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Abstract

We present a framework in which different notions of se-
curity can be defined in a uniform and modular way. Each
definition of security is formalized as a security predicate
by assembling more primitive basic security predicates. A
collection of such basic security predicates is defined and
we demonstrate how well-known concepts like generalized
non-interference or separability can be constructed from
them. The framework is open and can be extended with new
basic security predicates using a general schema. We in-
vestigate the compatibility of the assembled definitions with
system properties apart from security and propose a new
definition of security which does not restrict non-critical
information flow. It turns out that the modularity of our
framework simplifies these investigation. Finally, we dis-
cuss the stepwise development of secure systems.

1. Introduction

Non-interference has become a popular concept for for-
malizing security. Its main benefit over access control mod-
els like the one by Bell and LaPadula [1] or Biba [2] is that
it provides a definition of security rather than only a mech-
anism for enforcing it. The initial work on non-interference
by Goguen and Meseguer [6, 7] was limited to deterministic
systems. Beginning with Sutherland [18], various general-
izations of non-interference for non-deterministic systems
have been proposed, e.g. [9, 12, 20]. In this article, we con-
sider confidentiality aspects of security and focus on possi-
bilistic definitions of security. The underlying idea of this
approach is that information cannot be deduced by observ-
ing a system because the set of possible behaviours which
may have generated a given observation is too large. For
a discussion of benefits and limitations of the possibilistic
approach we refer to [11, 13].

The variety of definitions of possibilistic security indi-

cates that there might not be a definition which is optimal
for all purposes. Rather, the choice of such a definition de-
pends on the particular application. This demands for a uni-
form framework in which one can compare different defi-
nitions and choose the most appropriate one. McLean’s se-
lective interleaving functions [12, 14] provide such a frame-
work in which security can be defined by closure condi-
tions, but Zakinthinos and Lee pointed out that the ex-
pressiveness of his framework is too limited [20]. Their
framework overcomes this limitation and allows them to de-
fine a perfect security property PSP. However, the general
correspondence between closure conditions and security is
lost. The framework presented in this article seeks to com-
bine the expressiveness of the one by Zakinthinos and Lee
with the elegance of McLean’s framework while overcom-
ing their limitations.

One novelty of our framework is its modular structure.
It consists of a collection of basic security predicates which
can be combined to security predicates in order to define
a notion of security. Thus, our framework really is an as-
sembly kit for such definitions in which basic security pred-
icates are the building blocks. This modularity also reduces
the complexity of reasoning about security, because many
properties of the building blocks are preserved under com-
binations. New basic building blocks can be defined using a
general schema which ensures that each basic security pred-
icate corresponds to a closure condition.

This correspondence forms the theoretical basis for an
investigation of the compatibility of security with other sys-
tem properties which is an important criterion in the selec-
tion of a definition of security. As examples, we investigate
properties which require certain types of non-critical infor-
mation flow. We demonstrate that PSP is incompatible with
some of these properties and derive the pretty good security
predicate PGSP as a less restrictive definition which allows
the respective types of information flow.

The correspondence to closure conditions also provides
a basis for a stepwise development of secure systems. Al-
though, security is not preserved under refinement [9] in
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general, we show that certain definitions of security are pre-
served under intersection which is a special case of refine-
ment.

After some basic definitions in Section 2, we introduce
our framework in Section 3. We present a collection of basic
security predicates in Section 4 and show how to assemble
these basic predicates into well-known definitions of possi-
bilistic security in Section 5. In Section 6 we investigate the
compatibility of security with other system properties and
derive PGSP in our framework in order to overcome cer-
tain incompatibilities of PSP. In Section 7 we consider the
preservation of security in a stepwise development process.
We discuss our approach in relation to previous work in
Section 8. Finally, in Section 9 we summarize our achieve-
ments and remark on future plans.

2. Preliminaries

Following [20] we model non-deterministic systems us-
ing event systems. Computation steps and interactions are
modeled by events, i.e. actions without duration, like e.g. as-
signing a value to a variable or sending a message. We dis-
tinguish between input, internal, and output events. Input
events are not controlled by the system but rather by some
external environment while all other events are controlled
by the system. The interface of a system is modeled by the
input and output events and its executions by traces, i.e. se-
quences of events. Thus, a system can be specified by a set
of traces which models its possible behaviours.

Definition 1. An event system ES is a tuple (E; I;O; Tr)
where E is a set of events, I � E, O � E respectively are
the input and output events, and Tr 2 P(E�) is the set of
traces. We denote the set of finite sequence over E by E�.
Each trace t 2 Tr is a finite sequence of events in E and Tr
must be closed under prefixes.

For the definition of security policies we assume a set D
of security domains such that each such domain is an ab-
straction from concrete entities, like e.g. individual users,
groups of users, processes, or collections of files. A secu-
rity domain dom(e) is associated with each event e using a
function dom : E!D. A non-interference relation, an ir-
reflexive relation 6;: D�D, can then be used to specify
which information flows are restricted between domains,
e.g. D1 6; D2 states that D1 must not interfere with D2

for domainsD1; D2. Finally, a security policy Pol is a triple
(D; dom; 6;). Pol is called transitive if;, the complement
of 6;, is transitive. Unless explicitely stated otherwise, we
consider transitive security policies in this article.

For transitive security policies, in principle, it suffices
to consider two domains H and L only, a high and a low-
level. In the subsequent sections we will make use of this
abstraction and consider the two-level security policy PolHL

with domains H and L and the non-interference relation
which demands H 6; L.

In order to prove that a systems satisfies a given security
policy it is necessary to define formally what is meant by
“D1 does not interfere with D2”, i.e. 6;must be given a se-
mantics in terms of event systems. The formal definition of
this phrase can be regarded as a definition of security. Con-
sequently a security property is defined by a security policy
together with a definition of security. Non-inference, gener-
alized non-interference, and restrictiveness are well-known
examples among the various possibilistic security properties
which have been proposed for non-deterministic systems.

When proving that a system satisfies a given security pol-
icy one shows for each domain that the non-interference re-
lation is respected. Since the security policy PolHL is fixed
we can focus on the different definitions of security in the
remainder of this article. Therefore, we use the term “defi-
nition of security” instead of “security property”.

2.1. Notational Conventions

We assume that ES is an event system (E; I;O; Tr)
where E denotes a set of events, I and O, respectively, the
sets of input and output events in E, and Tr a set of traces
over E. Individual events are denoted by e, sequences of
events by � or � and by � or t – if they are traces. A dot con-
catenates events to form sequences, e.g. e1:e2:e3. We delib-
erately use a dot also for appending sequences, e.g. �:�,
�:e, and �:e:�. The empty sequence is denoted by hi and
the projection of a given trace t to a set of events E 0 � E
by tjE0. tjE0 results from t by deleting all events not in E0.

We use H and L, the names of the high- and low-level
domains, also to denote the subsets of events in E with do-
main H and L. HI , LI , HO, and LO denote the corre-
sponding sets of input and output events. Events in L, H ,
HI , and HO are denoted respectively by l, h, hi, and ho.
Subscripts and primes are used in combination with all of
these denotations.

3. A Framework for Possibilistic Security

The confidentiality of classified information can only be
ensured if direct as well as indirect flows of information are
restricted. An observer must neither directly observe infor-
mation for which he does not possess the appropriate clear-
ance nor be able to deduce such information from other ob-
servations. In order to prevent direct information flow cer-
tain aspects of the system behaviour must not be observable.
Here, we assume that only low-level events are observable
on the low-level, i.e. for a trace � the sequence � jL can be
observed. However, in the worst case an observer who has
complete knowledge of the system, can construct all sys-
tem behaviours which generate a given observation, and try
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to deduce confidential information from this set. Formally,
such an observer constructs the low-level equivalence set
LLES(Tr; �) = ft 2 Tr j tjL = � jLg (introduced in [20])
from the observation � jL and the knowledge about the sys-
tem.

The underlying idea of possibilistic security is to demand
that LLES(Tr; �) is so large that an observer cannot deduce
confidential information from it. Any trace in LLES(Tr; �)
could have generated the observation � jL and, unless � is
the only element in LLES(Tr; �), one cannot deduce that �
has actually occurred.1 However, even if LLES(Tr; �) has
more than one element, the deduction of confidential in-
formation may still be possible. If certain high-level be-
haviours are compatible with a given observation but others
are not then one deduces from this observation that one of
the former high-level behaviours has occurred but not any
of the latter ones. Such channels may cause a system to be
insecure because they could be exploited by Trojan horses
for example. In order to avoid this, a possibilistic secu-
rity property demands that if a given high-level behaviour is
compatible with some observation then certain other high-
level behaviours must be compatible with it as well. Thus,
LLES(Tr; �) must be closed wrt. some criterion. This gives
rise to a general correspondence between possibilistic secu-
rity properties and closure conditions.

In our framework, possibilistic security properties are
represented in a modular way as security predicates. For-
mally, a security predicate SP is either a single basic secu-
rity predicate BSP, i.e. SP � BSP or a conjunction of basic
security predicates, i.e. SP � BSP1 ^ : : : ^ BSPn. Each ba-
sic security predicate BSP demands that for any trace � of
the system there must be another trace � 0 which is compati-
ble with the same observation and which fulfills a condition
Q, the closure requirement of BSP. The existence of � 0,
however, is only required if a condition R, the restriction
of BSP, holds. This results in the following schema for the
formal definition of basic security predicates:

8� 2 Tr:R(Tr; �) ) 9� 0 2 LLES(Tr; �):Q(�; � 0) :

Since there is a general correspondence between possibilis-
tic security properties and closure conditions, as explained
above, it is desirable to establish such a correspondence for
basic security predicates (abbreviated by BSP in the sequel)
as well. In order to achieve this, we have to impose an addi-
tional requirement on the definition of BSPs. This satisfia-
bility condition demands that R(Tr; �) ) 9� 0 2 E�:� 0jL=
� jL ^ Q(�; � 0) is satisfiable for any � 2 Tr. Note that � 0

need not be in LLES(Tr; �), not even in Tr, but it must yield
the same observation as � . The condition ensures that a BSP
can be made valid for Tr by adding elements to Tr, i.e. by

1The possibilistic approach prevents certainty about deduced informa-
tion and abstracts from probabilities.

constructing a closure of Tr. This is essential for the con-
struction of closure operations from BSPs in Subsection 4.3.
The definition of a BSP with our schema states when a set
of traces is closed wrt. some criterion, while the satisfiabil-
ity condition ensures that for any set of traces such a closure
can be constructed.

Technically we use a slightly more complicated schema
for the definition of BSPs which allows for inductive defi-
nitions. This is achieved by additional variables �; � 2 E�

and e 2 E in the schema which are universally quantified.
These auxiliary variables are used to divide � into subse-
quences, like �:e:� or �:�, in the restriction R and to use
the same division in the closure requirement Q.

Definition 2. The basic security predicate BSPRQ for the
restriction R and the closure requirement Q is defined by

8� 2 Tr:8�; � 2 E�:8e 2 E:
[R(Tr; �; �; �; e) ) 9� 02LLES(Tr; �):Q(�; � 0; �; �; e)]:

We require that R(Tr; �; �; �; e) ) 9� 0 2 E�:� 0jL=� jL ^
Q(�; � 0; �; �; e), the satisfiability condition, can be satisfied
for all Tr 2 P(E�), � 2 Tr, �; � 2 E�, and e 2 E. Note
that � 0 need not be in Tr.

Definition 3. A security predicate SP is either a single ba-
sic security predicate or a conjunction of multiple basic se-
curity predicates.

Possibilistic security properties are represented as security
predicates within our framework in a modular way. Defini-
tion 2 and 3 enforce a certain structure for such representa-
tions. In particular, this structure ensures that the correspon-
dence between possibilistic security and closure conditions
also exists in the framework. The schema for the definition
of BSPs allows for inductive definitions. This enables us
to distinguish two dimensions of BSPs when we instantiate
the schema for BSPs (cf. Section 4). The expressiveness
of our framework allows for a representation of the well-
known possibilistic security properties (cf. Section 5). The
correspondence to closure conditions is the basis for the in-
vestigation of the compatibility of such security properties
with other system properties (cf. Section 6) and for a step-
wise development of secure systems (cf. Section 7).

4. Basic Security Predicates

In this section, we illustrate how to instantiate our
schema for the definition of BSPs and present a collection
of BSPs which will be used as examples in the remainder
of the article. Two dimensions of BSPs are distinguished in
Subsection 4.1 and 4.2 and, if possible, the BSPs in each
dimension are ordered by implication. BSPs in the first
dimension express that it is confidential that an event has
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occurred. Formally this corresponds to the possibility to
delete this event without changing the observation. In the
second dimension it is confidential that an event has not oc-
curred which corresponds to the possibility to insert events.
All BSPs presented, correspond to closure conditions. Our
schema for BSPs ensures this correspondence for BSPs in
general as we will show in Subsection 4.3. The distinc-
tion of two dimensions together with the ordering of BSPs
helps to compare the various BSPs easily and provides use-
ful orientation when BSPs are selected for the construction
of security predicates.

Recall that we assume that only low-level events are ob-
servable for a low-level user. However, not all high-level
events need to be confidential. Depending on the particular
application, a BSP may be appropriate which ensures the
confidentiality of only some high-level events and does not
care if an occurrence of the others can be deduced. Nev-
ertheless, in other cases it may be necessary to consider
all high-level events as confidential. In this article, we re-
strict our considerations to two scenarios in which either
all high-level events or (only) high-level inputs are confi-
dential. An adaption of the definitions to other scenarios,
where e.g. high-level outputs are confidential, is possible.

4.1. Removal and Stepwise Deletion of Events

BSPs which prevent a low-level user from inferring that
certain high-level events have occurred are based on the
possibility to remove these events from traces while pre-
serving the resulting observation. In the sequel, we distin-
guish between BSPs which require the removal of all these
events at once and BSPs which require their stepwise dele-
tion. Each of these BSPs is defined using the schema from
Definition 2 such that the satisfiability condition is fulfilled.

When defining BSPs, we employ a uniform naming
scheme. If e.g. a BSP is based on removal or deletion of
events then an ‘R’ or ‘D’ respectively occurs in its name. If
only high-level inputs are affected then ‘I’ is used and if all
high-level events are affected then ‘E’ is used instead.

The basic security predicates RE (Removal of Events),
RI (Removal of Inputs), and SRI (Strict Removal of Inputs)
require a global removal of events. The BSP RE demands
the removal of high-level events. Given � 2 Tr, it assures
the existence of a low-level equivalent trace � 0 such that
� 0jH is empty. � 0 results from � by removing all high-level
events, e.g. if � is l1:ho1:hi1:l2, then � 0 = l1:l2 must be a
trace. In Figure 1, we use a shorthand notation to abbreviate

RE(Tr) � 8� 2 Tr:8�; � 2 E�:8e 2 E:TRUE)
9� 0 2 LLES(Tr; �):� 0jH = hi :

In the shorthand notation, we omit quantifiers since they
are clear from the schema for defining BSPs and just write
R ) Q. Unprimed variables are implicitly universally and

BSPs based on removal of events:
RE(Tr) � � 0jH = hi
RI(Tr) � � 0jHI = hi
SRI(Tr) � � 0jHI = hi ^ � 0j(EnHI) = � j(EnHI)

BSPs based on stepwise deletion of events:
DE(Tr) � (e 2 H ^ � = �:e:� ^ �jH = hi)

) (� 0 = �:�)
DI(Tr) � (e 2 HI ^ � = �:e:� ^ �jHI = hi)

) (� 0 = �0:�0 ^ �0jL[HI = �jL[HI
^ �0jL[HI = �jL[HI)

BSDI(Tr) � (e 2 HI ^ � = �:e:� ^ �jHI = hi)
) (� 0 = �:�0 ^ �0jL[HI = �jL[HI)

SDI(Tr) � (e 2 HI ^ � = �:e:� ^ �jHI = hi)
) (� 0 = �:�)

Unprimed variables (� , �, �, e) are universally and
primed ones (� 0, �0, �0) are existentially quantified.
� 0 must be in LLES(Tr; �).

Figure 1. BSPs based on removal or stepwise
deletion of high-level events

primed ones existentially quantified. If R holds trivially we
write Q instead of TRUE ) Q. For RI and SRI, � 0 results
from � by removing all high-level inputs. While RI allows
� 0 to differ from � in high-level internal and output events,
SRI does not. Hence, SRI is called strict. For the example
trace, RI would be satisfied if any of l1:ho1:l2 or l1:l2 occurs
in Tr while SRI is satisfied only by the first trace.

The basic security predicates DE (Deletion of Events),
DI (Deletion of Inputs), SDI (Strict Deletion of Inputs), and
BSDI (Backwards Strict Deletion of Inputs) are based on
the stepwise deletion of events. These BSPs are inductively
defined. A trace � requires the existence of a trace � 0 which
results from � by deleting a single event, � 0 may require the
existence of a trace � 00 which results by the deletion of an-
other event, and so on. In the definition of these BSPs the
auxiliary variables �, �, and e are used in order to divide
� into subsequences. Similarly, � 0 is divided using addi-
tional auxiliary variables �0; �0 2 E� which are existen-
tially quantified in the respective closure requirement. In
Figure 1 the quantifiers for the latter auxiliary variables are
also omitted. Note that these variables do not occur in the
restrictions of the BSPs.

For DE, � 0 results from � by the deletion of the last
high-level event, e.g. if l1:ho1:hi1:l2 2 Tr then l1:ho1:l2
as well as l1:l2 must also be in Tr. For DI, BSDI, and SDI,
� 0 results from � by the deletion of the last high-level in-
put event e. While in DI, �0 and �0 may differ, respec-
tively, from � and � in high-level internal and output events
(but not in high-level inputs or low-level events), in BSDI
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only �0 may differ, and in SDI none of them may differ. If
e.g. l1:ho1:hi1:ho2:l2 2 Tr then DI would be satisfied if any
of l1:ho1:ho2:l2, l1:ho1:l2, or l1:l2 is in Tr, BSDI only for
any of the first two, and SDI only for the first trace. Hence,
BSDI is called backwards strict and SDI strict.

SDI DE

BSDI

DI

RI

RESRI

(1)

Figure 2. Ordering BSPs based on removal or
stepwise deletion of high-level events

Theorem 4. RE, RI, SRI, DE, DI, BSDI, and SDI are or-
dered by implication as depicted in Figure 2.

Proof. SDI ) SRI and DI ) RI are proved by induction on
the number of high-level input events, DE ) RE by induc-
tion on the number of high-level events, and DE ) BSDI
by induction on the number of high-level output events in
�. All other implications are trivial. ut

Note that there is no link between SDI/SRI and DE/RE in
Figure 2. Informally, the reason is that SDI and SRI re-
quire that high-level output and internal events are pre-
served when high-level input events are deleted/removed
while DE and RE require that output and internal events are
deleted/removed as well. This is reflected by the follow-
ing counterexamples. For DE 6) SRI consider the trace set
Tr1 = fhi:ho; hi; hig for which DE(Tr1) holds but SRI(Tr1)
does not hold because ho 62 Tr1. For SDI 6) RE consider
the trace set Tr2 = fho:l; ho; hig for which SDI(Tr2) holds
but RE(Tr2) does not hold because l 62 Tr2.

The BSPs presented in this subsection have different mo-
tivations. Some BSPs, like RE or RI, are building blocks
of well-known definitions of security (cf. Section 5) while
others, like SRI, SDI, or DE, help us to prove properties of
security predicates (cf. Section 6). BSDI and DI have been
added mainly for reasons of uniformity.

4.2. Stepwise Insertion of Events

BSPs which prevent the low-level user from inferring
that certain high-level events have not occurred, are based
on the possibility to insert these events into traces while pre-
serving the resulting low-level observation. We define BSPs
which require the stepwise insertion of these events.

Again, we use a uniform naming scheme for BSPs. For
all BSPs based on the stepwise insertion of events, an ‘I’
occurs in the name. If only high-level inputs are inserted
then an additional ‘I’ is used and if all kinds of high-level
events are inserted, then ‘E’ is used instead.

BSPs based on insertion of events:
IE(Tr) � (e 2 H ^ � = �:� ^ �jH = hi)

) (� 0 = �:e:�)
II(Tr) � (e 2 HI ^ � = �:� ^ �jHI = hi)

) (� 0 = �0:e:�0 ^ �0jL[HI = �jL[HI
^ �0jL[HI = �jL[HI)

BSII(Tr) � (e 2 HI ^ � = �:� ^ �jHI = hi)
) (� 0 = �:e:�0 ^ �0jL[HI = �jL[HI)

SII(Tr) � (e 2 HI ^ � = �:� ^ �jHI = hi)
) (� 0 = �:e:�)

BSPs based on insertion of hl-admissible events:
IHAE(Tr) � (RIE ^ HAdmH(Tr; �; e)) ) QIE
IHAI(Tr) � (RII ^ HAdmHI (Tr; �; e)) ) QII
BSIHAI(Tr) � (RBSII ^ HAdmHI(Tr; �; e) ) QBSII
SIHAI(Tr) � (RSII ^ HAdmHI (Tr; �; e) ) QSII

BSPs based on insertion of admissible events:
IAE(Tr) � (RIE ^ Adm(Tr; �; e)) ) QIE
IAI(Tr) � (RII ^ Adm(Tr; �; e)) ) QII
BSIAI(Tr) � (RBSII ^ Adm(Tr; �; e) ) QBSII
SIAI(Tr) � (RSII ^ Adm(Tr; �; e) ) QSII
Unprimed variables (� , �, �, e) are universally and
primed ones (� 0, �0, �0) are existentially quantified.
� 0 must be in LLES(Tr; �).

Figure 3. BSPs based on stepwise insertion
of high-level events

The basic security predicates IE (Insertion of Events),
II (Insertion of Inputs), BSII (Backwards Strict Insertion of
Inputs), and SII (Strict Insertion of Inputs) require the step-
wise insertion of events. These BSPs are, again, inductively
defined. In Figure 3, the predicate IE demands that an ar-
bitrary high-level event can be inserted into a trace. Given
� 2 Tr which can be divided into �:� such that � contains
no high-level events, it assures, the existence of a low-level
equivalent trace � 0 = �:e:�. � 0 results from � by inserting
a high-level event e, e.g. if l1 2 Tr then hi1:l1 is also in
Tr (among many other traces). For II, BSII, and SII, � 0 re-
sults from � by inserting a high-level input e. While in II,
�0 and �0 may differ, respectively, from � and � in high-
level internal and output events, in BSII only �0 may differ,
and in SII none of them may differ. Hence, BSII is called
backwards strict and SII strict. Like for BSPs based on
removal/deletion, the strict versions are motivated by their
properties which help us to derive interesting theorems.

Although the definition of IE might appear appropriate
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for the insertion of high-level events, it demands too much
and makes any meaningful high-level behaviour impossible.
A similar problem exists for II, BSII, and SII. The problem
for IE is illustrated by the following example.

Example 5. We consider a system with two input events
hi1, hi2, two output events ho1, ho2 on the high-level, and
arbitrary low-level events. The purpose of the system is to
record each high-level input by the corresponding output
event, i.e. hi1 by ho1 and hi2 by ho2. hi1:ho1 is a possible
trace of the system and therefore also the prefix hi1 of this
sequence. IE demands that hi1:ho2 must be a trace as well,
however, this trace violates the intended system behaviour.

In general, IE rules out any meaningful system behaviour
on the high-level. This problem can be solved by demand-
ing that inserted events are admissible on the high-level,
i.e. occur in some high-level behaviour. Note that this so-
lution does not compromise security. In order to express
high-level admissibility formally, we define HAdmH and
HAdmHI .

HAdmH(Tr; �; e) � 9
 2 E�:
:e 2 Tr ^ 
jH = �jH
HAdmHI (Tr; �; e) � 9
 2 E�:
:e 2 Tr ^ 
jHI = �jHI

HAdmH(Tr; �; e) (HAdmHI (Tr; �; e)) holds if there is a
trace 
:e in Tr which has the same observations for high-
level events (high-level input events) as �:e.

Adding high-level admissibility (HAdmH or HAdmHI )
to the restrictions of IE, II, BSII, and SII results in four new
BSPs in Figure 3, IHAE (Insertion of High-level Admissible
Events), IHAI (Insertion of Hl-Admissible Inputs), BSIHAI
(Backwards Strict Insertion of Hl-Admissible Inputs), and
SIHAI (Strict Insertion of Hl-Admissible Inputs). In the fig-
ure we use a shorthand notation and abbreviate the restric-
tion and closure requirement of a previously defined BSP
respectively by RBSP and QBSP .

To require high-level admissibility solves the problem
pointed out previously. However, the resulting BSPs are
still too strong since they prevent information flow from the
low- to the high-level which we demonstrate by example.

Example 6. Like in Example 5, a system is considered
which records input events. However, this time low-level
inputs are recorded in the high-level output. li1:ho1 and
li2:ho2 are possible traces of the system and so is the prefix
li1 of the first trace. Since ho2 is a possible high-level be-
haviour, IHAE demands that li1:ho2 is a trace of the system,
however, this trace violates the intended system behaviour.

This problem can be solved by demanding the stronger ad-
missibility condition Adm(Tr; �; e) � �:e 2 Tr.

Replacing high-level admissibility, HAdmH or HAdmHI ,
by general admissibility, Adm, in the definition of IHAE,
IHAI, BSIHAI, and SIHAI yields the BSPs, IAE (Insertion

of Admissible Events), IAI (Insertion of Admissible Inputs),
BSIAI (Backwards Strict Insertion of Admissible Inputs),
and SIAI (Strict Insertion of Admissible Inputs) in Figure 3.

IAI (BSIAI, SIAI) and IAE demand that a low-level user
cannot infer that an admissible high-level input or arbitrary
high-level event has not occurred. Although II, BSII, and
SII have similar problems like IE, they are reasonable pred-
icates if one assumes input totality (as e.g. done in [20]), i.e.
ITOT(Tr) � 8� 2 Tr:8i 2 I:�:i 2 Tr. Under this assump-
tion, input is always admissible at the end of a trace and the
difference between e.g. II, IHAI, and IAI disappears. High-
level admissibility appears to be inferior to Adm. However,
for example generalized non-interference or separability are
based on this concept as we will show in Section 5.

IE

IAE

IHAE BSII

BSIHAI

BSIAI

SII

SIHAI

SIAI II

IHAI

IAI

(2)

Figure 4. Ordering BSPs based on insertion

Theorem 7. IE, II, BSII, SII, IHAE, IHAI, BSIHAI, SIHAI,
IAE, IAI, BSIAI, and SIAI are ordered by implication as
depicted in Figure 4.

Note that there is no link between IE/IHAE/IAE and the
BSPs which require the insertion of high-level input events
in Figure 4. This is reflected by the following counterex-
amples. For IE 6) IAI consider the trace set Tr1 =
fho:l; ho; hi; hig and the closure Tr2 of Tr1 under IE.
IE(Tr2) holds by construction but IAI(Tr2) does not because
hi:ho:l 62 Tr2. To construct the other counterexamples is
straightforward.

Remark 8. We have claimed at the beginning of this section
that our collection of BSPs can be easily extended based on
the two scenarios which we have considered here, i.e. all
events in H or only events in HI are confidential. Techni-
cally, this can be achieved by replacingHI with some other
set H 0 of high-level events in Figure 1 and 3. This yields
BSPs for the case where events in H 0 are confidential rather
than HI . Theorem 4 and 7 can be adapted accordingly.
This allows for the easy extension of our collection of BSPs
such that e.g. the case where all high-level outputs or only
certain high-level events are confidential can be covered.
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4.3. Induced Closure Operations

There is a correspondence between BSPs and closure op-
erations. A closure operation constructs the closure of a
given set by adding elements and a closure condition de-
mands for a set that it is closed wrt. some criterion. Recall
that this is also the underlying idea of possibilistic secu-
rity. If a high-level behaviour is compatible with a given
observation then certain other high-level behaviours must
be compatible with it as well. For a basic introduction to
closure operations and closure systems we refer to [3].

Definition 9. A closure operation Cl : P(S) ! P(S) for
a set S, briefly S-closure, is a function for which the fol-
lowing conditions hold.

Cl1 S1 � Cl(S1) for any S1 � S

Cl2 S1 � S2 ) Cl(S1) � Cl(S2) for any S1; S2 � S

Cl3 Cl(Cl(S1)) = Cl(S1) for any S1 � S

An ordering � on S-closures is defined by Cl1 � Cl2 ,
8S0 2 P(S):Cl1(S

0) � Cl2(S
0) :

Now we are able to identify the correspondence between
BSPs and closure operations formally. This correspondence
is the basis for many of the subsequent considerations and
results. Note that the satisfiability condition in Definition 2
is necessary in order to achieve this correspondence.

Definition 10. A closure operation Cl for E� ensures a
basic security predicate BSP if for any set Tr of traces
BSP(Cl(Tr)) holds. The set of (wrt. �) minimal closure
operations which ensure BSP, the set of induced closure op-
erations for BSP, is denoted by CLBSP.

The following simple theorem states which BSPs have a
unique corresponding closure operation. All other BSPs
have, in general, more than one induced closure operation.

Theorem 11. For BSP 2 fDE;RE; SRI; SDI; IE; IHAE;
IAE; SII; SIHAI; SIAIg, CLBSP is a singleton. For these
cases, we denote the unique closure operation by ClBSP.

Given Tr = fhi:l1:ho:l2; hi:l1:ho; hi:l1; hi; hig, for exam-
ple, ClSDI(Tr) = Tr [ fl1:ho:l2; l1:ho; l1g holds. This set
also satisfies BSDI, however, BSDI does not have a unique
closure operation. Tr [ fho:l1:ho:l2; ho:l1:ho; ho:l1; hog,
for example, would be another set which is closed wrt.
BSDI. Note that the latter set is not a closed wrt. SDI.

5. Assembling Security Predicates

In this section, we illustrate how security predicates can
be defined and demonstrate the expressiveness of our frame-
work by describing several previously proposed definitions
of security as security predicates, i.e. conjunctions of BSPs,

from the preceding section. The defined security predicates
are ordered with respect to their logical strength and will be
used as examples in the remainder of this article. The modu-
lar construction within our framework helps us in achieving
these results easily.

Generalized non-inference GNF [12] demands that a
low-level user cannot infer that high-level inputs have oc-
curred. It has been motivated by a limitation of non-
inference NF [16] which prevents not only information flow
from the high- to the low-level but also certain kinds of in-
formation flow in the other direction. We will discuss in-
formation flow from the low- to the high-level in greater
detail in Section 6. Generalized non-interference GNI [10]
demands that any interleaving of the high-level input of one
trace with the low-level behaviour of another trace can be
made a possible trace by adapting the outputs. We use
the definition of generalized non-interference from [12] in
which a function interleave is used to construct the set of
all possible interleavings for two traces. All of these defini-
tions allow some information flow from the high- to the low-
level. McLeans separability SEP [12] prevents any such in-
formation flow. A similar notion of security has been intro-
duced by Foley [5]. However, separability is stronger than
necessary because the perfect security property PSP [20]
also prevents any information flow from the high- to the
low-level. Furthermore, there is no weaker definition which
shares this property [20]. PSP resulted from the observa-
tion that high-level admissibility restricts information flow
from the low- to the high-level and that therefore general
admissibility should be used instead.

Definition 12.

GNF(Tr) � 8t 2 Tr:9t0 2 LLES(Tr; t):t0jHI = hi

NF(Tr) � 8t 2 Tr:9t0 2 LLES(Tr; t):t0jH = hi

GNI(Tr) � 8tl; th 2 Tr:8t 2 interleave(thjHI; tljL):
9t0 2 Tr:t = t0jL[HI

SEP(Tr) � 8tl; th2Tr:8t2 interleave(thjH; tljL):t2Tr

PSP(Tr) � 8t2Tr:8�; �2E�:8e2E:tjL2LLES(Tr; t)
^[(e2H ^ �:�2LLES(Tr; t) ^ �jH=hi^

�:e2Tr) ) �:e:� 2 LLES(Tr; �)]

All of these definitions of security can be expressed as se-
curity predicates in our framework.

Theorem 13. The following equivalences hold:

� GNF(Tr) , RI(Tr)

� NF(Tr) , RE(Tr)

� GNI(Tr) , (RI(Tr) ^ IHAI(Tr))

� SEP(Tr) , (RE(Tr) ^ IHAE(Tr))

� PSP(Tr) , (RE(Tr) ^ IAE(Tr))
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Proof. The first two equivalences and the last one follow
directly from Figures 1, 3 and Definition 12. Recall, that Tr
is closed under prefixes, therefore, e.g. hi 2 Tr if Tr 6= ;.

� For GNI ) RI choose tl = � , th = hi, t = � jL,
and � 0 = t0 in Figure 1 and Definition 12. For
GNI ) IHAI choose tl = � = �:�, th = 
:e,
t = (�:e:�)j(L[HI), and � 0 = t0 in Figure 3 and Defi-
nition 12.

� (RI ^ IHAI) ) GNI is proved by induction on the
length of thjHI. The base case follows from RI. In
the step case we assume the implication for all t�h with
less than n and prove it for th with n high-level in-
puts. We choose th1; th2; t1; t2 2 E� and hi 2 HI
such that th = th1:hi:th2, t = t1:hi:t2, and th2jHI =
t2jHI = hi hold. Since th1 2 Tr, the induction as-
sumption implies that there are t01; t

0
2 with t01:t

0
2 2 Tr,

t01jL[HI = t1jL[HI, and t02jL[HI = t2jL[HI. We
choose (in IHAI) � = t01:t

0
2, � = t01, � = t02, e = hi,


 = th1, and construct t0 = � 0 = �0:e:�0.

� For SEP ) RE choose tl = � , th = hi, t = � jL, and
� 0 = t in Figure 1 and Definition 12. For SEP ) IHAE
choose tl = � = �:�, th = 
:e, t = �:e:�, and � 0 = t
in Figure 3 and Definition 12.

� (RE ^ IHAE) ) SEP is proved by induction on the
length of thjH. The base case follows directly from
RE. In the step case we assume the implication for all
t�h with less than n and prove it for th with n high-
level events. We choose th1; th2; t1; t2 2 E� and
h 2 H such that th = th1:h:th2, t = t1:h:t2, and
th2jH = t2jH = hi hold. Since th1 2 Tr, the induction
assumption implies t1:t2 2 Tr. We choose (in IHAE)
� = t1:t2, � = t1, � = t2, e = h, 
 = th1, and con-
struct t0 = � 0 = �:e:�. ut

Theorem 13 demonstrates that all these previously proposed
definitions of possibilistic security can be expressed in our
framework and the distinction of two dimensions for BSPs
provides us with an intuitive understanding. E.g. GNI de-
mands that the low-level user cannot infer that any high-
level inputs have occurred (RI) or that a hl-admissible high-
level input has not occurred (IHAI).

GNF, NF, GNI, and SEP can also be expressed by
McLeans selective interleaving functions (sifs) [12, 14].
However, sifs are not expressive enough to define inductive
definitions like PSP. interleave can only capture high-level
admissibility. This was the main motivation for the defi-
nition of a new framework by Zakinthinos and Lee [20].
However, no correspondence exists between definitions of
security and closure conditions in their framework. One
benefit of our framework over [20] is that this correspon-
dence exists as it does in the framework from [12, 14]. Each
security predicate is a closure condition which induces a

set of closure operations. CLSP and ClSP are defined ac-
cordingly. The correspondence to closure conditions will
be the basis for our investigations in Section 6 and 7. An-
other improvement is the modular structure which allows
us to achieve results like the following theorem easily from
properties of the building blocks. The additional security
predicate RI^ IAE in the theorem will be used in Section 6.

NF

GNF

GNI

SEP

PSP

RI ^ IAE

Figure 5. Security predicates

Theorem 14. GNF, NF, GNI, GNI, SEP, PSP, and RI^IAE
are ordered by implication as depicted in Figure 5.2

Proof. Due to the modular construction within our frame-
work, most of the implications can be inferred from ear-
lier results. SEP ) PSP, PSP ) NF, NF ) GNF,
PSP ) (RI ^ IAE), (RI ^ IAE) ) GNF, and GNI ) GNF
follow directly from Theorems 4, 7, and 13. We only need
to prove SEP ) IHAI. With this implication, SEP )
GNI follows from Theorems 4 and 13. We assume Tr for
which RE(Tr) and IHAE(Tr) hold, choose arbitrary � 2 Tr,
�; � 2 E�, and e 2 HI with � = �:�, �jHI = hi, and
HAdmHI (Tr; �; e). Because RE holds for Tr we conclude
that � jL 2 Tr. HAdmHI ensures that there is a trace ��

such that ��jHI = (�:e)jHI . Choose ��; �� 2 E� such
that �� = ��:e:�� and ��jHI = �jHI. IHAE allows us
to insert all high-level events from ��:e into � jL (HAdmH

is fulfilled) until we receive � 0 2 LLES(Tr; �) for which
�0; �0 2 E� exist with � 0 = �0:e:�0, �0jL[HI = �jL[HI,
and �0jL[HI = �jL[HI. Since � was arbitrary, IHAI holds
for Tr. ut

6. Compatibility with other Properties

The compatibility of security with other properties is a
critical issue. The specification of a secure system consists
not only of a security property but also of other system prop-
erties. Usually, such system properties are modeled as sets
of traces. Thus, a secure system can be specified as a pair

2Note that there is a link from PSP to NF in Figure 5 which was for-
gotten in [20]. The link from PSP to GNI in that paper results from the
assumption of input totality which we do not make.
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(P; SP ) whereP is a set of traces andSP is a security pred-
icate. For example, P could specify a bookkeeping system
and SP the intended security property. IfP is not closed for
SP then P alone is an insecure specification. Simply con-
structing the closure ClSP(P ) of P by adding traces leads
to a secure specification which allows behaviours which a
bookkeeping system is not supposed to have. In order to
ensure the bookkeeping functionality we, therefore, have to
construct a subset P 0 � P which is closed for SP . This
leads to a specification of a secure bookkeeping system. Un-
fortunately, P 0 may allow no traces, i.e. be an inconsistent
specification, require the system to stop after some steps, or
just restrict the possible behaviours in a less severe but still
undesirable way. Clearly, a specifier should be aware of any
such restrictions. Therefore it is of interest with which kinds
of properties the various security predicates are compatible
or incompatible.

The correspondence between security predicates and
closure conditions gives rise to a formal definition of com-
patibility which we use as the basis for our investigations.
We illustrate the approach at several examples which re-
quire information flow from the low- to the high-level for
the security predicates from the previous section. The re-
sults are also interesting in their own right. It turns out that
a complete prevention of information flow from the high- to
the low-level implies that certain kinds of information flow
in the other direction are also restricted. If such information
flow is required then complete security must be sacrificed.
We propose a new security predicate PGSP which can be
used to gradually allow for information flow from low to
high while minimizing the resulting loss of security.

6.1. Closures and Compatibility

Definition 15. A property P is a set of traces over E. A
closure operation Cl is compatible with P if Cl(P ) = P .
A security predicate SP is compatible with P if one of its
induced closure operations is. Otherwise, it is incompatible.

The compatibility of SP with P ensures that no stronger
property than P is enforced by SP which might restrict the
possible behaviours in an undesirable way. The following
two lemmas are very useful in proving the compatibility or
incompatibility of a security predicate with a given property
in the subsequent subsections.

Lemma 16. Let SP1 and SP2 be security predicates with
SP1 ) SP2. If P is compatible with SP1 then it is com-
patible with SP2. If P is incompatible with SP2 then it is
incompatible with SP1.

Proof. We prove that if there is a closure operation Cl1 in-
duced by SP1 then there is a closure operation Cl2 induced
by SP2 such that Cl2 � Cl1 holds. The lemma follows

from this and Cl1 from Definition 9. Cl1 is a closure oper-
ation for SP2 because SP1(Cl1(Tr)) implies SP2(Cl1(Tr)).
IfCl1 is minimal wrt.� then chooseCl2 = Cl1, otherwise,
choose some Cl2 � Cl1 which is minimal. ut

Lemma 17. Let Cl1 2 CLSP1
, Cl2 2 CLSP2

be closure
operations for security predicates SP1, SP2 and let Æ denote
function composition. If Cl2 Æ (Cl1 ÆCl2) = Cl1 ÆCl2 then
Cl1ÆCl2 is a closure operation for SP1^SP2. IfCLSP1

and
CLSP2

are singleton sets then CLSP1^SP2
is a singleton set

with ClSP1
Æ ClSP2

as the only minimal closure operation.

Proof. We first show that Cl1 Æ Cl2 is a closure operation.
Cl1 and Cl2 in Definition 9 follow from Cl1 and Cl2 for
Cl1 and Cl2. The following equations prove Cl3.

(Cl1 Æ Cl2) Æ (Cl1 Æ Cl2)
= Cl1 Æ (Cl2 Æ (Cl1 Æ Cl2)) (associativity)
= Cl1 Æ (Cl1 Æ Cl2) (by assumption)
= (Cl1 Æ Cl1) Æ Cl2 (associativity)
= Cl1 Æ Cl2 (Cl3)

SP1(Cl1(Tr1)) and SP2(Cl2(Tr2)) hold for any Tr1 and Tr2.
To show that Cl1 ÆCl2 is a closure operation for SP1 ^ SP2

we choose Tr1 = Cl2(Tr) and Tr2 = (Cl1 Æ Cl2)(Tr) for
arbitrary Tr.

To show thatClSP1
ÆClSP2

is the unique minimal closure
operation for SP1 ^SP2 (if CLSP1

and CLSP2
are singleton

sets), we assume that Cl is a minimal closure operation for
SP1 ^ SP2. Thus, Cl is a closure operation for SP1 as well
as for SP2. Because ClSP1

and ClSP2
are both minimal and

unique, we receive ClSP1
� Cl and ClSP2

� Cl. This
implies that (ClSP1

ÆClSP2
) � (Cl Æ Cl) = Cl. ut

6.2. Information Flow from Low- to High

The two-level security policy PolHL requires that there
is no information flow from the high- to the low-level,
i.e. H 6; L. It does not restrict information flow in the
other direction L ; H . In fact, such information flow is
often required, however, many well-known definitions of
possibilistic security restrict or prevent it completely. We
demonstrate, using concrete examples, that it depends on
the specific kind of information flow if a security predicate
is compatible or not.

In particular, we investigate the auditing of low-level
events on the high-level. Here, each low-level event l is
recorded by a corresponding high-level output ho(l) from
a set of recording events HOrec � HO. We distinguish
three variations of such properties, depending on when the
recording event must occur. In IRec (immediate recording),
the recording event ho(l) must occur immediately after the
low-level event l has occurred. In SRec (stepwise recording)
ho(l) must occur before the next low-level event l0 occurs.
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Finally, Rec (general recording) demands only that some
part of the low-level history tjL is recorded. In the formal
definition, this is expressed using a relationv � E��E�.

 v 
0 holds if 
 is an initial substring of 
0. Clearly, IRec
is more restrictive than SRec and SRec is more restrictive
than Rec. These properties are formalized as follows:

IRec(t) � 8�; � 2 E�:8l 2 L:8e 2 E:
t = �:l:e:�) e = ho(l)

SRec(t) � 8�; � 2 E�:
 2 H�:l; l0 2 L:
[t = �:l:
 ) 
jHORec v ho(l)]^
[t = �:l:
:l0:� ) 
jHORec = ho(l)]

Rec(t) � tjHOrec v ho(tjL)

For auditing, a low-level event enforces a high-level event.
The prevention of a high-level event by the occurrence of
a low-level event is an alternative type of information flow.
A system where a guard must pass a checkpoint within a
specific time period is an example which requires this type
of information flow. If the guard passes the checkpoint in
time, then no alarm should be invoked, otherwise, the alarm
may be invoked. We distinguish two variants. In IPI (im-
mediate prevention of input) the next event after l must not
be a high-level input from the set HI(l) of prevented inputs
and in IPO (immediate prevention of output) the next event
after l must not be a high-level output from the set HO(l).
These properties are formalized as follows:

IPI(t) � 8�; � 2 E�:8l 2 L:8e 2 E:
t = �:l:e:�) e =2 HI(l)

IPO(t) � 8�; � 2 E�:8l 2 L:8e 2 E:
t = �:l:e:�) e =2 HO(l)

Lemma 18.

1. SDI, IAE, and SIAI are compatible with IRec. SDI,
IAE, and SII are compatible with SRec. SDI, DE, IAE,
and SII are compatible with Rec. SDI, DE, IAE, and
SIAI are compatible with IPI. DE, IAE, and SII are
compatible with IPO.

2. RE, IHAE, and IHAI are incompatible with IRec. RE
and IHAE are incompatible with SRec. IHAE is in-
compatible with Rec. IHAE and IHAI are incompatible
with IPI. SRI and IHAE are incompatible with IPO.

A proof of Lemma 18 is contained in the appendix. The next
theorem follows directly from Lemma 16 and 18. The mod-
ular structure of our framework has simplified this proof
considerably. The only cases that we had to prove (in
Lemma 18) are the ones which are underlined in Figure 6,
i.e. only 27 out of 95 cases had to be investigated.

Theorem 19. The basic security predicates are compati-
ble/incompatible with IRec, SRec, Rec, IPI, and IPO as de-
picted in Figure 6.

compatible incompatible
IRec SDI, SRI, RI, BSDI, DI, IAE, RE, DE, IHAE, IE,

SIAI, BSIAI, IAI IHAI, SII, BSII, II,
SIHAI, BSIHAI

SRec SDI, SRI, RI, BSDI, DI, IAE, RE, DE, IHAE, IE
SII, BSII, II, SIHAI, BSIHAI,
IHAI, SIAI, BSIAI, IAI

Rec SDI, SRI, RI, BSDI, DI, DE, IHAE, IE
RE, IAE, SII, BSII, II, SIHAI,
BSIHAI, IHAI, SIAI, BSIAI,
IAI

IPI SDI, SRI, RI, BSDI, DI, DE, IHAE, IE, IHAI, SII,
RE, IAE, SIAI, BSIAI, IAI BSII, II, SIHAI,

BSIHAI
IPO DE, BSDI, DI, RI, RE, IAE, SRI, SDI, IHAE, IE

SII, BSII, II, SIHAI, BSIHAI,
IHAI, SIAI, BSIAI, IAI

Figure 6. Compatibility of BSPs

The following theorem follows from Theorem 13, Lemma
16, and Theorem 19.

Theorem 20.

� NF and PSP are incompatible with IRec and SRec.

� GNI is incompatible with IRec and IPI.

� SEP is incompatible with IRec, SRec, Rec, IPI, and
IPO.

Theorem 20 might suggest that all established security
properties, except for GNF, are incompatible with informa-
tion flow L; H . SEP is not even compatible with a single
one of the investigated kinds of information flow. However,
depending on the application, some of these incompatibil-
ities might be acceptable. Our investigation identifies that
the problem for PSP is the use of RE. To use any of BSDI,
DI, or RI would solve the problem. This is the motivation
for the definition of PGSP in Subsection 6.3.

Lemma 21. ClBSP1
Æ(ClBSP2

ÆClBSP1
) = ClBSP2

ÆClBSP1

holds for BSP1 2 fSDI;DE g and BSP2 2 fSII; SIAI; IAE g.

The proof of Lemma 21 is contained in the appendix.

Theorem 22.

1. GNF and RI ^ IAE are compatible with IRec, SRec,
Rec, IPI, and IPO.

2. NF and PSP are compatible with Rec, IPI, and IPO.

3. GNI is compatible with Rec, SRec, and IPO.

Proof. Recall Theorem 13 which demonstrates how the se-
curity predicates can be assembled from BSPs. The compat-
ibilities of GNF and NF follow directly from Theorem 19.
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The compatibilities of RI^ IAE follow from Lemma 16 and
the compatibility of SDI ^ IAE with IRec, SRec, Rec, and
IPI and of DE ^ IAE with IPO. The compatibilities of PSP
follow from Lemma 16 and the compatibility of DE ^ IAE
with Rec, IPI, and IPO. The compatibilities of GNI follow
from Lemma 16, the compatibility of DE^SII with Rec and
IPO, and the compatibility of SDI^SII with SRec. Compat-
ibilities of the conjunctions used in this proof follow from
Lemma 17, 21, and Theorem 11, 19. ut

We have demonstrated at several examples how to prove the
compatibility or incompatibility of a security predicate with
a property and how to exploit the modularity of our frame-
work during this process. The results are also interesting in
their own right. We have shown that the compatibility of
a security predicate with information flow from the low- to
the high-level depends on the particular kind of information
flow because the results for well-known definitions differ
for the various examples (Theorem 20 and 22). PSP is in-
compatible with certain kinds of information flow from L
to H . According to Theorem 2 in [20] there is no secu-
rity property which is weaker than PSP and ensures com-
plete security, i.e. prevents all information flow from H to
L. Thus, one cannot have both, complete security and in-
formation flow like IRec or SRec.

6.3. The Pretty Good Security Predicate

We have demonstrated in the previous subsection that
certain kinds of information flow become impossible when
complete security is required. Thus, for information flow
like in IRec or SRec one must sacrifice complete security.
Clearly, it is desirable not to give up more security than
necessary. This is the motivation for the definition of a new
security property, the pretty good security predicate PGSP.

Theorem 22 (1) demonstrates that RI ^ IAE shares the
compatibilities of GNF, i.e. it is compatible with all the
properties which we have considered. On the one hand, it is
strictly stronger than GNF and, thus, more secure. On the
other hand, it provides only slightly less security than PSP
does (which ensures complete security). Therfore, RI^ IAE
is an attractive candidate for a security predicate. We define
the pretty good security predicate by

PGSP � RI ^ IAE :

Since PGSP is weaker than PSP, it must allow for some
(undesired) flow of information from the high- to the low-
level. It is of interest to identify to which extent and by
which means high-level behaviour can be deduced for a sys-
tem which satisfies PGSP. By looking at the basic building
blocks we see that the use of RI instead of RE can be the
only reason for such information flow. Thus, PGSP allows
the low-level user to infer that a high-level output or internal
event has occurred.

This provokes the question if it is possible to strengthen
PGSP while preserving the compatibilities. In fact, it is
possible. Let H 0 � H n HI contain all high level events
which are concerned with the processing of low-level in-
formation. Let R(H n H 0) be the BSP which requires the
removal of all high-level events which are not in H 0. Then
PGSPH0 � R(HnH 0)^IAE has the same compatibilities as
PGSP does. Depending on the choice of H 0 one receives a
collection of predicates which is indicated by the dotted ar-
row in Figure 5. In order to receive a security predicate, as
strong as possible, one must chooseH 0 as small as possible.
However, it is essential that H 0 really contains all high level
events which are concerned with the processing of low-level
information because, otherwise, the compatibilities may be
lost. Note that PGSP = PGSPHnHI and PSP = PGSP;.

A look at the BSPs from which PGSPH0 is composed
yields an intuitive understanding: By observing a system
which is PGSPH0 -secure, a low-level user cannot infer that
an admissible high-level event has not occurred or that a
high-level event in H nH 0 has occurred. However, he might
be able to infer that a high-level event fromH 0 has occurred,
i.e. events which are concerned with the processing of low-
level events must not be confidential.

7. Stepwise Development of Secure Systems

A stepwise development process for secure systems is
desirable. In stepwise development, one starts with an ab-
stract specification and refines it in several steps to a con-
crete specification of a system which then can be imple-
mented. However, unlike other system properties, security
properties need to be expressed as sets of trace sets and can-
not be expressed simply by sets of traces, thus, they are
outside the Alpern-Schneider framework of safety and live-
ness properties [12]. Moreover, Jacob [9] showed that, in
general, a security ordering is neither monotonic nor anti-
monotonic with respect to the subset relation. Since the
subset relation is the basis for refinement, this gives rise to
the refinement paradox which says that the refinement of a
secure system need not be secure. Thus, in general, security
is not preserved under refinement.

The refinement paradox is a major obstacle for a step-
wise development of secure systems. However, our gen-
eral correspondence between security predicates and clo-
sure conditions can be used as the basis for such a step-
wise development. Starting with an abstract specification
ESa = (E; I;O; Tra), which has been proved to be secure,
one constructs more concrete specifications. In each step
one constructs a specification ESc = (E; I;O; Trc) which
must be proved to be closed wrt. the corresponding closure
condition or, alternatively, the closure of ESc can be con-
structed using an appropriate closure operation. While this
idea might sound simple, in theory, it can be difficult to ap-
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ply in practice. Therefore, it is important to identify spe-
cialized refinement operators which preserve security. In
the sequel we demonstrate that the intersection of specifica-
tions is such a refinement operator which preserves certain
security predicates. The correspondence to closure condi-
tions is very helpful in achieving this result.

The following theorem shows that the intersection of two
specifications which are closed under a closure operationCl
is again closed under Cl.

Theorem 23. Given two properties P1 and P2 with which
a closure operation Cl is compatible then Cl is also com-
patible with P1 \ P2.

Proof. According to Theorem 1.1 in [3] a closure operation
induces a closure system and closure systems are closed un-
der intersection. ut

Corollary 24. Given two properties P1 and P2 which are
secure with respect to a security predicate SP which in-
duces a unique closure operationCl then P1 \P2 is secure
with respect to SP .

When constructing a refinement ESc of a specification
ESa, which is secure with respect to SP, then one must
again prove that ESc is secure. Corollary 24 states that we
do not need to re-prove security if we use intersection be-
cause intersection preserves security.

If SP does not have a unique closure operation (cf. The-
orem 11) then Corollary 24 is not applicable. In this case
one should select one particular closure operation Cl in
CLSP and use Theorem 23. This requires that the secu-
rity of specifications which are composed has been proved
wrt. the same closure operation.

While the stepwise development of a secure system from
its specification, i.e. the top-down approach, has been some-
what handicapped by the refinement paradox, the bottom-
up approach, i.e. the modular construction of a secure sys-
tem from components has received considerable attention,
e.g. [10, 12, 14, 17, 19]. If the composition of secure com-
ponents yields again a system which is secure then the secu-
rity of composed systems can be proved in a modular fash-
ion. This reduces the complexity when reasoning about se-
curity. Another motivation is that it allows for the use of
off-the-shelf components which are certified to fulfill a cer-
tain security property but for which the complete system
documentation is not disclosed. Composed systems are a
natural area of application for possibilistic security because
they are often non-deterministic, like distributed systems in
general. However, an investigation of system composition
within our framework is outside the scope of this article and
we point to the existing work mentioned above.

8. Discussion

We discuss the relation to previously proposed frame-
works for possibilistic security by McLean [12, 14] and Za-
kinthinos/Lee [20] as well as to a comparison of possibilis-
tic security properties by Focardi and Gorrieri [4]. Finally,
we summarize criteria for selecting a security predicate.

McLean uses traces that are sequences of states (instead
of events) as basis for his framework of selective interleav-
ing functions. A selective interleaving function (sif) takes
two traces as arguments and returns a trace. The type of a
sif decides from which trace the values of a state object are
taken for the resulting trace or if they may be chosen arbi-
trarily. In McLeans framework each definition corresponds
to a closure condition, i.e. the set of traces must be closed
under a sif of a specific type. The expressiveness of his
framework is limited since sifs can only express high-level
admissibility and cannot capture inductive definitions (cf.
Section 5), which are required in PGSP as well as in PSP.

The framework of Zakinthinos and Lee [20] uses a
schema for the representation of security properties which
is based on the notion of a low-level equivalence set (like
ours). Their framework is more expressive than the one
by McLean and can capture inductive definitions as well as
admissibility. However, the correspondence between secu-
rity properties and closure conditions is lost. Their schema
provides less structure than ours for the representation of
security properties and does not incorporate a satisfiability
condition (cf. Definition 2).

In our framework, we re-establish the correspondence
between security properties and closure conditions by the
satisfiability condition in the schema for BSPs (cf. Defini-
tion 2). The quantification of � , �, �, e, and � 0 allowed
us to express such a satisfiability condition. The distinc-
tion of a restriction R and a closure requirementQ provides
more structure for the definition of a BSP and for proving
satisfiability conditions. Apparently, this additional struc-
ture could restrict the expressiveness of our framework in
comparison to the one by Zakinthinos and Lee. The reader
might be curious since we have not formalized McCul-
loughs original definition of generalized noninterference or
non-deducibility output security [8] which can be expressed
in the framework by Zakinthinos and Lee. However, both
of these definitions of security could also be expressed as
security predicates in our framework, although this requires
the definition of further BSPs.3 In general, the schema can
capture closure conditions where the requirement of � 0 is
caused by a finite set of traces rather than only by a sin-
gle trace � . First, one should recall that e.g. in IHAI or

3Non-deducibility output security can be expressed by choosing � =

`t’, � = `� ’, and �
0
= `s’ in Definition 2 where the symbols in apostro-

phes are taken from [20]. The concept underlying McCulloughs definition
of generalized non-interference is similar to our backwards strict BSPs.
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IAI the existence of � 0 depends on two traces � and 
:e or
�:e and all definitions of security which were expressed in
the selective interleaving framework could be expressed in
our framework as well. If definitions of security are defined
which cannot be expressed easily by our schema, one might
be tempted to use � or � for artificial encodings. Since this
is not intuitive, we propose that under such circumstances
one should move to a more general schema in which � is
replaced by a finite subset T of Tr which results in:

8T 2Pfin(Tr); (�� ; �� )�2T 2(E��E�)T ; (e� )� 2ET :
[R(: : :) ) 9� 0:Q(: : :)]

Focardi and Gorrieri [4] investigate various possibilistic se-
curity properties in a process algebra based on CCS [15].
Therefore, internal events are not distinguished but rather
identified with a single hidden event � . In particular, non-
deterministic non-interference (which is similar to GNF
discussed in this paper), strong non-deterministic non-
interference (similar to NF), two-level non-deducibility on
inputs (similar to GNI), lts-restrictiveness, lts-correctability,
and non-deducibility on compositions are compared. In-
terestingly, the comparison is not limited to trace equiva-
lence but also covers other notions of behavioural equiv-
alence, in particular weak bisimulation. However, unlike
in [12, 14, 20] or this article, no general schema for the
definition of possibilistic security (like McLeans selective
interleaving functions, the security properties from [20], or
our security predicates) is provided which we consider to be
a necessary component of a general framework for security.

We now return to the issue of selecting an appropriate
definition of security which has been mentioned at various
places in this article. We have argued that the choice of an
appropriate definition depends on the application and that
there is no definition which can be recommended as the op-
timal one for all purposes. As usual in the development of
secure systems one has to analyze which information flows
are critical and what threads exist. This might result e.g. in
the decision that only high-level inputs or outputs must be
hidden from low-level users. The compatibility of security
with other system properties is critical because if the two
are incompatible, a stronger system property must be im-
plemented. If one wants to use off-the-shelf components
which are certified to satisfy a given security property then
the chosen definition of security and the one ensured by the
component must fit together. The composability of speci-
fications for a stepwise development process and the com-
posability of components is important for modular system
construction. Another issue which – to our knowledge – so
far has not been addressed in the literature (including this
article) is, how difficult it is to actually prove that a system
fulfills a possibilistic security property. This certainly is an
important area for future work.

9. Conclusion

We have proposed a new framework for investigating and
comparing definitions of possibilistic security, which can be
assembled within our framework in a modular way and pro-
vided a variety of BSPs as building blocks for such defi-
nitions. New building blocks can be added using a general
schema for the definition of BSPs. All definitions expressed
in earlier frameworks [12, 14, 20] could also be expressed
in our framework. Our framework is more expressive than
the one by McLean [12, 14] and there is a general corre-
spondence between definitions of security and closure con-
ditions which is not present in the framework by Zakinthi-
nos and Lee [20]. We have investigated the compatibility
of the various definitions of security with system properties
apart from security at several examples which require in-
formation flow from the low- to the high-level. In order to
overcome limitations of the perfect security property PSP,
we have derived the pretty good security predicate PGSP.
We also indicated how a stepwise and modular development
of secure systems is possible in our framework and demon-
strated the benefits of using intersection. Finally, we have
provided criteria for the selection of an appropriate security
predicate.

In future work we intend to investigate how systems can
be proved to fulfill a possibilistic security property. An-
other area of interest are intransitive security policies for
non-deterministic systems.
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Appendix

Proof. (of Lemma 18) Recall that Theorem 11 ensures that
all BSPs in the lemma induce a unique closure operation.
We denote the respective closure operation by Cl and the
property by Tr in each of the cases. Below, we show that
Cl(Tr) � Tr. With Tr � Cl(Tr) (Cl1) this implies Tr =
Cl(Tr), i.e. compatibility.

First, the proofs of the compatibilities. If � 2 Cl(Tr)
for SDI then there are �; � 2 E� such that �:� 2 Tr and
� = �:(�jEnHI) because Cl is minimal. IRec holds in
�:� by assumption. The strict deletion of high-level in-
puts does not violate this. Thus, SDI is compatible with
IRec. If �:l:e:� 2 Cl(Tr) then �:l:e 2 Tr (Adm) for IAE

and SIAI because Cl is minimal. Thus, they are compati-
ble with IRec. The strict deletion of high-level inputs does
not violate SRec. Thus, SDI is compatible with SRec. If
� 2 Cl(Tr) then there is a � 0 2 Tr such that � results from
� 0 by the strict insertion of high-level inputs according to
SII. SRec holds for � 0 by assumption. The strict insertion
does not violate SRec. Thus, SII is compatible with SRec. If
� 2 Cl(Tr) then there is a � 0 2 Tr such that � results from
� 0 by the insertion of admissible high-level events according
to IAE. SRec holds for � 0 by assumption. The insertion does
not violate SRec because Cl is minimal and, therefore, each
of the inserted events must be admissible. Thus, IAE is com-
patible with SRec. If � 2 Cl(Tr) then there is a � 0 2 Tr such
that � jHORec v � 0jHORec and � results from � 0 by the dele-
tion of arbitrary high-level events for DE. � jL = � 0jL holds.
Thus, DE is compatible with Rec. If � 2 Cl(Tr) then there
is a � 0 2 Tr such that � jHORec[L = � 0jHORec[L for SDI
and SII. Thus, they are compatible with Rec. If � 2 Cl(Tr)
then there is a � 0 2 Tr such that � jHORec = � 0jHORec and
� jL = � 0jL for IAE. This holds because Cl is minimal and
because of the admissibility condition in IAE. Thus, IAE is
compatible with Rec. The stepwise deletion of high-level
events or high-level inputs does not violate IPI. Thus, SDI
and DE are compatible with IPI. If �:l:hi:� 2 Cl(Tr) then
�:l:hi 2 Tr for IAE and SIAI. Thus, they are compatible
with IPI. If � 2 Cl(Tr) for DE then there are �; � 2 E�

such that �:� 2 Tr and � = �:(�jL) because Cl is minimal.
IPO holds in �:� by assumption. The stepwise deletion of
high-level events does not violate this. Thus, DE is compat-
ible with IPO. If �:l:ho:� 2 Cl(Tr) then �:l:ho 2 Tr for
IAE. Thus, IAE is compatible with IPO. If � 2 Cl(Tr) for
SII then there are �; � 2 E� such that �:(�jEnHI) 2 Tr and
� = �:� because Cl is minimal. IPO holds in �:(�jEnHI)
by assumption. Strict stepwise insertion of high-level inputs
does not violate this. Thus, SII is compatible with IPO.

For the proofs of the incompatibilities, we give coun-
terexamples. For the incompatibility of RE with IRec take
the closure of fl:ho(l):l2; l:ho(l); l; hig which contains l:l2.
For the incompatibility of IHAE and IHAI with IRec take
the closure of fhi; l:ho(l); l; hig which contains l:hi. For
the incompatibility of RE with SRec take the closure of the
set fl1:ho(l1):l2; l1:ho(l1); l; hig which contains l1:l2. For
the incompatibility of IHAE with SRec and Rec take the clo-
sure of fl1:ho(l1):l2:ho(l2); l1:ho(l1):l2; l1:ho(l1); l1; hig
which contains ho(l1):l1:ho(l2). For the incompatibility
of IHAE and IHAI with IPI take the closure of the set
fhi; l; hig which contains l:hi (hi 2 HI(l)). For the in-
compatibility of SRI with IPO consider the closure of the
set fl:hi:ho; l:hi; l; hig which contains l:ho (ho 2 HO(l)).
For the incompatibility of IHAE with IPO take the closure
of the set fho; l; hig which contains l:ho (ho2HO(l)). ut

Proof. (of Lemma 21) We prove each of the cases by con-
tradiction. Assume that there is a set of traces Tr such that
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the equation does not hold. Thus, there is a � 2 (ClBSP1
Æ

(ClBSP2
Æ ClBSP1

))(Tr) with � =2 (ClBSP2
Æ ClBSP1

)(Tr).
For BSP1 = SDI and BSP2 2 fSII; SIAIg: Since ClSDI is

minimal we can choose � such that �; � 2 E� and e 2 HI
exist with � = �:�, �:e:� 2 (ClBSP2

Æ ClSDI)(Tr), and
�jHI = hi. �:e:� =2 ClSDI(Tr) because, otherwise, we have
a contradiction. �:� 2 (ClBSP2

Æ ClSDI)(Tr) since ClBSP2

is minimal. This contradicts our initial assumption.
For BSP1 = SDI and BSP2 = IAE: Since ClSDI is

minimal we can choose � such that there are �; � 2 E�

and e 2 HI with � = �:�, � 0 = �:e:� 2 (ClIAE Æ
ClSDI)(Tr), and �jHI = hi. �:e:� =2 ClSDI(Tr) because,
otherwise, we would have a contradiction. We distinguish
two cases (1) there are �1; �2 2 E� with � = �1:�2
such that � 00 2 ClSDI(Tr) where � 00 = �1:(�2jL):(�jL),
(2) there are �1; �2 2 E� with � = �1:�2 such that
�:e:�1:(�2jL) 2 ClSDI(Tr). In case (1) there is a sequence
of traces �00 = h� 000 ; : : : �

00
n i in (ClIAEÆClSDI)(Tr) for which

� 000 = � 00, � 00n = � 0, and � 00i+1 results from � 00i by inser-
tion of a single high-level event according to IAE. Since
ClIAE is minimal, there is a sequence s = ht1; : : : ; tni of
traces in ClSDI(Tr) such that ti ensures the admissibility
condition as required by IAE in the construction of � 00i from
� 00i�1. There is a m 2 f1; : : : ; ng such that tm = �:e.
For any j � m there is a �j such that � 00j = �:e:�j
with �j jL = �jL. We construct a sequence s of traces by
s = ht1; : : : ; tm�1; tm+1; : : : ; tni where each of the tj is
constructed by deleting e in tj according to SDI. Now, � can
be constructed from � 00 by the insertion of high-level events
as in the construction of � 0 from � 00 except for e which is
not inserted. The admissibility of the events is ensured by
s. Thus, �:� 2 (ClIAE Æ ClSDI)(Tr), a contradiction. Case
(2) is proved similarly by choosing � 00 = �:�1:(�2jL).

For BSP1 = DE and BSP2 2 fSII; SIAIg: Since ClDE
is minimal we can choose � such that there are �; � 2 E�

and e 2 H with � = �:�, �:e:� 2 (ClBSP2
Æ ClDE)(Tr),

and �jH = hi. �:e:� =2 ClDE(Tr) because, otherwise, we
would have a contradiction. We distinguish two cases (1)
e 2 HI , (2) e 2 (H n HI). In case (1), we infer �:� 2
(ClBSP2

Æ ClDE)(Tr) or �:e:� 2 ClDE(Tr) from the mini-
mality of ClBSP2

. In case (2), there exist �1; �2 2 E� such
that � = �1:�2 and �1:(�2jEnHI):e:� 2 ClDE(Tr) because
ClBSP2

is minimal. Thus, �1:(�2jEnHI):� 2 ClDE(Tr).
According to SII and SIAI we can re-insert the HI-events
into �1:(�2jEnHI):� and receive �1:�2:� 2 (ClBSP2

Æ
ClDE)(Tr). For both cases we have a contradiction with
our initial assumption.

For BSP1 = DE and BSP2 = IAE: Since ClDE is mini-
mal we can choose � such that �; � 2 E� and e 2 H exist
with � = �:�, �:e:� 2 (ClIAE Æ ClDE)(Tr), and �jH = hi.
�:e:� =2 ClDE(Tr) because, otherwise, we would have a
contradiction. �:� 2 (ClIAE Æ ClDE)(Tr) because ClIAE is
minimal. This contradicts our initial assumption. ut
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