Fine-grained Information Flow Analysis for a A\-calculus with Sum Types

Vincent Simonet

INRIA Rocquencourt
E-mail: Vincent.Simonet@inria.fr

Abstract consider the program fragment

. L let ¢ = if = then (if y then A else B)
This paper presents a new type system tracing infor- .
: . . : else (if z then A else D)
mation flow for a\-calculus equipped with polymorphic

“let” and with sums (a.k.a. union types or polymorphic (Here, the language is equipped with three constdnts,
variants). The type system allows establishing (weak) non-p belonging to the same datatype:$ value directly de-
interference properties. Thanks to original forms of secu- pends on the booleans y andz. Previous type systems
rity annotations and constraints, it is more accurate than will record this potential information flow by constraining
existing analyses. Through a straightforward encoding into the security level attached tdo exceed those af, y andz.

sums, this work also provides a new type-based informationAs a result, they will similarly constrain the level attached
flow analysis for programming languages featuring excep- to the integer: produced by

tions. From these systems, one may derive constraint-based
formulations, in the style of HM(X), which have decidable letu =tcase[A,B—1|D w0

type inference. Yet, v does not depend on because testing whethés

value isD rather thanA or B cannot leak any information
abouty.
1 Introduction Our work is a proposal for a more sophisticated analysis
(concerning information flow) of sum types. In the previous
. o)) example, we will attach a (triangular) matrix of three secu-
Information flow analysis is concerned with statically it levelsq(A- B), ¢(B- D) andq(A- D) to the identifiert:
determining the dependencies between the inputs and thgne for each (unordered) pair of constructors. Ti{us- B)
outputs of a program. It allows establishing instances of a yescrines how much information one may leak by testing
non-interferenceproperty that may addresgcrecyandin- \yhethert's value is A rather thanB. It must therefore be
tegrity Issues. at least the union of andy’s levels. Similarly,q(A - D)
Although the first pieces of work in this area appear in must be the union of andz’s levels and;(B - D) must be
the late 70's [2], such an analysis has been formulated as &:s level or greater. In the previous example, because the
type system only in the past few years [8, 18, 3, 12]. Types test allows to determine whethés value isD rather than
seem to be most suitable for static analysis of information 4 or B, our system will approximate the possible informa-
flow. Practically speaking, they may serve as a specifica-tion leak byg(A - D) Li¢(B - D), i.e. the union of: andz’s
tion langage, offer automated verification of code — pro- |evels. Therefore, it will be able to establish the absence of
vided type inference is available — and have no run-time dependency betwegnandu.
cost. From a theoretical point of view, they can express Recent studies in the area of information flow analy-
non-interference results in simple and precise ways. sis concern realistic programming languages providing an
In these systems, types are usually annotated setu- exception mechanism — such as Java [5] or ML [13].
rity levelschosen in a suitable lattice. Each annotation gives The treatment of exceptions in these systems seems rela-
an approximation of the information which the expression tively ad hocand is not perfectly well understood: although
that it describes may convey. Thus type constructors forthere exists a simple monadic encoding of exceptions into
(expressions producingpase values—e.g. integers or enu- sums [4, 19], these systems address exceptions in a direct
merated constants — carpnesecurity level representing manner. Indeed, both [5] and [13] try to achieve a better
all of the information attached to the value. Such an ap- precision in the analysis of information flow due to excep-
proximation may be too restrictive in some cases. Indeed,tions than existing systems [3] dealing with sums provide.

Because we describe a very accurate type system forOur language includes thecalculus with pairs and a “let”
sums, we are able to obtain a suitable analysis for excep-binding in the style of ML. It is extended with sum expres-
tions by a simple translation. There are two reasons whysions built by the constructione. For each constructor
this approach is interesting. First, it describes a new anal-namec, A provides a destructar such thaftc (ce) eval-
ysis of information flow due to exceptions that is more ac- uates tce. A handler is a triple of a subset 6f a program
curate than existing ones. Second, because it may encodeariable and an expression. Thase construction allows
existing systems, it allows a better understanding of their to match an expression’s head constructor against a list of
design. handlers:ce case [Cy : 21 — e1 | ... | Cp : Ty — €4]
reduces ta;[z; < ce] if ¢ € Cj. (In the following, we
will assume thatase expressions argeterministici.e. that
the C; are pairwise disjoint.) The conjunction of projec-
o tions andcase clauses gives us the expressivenesa d

In the current paper, we follow a similar approach to that \; pattern matching on data constructors. We still pro-
developed in [13] for Core ML. Section 3 introduces the \;4e specific integer constants, although they may be con-

language) . and a technical extension, called thatal- gidered as a special case of sums, because they help state
lows us to reason about the simultaneous reduction of tWo,gn.interference theorems in a concise manner. Lastly, we

expressions. We present in section 4 the type system andy, not provide any construction allowing recursion: but this

state the non-interference theorem. Then we address thean pe achieved straightforwardly, for instance by introduc-
guestion of type inference in section 5 and present a smalling an extra parametgrin the \ construct as in [13].
set of examples in section 6. Section 7 explains how it is

possible to obtain from the type system for sums another
one for exceptions by a simple translation of the latter in 3.2 The\? calculus
the former. Lastly, section 8 proposes some restrictions of
these systems and relates them to existing work.

By lack of space, some proofs are omitted; they can be
found in the full version of this paper [16].

2 Overview

Because establishing a non-interference result requires
reasoning about two expressions and exhibiting a bisimu-
lation between their executions, we introduce a technical
extension of\, . It allows to deal simultaneously with two
expressions that share some sub-terms throughout a reduc-
tion.

This extension, called? , is similar to Core M in [13].
It is as follows:

3 \-calculus with sums

Throughout this paper, every occurence:-agtands for a
distinct anonymous meta-variable of appropriate kind.

3.1 The\,-calculus e e
Let k& range over integers; let, ¢ range over two dis-
joint, denumerable sets pfogram variablesandconstruc-
tor namesrespectively. We denote gy the set of all con-
structor names and |&f' range over subsets ¢t (In the
examples, we will assumgA, B, D} C C.) Then,expres-
sionsandhandlersare defined as follows:

We do not allow nesting: | -) constructs. A\2 term rep-
resents a pair ok terms. For instance, the. expression
(e1 | e2) encodes the paife;, e2). Because brackets can
appear at an arbitrary depth within\4 term, the encod-
ing allows to keep track of sharing: assuming:; ande,
are A, expressions, botke; | ex)e and{eje | ez e) en-
code the paife; e, e5 €), but the former explicitly records

e u= expression
|k (integer constant)
| =z (program variable)
| Azee (abstraction)
| ee (application)
| letxz=ceine (local definition)
| (ee) (pair construction)
| me (pair projectiong € {1,2})
| ce (sum construction)
| ce (sum destruction)
| ecase[h|...]|A] (sum case)

h == C:zm—e handler

the fact that the argumentis shared.

In order to relate a2 term to the pair of\|. expressions
which it encodes, we define twmojections |-|; and |- 2.
They are homomorphisms except(at| -) nodes: |{e; |
e2)]i = e;. We extend them to handlers bg' : = — e]; =
C : x — |eJ; and pointwise to lists of handlets

The capture-free substitution ef for = in e, written
elr < v, is defined in the usual way, except @t| -)
nodes, where we must use an appropriate projectieniof
each branchie; | ea)[x < v]is {e1[z < |[v]1] | e2]z <

[v]a])-

Basic reductions (Ax.e1)es — erfx < eg] (©)]
letz=ejines — es]r < €] (let)
mj(e1,€2) — € (proj)
clce) — e (destr)
ecase [Cr:ax1—er|...|Cpian—e,] — ez <€ ife] Cj (case)
Ele] — E[¢] if e — ¢ (context)
Lifting rules (e1|ea)e — (er|e]1|ea|e]2) (lift- 8)
miler|ez) — (mjer|m;es) (lift-proj)
clep |ex) — (Cep|ceq) (lift-destr)
(e1 | ex) case b — (eq case | 1]y | ex case |ho) if (ex | ex) Ah (lift-case)

Figure 1. Semantics of A%

3.3 Semantics

The small step operational semantics)df is given in
figure 1. The semantics of;. is obtained as a fragment of
that of \2.. To clarify the presentation, we divide the set of
reduction rules into two group®asic reductionsre those
of A,. They perform computation. When read/aﬁ re-

duction rules, they may be applied outside brackets (in this
case, the two projections perfom the same reduction step)-¢J! or

or within a bracket context (then one of the two projections
remains unchanged)Lifting rules are specific ta\3 and

deal with sharing. They have no computational: they leave
both projections unchanged. Their purpose is only to pre-

vent (- | -) constructs from blocking reduction by lifting
them up (and thus duplicating some sub-terms).

We choose @all-by-namesemantics (we will deal with
call-by-valuein section 4.6). Thusvaluation contextare
defined as follows:

E

[Je[m;{Jlel]|[]case[n]...
| {[I1e (el D

(The two last forms of context are specific)@, allowing
to apply basic reduction rules within a bracket construct.)
The rule (case) defines the semanticsast clauses. We
write e | C (read:e matche<) if and only ife = ce’ for
somec € C ore = (¢ €} | caeh) for somec; € C and
co € C. Forinstance, by application of the (case) rule, the
expressiorte’ case [C] :x1 —eq | ... | Cp : zpy — €4)]
reduces te;[z; < ce'] if ¢ € C;. Our semantics ofase
keeps good track of sharing since values likge] | ¢ €})
may be matched without any lifting if the two head con-
structors fall within the samé€’;. If they do not, (lift-case)
must be applied before reducing the two resulting: sub-
expressions separatelye; | e2) A [Ch :
C, : = — «] holds if and only if there exist distinct indices
j1 andjz suchthak; | C;, andes | Cj,.

| A]

3.4 Relating\? to Ay

An expressiore is a normal formif it is irreducible.
We denote by the meta-variabbeany expression which is
a normal form. The following lemma relates. normal
forms to those of ..

Lemma 3.1 (Normal forms) If e is a normal form then
le]2 is @ normal form.

Proof. By induction on the structure ef

oCasex =k, e=x,e = Az.e/,e =ce. |e]; and|e]s
are both normal forms.

o Casee = e; e. Because (context) is not applicable,
is a normal form. By induction hypothesig; |; is a normal
form for somei € {1,2}. Because neithe3) nor (lift-3)
is applicablee; cannot be of the forng« | x) or As.x. It
follows that|e; |; is not ai-abstraction. We conclude that
le|; is a normal form.

o Cases: = 7; ¢/, e = ce’. Similar to the previous case.
o Casee = let z = e in e3. e IS not a normal form.

o Casee = ¢/ case h. Because neither (case) nor
(lift-case) is applicables’ J C;, for all j, ande’ X h.

If ¢/ = (x| %) it follows that | ¢’ |; is not of the form
exwithec € Cy U ... UC, for somei € {1,2}. Because
(context) is not applicable, botfe’ |, and|e’ |2 are normal
forms. We conclude thdk |; is a normal form.

Otherwise| ¢’ |; is not of the forme * withc € C;U. . .U
C, foralli € {1,2}. Because (context) is not applicable,
e’ is a normal form. Then, by induction hypothedig/]; is
a normal form for some € {1, 2}. It follows that|e|; is a
normal form.

o Casee = (e | e2). Because (context) is not applicable

with £ = ([] | %) or {x | []), |e]1 and|e], are both normal
forms. O

We now show that everg? reduction correctly sim-
ulates the simultaneous reduction of twq expressions.
This is expressed by two lemmas sbundnessnd cor-
rectness The former states that the projections of\a
reduction are valid\ | reductions. The latter ensures that

A row (resp. amatrix) is an infinite, almost constant fam-
ily of alternatives (resp. levels) indexed by a subseC of
(resp. C?), its domain. (A family isalmost constanif all
but a finite number of its entries are equal.) It is worth not-
ing that because pairs 6f are unordered, matrices are in

if both projections of an expression can produce a normalfact triangular. We writgc : a;r) for the row whose el-
form then so can the expression. The proof techniques areement at index is a and whose other elements are given

almost identical to those used in [13].

Lemma 3.2 (Soundness)eti € {1,2}. If e — ¢/, then

le]i =~ [€']q

Proof. By inspection of the reduction rules.

Lemma 3.3 (Completeness)Assumele|; —* n; for all
i € {1,2}. Then, there exists such thate —* n.

Proof. Because each of the “lift” reduction rules moves
some(- | -) constructor strictly closer to the term’s root,
no infinite reduction sequence can consist exclusively of in-
stances of these rules. As a consequence,afimits an
infinite reduction sequence, then lemma 3.2 yields an infi-
nite one out of|e|; for somei € {1,2}. However, this is
impossible, because botl|; and|e|, can be reduced to
normal forms, and the semantics of the fragment is de-
terministic. We conclude that there exists a normal farm
such thae —* n. O

4 Typing

Given two distinct constructorg andc,, we denote by
c1 - c3 the (unordered) paifcy, ¢ }. For anyC C C, let C?
denotes the set of such pairs of element€’of

Is this section, we present a type system tracing infor-
mation flow inA,. This is agroundtype system, in so far

by the sub-rowr, which is indexed by’\{c}. We denote
by dca the row indexed by that maps all its entries @
(the domainC' may be omitted when it can be deduced from
the context).r - represents the row of the same domain as
r which is equal tor on C and Abs elsewhere. Similarly,
we write 9% ¢ for the matrix indexed by>? that maps all
its entries tof andqjc denotes the row of the same domain
asq which is equal tog on C? and L elsewhere. Lastly,
(rq)‘c is a shorthand for, 7 wherer; = r|c andg; = q|c.
Given a matrixg and a set of constructois, we define
q(C)={q(c-)|ceC, ¢C}.

Our types are those of ML's type system (with rows for
sum types [14]) decorated with security annotations that are
simple level¢ and matriceg.

The typeint’ describes integer expressions whose value
may reflect information of security levél

In many type systems tracing information flow [8, 3, 12,
21, 13], arrows carry a security level representing informa-
tion about the function’s identity. Nevertheless, because the
only way to observe a function consists in applying it and
examining its results, there is really no difference between
a function whosedentity is secret and a function that pro-
duces secraesults As a consequence, following [1], we do
not equip the— type constructor with an external security
level: all the security annotations related to a function may
be carried by its result type. Similarly, all of the information
carried by a tuple is in fact carried by its components. Thus
products have no security annotations.

The main novelty resides in sum types, such%@svhich
consist of a row and a matrix. First, following [14], the row

as it has no type variables. It handles polymorphism in anr indicates for every constructerc C if the given expres-
extensional way: a type scheme is represented by the set oion may Pret) or may not fAbs) produce a value whose
its ground instances. This presentation is very amenable tchead constructor is. The constructoPre carries, in ad-
proofs. Nevertheless, it does not describe a type inferencedition, the type of the constructor's argument. Second, for

algorithm: we will address this issue in section 5.
4.1 The type algebra

Let (£, <) be a lattice whose elements, denoted/by
represensecurity levelsTypes alternatives rowsandma-
tricesare respectively defined as follows:

int? |t —t|txt]|r
Abs | Pret

{C'—> a}cEC

{Cl cCo K}cl-czeCQ

Q3 2

every pair of constructors - c, € C2, g(c1 - c2) gives an ap-
proximation of the level of information leaked by revealing
that the expression produces a value whose head construc-
tor is ¢; rather tharnc,, or symmetricallyc, rather thanc;.

Note that ifr(c) = Abs, none of the levelg(c - x) carries

in practice any relevant information. Thus, the type system
would have the same expressiveness if we considered only
sum types? such that(¢) = Abs impliesg(c - *) = L.
Nevertheless, we prefer not to introduce such a constraint
which may needlessly complicate the presentation.

As usual in type systems tracing information flow, we
equip the algebra with a subtyping relatieh that ex-

int® oO—a ® x ® ®® Pre &
Abs < Pre x {x— @} {x-x— P}
Figure 2. Subtyping
tends the ordering over information levels. This allows

giving a directed view of the program’s information flow
graph. It is defined by the axioms in figure 2p and

© stand respectively forovariantandcontravariantargu-
ments. For instance, the axiom® is an abbreviation of
% < ry®2 s < rg Aqp < go. Similarly, the last two
axioms extend< pointwise on rows and matrices, respec-
tively.

4.2 Guards

d

~X

We introduce a two-place predicafé,,...
[t1,...

s U]
,t»] whose first argument is a (finite) list of secu-

Its first premise propagates the constraint down. The sec-
ond one constrains the matrix. If two different branchges
andj, may produce results with different head constructors,
namelyc; and cy, then any further test that distinguishes
these head constructors is liable to leak information of level
¢;, UL;,. As aresult, we constrain the fietd - ¢ in g;,
(resp.qgj,) to be’;, (resp.¢;,) or greater. Thus, the same
field in ¢ must be greater than or equaldg U ¢, .

Our guards allow keeping more precise information
about flows than the simple guards of [13]. To illustrate
this point, let us consider the following example:

lett = x case[{A} : y — if Ay then A else A,
{B} :y — if By then B else By
{D} : y — if Dythen D else Ds)

Because the guard constraint can consider the type of each
branch of thecase construct in isolation rather than only
their union, the type system will be able to take into account
the fact that, in this example, only the first (resp. second,
third) branch can producé; or A, (resp.B; or Bs, D1 or

Ds). As aresult, the levels associated with the pdirsAs,

rity levels and whose second argument is a list of types of By - B, andD; - D, are not constrained to be greater than

the same length. We also writa, ..., t,] < t as a short-
hand forty < tA...At, < tandf [ty,...,t,] for
[y..., 0] Qt1,... ta].

In practice, we will use constraints of the form
[l1,...,4,] < [t1,...,t,] < t to record potential infor-
mation flow at a point of the program where the execution
path may take one of possible branches, depending on the
result of a series of tests. The security lefgls intended to

the security levels attached to the identifiei.e. ¢(A -
B), q(A - D) andq(B - D) if = has typex?.) Using the
intermediate result, we now compute an integer

let u =t case[{A1}:-+—0
C\{Ar}:-— 1]

Therefore the security level of the integewill in particular
not be constrained to be greater th@ - D), reflecting the

describe the information revealed by the test which guardsfact thatu's value carries no information about whethtésr

the ;" branch, and; is the type of that branch’s result. Last,

head constructor i rather thanD.

t is the type of the whole expression. It must be at least the

union of all¢; (i.e. [t1,...,t,] < t) but it must also keep

track of the information which the series of tests may leak.

(Although the set of types is not a lattice, we define the
unionof a finite list of typed,, ..., t, as the smallest type
tsuchthat; <tA...At, <tifthere exists one.)

We now comment the rules of figure 3 defining the pred-
icate [¢1,...,¢,] < [t1,...,t,]. Because we intend to
compute the union of ¢4,...,t,, < first constrains them
to have the same structure. tif, ..., ¢, are integer types
int’t, ..., int’", GUARDS-INT requires each integer type
to have security levef; or greater. Consequently, that of
t will be constrained to bé; U ... U ¢, or greater and
will record all potential information flows. Because and
x types carry no security annotation, rul@gARDS-FUN
and GUARDS-PAIR propagate down the constraint on the
result’s type for— and the components types far. This

Lemma 4.1 (Subset)If [¢1,...,¢,] < [t1,...,t,] then
for all {’Ll,,’Lm} - {1,...,71}, [£i1;~~~a£im] d
[ti17 . ,tim] holds.

Lemma 4.2 (Transitivity) If ¢; < ¢4,...,¢, < ¢, and
[O1,. ., 0n] < [t1,... tn) thenlly, ... 0] < [t1, ..., L]
holds.

Proof. By induction on the derivation of¢;,...,¢,] <
[t1,. -, tn]. O

4.3 Additional notations

A polytypes is a nonempty set of types. polytype en-
vironmentI" is a partial mapping from program variables
to polytypes. I'[z — s] denotes the environment which

reflects the fact, as explained in section 4.1, that all infor- mapsz to s and agrees with' otherwise. A type judgement

mation about the identity of a function is given by its re-
sults and all information carried by a tuple is carried by
its components. Lasth\GUARDS-SUM handles sum types.

'+ e : tis atriple of a polytype environment, an expres-
sion and a type. (We also wrilet e : swhenl' - e : ¢t
holds for allt € s.)

Types

GUARDS-PAIR

GUARDS-INT GUARDS-FUN [1,.... 0] <ta, ... t]
<y 0, <0 (01, 0] Lty ..t (01, ..., 0] <[t ..o 1]
[61,...,&1]ﬁ[intéi,...,intab] [517---7£n]g[t/l_’tla-”atél_’tn] [61,...,€n]§][t1Xt/l,...,ant;J
GUARDS-SUM
U1, ln] <ra, .o]
Vi1 # j2,c1 # ca, 1j,(c1) # Abs A1y, (ca) # Abs = £, < qj,(c1 - ¢2) Ay, < gj,(c1 - c2)
[éla s agn] d [qulw . ~7anqn]
Rows
GUARDS-ALT GUARDS-Row
[ﬁil, . ,&m} gl [til,. .. ,tim} Ve € C, [fl, . ,En} d [7‘1(()), . ,’I‘n((:)}
[01,...,0,] <[Abs* Pret; ,Abs*, ... Abs* Pret; ,Abs| [l1,... 0] < rey. .o 7a]

Figure 3. Guards

Given a rowr and a set of constructors, we say that ¢ to Pret (wheret is e¢'s type) and leaves other entries
r cutsC (r m C) if and only if there exists € C and a unconstrained, allowing them to bebs. The matrix is

typet such thatr(c) = Pret. Similarly, r is included inC alike unconstrained (and may légel) since knowing the

(r € C)ifand only if everyc such thatr(c) = Prex isin head constructor of the value cannot reveal any informa-

C. tion at this point. DESTR requiresc’'s argument to have
type(c : Pre*; OAbs)". This statically ensures that its head-

4.4 Typing rules constructor ig:, allowing the matrix to be ignored. It would

in particular be the case for a value matched blyin acase

Because the security latti¢€, <) is arbitrary, our proof ~ €Xpression.
technique requires to temporarily split security levels be-
tweenlow and high ones. That's the reason why, in the
present section and the next one, we assume fiXe@dn
upward-closed subset @f whose elements will be consid-
ered as high security levels. Full generality will be recov-

ered i,n sec_tion 4.6. o _ third premise concerns handlers. The handleis consid-
A+’S typing rules are given in figure 4INT assigns @ greq only if it is liable to be invoked (i.e: @ C;). It is

base type to integer constants, with an unconstrained seClg e checked in an environment where the type assigned to
rity level. Because security annotations appear only on SUM o program variable:; is nothing but the “restriction” to

nodes and Iea}vesmtype.s, rluléSR, ABS, APR, LET, PAIR , G of the matched expression’s type. The type given to
andProsinvolve no particular constraint and are identical " ic’herefore more precise than thatfreflecting the

to those of [11]. Polymorphism is allowed by ruleT: success of the test guarding the handler. A security level
e; can be given a polytype. Therefore, l_JyVAR,_each 4(C;) = L{q(c-) | c € C;, ¢ ¢ C;} is associated to each
occurrence ofr within ¢, can be typed with a different handler. It is an approximation of the information leaked
t € s. Rule E,'APP of [13] _dlﬁers from App (regardless by revealing whether thes head constructor belongs €

of the annotations concerning side-effects) by an extra con-(i.e. whethere; will be executed). Then, the last premise

straint’ < ¢, wherel is the security annotation of the- o5 ytes the union of all ¢; guarded by these levels as
type constructor. Because the function’s result may revealdescribed in section 4.2

information about the identity of the function itself, its type
t must be guarded b# In this paper, potential information Rule BRACKET is specific toX? . It allows typing(- | -)
about the function’s identity is directly propagated to its re- constructs by computing the uniomf the types of the two
sult type by<l. As a result, no extra constraint is needed in sub-expressions. Moreover, because brackets enclose secret
the premises of rul&pp. parts of a computation, they must recehigh type, i.e.t
INJ associates to the expression a row which maps must be guarded by arbitrary levels choseiifin

Let us now consider rul€AsE. Its first premise simply
specifies the type of the matched expression, which is ex-
pected to be a sum type. The conditioE C; U ... UC),
ensures that the matching is exhaustive: a handler must be
provided for each head constructor thahay exhibit. The

| VAR ABS ApPP
NT teTl(z) lz—t)ke:t ke :t' -t Threy:t
T+ k- int = A A
I'Fax:t I'FXze:t —t I'Fejes:t
LET PaIR PrROJ INJ
I'ke:s Clx—s]kes:t I'ke:ty I'kes:ty I'ke:ty Xt I'e:t
Fkletz=e;ines:t ' (e1,e2) :t1 X to Ikme:t; I'kce:(c:Pret;*)”
CASE
DESTR TFe:r? T@ClU...UO,L
[+ e:(c:Pret;0Abs)" Vi, rmC; = Tz, H(Tq)\cﬂ Fejity [q(C1), ..., q(CL)]) <1, .. tn] <t
I'kce:t Ptecase [Cr:ax1—e1|...|Cpixpiey]:t
BRACKET SuB
I'ke:ty I'keg:ts 6176261‘[[61,€g]ﬁ[t17t2]§t F'e:t tlét
Lk {er]ea):t F'te:t

Figure 4. The type system for A%

4.5 Type soundness

We first state a few auxiliary lemmas whose proofs are
straightforward, then establish the subject reduction theo-

rem.

Lemma 4.3 (Projection) Leti € {1,2}. If '+ e : ¢ then
Lt lel; :t.

Lemma 4.4 (Guard) If T' F (ey | e2) : t then there exist
l1,45 € H and two typeg;,t, such thatl’ + e; : ¢y,
'+ SRR D) and[él,ﬂz] d [thtg] <t.

Lemma 4.5 (Sum) Assumel’ + e : 7.
I'e:(rf)candrnC.

If e | C then

Lemma 4.6 (Substitution) Assume- ¢’
sk e:timpliesT F e[z < ¢'] : ¢t.

: 5. Thenl'[z —

Theorem 4.1 (Subject reduction) Lete — ¢’. If - e : ¢
thent ¢’ : t.

Proof. By induction on the derivation of — ¢’. We as-
sume, w.l.o.g., that the derivation bf e : ¢ does not end
with an instance oBuB. As a result, it must end with an
instance of the single syntax-directed rule that matefes
structure.

o Case(f). eis (Ax.ej)es ande’ is ej[z < es]. In
APPs premises, we have Az.e; : ' — t andk ey : t'.
The former must end with an instance/#s, followed by
a number of instances &uB. Because— is contravariant

somet” such that’ < ¢”. By SUB, - e, : " holds. Then
lemma 4.6 yield$ e[z < es] : t.

o Case(let). By LET and lemma 4.6.

o Case(proj). e is m;(e1,e2) ande’ is e;. In PROJs
premises, we have (ei,es) : t1 X to With t; = ¢. This
derivation must end by an instance R£Ir followed by a
number of instances @uB. It follows thatk ¢; : ¢;, i.e.
Fe :t.

o Case(destr). e is ¢(ce’). In DESTRs premises, we
havel ce’ : (c:Pret;*)". By SuB andINJ, this yields
Fe :t.

o Case(case).ciseg case [Cy : x1 — €1 | ... | Cp ¢
xn, — ey) ande’ is ej[z; < egl, with eg | C;. Within
CAsE's premises, we have ¢ : r? and(z; — (7))
e; : t; with t; < ¢. By lemma 4.5, the former yields e :
(r‘l)‘cj. Applying lemma 4.6 an&uB, we obtain- ¢’ : t.

o Case(lift- 8). e is (e1 | e2)eg ande’ is (e |eo]1 |
e2 leg]2). In APPs premises, we have (e; | eq) : t/' — ¢
andt e : t'. Lemma 4.3 yields |eg]; : t' and- |eg]s :
t’. By lemma 4.4 andSUARDS-FUN, F e : t] — t;
andh e : ty, — to hold for somety, to, t), t5 such that
[61,62] d [tl,tg} < t(Wlth £1,€2 S H),t/l > t andt’2 > .
By Su andAPP, itfollowst ey |eo|1 : ¢ and- es |eg]s :
t2. By BRACKET, we conclude that e’ : ¢.

o Case(lift-proj). e is m;(e1 | e2) ande’ is (mjer |
mj e2). INPROJS premises, we findt (e; | ea) : t1 xto With
t; =t. By lemma 4.4 an@GUARDS-PAIR, | ey : 11 X t12
andk es : to1 X tog hold for sometyq, t12, t21, t2o With
in particular[¢y, £2] < [t1;,t2;] < t; for somely, l, € H.

(resp. covariant) in its first (resp. second) parameter, apply-By PROJ, it follows that- m;e; : t1; andk- e @ to;.

ing SUB to ABS's premise yieldfz +— t”) F ey : ¢t for

Conclude byBRACKET.

o Case(lift-destr). e is c{e; | ez) ande’ is (¢e; |

Ces). In DESTRs premises, we have (e; | e2)
(c:Pret;0Abs)". By lemma 4.4, we have- e¢;
(c: Prety;0Abs)™ andl ey : (c : Prets; OAbs)™ for some
t1, t9 such that[El,Eg] d [thtz] < t with l1,45 € H. By
DESTR it follows that- ¢e; : t; andk cey : ty. Conclude
by BRACKET.

o Case(lift-case). e is (¢ | e5) case [C; : z; — €],
ande’ is (¢} case [C; : xj +— |e;]1]; | €5 case [C) : xj —
lejl2];). Becausde! | e5) A[Ch]...|Chl el | Cy, and
e5 | Cj, hold for somej; # jo.

In CASE's premises, we have (¢} | e}) : ¢ andr &
CiU...CpandrmCj, = (v — (Tq)\c,»i) Fej, @ tj, (for
alli € {1,2}) and[¢(C1), ..., q(Cn)] < [t1,. .., tn] <t

By lemma 4.4, there exist;, ¢, ro and g such that
F e} :rm® andb e : 1% with [61, 03] < [@, re®] < 1t
for some/t;,¢, € H. By lemma 4.5, we obtaifr e :
(Tiq"')|cji andr; m C;, (for all i € {1,2}). The latter and
rj, < rimply rm Cj,. Then(z — (Tq)lcjf) Foej
t;, holds and, by lemma 4.3, this yields — <Tq)|cii) -
lej, i« t;,. Applying an instance o€ASE, we obtaint-
6; case [CJ Ty Lejji]j thi.

riMCj,, roMC;, andGUARDS-SUM imply ¢1 < g;(c1 -
co) andly < go(cq - o). Itfollows ¢; < ¢(Cy) andls <
q(Cs). Then, becausg(C1),...,q(Cr)] < [t1,...,tn] <
t, we have by lemmas 4.1 and 4[2,, (5] < [ti,, ti,] < t.
Conclude byBRACKET.

o Case(context). By induction hypothesis. O

4.6 Non-interference

In the following, the sefd is no longer fixed. Thus, it
appears as an extra parametendrtyping judgements (we
write 5 instead of-). It is still unnecessary to mention it
on those judgements which involwe expressions because
H is used only in thédBRACKET rule.

Theorem 4.2 (Non-interference)Choosel,h € L such
thath £ £. Leth < [t1,ts] < t. Assuméz — t) I e : int’,
wheree is a A\, expression. If- ¢; : t; ande[z < e;] —*
k;, fori € {1,2}, thenk; = k.

Proof. Let H be the upper congh’ | h < h’}. Definee’ =
(e1 | e2). By BRACKET, by ¢ : t. Lemma 4.6 yield$ g
elz < €] :int’. Now, e[z < €]|; ise[x < e;], which, by
hypothesis, reduces ta. According to lemma 3.3, there
exists a normal formn such thate[z < ¢'] —* n. By
theorem 4.1y e[z < €] : int’ implieskg n : int’.

By lemma 3.1,|n]; is a normal form for some ¢
{1,2}. Because the semantics of the fragment is de-
terministic,|n); = k; must hold. It follows that: is of the

form k or (x | *). If the latter, then by lemma 4.4, there

exists¢’ € H such that’ < ¢, which implies¢ € H, a
contradiction. Thus, we must have= k = k;.

By lemma 3.2¢; —* k andey; —* k hold. It follows
thatm =ny =k. O

This theorem establishesngeaknon-interference result
in so far as it requires both expressions to converge. Indeed,
in order to provide a fine-grained analysis, our type system
is able to ignore some test conditions. For instance, define
ase’ case [A: _— D | B: _+— D], wheree’ is an arbitrary
expression of typg€ A, B : Prex; 0Abs). The type system
statically detects that the result @6 evaluation does not
depend ore’. Yete’s termination does depend on thatebf
reducing thecase clause requireg’ to produce either or
B (even though it does not affect the final result). Obtaining
astrongnon-interference statement would require dropping
the fine-grained treatment of sums. Anyway, it would be of
little sense since we do not deal with timing leaks in general.

Because the type system satisfiepragressproperty
(i.e. “no well-typed expression is stuck”), each hypothesis
“e[x < e;] yields an integer” of the non-interference the-
orem can be safely weakened intgj# < ¢;] does not di-
verge”, i.e.e[r < e;] —* n;, because, by progress, akhy
normal form of typent™ must be an integer constant.

The non-interference result still applies {5, the A -
calculus equipped with a&all-by-value semantics— ¢y
(we omit its definition because it is standard). Indeed, if
elr < e1] =k, k1 andelx < eq] =%, k2 then, by nor-
malization,e[z < e1] —* k; ande[z < e1] —* ka. Ap-
plying theorem 4.2 with the correct hypothesis about types,
we obtaink; = ks.

5 Type inference

We now explain how a type system with decidable type
inference can be obtained from that of section 4. This raises
several technical issues. By lack of space we prefer to
present it in an informal manner only.

The description of an inference algorithm for a constraint
based type system generally consists of two distinct parts:
a set of inference rules and a constraint solving algorithm.
Obtaining inference rules in the style of HM(X) [17] from
a set of rules such as that of figure 4 is a well-studied issue;
the reader is referred to [7, 11] for more details. It requires
introducing type variables, a constraint language and uni-
versally quantified, constrained type schemes. The correct-
ness of the system thus obtained may be proven by a simple
encoding of its judgements into, judgements. This set of
rules may be viewed as an algorithm which, given an input
expression, returns a constraint which is satisfiable if and
only if the expression is well typed.

Constraint solving for (hon-atomic) subtyping is known
to be decidable and reasonably efficient algorithms have

been proposed in this area [9, 10]. However, our system6 Examples
involves non-standard forms of constraints. We claim that

constraint solving remains a decidable problem. In this section, we illustrate the expressiveness o
Constraints of the form € C can be encoded using type system by describing the types obtained for a small set
simple subtyping constraints requiring fields notirto be of relevant examples. We use a Caml-like syntax, which
Abs. In CASE's premises, typing judgements concerning can be easily de-sugared inka . In particular, we allow
the handlers are subject to a condition of the form C'. constructors with no argument and booleans. Booleans can
Such a condition may be enforced in the type inference sys-pe easily encoded within sums by choosing two different
tem by prefixing with it every constraint produced by the constructorsl” and F' (for the constantgrue andfalsg re-
judgement. This introduces conditional constraints such asspectively). The tesif e; then e, else e; can be trans-
(rm C) 7y wherey is an arbitrary constraint. Such a con- lated intoe; case [{T} : ey | {F} : e3]. Because it
straint may be solved by keeping it unchanged as long asinvolves only two constructors, the type of a boolean ex-
none ofr’s fields corresponding to constructors @hare pressionT : Pre; F : Pre; 5Abs)(T'F¢f%*> carries only one

known to bePre x. When one of them is unified withre x relevant security levek. Thus, it may be abbreviated into

then the condition is satisfied and the conditiofath C) ? y bt.

must be replaced by itself. Our first examples are those of the introduction.
Guardsty, ..., 4,] < [t1,...,t,] <t can be solved in

a “lazy” manner. As long as nothing is known about the et fxy z =

structure oft (or any of thet;), the constraint is preserved i thj{;e('f(ify ZthtignAAeEEeBg)
intact. Whenrt (or one of the;) is instantiated with a term,

the constraint may be propagated throughout its structure let g = function

to the leaves, generating a number of subconstraints. This | DA_|> Bfal':e true

propagation is straightforward o and x nodes. At sum

nodes, it requires the introduction of a form of conditional let hxy z =g (f x y 2)

constraint:[¢1,...,¢,] < [r?,...,r, %] < r?is indeed _ _

equivalent to[¢1,...,0,] < [r1,...,m] < r andVe; # The function f admits all types of the forme —b°—b°—

ca, (Pres,Pre) < (rj,+7j,)(c1-ca) = j, < gj,(c1-cp) (ABDPresmBounibotn® e (wherea, fands are
for everyj, # j, (rj, * r;, denotes the matrix formed by ~Security Ieve!s). The tails of the row and.the matnx_descnb—
the cartesian product of the rows andr;,). ing the function’s results are unconstrained, allowing them

If the number of constructor names that are present in 0 bedAbs andd L, respectively. As explained in the intro-

every sum type is finite and statically known (e.g. if sum duction, testing whether the result $fis B rather thanD

type are used to represent finite variant types such as MLsEan Ier?k f'_nflgerig'or; (;]nly abqut_ the ;‘|rst argumerljt.bThﬁre-
datatypes), such a constraint may be decomposed pointwis%ore’ the fieldB3 - D of the matrix is only constrained by the

by generating a different conditional constraint for each pair [€V€! @ We ObtaiN(A,5,D:Pre;0Abs) (4 2222 —b" for g.
of constructors; - ¢, Otherwise, it may be viewed as Lastly our system detects the absence of information flow

a conditional constraint involving two-dimensional rows: f_rom tfhe segond argf:Jmer:jt [go t_he OUtpL:'hthe fon:B?SI-
(Prex,Prex) < (r;, xr;,) = {;; < g;,. Although two- tlonﬁ]]:an 9, a/s.re. eCt.e Iyltﬁ t);pes'.ﬁb b
dimensional rows have never been — to the best of our. 1he functionf’isidentical to the functiorf butit returns

knowledge — really used, they form a natural generaliza- IS 'ésult embedded in &abstraction:
tion of rows [15] and can be manipulated using the same et ¢ x y 7 =

techniques [10]. if x then (if y then (fun _ -> A)
; . else (fun _ -> B))

Lastly, constraints of the formg(C') < ¢ are equiva else (i z then (fn _ -> A)
lenttoV ¢; € C, Ve € C\C, q(cl : 62) < £. Once else (fun _ -> D))

again, if the number of involved constructor names is fi-

nite, this constraint may be decomposed pointwise into aFor f/, the system gives b*—b®—b’—(x—(A,B,D:
number of inequalities between security levels. Otherwise, Pre;«)(4 Biausia-DiausiB-Dias)y — This example illustrates
it may be viewed as a subtyping constraint between two- the interest of the absence of security level on-theype
dimensional rowsy’ < 9%¢ (we denote by)?/ the constant constructor: it allows the accuracy of the typing of sums
two-dimensional row with the same domain @3¥ where to pass through it. As a result, if we re-implemehby

¢’ is the restriction of; to the rectangle” x (C\C). As- let fxyz=(F xyz0 , we obtain exactly the same
sumingC is finite or cofinite, this restriction may be com- type scheme as that for the first version.

puted thanks to unification constraints usingnR/’s row Our next example tests whether the head constructor of
syntax [14]. its argument isA or not:

_ _ are defined as follows:
Basic reductions

v == x|k|(v,v)]| Ax.e|ev
Aze)v — e[z —v] (5) o u= v|raise (¢v)
| t?Tj_(vl’,vz) : vf] EESJ) e u= v|vv|mjv|raisev|letz=wvine| Ele]
etr=uvime el —v E == bindz=]]ine
Sequencin | []handlecx = e
q 9 | []handlez >~ e
bindx=vine — e[z < v] (bind)] o o
raise (cv) handleez = ¢ — e[z < v] (handle) In fact, \¢ is the language studied in [13] (where it is re-
raise (cv) handlez = ¢ — e[z « ev] (handle-all) ferred to as Core ML”) deprived of the constructions deal-
ing with references. Its small-step semantics is recalled in
o escaped’ e — e figure 5. p escaped’ if and only if E[o] cannot be reduced
m (thrOW'ConteXt)w (context) by one of the rules (bind), (handle) and (handle-all)).

Because of the presenceaifects our presentation of¢
differs from that of\ ;. in two points. First, following [20],
Figure 5. Operational semantics of g it is restricted to a call-by-value setting to preserve conflu-
ence. Second, we introduce a segregation between values
and expressions. This syntactic restriction enables a lighter
let test A = function formulation of the type system and allows it to remain in-
A _ > true dependent of the evaluation order. It does not reduce the
| _ -> false expressiveness of the language because usual expressions
may be encoded into our restricted syntax in a straightfor-
It admits r—be({4D (for every q) as type: the resulting ward manner (see [13], section 5.7).
boolean is marked with the union of all security levels at-
tached to the constructet in the input. 7.2 Encoding)s into A?Y

The rotate function performs a transposition of three

constructors: Let the constructors of\, be exactly the exception

names of)\g, with an additional one, denoted by (i.e.
C = £ U {n}). The basic idea of the encoding introduced
B by figure 6 is to translate every expressionf A¢ into an
D expressionfe] of A, such that ife evaluates to a value
A without raising an exception thefe] evaluates to) (v) in
AZY and if the execution ot raises an exceptionv then
The same transposition arises between the correspondindel reduces ta (v). Such an encoding may be defined in
fields of the types describing the input and the output of this @ Systematic way using monads [4, 19], but here we prefer,
fUNCLION: (A:a;B:8;D:5;9Abs) (A B:8's4-D:6"B-D:a/s01)) _, (4.5, B: for simplicity, a direct translation. It is stable w.r.t. substi-
o D:3:0Abs) (A Bi6':4-Dia’iB-D:501) | Because our type system tution in the sense thgt[z — o] = [e][z < (v)]. The
guards the type of each branch of ttmse clause before ~ following lemmas establish the correctness of the encoding
computing the type of the whole expression, it is able to With respect to the semantics.
exactly relate in this example the security levels associated emma 7.1 (Correctness)If e — ¢’ then[e] —2,, [¢'].
with each pair of constructors of the output with those of
the input. Proof. By induction on the derivation of — ¢’.
o Case(fd). e is (Az.eg)v ande’ is eglx < v]. Then
[e] = (Az.Jeo]) (v). By (3), we have]e] —cpy [eo][z <

let rotate = function

A >
| B ->
| D

->

7 \-calculus with exceptions ()], i.e.[e] —csy [€']-
o Case(proj). e is mj (v1,v2), € isvj. Then[e] =
7.1 ThE)\g-CaICUIUS ?7(7Tj ((]U1D7(]U2D))- By (proj), we have[[eﬂ —cBV 77(]Uj)
i.e.fe] —cev [€]-
o Case(bind). e is bind z = v in ¢ ande is

In this section, we define &-calculus with “let” binding e[z « v]. We havele] = case {{n} : y1 — let & =
and exceptions)¢. Let £ be a denumerable set whose el- 7jy; in [eo]; € : y1 — w1} Then, by applying succes-
ements are calleexception nameand denoted by. Then sively (case) and (bind)je] —2., [eo][z < (v)], i.e.
values, outcomes, expressions and evaluation contexts of [e] —2,. [¢/].

10

Values (z) = =z Fxpressions [v1 E}Z% i g?fqlll))quzl)
(k) - k [mjv] = n(m(v)
((v1,v2)) ((v1), (va)) [raisev] = (v)
i I fletz = vine] = letx= (o) in [c]
= [Ele]] = [E][e]

Evaluation contexts [bindz=[]ine] =
[[] handlecz =¢] =

[[] handle z = ¢] =

[Jcase [n:y—letz=qyinfe] | €:y— vy
[Jcase [e:y—letz=cyin[e] | C\{e} :y —]
[Jease [n:y—y|E:a [e]]

Figure 6. Encoding A¢ into A,

o Caseghandle), (handle-all) and (throw-context)
similar to (bind).

o Case(context). e is Eleg] and ¢’ is E[ep] with
ep — €. By induction hypothesis, we hajeo] —¢..

leg]. Then, by (context)E][[eo]] —pe [ETIIeA]]. ie.
le] — oy [€'] 0

Lemma 7.2 (Values) If (v1) = (v2) thenv; = vs.

Proof. By induction on the definition of-) and[-]. O

7.3 Typing ¢

We now define a type system fag and prove its cor-
rectness by translating eaclz judgement into a\; one.
The type algebra fohs is a simple subset of that of, .
Restrictedtypes alternatives rows and matrices(denoted
by bold meta-variables) are defined as follows:

t ou= int’[txt|t—rd|id
a == Abs|Pret

r == {c—a}

q == {c-c—1{}

The meta-variablg: (resp.q) stands for a rowr (resp.
matrix q) carrying no information abouy, i.e. such that
r(n) = Abs (resp.ve € £,q(n-¢) = L). Types for integers
and pairs remain unchanged. In this restrictian, sum
types play two distinct roles. First they appeae#ectson

are must belong t&f). A¢’s polytypes (i.e. nonempty upward-

closed sets of typelg are denoted by the meta-variakle

The typing rules for\¢ are given in figure 7. We distin-
guish two forms of judgement§: F v : t andT' IF e : r9.
The former deals with values and involves a simple type
(because values cannot raise any exception). The latter as-
sociates to an expression an effett describing what kind
of result (value or exceptions) it may produa€n) is Abs
if e never reduces to a value andAg:t if e may produce
a value of typet. Analogously, for every expression name
g, r(e) is Abs if e never raises an exception hamednd is
Pre t if it may raise such an exception with an argument of
typet. q(c1-c2) is as expected an approximation of the level
of the information one leaks by revealing thgbroduces a
result of name:; (value or exception) rather thag. \¢'s
typing rules may be obtained by a simple combination_pof
rules (figure 4) and the translation &f into A, ([-] for I
judgements on expressions gpfor - judgements on val-
ues), with some straightforward constraint simplifications.
First, in the second premise BfBIND, we may assume in
the right-hand-side of the> thatr, () = Pret for somet
(we write Prer; (1) for such at). Second, becausey} and
& are complementaryy; ({n}) = q1(€) holds. Therefore,
the constrainfq: ({n}), a:(€)] < [(r19) ¢, r2%] < rdis
simplified intoq: ({n}) < [(r1?),r2%] < r. Rules
E-HANDLE ande-HANDLEALL present analogous simpli-
fications.

The following lemma states th@oundnes®f this type
system by considering each of its judgements as ong of

Lemma 7.3 (SoundnessY’ + v : t impliesT F (v) : t.

the right-hand-side of function types. Here, they describe ' IF € : @ impliesI" k= [e] : r.

the possible normal or exceptional results the function may
produce, with associated security levels. Second, they ar

used to type expressions whose result is an excepfitn:

There, we use dotted versions of content and level rows to

signify that the fields relating to the constructor may be
constrained to bAbs and_L, respectively (the translation of

From this correspondence, we immediately obtain the

E?ollowing non-interference result fore. For simplicity, the

statement only concerns integer results, but a more general
one can be obtained.

Theorem 7.1 (Non-interference)Choosel,h € L such

an exception value intd, is a sum whose head constructor thath £ £. Leth < [t1,t3] < t. Assumga — t) IF

11

Values

| V-VAR V-PAIR V-ABS V-EXN
¥-FN/I e t e I(x) I'Fo ity I'Fowy:ty Tz —t]lFe:rd 'Fov:t
:in
F'Faz:t Ik (v1,v2) 1 t1 X to 'k Aze:t—r9 I'kev:(e:Pret;x)"
V-SuB
FFo:t t' <t
I'Hov:t
Expressions
E-VALUE E-RAISE . E-APP E-PROJ
I'Hov:t I'-ov:14 I'wvy:t—r4 I'kFwvg:t T'Fov:t; X tg

TlFv:(n:Pret;*)" I IF raise v : 9

E-BIND
I'IF €1 I‘1QI

'l v vy : 19

ri M {n} = [z +— Preri(n)] IF ez : 1%

Tlkmjv:(n:Prety;*)”

ai({n}) <[(r:1?) g, r2%] < 1

T'IFbindx =¢;iney:r4

E-HANDLE
I'kep:rg®

ry M {e} = Tz +— Prer ()] IF g : ro®

ai({e}) L") (o, r2%] <1

T'lF e handlesx = ey : 14

E-HANDLEALL
I'lIF e1 rl‘h

rimé= F[L — (I‘lcn)‘g} IFeg i rp®?

ar({}) < [(01%) gy 7% < 19

T'IF eq handle z = e5 : r9

E-LET
F'twv:s Pler—s]lFe:rd

TlFletz =vine:r?

E-SuB
FFe:r'? r<r q<q

T'lFe:r?

Figure 7. The type system for)¢

e: (n: Preint’;x)", wheree is a Az expression. If v, : ¢;
ande[z < v;] =* v;, fori € {1,2}, thenv; = v,.

Proof. By lemmas 7.1, 7.2, 7.3 and theorem 4.2. O

8 One-dimensional systems

We now present two type systemé}) andAfgl), derived

row of levels indexed by constructor names. We begin by
restricting thecase construction of\ .. to have only two han-
dlers: e case [{c} : — e1 | (C\{c}) : © — ez]. (Note
that such a restriction still allows multiple matching by nest-
ing case clauses. Moreover, it still allows the encoding of
exceptions into sums, see section 8.2.)

The point of this restriction is that the use of matriges
in the CASE rule of A, is now limited to an access of the

from A and \¢. Although they provide a less accurate formg({c}) for somec € C (or ¢(C\{c}) which is equal to
analysis, they remain of interest because they involve sim-¢({c})). The basic idea oj\(j) consists in directly storing
pler annotations and give us the opportunity to compare ourthese levels in sum types, rather than the whole matrix

treatment of exceptions with previous works [5, 13].

8.1 The system”

Thus, types, alternatives, rows anelctorsof Aﬂf) (which

are denoted, a, ¥ andg, respectively) are obtained by the
same grammar as that of section 4.1, where the definition
of matrices is replaced by ::= {¢ — ¢}. Sum types now

In this section, we present a more lightweight type sys- have the forn¥? where bothr andg are indexed by. The

tem for A, (which we will refer to as)\ﬂrl)) where infor-

meaning ofr remains unchanged. Simultaneously, the vec-

mation carried by a sum is described by a one-dimensionaltor g indicates for each constructohow much information

W {-) pointwise on polytypes and environments.
CAsE) - _ .
Tke:id Tz — (Fq)l{c}] Fey:t Lemma 8.1 (Subtyping) If £; <, then(t,) < (t2).
Plas = (M)jeggl Fe2:t gle) <t _ Proof. We first prove thaij; < g, implies (@) < (G2).
Phwvcase [{c} :x1— e |C\{c} iz —ea] : t Assumeq; < 3. Letc andc’ be two distinct constructor
names. We havg,(c) < g@(c) andg(¢’) < g2(c¢’). This
yields g1 (c) M qi(c) < q2(c) M @a(c), ie. (q)(c-) <

Figure 8. The Caste() rule of Aﬂf) (@) (c-).
Conclude by induction on the structure of types, alterna-
Types tives and rows. O
(< tat (<t <ty o
7 <int’ latf o1 T latixib, Lemma 8.2 (Guard) ¢ <1 ¢ impliest < [(&), {(£)].
Proof. By induction on the structure @f The only case of
) tar)) tar interest ist = 77. Letr? = (#)'? = (77). By defini-
Ve,m(c) # Abs = £ < g(c) 7 = (x : Prex; 9Abs) tion, ¢ <1 77 implies¢ < 7. By induction hypothesis and
<7 <7 GuUARDsS-Row, it follows that? < [r,r]. If only one en-
try of 7 is Pre then the same arises forand? < [r?,r9).
Rows Otherwise, ifr(c1) = Prex andr(cz) = Prex for some
(At Veec, ¢ <i(c c1 # e, £ < Tlimplies? < g(cy) and? < G(cs). It follows
£ < Abs —_— F—w ¢ < q(e1) N g(ez) = qlcr - ¢2). Once again, we conclude
€<Pret £<]7’ thatfﬂ [’I”q,T’q}. O
Figure 9. One-dimensional guards Lemma 8.3 (Restriction) ((7) o) = (7)o holds for

allc cc.

one may leak by testing whether the expression at hand proproof. It is clear that{r|c) = (7)|c- Letus consider; #
duces a result whose head constructer iBhis corresponds ., |f ¢, € C'ande, € C (i.e.c1 o € C?) then(g) = (c1 -
to the level ghven by{c}) = Liale c) | & 7 ekt o)) — (g)(es -) = aler) Naea) = qicler) Napoles) =
previous system. In other words, a matyils approximated {Gc)(c1 - cz). Otherwise, eithefc(cy) or gio(cs) is L.

in ASP by the vectorg defined byg(c) = q({c}). _ Then(gic)(c1-c2) = Gic(e))Ngic(c2) = L = (@) c2(c1-
This correspondence allows us to derive the typing rules .,) we conclude thatq) e = (Gic)- 0

of)\(j) from those of\, . All the rules remain syntactically

unchanged, excefZASE whose new versionCAse, is _

given in figure 8. The main difference with the previous -€MMa 8.4 (Soundness)f I' - ¢ : £ then(I') F e : (f).
rule lies in the fac_t that the union of thg rgsulting types of . of By induction on the derivation df - ¢ : 7.

the two branches is computbdforemarking it by the level
G(c): the type system is no longer able to take into account
the origin of each component of the resulting type while
guarding it. As a result, the predicate in A$), defined

in figure 9, takes only two arguments: a security level and
a type. £ <« 79 constrains each field aof corresponding N 1
to an entry ofr which is Pre x to be? or greater. There r) - ¢ : <<f>>(<q>>, (TH[z1 — (<<F>><<q>>)|{c}] Foe
is nevertheless a special case: if _aII but one fields afe £), Tlzs — (<<77>><<q_>>)|(3\{c}] Foes @ (£). Moreover
Abs, (that means when the possible head constructor the<<q>>({c}) (@ Ee\eh) = ufae) Nal) | ¢ # ¢

.e>.<pression may produce is .known E)y the type system) thenThen <<q>>({:c}) < g(c) and (7) (C\{¢}) < q(c). By lem-
itis unnecess_ary to constrain the rgw : mas 8.2 and 4.2j(c) < 7 yields[(7) ({c}), () (C\{c})] <
We now briefly prove the correctness)cii_1 thankstoan [(7), ()] < (£). Conclude by an instance GfASE.

o CaseCASE!). ¢ is ¢/ case [{c} : z1 +— e |
C\{c} : 2o — e3]. Among CAsSeE!")’s premises we find
LEe Ty =)yl F et f Tz —

") evgey) T2 Tandg(e) < & Letrt = (7)) =
77). By induction hypothesis and lemma 8.3, we obtain

= =
Q|

=

encoding into\,. We introduce a mapping-) from /\Srl o CaseSus("). By lemma 8.1 and the induction hypoth-
types into those of\,. It is a homomorphism, except on esis.
vectors which are translated into matrices using the follow- Other cases are immediate. O

ing approximation{q) (1 -c2) = q(e¢1)Mg(cs). We extend

13

applied safely to nom-paths. But, as noticed by Myers, if

E-Binp ™) _ _ exceptions were not identified with classes, the single-path
Llke s T8 Tz Prefi(n)] Ik eq: 752 rule could be applied to exceptions t00.)
(r? Je<Td q(n) <rd If we constrain the field; of every rowr of A" to be
T IF bind z = e; in ey : T4 Pre x, we obtain a treatment of exceptions similar to that
proposed in [13]. Then, every lower-bound constraint on the
E- HANDLE(1> 7 entry of a rowg (generated by a1 constraint) must also
Cl-e;: r1 F[T — PreTy(e)] IF ey : T4 constrain some other field of the same row. As a result, itis
(F) < q(e) <« ™@ possible to enforce the invariant that, for any r@wg(n) =
C\te) = L{a(e) | e € £}. The main interest of this policy lies in the
TIF e, handlecx = eo : 73 ale) e ey policy

fact that, becausé < (1 : Pret; F)® becomes equivalent to
¢ <t AVe, (T(e) # Abs = £ < g(e)), the system requires

E-HANDLEALL ™M) A\ _
a only a very simple form of conditional constraints.

Tl e -f?l Plz — ()] I ez
)y =TT Gln) <1
T I e; handle z > €5 : T4

=l

9 Conclusion

It is an interesting question in what context this analy-

N sis would be useful. Because of the structure of security
annotations involving matrices of levels, a type inference

algorithm based on our framework is likely to produce very

Theorem 8.1 (Non-interference) Choosel, h € £ such verbose type schemes. That is the reason why it seems dif-
thath £ ¢. .Leth At Assumez 1) é - int. where ficult to use it as the basis for a generic secure programming
eis a, expression. It e; : t andelz < e_i —>*’k- for language, as we aim at withLIF [13]. Nevertheless such

Figure 10. The type system for

i € {1,2}, thenk, = k» an implementation might be of interest for automated anal-
T ' ysis of very sensitive (relatively to information flow) part of
Proof. By lemmas 8.2, 8.4 and theorem 4.2. 0 programs for which systems such as [5, 13] remain too ap-

proximative. Such a case may particularly arise in program-
ming languages for devices with limited ressources, such as
JavaCard, where integer constants are used as flags in order
to represent different data in an unstructured manner.

Moreover, it seems possible to design a reasonably ef-

Using the same mechanism, it is possible to obtain theficient algorithm addressing type inference and constraint
corresponding type systeni) for A¢. Those of its rules solving for this system: we believe that this is mainly an
that are different from\¢’s are given in figure 10. implementation and proof issue.

>\(1> provides a treatment of exceptions that is very simi- ~ Another topic of interest lies in adding mutable cells
lar to that of JFlow [6, 5], although the presentation is super- (a.k.a. references) ta, and \¢. Obtaining a treatment
ficially different. Indeed, JFlow introduces a notionpsith ~ of references similar to that of [13] (where reference types
labels Setting aside Java-specific features, paths in JFlowt ref® have an invariant argumentiescribing the content of
aren (which represents normal termination) and names of the cell and carry an external security annotaticelated
classes that inherit frofthrowable, i.e. classes represent- to the reference’s identity) is straightforward. This remains
ing exceptions. This directly corresponds in our framework an orthogonal problem to the accurate treatment of union
to n and the exception namese &, respectively. A path types. It mainly requires adding an extra security annota-
label X maps each path to either the special constafit ~ tion pc on every typing judgement and en types. Never-
if the expression cannot terminate through the patbr a theless, such a framework does not provide as fine-grained
Security level approximating how much information will be a treatment of information flow generated by side-effects as
obtained by observing that this path is the effective termi- that for functional aspects of the language. For instance,
nation path. This is comparable to our alternatiéés and ~ One may rewrite our first example in an imperative style
F_’ref. The accuracy provided l?y the gonstiaint when all if = then (if y then ¢ :— A else ¢ :— B)
fields but one of a row ar@bs is obtained in JFlow by a Ise (if = then ¢ := A else t := D);
non-syntax-directed rule, callegsingle-path rule allowing | e_ \ ' ' ’

) etu=Itcase [A,B— 1|D — 0]

X |[n] to be reset td if all other paths are already mapped to
(by X. (Because exception names are classes in Java and@hen, the system would no longer be able to detect the ab-
are therefore equipped with subtyping, this rule cannot besence of dependency betweemnd the value stored ik

8.2 The system\”

14

because in all the branches of this program the content of[12] F. Pottier and S. Conchon.

the cellt must have the same type (i(&l, B, D : Pre; x)9).
Therefore, the three security levels of the matriwill be
constrained to exceed thatof y andz. Thus, an interest-
ing direction for further work consists in obtaining a fine-
grained analysis of dependencies due to side-effects.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A
core calculus of dependency. @onference Record of the
26th ACM Symposium on Principles of Programming Lan-
guages pages 147-160, San Antonio, Texas, Jan. 1999.
ACM Press.URL: http://www.soe.ucsc.edu/ abadi/
Papers/flowpopl.ps

D. E. Denning and P. J. Denning. Certification of programs
for secure information flowCommunications of the ACM
20(7):504-513, July 1977.

N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. I€onference Record of
the 25th ACM Symposium on Principles of Programming
Languages pages 365-377, San Diego, California, Jan.
1998. URL: http://cm.bell-labs.com/cm/cs/who/

nch/slam.ps

E. Moggi. An abstract view of programming languages.
Technical Report ECS-LFCS-90-113, University of Edin-
burgh, June 1989.URL: http://www.disi.unige.it/
person/MoggiE/ftp/abs-view.ps.gz

A. C. Myers. JFlow: practical mostly -static information
flow control. InProceedings of the 26th ACM SIGPLAN-
SIGACT on Principles of Programming Languagesages
228-241, San Antonio, Texas, Jan. 1999. ACM Press.
URL: http://www.cs.cornell.edu/andru/papers/
popl99/myers-popl99.ps.gz

A. C. Myers. Mostly-Static Decentralized Information Flow
Control. PhD thesis, Massachusetts Institute of Tech-
nology, Jan. 1999. Technical Report MIT/LCS/TR-783.
URL: http://www.cs.cornell.edu/andru/release/

tr783.ps.gz .

M. Odersky, M. Sulzmann, and M. Wehr. Type inference
with constrained typesTheory and Practice of Object Sys-
tems 5(1):35-55, 1999.URL: http://www.cs.mu.oz.
au/“sulzmann/publications/tapos.ps

J. Palsberg and P. @rbaek. Trust in m@alculus Lec-
ture Notes in Computer Scienceé83:314-330, 1995.
URL: ftp://ftp.daimi.au.dk/pub/empl/poe/
lambda-trust.dvi.gz .

J. Palsberg, M. Wand, and P. M. O'Keefe. Type inference
with non-structural subtypingFormal Aspects of Comput-
ing, 9:49-67, 1997 URL: http://www.cs.purdue.edu/
homes/palsberg/paper/fac97.ps.gz

F. Pottier. Wallace: an eff|C|ent|mpIementat|on of type infer-
ence with subtyping, Feb. 2000RL: http://pauillac.
inria.fr/fpottier/wallace/

F. Pottier. A semi- syntactlc soundness proof for
HM(X). Research Report 4150, INRIA, Mar. 2001.
URL: ftp://ftp.inria.fr/INRIA/publication/RR/

RR-4150.ps.gz

15

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Information flow infer-
ence for free. InProceedings of the the Fifth ACM
SIGPLAN International Conference on Functional Pro-
gramming (ICFP’00) pages 46-57, Sept. 2000.URL:
http://pauillac.inria.fr/ fpottier/publis/
fpottier-conchon-icfp00.ps.gz .
F. Pottier and V. Simonet. Information flow infer-
ence for ML. In Proceedings of the 29th ACM
Symposium on Principles of Programming Languages
(POPL'02), pages 319-330, Portland, Oregon, Jan. 2002.
URL: http://cristal.inria.fr/"simonet/publis/
fpottier-simonet-popl02.ps.gz

D. Rémy. Records and variants as a natural extension of
ML. In Proceedings of the Sixteenth Annual Symposium on
Principles Of Programming Languages (POPL'8®ages
77-88, Austin, Texas, jan 1989.

D. Remy. Algebres Touffues. Application au Typage Poly-
morphe des Objets Enregistrements dans les Langages
Fonctionnels These de doctorat, Universitde Paris 7,
1990. URL: ftp:/ftp.inria.fr/INRIA/Projects/
cristal/Didier.Remy/these.ps.gz

V. Simonet. Fine-grained information flow analy-
sis for a A-calculus with sum types. Full version.
URL: http://cristal.inria.fr/"simonet/publis/
simonet-csfw-02-long.ps.gz , Feb. 2002.

M. Sulzmann. A general framework for Hindley/Milner

type systems with constraints PhD thesis, Yale
University, Department of Computer Science, May
2000. URL: http://www.cs.mu.oz.au/ sulzmann/

publications/diss.ps.gz

D. \olpano and G. Smlth A type-based ap-
proach to program security. Lecture Notes in Com-
puter Science 1214:607-621, Apr. 1997. URL:
http://www.cs.nps.navy.mil/people/faculty/
volpano/papers/tapsoft97.ps.Z

P. Wadler. Comprehending monads Mathematical
Structures in Computer Science:461-493, 1992. URL:
http://cm.bell-labs.com/cm/cs/who/wadler/
papers/monads/monads.ps.gz

A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computatign115(1):38-94,
Nov. 1994. URL: http://www.cs.rice.edu/CS/PLT/
Publications/ic94-wf.ps.gz

S. Zdancewic and A. C. Myers. Securelnformanon flow and
CPS. In D. Sands, editdProceedings of the 2001 European
Symposium on Programming (ESOP’QlLgcture Notes in
Computer Science. Springer Verlag, Apr. 200RL: http:
IlIwww.cs.cornell.edu/zdance/lincont.ps

