a static but active adversary.

We will use this definition of reachable states extensively in Section 5, as we quantify all of
our main statements over reachable states.

4.1 Parameters and Basic Constructs

Our model is parameterized by a type PARTY : FINTYPE that represents a unique identifier for
a party?, an equality type TXS : EQTYPE that represents transactions (i.e., content that can be
put on the blockchain), and a type HASH : EQTYPE that represents the co-domain of a hash
function for blocks, HashBlock. A block, BLOCK, is defined to be a record containing four fields

{pred : HAsH, slot: SLOT, txs: TXS, bid: PARTY}.

A block contains the predecessor of the block, pred, a slot number in which the block was
created, slot, some transactions, txs, and a baker-identifier, bid. A chain is a sequence of
blocks CHAIN £ SEQ BLOCK.

Lottery Our model is further parameterized by a predicate, Winner : PARTY — SLOT — B,
that allows to check if a particular party has the right to create a block in a specific slot. This
abstraction is intended to capture a lottery similar to the one proposed in the static-stake version
of Ouroboros Praos [DGKR18]. There it is determined whether a party wins by evaluating a
verifiable random function (VRF) on the current slot number and compare it to a threshold
depending on that party’s stake. We do not model that only persons knowing the secret key
can evaluate the lottery. Neither do we model that the lottery cannot be evaluated far into the
future*. We also do not model signatures.

Instead, we quantify our theorems in Section 5 by an appropriate hypothesis on the unforge-
ability of blocks produced by honest players (Definition 10).

Valid chains Our protocol has an initial block, GenesisBlock : BLOCK, that all chains should
end in and which we assume to have an honest baker identifier and the slot set to 0. Using the
lottery abstraction we define a valid chain.

Definition 1 (Valid chain). [BIockTree.v>> vaIid_chain]
We say that a chain is a valid chain if it fulfills the following three requirements

o All blocks in the chain need to be valid. A block b is valid if Winner (bid b)(slot b) = T.

e The chain should be linked correctly: the field pred of a block contains a hash that is
equal to that of the predecessor in the chain and the chain ends in the GenesisBlock.

3We make this a finite type as there as a finite supply of IP-addresses.

“In practice these are both desirable properties. The adversary should not learn if an honest party wins the
lottery before that honest party has time to send out their block. Neither should the adversary be able to predict
a sequence of slots that the they win.
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e The projection of the fields slot from the chain forms a strictly decreasing sequence of
slots.

We define valid_chain : CHAIN — B, as a computable predicate ensuring these properties
are fulfilled.

4.2 BlockTree

A NSB maintains a correct tree of currently received blocks, from which the current best chain
can be derived.

Previous analysis of NSB protocols [GKL15, BMTZ17, KRDO17, PS18] provide an explicit
algorithm for calculating the best chain from a set of chains and prove the security of this
construction. Unfortunately, this approach creates a gap between the security analysis on an
easily verifiable algorithms and the highly optimized code that is running in typical implemen-
tations of such a protocol. The main performance bottleneck of the extracted implementation
of Toychain [Pir19] is their blocktree which runs in O(n*)-time. Comparable non-verified im-
plementations run in ~ O(n)-time when the cost is amortized.

In this work, we take a different approach and specify the minimal requirements of a correct
blocktree rather than providing an explicit construction for this data-structure. Taking this ap-
proach, we do not prove correctness of an efficient implementation. This could be done in two
ways: 1) Either by providing a reference implementation (as in previous work) which can then
be refined, or 2) by instantiating our abstract interface. We consider the second approach to be
more flexible as it provides a minimal specification. Moreover, we do not explicitly provide an
implementation of our specification. We come back to this after Definition 6.

Following the style of mathcomp we define a type, TREETYPE, that denotes a type that
satisfies the requirements to achieve our security in the protocol.

Correctness conditions for a block tree For a type T : TYPE to be a TREETYPE, we
demand that the following functions should be defined.

treey: T

extendTree: T — BLOCK — T
allBlocks: T — sEQ BLOCK
bestChain: SLOT — T — CHAIN

The function treeg corresponds to the requirement that there is an initial tree that the protocol
can be instantiated with, extendTree gives a way to extend any tree returning a new tree,
allBlocks should give a set of blocks that the tree has been extended with and finally bestChain
allows one to extract what is currently the best chain of the tree with respect to a slot.

T : TYPE is a TREETYPE if is instantiated, extendable, valid, optimal and self-contained:

Definition 2 (Instantiated). [BlockTree.v ) all_tree0
A type T is instantiated if no blocks are recorded in the initial structure except for GenesisBlock
ie.,

allBlocks treep =i [:: GenesisBlock].

Definition 3 (Extendable). [BIockTree.v>>aII_extend]
A type T is extendable if extending the structure with a block is recorded properly in the set of
contained blocks i.e.,

V(t: T)(b: BLOCK),allBlocks(extendTree ¢ b) = allBlocks ¢+ [:: b].
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Definition 4 (Valid). [BlockTree.v >> best_chain_valid
A type T is wvalid if the best chain achieved from this structure is always a valid chain i.e.,

V(t: T)(sl: SLoT),valid_chain (bestChain sl t).

Definition 5 (Optimal). [BlockTree.v>> best_chain_best]
A type T is optimal if the best chain less than a slot achieved from this structure is at least as
good as any other chain obtained from the set of blocks recorded in the structure i.e.,

V(c: CHAIN)(t : T)(sl : SLoT),
valid_chain ¢ — ¢ C {b € allBlocks t | slot b < sl} — |c| < |bestChain sl .

Definition 6 (Self-contained). [BlockTree.v >> best_chain_in_all
A type T is self-contained if the best chain less than a slot achieved from this structure is a
subset of the recorded blocks in the structure i.e.,

V(t: T)(sl: SLOT),bestChain sl t C {b < allBlocks ¢ | slot b < sl}.

Note that a simple algorithm that keeps track of all possible chains that can be created from
the received blocks and prunes these for blocks from future slots before calculating the best
chain provides all of the desired properties. This algorithm is what is used in [DGKR18].

Our development is parameterized over a specific implementation of such a type, TREE :
TREETYPE that we use to build a particular tree, consisting of all blocks honest parties have
received.

4.3 Parties

We represent the knowledge of a participating party as a record containing their identity, a
TREETYPE, and a blocktree of that type:

LOCALSTATE := {id : PARTY, tT: TREETYPE, tree: TT}.

We further parameterize our development by a tree implementation for each party, TreeTypeMap :
PARTY — TREETYPE. Unlike traditional pen-and-paper proofs (and previous formalizations)
this implies that our results in Section 5 are quantified over all parties using different imple-
mentations of the core data-structure. This is a realistic scenario for a blockchain protocol, as
parties might participate in the protocol with different devices and as a consequence different
implementations optimized for their particular device.

Being able to make this quantification is another benefit of our abstract characterization of
the core data-structure for the protocol.

Honest behavior The behavior of an honest party is defined by two stateful functions:
One that defines an honest party’s reaction when receiving a sequence of messages in a slot,
honest_rcv, and one that defines what an honest party should do when baking for a slot,
honest_bake. Both functions take an argument of type LOCALSTATE and return an updated
state together with a sequence of messages (the type MESSAGES, see Section 4.5) that the party
wishes to flood to other parties.

honest_rcv : MESSAGES — SLOT — LOCALSTATE — (UNIT * LOCALSTATE)
honest_bake : SLOT — TXS — LOCALSTATE — (MESSAGES * LOCALSTATE)
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The honest parties receives in a straightforward manner, as they will simply extend their
blocktree with all blocks they receive, using the extendTree-function defined for their blocktree
implementation. When an honest party is invoked to bake they will test if they are the Winner
of the current slot. If so, they will calculate the best chain from their current block tree, disre-
garding blocks from future slots, and create a new block with the predecessor set to the hash of
the head of the best chain. Then they will include the transactions provided as an argument in
this block. Finally, they will extend their blocktree with this new block and create a message
containing this block and flood this.

The honest behavior is computable, and to run the protocol these two functions could be
extracted and connected to a network-shim® and a time-shim®, similarly to what has been done
for previous formalizations [KPM*19, Pir19].

Adversarial parties We explicitly model an adversary within the system, by parameterizing
the development by a type, ADVERSARIALSTATE that the adversary can choose freely. We fur-
thermore let the adversary choose the behavior of any corrupted party by again parameterizing
our development over two functions corresponding to the adversarial behavior when receiving
blocks and when baking for a slot.

AdversarialRcv, AdversarialBake : SLOT —
MESSAGES —
MSscTUPLES —
ADVERSARIALSTATE —
(SEQ (MESSAGE * DELAYMAP) * ADVERSARIALSTATE)

The adversary’s functions take more arguments than the corresponding honest ones.” In this
way we model a more powerful adversary by providing him with a complete view of the state:
the entire history of messages sent in the system and those that are sent, but not yet delivered,
as well as their delivery times (encapsulated in the type MSGTUPLES; see Section 4.5). This
type of powerful adversary, i.e. one that who has access to all messages sent even before they
are delivered, is called a rushing adversary. We also allow the adversary to supply an additional
argument (of type DELAYMAP) to the messages he wishes to be sent. This allows him a more
fine-grained control over when his messages will be delivered (again see Section 4.5). Although
the type-signatures of AdversarialRcv and AdversarialBake are similar, we parameterize our
development by two distinct functions to make adversary much powerful as possible.

Modelling an active adversary by quantifying over an opaque function was previously done
in other Coq developments [PM15, GS19].

4.4 Global state

We define a record type GLOBALSTATE that contains all the information for this protocol when
it is executed. The GLOBALSTATE record has the following fields.

Clock: The current slot of the system.

5Code that floods messages as well as receives messages from other parties and invoking the honest_rcv.

5Code that invokes the honest_bake each time a new slot start.

"The adversary is not provided with any transactions as it can freely decide what to include in the blocks.
Moreover, later we will quantify over any selection of transactions to honest parties (including over selection-
algorithms that may be known to the adversary before hand).
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Message buffer: A buffer containing all messages that have been sent but not yet delivered
in the system.

State map: A partial map of type PARTY — OPTION LOCALSTATE that keeps track of the
local state of all participating parties.

History: The history of all messages that have been sent. This is merely a book-keeping
tool for describing assumptions such as the absence of hash-collisions in the state. Examples
of how this is used can be found in Section 5.

Adversarial state: The adversaries state.

Execution order: The order in which the system should activate its parties. This is merely
a bookkeeping allowing the environment to decide the order of activations (see Section 4.6).

Progress: The progress that the system has made within a single slot
PROGRESS £ {Ready,Delivered, Baked}.

How a global state can change its progress is defined in Section 4.6.

4.5 Network

We assume a lock-step-synchronous network with a known upper bound on the delivery time.
This is similar to what the first analysis of both PoW [GKL15] and PoS [KRDO17] assumes.
This can be extended to a semi-bounded delay network (with a known upper bound) in the
same way as [GKL15, DGKR18]. This network model is different from the analysis in [PS18],
which assumed only a partially synchronous network®. However, NSBs are not secure in that
model.

More precisely, we assume that time is discretized into slots which are coarse enough for
honest parties to have enough time to first execute their computations for a slot and then send
out messages. At this time there should be enough time left in the round such that any message
sent out at this point is ready for the delivery phase of the next round. This assumption enables
the possibility of creating a flooding network with the property that if a message is sent by an
honest party in slot s/ then it will be delivered to any other party at time sl + 1.

Adversarial parties sending messages in slot sl does, however, have the possibility of post-
poning sending their messages until the very end of the round in which case they can choose to
let some honest parties receive their message in slot sl + 1 and others in slot sl + 2.

At first this may seem as a stronger assumption than used in previous work [GKL15,
KRDO17, DGKR18]. There adversaries can send different messages to different parties. Adver-
sarial blocks will then be propagated to other honest parties only after an honest party extends
these. This is because honest parties will send entire chains around instead of just blocks. Note,
however, that our network model can easily be derived from their assumptions by simply letting
all honest parties gossip about the blocks they receive. Our network model can be instantiated
with a gossip protocol. This is closer to what is used in NSBs running in practice and more
realistic than previous pen-and-paper modeling.

To capture this network in our formalization, we introduce the type MESSAGE as an inductive
type with only a single constructor namely BlockMsg : BLOCK — MESSAGE, and the record
MsGTUPLE defined by

MsGTUPLE = {msg : MESSAGE, rcv : PARTY, cd: DELAY},

8 A network that only guarantees that messages eventually will be delivered.
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where DELAY = {1,2}. The field msg contains the actual message that is to be delivered at the
receiving party contained in the field rcv. cd is the current delay of the message, which will be
decremented for all messages as time progresses in the model.

The flooding network available to the parties is formalized as a set of functions that operate
on a global state. The functionalities flood_msgs and flood_msgs_adv enable the honest
parties, the adversary, respectively to send messages.

flood_msgs : MESSAGES — GLOBALSTATE — GLOBALSTATE
flood_msgs_adv : SEQ (MESSAGES * DELAYMAP) — GLOBALSTATE — GLOBALSTATE

Both functions will create a new message-tuple with the message for each party in the execution
order of the global state. £lood_msgs will set the delay of the messages that are being sent to 1,
whereas the flood_msgs_adv takes an extra parameter for each message namely a DELAYMAP £
PARTY — {1,2}, such that the adversary for each message explicitly can choose what parties
should have it delivered in the next round and what parties should have it delivered in two
rounds.

4.6 Reachable Worlds

To be able to reason about the reachable states of the protocol, we first define an initial global
state, Ny : GLOBALSTATE. To this end we parameterize our development over a sequence of
parties participating in the protocol, InitParties : SEQ PARTY, and create an initial state for
all these parties with their tree set to treeg. The development is also parameterized over any
initial state that an adversary wants to choose, AdversarialStatey : ADVERSARIALSTATE.

Ng is now defined in a straightforward manner with no messages in the message-buffer,
nothing in the history, AdversarialStateg, and the parties’ respective initial states.

We also parameterize our development by a total map Honest : PARTY — B which decides
what function should be invoked for each respective party. This corresponds to the adversary
being able to statically decide who should be corrupted.

We furthermore parameterize our development by a total map TxSelection : SLOT —
PARTY — TXS which decides what transactions honest parties should include in the blocks
they bake. We choose this modelling as it is completely irrelevant for the blockchain what pay-
load parties make it carry. The entire proof could be (and was in earlier versions) performed
without any content in the blocks. By adding some payload inside blocks we allow the adver-
sary the possibility to try to disturb the blockchain by letting (otherwise identical) blocks have
different content.”

To capture how the protocol progresses we define a relation over atomic steps of a global
state that enforces a state-transition system. A depiction of the transition system can be found
in Figure 1. In the definition below progress refers to the progress stored in a global state.

Definition 7 (Atomic step reachable). |Schedule.v )) SingleStep|
For any two states N1, No : GLOBALSTATE, we say that Ns is reachable in an atomic step from
Ny if one of the following steps are taken.

Receive: If the progress of Ny is Ready, then N; can step to the state obtained by invoking
each respective parties delivery-function, update the state of the state according to the
outcome of this, and set the progress to Delivered.

9We are grateful to the CSF reviewers for this insight.
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Bake: If the progress of N; is Delivered, then N7 can step to the state obtained by
invoking each (honest or dishonest) party’s bake-function, updating the state according to
this outcome, and setting the progress to Baked.

Increment: If the progress of N; is Baked, then Nj can step to the state obtained by
incrementing the slot number and updating the progress to Ready.

Permute execution order: Any N can step to the state obtained by permuting the ex-
ecution order of Nj.

Permute message buffer: Any N; can step to the state obtained by permuting the mes-
sage buffer of Vy.

When N; can step to Ny in one atomic step, we write N1 ~~ No.

This transition relation can be seen as an environment activating the parties in a restricted
order. We model a adversarial environment by allowing permutations of the message buffer
and the execution order. This models a very powerful adversary who gets to choose the exact
message order for all messages sent, and decides the execution order for each step'®. Definition 7
is formalized as an inductive relation over global states in Coq.

We extend this definition to cover multiple steps as the reflexive transitive closure of atomic
steps.

Definition 8 (Reachable). [Schedule.v>> BigStep]
For any two states N1, Ny : GLOBALSTATE we say that N is reachable from Ny if N is reachable
in zero or more atomic step from Ni. We write Ny |} No.

Permute messages Permute messages Permute messages

Permute order Permute order Permute order

Receive Bake

@

Increment

Figure 1: A depiction of the transition system that defines reachable states.

Our definition of reachable enforces that the set of parties participating in the protocol
remains static through the execution of the protocol.

10T his is also our reason for representing the execution order and message buffer as lists rather than multisets
as we wish to give the adversary as much power as possible, by letting him determine the exact order.
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5 Safety and Liveness

This section will discuss our three main theorems (chain growth, chain quality and common
prefix) and outline the structure of their proofs. The entire proof amounts to roughly 6k lines
of code using mathcomp’s compact proof language.

Throughout the section we make two standard assumptions about the transition system.
We assume that the list of parties participating (InitParties) in the protocol is unique, i.e.,
that no party will be activated twice during the same atomic step, and that there is at least
one honest party among the participants!!.

Phrasing of theorems Our chain growth, chain quality and common prefix are stated as
implications rather than the absolute probabilistic statements given in previous analysis. Chain
growth relies only on a certain number of lucky slots within the time-span of states, whereas
chain quality relies on a collision-free state, a forging-free state and certain condition on the
winning events in a time-span. Common prefix relies both on a collision-free and a forging-free
state. It states that either the property holds or a bad event happens — namely that the
adversary has gotten an advantage that is statistically unachievable for a large k.

A probabilistic statement can be obtained by bounding the probabilities of the desired
hypotheses (or conclusion). Formalizing this depends on the specific lottery functionality, the
hash function, and the signature-scheme. This is not treated in this work, but below we will
provide intuition how to prove this; see also Appendix A.

5.1 Defining Preconditions

We start by defining some basic concepts. First, we specialize hash-collisions to our setting.
Next, we state an assumption on the adversary’s capability to publish blocks with honest iden-
tifiers, before we move on to define certain good and bad events with respect to the lottery.

Any NSB protocol only provides its guarantees under the assumption that there are no
hash-collisions throughout the execution. We define this as a collision-free state.

Definition 9 (Collision-free). (CQ.v ) collision_free|
A global state N : GLOBALSTATE with block history bh : SEQ BLOCK is collision-free if

vb,b' : BLOCK, b,b’' € bh — HashBlock b = HashBlock b’ — b =¥,

For any two global states N1, No : GLOBALSTATE, if Ny || Ny and N» is collision-free, then
N is also collision-free, as block histories are monotonously growing over reachable states. We
have taken care to phrase each of our main theorems using this definition, instead of assuming
a global axiom on the injectivity of the hash-function or that any reachable state is collision-
free. The introduction of such global axioms could lead to an inconsistency. Moreover, it would
not be possible to bound the probability that such an axiom is satisfied by a collision-resistant
hash-function. We provide intuition how this can be done with the current formulation:

Remark 1. If N : GLOBALSTATE is not collision-free, then two blocks were produced between
the initial state Ng and N where the hash-function collided. If an adversary can break the
collision-free assumption with non-negligible probability, then one can construct a new adversary
emulating both honest and dishonest players whom will produce a collision on the hash-function
with non-negligible probability.

"This is not a requirement on the stake of the honest parties, but simply a requirement that at least one of
the actual parties in the protocol behaves honestly. The requirements on the lottery and thus on the stake will
appear as preconditions for the individual statements.
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Another assumption that is needed in order to be able to state our main theorems is that
the adversary cannot forge any honest blocks through the execution that led to a global state.
We do not model signatures explicitly, so instead, we assume that the adversary cannot send
out any block with the bid-field set to the identifier of an honest party that is not already a
part of the block history.

Definition 10 (Forging-free). (CQ.v ) forging_free]
We say that a global state N : GLOBALSTATE is forging-free if for any activation of the ad-
versarial functions, AdversarialBake, AdversarialRcv with parameters from a global state
N’ : GLOBALSTATE where N’ || N implies that there are no honest blocks in what the adver-
sary sends that is not already in the block history of N’.

In order to state this in the formalization, we introduce a more fine-grained refinement of
the reachable transition-relation. We need this to be able to precisely state that the assumption
holds in between each individual party-activation and not only in the synchronous steps.

The definition of forging-free closely corresponds to the property one could achieve by using an
EUF-CMA (existential unforgeability under chosen message attack) secure signature scheme to
sign blocks.

Remark 2. If N : GLOBALSTATE is not forging-free, the adversary has been able to forge a
message between the initial state Ng and IV, and has thus succeeded in breaking the signature
scheme. Any adversary that can break this assumption with a non-negligible probability will
thus be able to break the EUF-CMA secure scheme with a non-negligible probability.

We define a lucky slot to be any slot where an honest party wins the lottery and an adversarial
slot to be the corresponding concept for adversarial parties. Finally, we define honest advantage
to be the difference between these two amounts over a sequence of slots.

Definition 11 (Lucky slot). (CG.v ) lucky_slot|
A slot sl is a lucky slot if there is a party p € InitParties s.t. Winner p sl A Honest p.

Definition 12 (Super slot). [CP.v ) super_slot |
A slot sl is a super slot if there is a exactly one party p € InitPartiess.t. Winner p sIAHonest p.

Definition 13 (Adversarial slot).

A slot sl is an adversarial slot if there is a party p € InitParties s.t. Winner p sl A —Honest p.

There is a close connection between a lucky slot and the creation of a left-isolated block in
the analysis of PoW [KMM™20], as we have scaled our slots such that all honest blocks have
time to propagate before the round begins. Similarly, super slots corresponds to isolated blocks.
We call the block won by an honest player in a super slot a super block

Definition 14 (Honest advantage). [CQ.V >> honest_advantage_range]
We define the honest advantage for an interval of slots to be the difference between the number
of lucky slots and the number of adversarial slots in this period.

5.2 Preliminary Lemmas

We now state some selected definitions and lemmas that are used to prove our main theorems.
The first lemma we introduce describes how knowledge propagates between honest parties.

Lemma 1 (Knowledge propagation). [CG.v ) honest_tree_subset|
Let N1, Ny : GLOBALSTATE and p1,ps : PARTY. If Ng |} Ny, Ny | Na, p1 is a party in N7 with
tree t1, po is a party in Ny with tree to, V] is at Ready, N> is at Delivered, and N; and Ns
are in the same slot then

allBlocks t; € allBlocks i5.
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Proof sketch. Our main observation is that at any point in time a block is in the tree of py, it is
either also already in po’s tree or to be delivered at the next delivery transition. Blocks can be
added when an honest party wins the right to bake a block, in which case they will immediately
send the block to all other parties and thus fulfill the invariant, or they can be added by an
adversary and thereby delivered to an honest party by a delivery event, in which case it will be
delivered to all other honest parties in the following delivery slot (by our network assumption).

This is in particular true when p; and ps is at Ready, which means that after the delivery
transition ps will know all the blocks that p; knew before. ]

Since honest parties extend their trees monotonously this subset-relation will also extend to
any state that leads to Ny and any state that is reachable from Ns.

The core insight of the proof for common prefix is that each time a super-slot is won the
block produced in this slot will not have the same depth in a chain as any other honest block.
In order to define this precisely, we define how to calculate a chain from a block!?.

Definition 15 (Chain from a block).

We define the chain from a block b : BLOCK with respect to a sequence of blocks bp : SEQ BLOCK
to be the chain obtained by following the pointers to from b through bp ending in GenesisBlock.
We write cfb b bp to denote this chain. If no such chain can be obtained by following pointers
in bp we say that cfb b bp = [:].

Definition 16 (Position of a block).

We furthermore define the position of a block, written pos, to be the length of the chain obtained
by following the pointers from the block,

pos b bp := |c£b b bp|.

As this is not a structurally recursive function we use the cog-equations plugin [SM19] in
order to automatically get a strong induction principle. This allows us to prove the following
lemma that is a central step towards proving the common prefix property.

Lemma 2 (Super block positions). [CP.v ) no_honest_pos_share_sb |
Let N : GLOBALSTATE, sb,b : BLOCK and let bh : SEQ BLOCK be the history of blocks in N.
Suppose Ng || N, N is forging-free and collision-free, b, sb € bh, b is honest and sb is a super
block then

pos sb bp # pos b bp.

Proof sketch. The proof proceeds by induction on the transition relation Ng | N. The base case
is trivial as there are no blocks in the block history of Ny. In the induction case we distinguish
between which transition was taken last.

Receive: Receiving messages does not change the subset of the block history that is honest.
Moreover, a collision-free state guarantees that the positions of the honest blocks that are
already in the block history do not change.

Bake: Let sl be the slot of N. We note that any honest block & € bh must have a slot
number that is less than or equal to that of the current state, and distinguish between these
two cases.

12This definition does not appear in previous pen and paper proofs, which only talks about positions of blocks
without defining with respect to what set of blocks.
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slot sb < sl : Any honest party that bakes a new block in this step must have known
about sb (by Lemma 1) and are aware of a valid chain that is at least as long as the
position of sb. We will therefore have for any new block b that is baked in such a way
that pos sb bh < pos b bh.

slot sb = sl : There is exactly one honest party that bakes a block in this step. By
Lemma 1 this party must know about all other honest blocks baked in previous rounds.
We will therefore have that for any old honest block b that pos b bh < pos sb bh.

Increment /Permute orders: These transitions do not change the block history. O

At last we define pruning and a prefix, as well as a minor lemma relating the notions in
order to phrase and prove our common prefix theorem.

Definition 17 (Pruning). (CP.v ) prune_time|
Let ¢ : CHAIN be a chain and let sl : SLOT be a slot. We prune ¢ by sl by removing all blocks
that has a slot higher than sl,

prune sl ¢ = {b ¢+ c | slot b < sl}.

For a valid chain, pruning corresponds to simply removing blocks until the head of the chain
is below a or equal to a certain slot. We finally define prefix'3.

Definition 18 (Chain prefix). SsrFacts.v ) suffix|
Let ¢1,c9 : CHAIN. We say that ¢y is a prefiz of co if there exists a c3 : CHAIN such that
c3 Hc1 = co. We write ¢1 =< ¢s.

Lemma 3 (Prune prefix transitivity). |CP.v ) prune_suffix_trans|
For any sl : SLOT and ¢y, ¢g, c3 : CHAIN such that prune sl ¢; = ¢z and prune sl co =< c3, we
have prune sl ¢; < c3.

5.3 Main Theorems

We are now ready to state our three main theorems. For clarity we ignore the constants —1
and 1 when counting the number of lucky/adversarial/super slots. These constants are used to
account for adversary’s ability to wait one more round to bake than the honest parties, because
he immediately knows of all previously baked blocks. The precise statements can be found in
the accompanying formalization.

At a slot sl any party with a tree ¢ will consider their best chain to be the chain calculated
from the tree by disregarding all blocks from this slot and the future, bestChain (sl — 1) t. We
will show the three key properties for such chains.

The chain growth property intuitively says that in each period, the best chain of any honest
party will increase at least by a number that is proportional to the number of lucky slots in
that period.

Theorem 1 (Chain Growth). [CG.V>> chain_growth_parties]
Let N1, Ny : GLOBALSTATE, p1,p2 : PARTY, sli, sl : SLOT and w : N. If Ng {} N1, N1 |} No, p;
is a party in N7 with tree ¢1, po is a party in No with tree to, the round of Ny is slq, the round
of Ny is sly and there are at least w lucky slots between N7 and Ny then

|[bestChain (sly — 1) t1| + w < |bestChain (slo — 1) ta.

13Technically this is a suffiz due to the orientation of our list structure, but to avoid confusion we use the word
prefix to align with previous results.

17


https://github.com/AU-COBRA/PoS-NSB/blob/8cb62e382f17626150a4b75e44af4d270474d3e7/Properties/CP.v#L1919
https://github.com/AU-COBRA/PoS-NSB/blob/8cb62e382f17626150a4b75e44af4d270474d3e7/Properties/SsrFacts.v#L294
https://github.com/AU-COBRA/PoS-NSB/blob/8cb62e382f17626150a4b75e44af4d270474d3e7/Properties/CP.v#L2433
https://github.com/AU-COBRA/PoS-NSB/blob/8cb62e382f17626150a4b75e44af4d270474d3e7/Properties/CG.v#L1887

Proof sketch. We proceed by induction on the number of lucky slots, w.

The base case follows by monotone growth of honest chains over time!*. In the induction
case we identify the global state N with the lowest slot number sl s.t., Ny | N, N || No, and
lucky_slot sl. In the global state N, we establish that the honest party who wins the slot
creates a new chain that is strictly longer than any chain of an honest party in Ny, as they
knew what was there before by Lemma 1. We complete the proof by applying the induction
hypothesis to V. O

For a concrete lottery implementation, a probabilistic version of Theorem 1 can be proved by
calculating the expected number of lucky slots in a period and then using the Chernoff-bound
to upper-bound the likelihood that less lucky slots than expected occur.

We now present the chain quality property. The chain quality property says intuitively
that within any chunk of consecutive blocks in an honest party’s best chain, there is an honest
share of blocks. This share is proportional to the difference between the number of honest and
adversarial slots.

Theorem 2 (Chain Quality). [CQ.v ) chain_gquality|
Let N : GLOBALSTATE, p : PARTY and w : N. Suppose Ny |} N, N is forging-free and collision-
free, p is a party in N with tree ¢, the round of N is sl, and let B;...B; be a consecutive
interval of blocks of bestChain (sl — 1) t. If there is an honest advantage of at least w for time
periods longer than slot B; —slot B; then the number of honest blocks in B; ... B; will be at
least w.

Proof sketch. We define B; and B; s.t. B;...B; is the smallest interval of bestChain (sl —
1) t such that B;...B; C B;...B;, B; is honest and B; is either honest or the head of
bestChain (sl —1) ¢t '°. As B; is honest, we can apply Theorem 1 to establish that |B; ... Bl is
at least the number of adversarial slots in the time span between the creation of B; and B: plus
the honest advantage in this time span. As all blocks in a valid chain (and as bestChain (s/—1) ¢
is valid) have unique slot numbers this implies that the there must be at least w honest blocks
in between B; and Bj« and therefore also w honest blocks in B; ... B;. ]

We achieve the full chain-quality property that is defined for any fragment of any honest
party’s best chain rather than the somewhat weaker property considered in [Renl19].

A probabilistic version of Theorem 2 can be proved for a lottery where the expected number
of lucky slots is higher than the expected number of adversarial slots. This induces the assump-
tion that a majority of stake is to be honest. If this is the case, then a standard probability
bounds (such as Chernoff’s) can be used to bound the likelihood that less lucky, respectively
more adversarial, slots occur than expected within a period of slots.

Together chain growth and chain quality prove liveness, as chain growth ensures that more
blocks will be appended to any honest party’s log and chain quality ensures that there will be
some honest input to this log.

The common prefix property informally says that during the execution of the protocol the
chains of honest parties will always be a common prefix of each other (after removing some
blocks on the chain). We follow [KMM*20, GKL15] and define two variants of the common
prefix property. The first variant ensures that any two best chains of honest parties are consistent

14Technically, the slot number of Ni needs to be strictly smaller than that of N2, as the knowledge of p1 needs
to have time to propagate to p2 by Lemma 1.
15B; is well defined as we consider the genesis block to be honest.
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within a single round, and the second variant ensures that the best chain of an honest party is
consistent with earlier best chains of any honest party. The latter variant constitutes safety for
blockchain consensus protocols.

Lemma 4 (Common prefix-lemma). (CP.v ) cp_prune_gen_inc|
Let N : GLOBALSTATE, p : PARTY, ¢ : CHAIN, k : SLOT and bh : SEQ BLOCK. Suppose Ny || IV,
N is forging and collision-free, p is a honest party in N with tree ¢, the round of IV is sl, the
block history of IV is bh, ¢ C bh, that c is a valid chain, all blocks in ¢ have a slot number less
than sl and that |bestChain (sl — 1) ¢| < |c|. Then one of the following events occurs:

1. prune k (bestChain (sl —1) t) < ¢

2. There exists sl : SLOT, s.t. sl’ < k and the number of super slots in the slot range from
sl' to sl is less than two times the number of adversarial slots in the same period of time.

Proof sketch. We define b’ to be first honest block in the common stem of ¢ and bestChain (sl —
1) t. If k < slot b we can conclude prune k (bestChain (sl — 1) t) < c¢. Otherwise we
show Event 2.

We define sl” as slot b'. Let bh be the block history of N. For any honest block b that is
produced between slot b’ and sl, we have

pos b’ bp < pos b bp < |bestChain (sl — 1) t| < |c|.

pos b’ bp < pos b bp because at the time b was created the honest party that created it knew
about a chain of length pos V' bp, and pos b bp < |bestChain (sl — 1) ¢| as otherwise there
would be a longer chain available to p at time sl. Any adversarial slot can appear at most once
on each chain. So, by Lemma 2 there must be an adversarial slot for every two super blocks in
this period. ]

Remark 3. For any reachable N global state with two honest parties, Lemma 4 can be instan-
tiated with ¢ being the longer of the best chains for these parties. This will thus give us that
the best chain of any honest party will be a prefix of any other honest party’s best chain.

Theorem 3 (Timed Common prefix). (CP.v ) timed_common_prefix|
Let N1, Ny : GLOBALSTATE, p1,ps2 : PARTY, sly, sly : SLOT and k : SLoT. If Ng | Ny, Ny | No,
N is forging-free and collision-free, py is a party in N7 with tree t1, ps is a party in No with tree
to, the round of Ny is sl; and the round of N5 is sls. Then one of the following events occurs:

1. prune k (bestChain (sl — 1) ¢;) < (bestChain (sly — 1) t2)

2. There exists sl’,sl” : SLOT, s.t. sl’ < k, sl; < sl” < sly and that the number of super
slots in the slot range from sl’ to sl” is less than two times the number of adversarial slots
in the same period of time.

Proof sketch. The proof proceeds by induction on the transition relation Ny |} No. The base
case where N1 = Ns is solved by applying Lemma 4 (in particular Remark 3). In the induction
case we distinguish between which transition was taken last.

Receive: The induction hypothesis gives us that the statement is true for the tree
which ps has just before he receives the messages in this round. The messages that po
receives in this round must however already be in the block history and therefore Lemma 4
can be applied. This either results in Event 2 or we can apply Lemma 3 to achieve that
prune k (bestChain (sl; — 1) t1) = (bestChain (sly — 1) t2).
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Bake: The induction hypothesis gives us that the statement is true for the tree ), which
p2 has just before he tries to bake for this slot. If ps bakes a block for the slot si, the
new block that is baked cannot itself be a part of the bestChain (sly — 1) t3 but it might
however still change the internal structure of the ¢s such that bestChain (sly — 1) ty #
bestChain (sly — 1) t5. This new chain must, however, already be a part of the block
history, and therefore Lemma 4 can be applied. This either results in Event 2 or we can
apply Lemma 3 to achieve that prune k (bestChain (sl; — 1) t1) < (bestChain (sly —1) t2).

Increment: Incrementing the time allows for a slightly longer best chain than just before
time was incremented. We apply the induction hypothesis to establish the relationship
between the old best chain of ps and the best chain of p;. Now we again apply Lemma 4
and Lemma 3.

Permute execution order/message buffer: These transitions do not change the best
chains of any honest parties and the induction hypothesis can be applied. U

As the conclusion of Theorem 3 is a disjunction it is enough to exclude Event 2 from hap-
pening to ensure Event 1. To achieve a probabilistic bound for Event 2, it is necessary that the
lottery ensures that the expected amount of super-slots is more than twice the expected amount
of adversarial slots.'® If that is the case, standard probability bounds (such as Chernoff’s) can
again be used to upper-bound the likelihood that less super slots, respectively more adversarial
slots, than expected occur within a period of slots. Finally, to exclude that any such period
exists, union-bound is used to sum the probabilities of all the different interval lengths larger
than k but less than the current slot number.

A covert adversary is one that leaves no trace that it did not follow the protocol. Such
adversary would only be able to place each block on one chain. If we restrict ourselves to such
adversaries, we would immediately obtain a tighter bound. We could follow [KMM™*20] and
only need to assume that a majority of the resources behaves honest.

6 Related Work

Verified distributed systems A series of works have focused on formally verifying dis-
tributed systems in a non-Byzantine setting. Raft [OO14] is a consensus algorithm that with-
stands benign failures and is simpler than similar algorithms, such as Paxos. The safety prop-
erty of Raft was formalized using the Verdi framework [WWP*15, WWAT16]. Verdi relies on
a shallow-embedding of protocols into Coq and provides the verified-system-transformers which
facilitate composable verification. Applying Coq’s extraction to the Raft consensus protocol
one obtains an implementation when connected to a network-shim. Their extracted code is as
efficient as non-verified implementations.

Disel [SWT18] is a framework for verifying distributed systems. It is built on a foundation
of separation logic embedded in Coq and allows verifying OCaml like programs using a Hoare
style reasoning. One can use the partial correctness of their Hoare style specifications to reason
about safety. Aneris [KJTO"20] is another framework embedded in Coq for verifying distributed
systems. It is built upon the Iris separation logic [JSST15], which allows reasoning about multi-
threaded computations for local nodes while being able to combine the statements about local
nodes to safety statements for the entire system. Neither Disel nor Aneris has been used to
reason about Byzantine behavior.

For this to be possible for a concrete lottery construction, such as the one in Ouroboros Praos, at least %ls
of the underlying stake needs to be controlled by honest parties.
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Lamport designed TLA+ [Lam92] with the specific purpose of formally specifying and check-
ing distributed protocols. This was used together with the TLAPS model-checker to check the
safety (but not liveness) of PBFT [Laml1].

IronFleet [HHK™'15] is a framework for combining both TLA-style specifications that are
machine-checkable and Hoare style specifications in Dafny [Leil0]. They prove a performant
implementation of Paxos (a consensus algorithm withstanding benign failures) to be both safe
and live.

Verified cryptographic protocols There is an impressive amount of work verifying crypto-
graphic primitives and two-party protocols [BBBT19]. However, there are only few works that
verify multi-party protocols that are designed to be robust in an adversarial setting. We men-
tion the formalizations of multiparty computation [HKO18] and the AWS key-server [ABB*19).
These are both done in Easycrypt in the computational model. These works benefits from
Easycrypt’s logic that allows to reason about game-hops easily but also show limitations of
Easycrypt’s build-in programming language pwhile that lacks primitives for communication.
The latter increases the complexity of the formalizations.

Modern cryptographic security proofs of consensus, e.g. [BMTZ17, BGK™ 18], emphasize
the use of an informal composible framework. This will also be important for us when we want
to prove that the system remains secure when we instantiate our lottery functionality with an
implementation that has been proved to be secure in isolation. Fortunately, such modular/com-
posible frameworks are being developed more formally [CSV19, LSBM19]. However, only very
simple protocols have been proven secure using these, due to the complexity of the frameworks
themselves.

7 Conclusion

We have given a formalized proof that a PoS NSB protocol with a static set of corrupted
parties in a synchronous network has chain growth, chain quality, and common prefix. This
has required us to define precise semantics for the execution of the protocol. We have defined
honest behavior by computable functions and used this to define a relation on reachable global
states. We have also developed a new methodology for specifying core data-structures by their
functional behavior rather than concrete implementation. This enables us to focus on the core
combinatorial arguments while also providing a clear specification for optimized implementation.
The methodology further has the consequence that we are able to prove security for parties
running different implementations of the same protocol.
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Appendix

A Concrete Probability Bounds

For parties running the blockchain quantitative guarantees will often be more useful than the
implications stated in Theorems 1 to 3. What is the minimal expected growth of the best chain?
How long does a party need to wait before it is 99% certain that a block will not be rolled back?

To answer these questions, we will show how to bound the probabilities of the precondition-
s/conclusions of Theorems 1 to 3. We will not discuss the probability of having a forging-free
and collision-free global state any further as we have already done so in Remark 1 and Remark 2.
Instead, we focus on the probability that a sequence slots occurs that fulfills the respective pre-
conditions or excludes a part of the conclusion.

Theorems 1 to 3 hold for any abstract lottery function, thus in particular for a random
function'™. Hence, the properties also hold for an implementation of the lottery such as the
one constructed in Ouroboros Praos [DGKR18]. The lottery in Ouroboros Praos relies on
a VRF. This is where the probabilities arises. For simplicity let us assume that a concrete
lottery gives rise to a series of independent random variables (as the one from Ouroboros Praos)
corresponding to whether a specific slot fulfills Definitions 11 to 13,

1 if slot 7 is a lucky slot
LS; =
0 else

55, — 1 if slot ¢ is a super slot
0 else

AS 1 if slot 7 is a adversarial slot
" )0 else

1"T.e., a computation that, when evaluated throughout the execution of the protocol, returns the same output
on same inputs.
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Given that a lottery gives rise to such a random experiment, we now wish to bound the proba-
bility that a certain sequence of slots satisfies the preconditions/conclusions of Theorems 2 to 3.
Before we proceed to bounding the probabilities for such a lottery construction, we record a
standard probability bound.

Lemma 5 (Chernoff).
Let Xi,...,X, be independent random variables with X; € {0,1} for all 4, and let p :=
E[>i; X;]. We then have for all § € [0, 1],

2
Pr ZXig(l—(S),u geféT“,
i=1 |
and
- - o
Pr ZXiZ(l—i—&),u <e 3.
Li=1 |

We also introduce convenient notation for the successes of the variables pi s := Pr[LS; = 1],
pLs = Pr[SS; = 1], and pas := Pr[LS; = 1]. For an interval of slots r we define

LS(r) =Y LS;, SS(r) =>_SS;, and AS(r) = > AS;,

er er ier
and the corresponding expected values
E[LS(r)] =7 - ps, E[SS(r)] =7 pss, and E[AS(r)] =7 - pas.

By instantiating Lemma 5 for these specific variables, we now have that for all 41, d2, 93 € [0, 1],

5%.7.17

PrLS(r) < (1—81) -7 ps| <e 7, (1)
82.rp

Pr[SS(r) < (1—8y) 7 -pss] <e =, (2)
82.rp

Pr[AS(r) > (1+03) -1 pag] Se” 5 . (3)

Using these we now show how to bound the probabilities for chain growth and common prefix.

Chain Growth Equation (1) provides a lower bound on the number of lucky slots as a
function of the interval length. As Theorem 1 ensures chain growth corresponding to this
quantity, this provides a lower bound on the chain growth as a function of the interval length.

Common Prefix For common prefix we wish to exclude that Event 2 from Theorem 3 hap-
pens. To do so we need that

SS(r) > 2- AS(r).

2.
For all 6,8 € [0,1], we have that SS(r) > (1 — §) - r - pss except with probability e %

52
Except with probability e~ 7oA , we have that (149") -r-pas > AS(r). So we need to ensure
that

(1=0) 7 pss>2-(140) 7 pas.
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To do so we need the assumption on the lottery that Je, pss > 2 - pas + €'®. This implies the
following condition

(1—=6)-7-(2-pas+e)>2-(1+08) -7 pas

t

> <((11i§)) - 1) “PAs - 2. (4)

This can be satisfied by choosing ¢ and ¢’ to be small. The probability that Equation (4) does
not hold decrases exponentially with r. To be precise as

_8%rpgs §2r-pag
3

e 2 +e

To bound the existence of a time interval larger than a specific r, but less than the current world
length (and thus exclude Event 2), we use union-bound and take the sum of these exponentially
decreasing probabilities.

Chain Quality Can be proved by the exact same approach as the common prefix, by using
lucky slots instead of super slots and assuming only an honest majority.

'8 This corresponds to assuming that 2/3 of the stake behaves honestly for the Ouroboros Praos lottery.
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