
Belief in Information Flow

Michael R. Clarkson Andrew C. Myers Fred B. Schneider
Department of Computer Science

Cornell University
{clarkson,andru,fbs}@cs.cornell.edu

Abstract

Information leakage traditionally has been defined to oc-
cur when uncertainty about secret data is reduced. This
uncertainty-based approach is inadequate for measuring
information flow when an attacker is making assumptions
about secret inputs and these assumptions might be incor-
rect; such attacker beliefs are an unavoidable aspect of any
satisfactory definition of leakage. To reason about informa-
tion flow based on beliefs, a model is developed that de-
scribes how attacker beliefs change due to the attacker’s
observation of the execution of a probabilistic (or determin-
istic) program. The model leads to a new metric for quanti-
tative information flow that measures accuracy rather than
uncertainty of beliefs.

1. Introduction

Qualitative security properties, such as noninterference
[10], typically either prohibit any flow of information from
a high security level to a lower level, or they allow any
amount of flow so long as it passes through some release
mechanism. For a program whose correctness requires flow
from high to low, the former property is too restrictive and
the latter can lead to unbounded leakage of information.
Quantitative flow properties, such as “at most k bits leak
per execution of the program”, allow information flows but
at restricted rates. Such properties are useful when analyz-
ing programs whose nature requires that some—but not too
much—information be leaked. Examples of these programs

This work was supported by the Department of the Navy, Office of Naval
Research, ONR Grant N00014-01-1-0968; Air Force Office of Scientific
Research, Air Force Materiel Command, USAF, grant number F49620-03-
1-0156; and National Science Foundation grants 0208642, 0133302, and
0430161. Michael Clarkson is supported by a National Science Founda-
tion Graduate Research Fellowship; Andrew Myers is supported by an Al-
fred P. Sloan Research Fellowship. Opinions, findings, conclusions, or rec-
ommendations contained in this material are those of the authors and do
not necessarily reflect the views of these sponsors. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

include guards, which sit at the boundary between trusted
and untrusted systems, and password checkers.

Defining the quantity of information flow is more diffi-
cult than it might seem. Consider a password checker PWC
that sets an authentication flag a after checking a stored
password p against a (guessed) password g supplied by the
user.

PWC : if p = g then a := 1 else a := 0

For simplicity, suppose that the password is either A, B,
or C. Suppose also that the user is actually an attacker at-
tempting to discover the password, and he believes the pass-
word is overwhelmingly likely to be A but has a minuscule
and equally likely chance to be either B or C. (This need
not be an arbitrary assumption on the attacker’s part; per-
haps the attacker was told by a usually reliable informant
that the password is A.) If the attacker experiments by ex-
ecuting PWC and guessing A, he expects the outcome to
be that a is equal to 1. Such a confirmation of the attacker’s
belief does seem to convey some small amount of informa-
tion. But suppose that the informant was wrong: the real
password is C. The outcome of this experiment has a equal
to 0, from which the attacker infers that A is not the pass-
word. Common sense dictates that his new belief is that B
and C each have a 50% chance of being the password. The
attacker’s belief has greatly changed—he is surprised to dis-
cover the password is not A—so this outcome of his exper-
iment seems to convey a larger amount of information than
the previous outcome. Thus, the information conveyed by
executing PWC depends on what the attacker believes.

How much information flows from p to a in each of the
above experiments? Answers to this question have tradition-
ally been based on change in uncertainty [5, 20, 11, 1, 16, 2,
17]: information flow is measured by the reduction in uncer-
tainty about secret data. Observe that, in the case where the
password is C, the attacker initially is quite certain (though
wrong) about the value of the password and after the exper-
iment is rather uncertain about the value of the password;
the change from “quite certain” to “rather uncertain” is an
increase in uncertainty. So according to a reduction in un-

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



certainty metric, no information flow occurred, which flatly
contradicts our intuition.

The problem with metrics based on uncertainty is
twofold. First, they do not take accuracy into account. Ac-
curacy and uncertainty are orthogonal properties of
the attacker’s belief—being certain does not make one
correct—and as the password checking example illus-
trates, the amount of information flow depends on accu-
racy rather than on uncertainty. Second, uncertainty-based
metrics are concerned with some unspecified agent’s un-
certainty rather than an attacker’s. The unspecified agent
is able to observe a probability distribution over secret in-
put values but cannot observe the particular secret in-
put used in the program execution. If the attacker were
the unspecified agent, there would be no reason in gen-
eral to assume the probability distribution the attacker
uses is correct. Because the attacker’s probability distri-
bution is therefore subjective, it must be treated as a be-
lief. Beliefs are thus an essential—though until now
uninvestigated—component of information flow.

This paper presents a new way of measuring informa-
tion flow, based on these insights. Section 2 gives basic rep-
resentations and notations for beliefs and programs. Sec-
tion 3 describes a model of the interaction between attack-
ers and systems; it also describes how attackers update be-
liefs by observing execution of programs. Section 4 defines
a new quantitative flow metric, based on information the-
ory, that characterizes the amount of information flow due
to changes in the accuracy of an attacker’s belief. The model
and metric are formulated for use with any programming
language (or even any state machine) that can be given a de-
notational semantics compatible with the representation of
beliefs, and Section 5 illustrates with a particular program-
ming language (while-programs plus probabilistic choice).
Section 6 discusses related work, and Section 7 concludes.

2. Incorporating beliefs

A belief is a statement an agent makes about the state
of the world, accompanied by some measure of how cer-
tain the agent is about the truthfulness of the statement. We
begin by developing mathematical structures for represent-
ing beliefs.

2.1. Distributions

A frequency distribution is a function δ that maps a pro-
gram state to a frequency, where a frequency is a non-
negative real number. A frequency distribution is essen-
tially an unnormalized probability distribution over pro-
gram states; frequency distributions are often better than
probability distributions as the basis for a programming lan-

guage semantics [21]. Henceforth, we write “distribution”
to mean “frequency distribution”.

The set of all program states is State, and the set of all
distributions is Dist. The structure of State is mostly unim-
portant; it can be instantiated according to the needs of any
particular language or system. For our examples, states map
variables to values, where Var and Val are both countable
sets.

v ∈ Var
σ ∈ State � Var → Val
δ ∈ Dist � State → R

+

We write a state as a list of mappings; e.g. (g �→ A, a �→ 0)
is a state in which variable g has value A and a has value 0.

The mass in a distribution δ is the sum of frequencies:

‖δ‖ �
∑

σ δ(σ)

A probability distribution has mass 1, but a frequency distri-
bution may have any non-negative mass. A point mass is a
probability distribution that maps a single state to 1. It is de-
noted by placing a dot over that single state:

σ̇ � λσ′ . if σ′ = σ then 1 else 0

2.2. Programs

Execution of program S is described by a denotational
semantics in which the meaning [[S]] of S is a function of
type State → Dist. This semantics describes the frequency
of termination in a given state: if [[S]]σ = δ, then the fre-
quency of S, when begun in σ, terminating in σ′ should
be δ(σ′). This semantics can be lifted to a function of type
Dist → Dist by the following definition:

[[S]]δ �
∑

σ δ(σ) · [[S]]σ

Thus, the meaning of S over a distribution of inputs is
completely determined by the meaning of S given a state
as input. By defining programs in terms of how they oper-
ate on distributions we permit analysis of probabilistic pro-
grams. Section 5 shows how to build such a semantics.

Our examples use while-programs extended with a prob-
abilistic choice construct. Let metavariables S, v, E, and
B range over programs, variables, arithmetic expressions,
and Boolean expressions, respectively. Evaluation of ex-
pressions is assumed side-effect free, but we do not other-
wise prescribe their syntax or semantics. The syntax of the
language is:

S ::= skip | v := E | S; S | if B then S else S
| while B do S | S p� S

The operational semantics for the deterministic subset of
this language is standard. Probabilistic choice S1 p� S2 ex-
ecutes S1 with probability p or S2 with probability 1 − p.

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



2.3. Labels and projections

We need a way to identify secret data; confidential-
ity labels serve this purpose. For simplicity, assume there
are only two such labels: a label L that indicates low-
confidentiality (public) data, and a label H that indicates
high-confidentiality (secret) data. Assume that State is a
product of two domains StateL and StateH , which con-
tain the low- and high-labeled data, respectively. A low
state is an element σL ∈ StateL; a high state is an ele-
ment σH ∈ StateH . The projection of state σ ∈ State onto
StateL is denoted σ � L; this is the part of σ visible to the at-
tacker. Projection onto StateH , the part of σ not visible to
the attacker, is denoted σ � H .

Each variable in a program is labeled to indicate the con-
fidentiality of the information stored in that variable; for ex-
ample, xL is a variable that contains low information. For
convenience, let variable l be labeled L and variable h be la-
beled H . VarL is the set of variables in a program that are
labeled L, so StateL = VarL → Val. The low projection
σ � L of state σ is:

σ � L � λv ∈ VarL . σ(v)

States σ and σ′ are low-equivalent, written σ ≈L σ′, if
they have the same low projection:

σ ≈L σ′ � (σ � L) = (σ′ � L)

Distributions also have projections. Let δ be a distribu-
tion and σL a low state. Then (δ � L)(σL) is the combined
frequency of those states whose low projection is σL:1

δ � L � λσL ∈ StateL .
∑

σ′ | (σ′�L) = σL
δ(σ′)

High projection and high equivalence are defined by re-
placing occurrences of L with H in the definitions above.

2.4. Belief representation

Many belief representations have been proposed [13]. To
be usable in our framework, a belief representation must
support certain natural operations. Let b and b′ be beliefs
about sets of possible worlds W and W ′, respectively,
where a world is an elementary outcome about which be-
liefs can be held.

1. Belief product ⊗ combines b and b′ into a new belief
b ⊗ b′ about possible worlds W × W ′, where W and
W ′ are disjoint.

1 Formula �x∈D | R P is a quantification in which � is the quantifier
(such as ∀ or Σ), x is the variable that is bound in R and P , D is the
domain of x, R is the range, and P is the body. We omit D, R, and
even x when they are clear from context; an omitted range means R =
true.

2. Belief update b|U is the belief that results when b is up-
dated to include new information that the actual world
is in set U ⊆ W of possible worlds.

3. Belief distance D(b � b′) is a real number r ≥ 0
quantifying the difference between b and b′.

While the results in this paper are, for the most part, in-
dependent of any particular representation, the rest of this
paper uses distributions to represent beliefs. High states are
the possible worlds for beliefs, and a belief b is a probability
distribution over high states, i.e. ‖b‖ = 1. Whereas distribu-
tions correspond to positive measures, beliefs correspond to
probability measures. Probability measures are well-studied
as a belief representation [13], and they have several advan-
tages here: they are familiar, quantitative, support the oper-
ations required above, and admit a programming language
semantics (as shown in Section 5). There is also a nice jus-
tification for the numbers they produce: roughly, b(σ) char-
acterizes the amount of money an attacker should be willing
to bet that σ is the actual state of the system [13].

For belief product ⊗, we employ a distribution product
⊗ of two distributions δ1 : A → R

+ and δ2 : B → R
+,

with A and B disjoint:

δ1 ⊗ δ2 � λ(σ1, σ2) ∈ A × B . δ1(σ1) · δ2(σ2)

It is easy to check that if b and b′ are beliefs, b ⊗ b′ is too.
For belief update |, we use distribution conditioning:

δ|U � λσ . if σ ∈ U then
δ(σ)

∑
σ′∈U δ(σ′)

else 0

For belief distance D we use relative entropy, an
information-theoretic metric [14] for the distance be-
tween distributions.

D(b′ � b) �
∑

σ b(σ) · log b(σ)
b′(σ)

The base of the logarithm in D can be chosen arbitrarily;
we use base 2 and write lg to indicate log2, making bits the
unit of measurement for distance. The relative entropy of b
to b′ is the expected inefficiency (that is, the number of addi-
tional bits that must be sent) of an optimal code that is con-
structed by assuming an inaccurate distribution over sym-
bols b′ when the real distribution is b [14]. Like an analytic
metric, D(b′ � b) is always at least zero and D(b′ � b)
equals zero only when b = b′.2

Relative entropy has the property that if b(σ) > 0 and
b′(σ) = 0, then D(b′ � b) = ∞. An infinite distance be-
tween beliefs would cause difficulty in measuring change
in accuracy. To avoid this anomaly, beliefs may be required

2 Unlike an analytic metric, D does not satisfy the triangle inequality.
However, it seems unreasonable to assume that the triangle inequality
holds for beliefs, since it can be easier to rule out a possibility from a
belief than to add a new one, or vice-versa.

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



to satisfy certain restrictions. For example, an attacker’s be-
lief b might be restricted such that:

(min σH b(σH)) ≥ ε · 1
|State � H |

for some ε > 0, which ensures that b is never off by more
than a factor of ε from a uniform distribution; we call such
beliefs admissible. Other admissibility restrictions may be
substituted for this one when stronger assumptions can be
made about attacker beliefs.

3. Experiments

We formalize as an experiment how an attacker, an agent
that reasons about beliefs, revises his beliefs from interac-
tion with a system, an agent that executes programs. The at-
tacker should not learn about the high input to the program
but is allowed to observe (and perhaps influence) low inputs
and outputs. Other agents (a system operator, other users
of the system with their own high data, an informant upon
which the attacker relies, etc.) might be involved when an
attacker interacts with a system; however, it suffices to con-
dense all of these to just the attacker and the system.

We are chiefly interested in the program S with which
the attacker is interacting, and conservatively assume that
the attacker knows the source code of S. For simplicity of
presentation, we assume that S always terminates and that
it never modifies the high state. Section 3.4 discusses how
both restrictions can be lifted without significant changes.

3.1. Experiment protocol

Formally, an experiment E is a tuple:

E = 〈S, bH , σH , σL〉
where S is the program, bH is the attacker’s belief, σH is the
high projection of the initial state, and σL is the low projec-
tion of the initial state. The protocol for experiments, which
uses some notation defined below, is summarized in Fig-
ure 1. Here is a justification for the protocol.

An attacker’s prebelief, describing his belief at the be-
ginning of the experiment (step 1), may be chosen arbi-
trarily (subject to the admissibility requirement in Section
2.4) or may be informed by previous experiments. In a se-
ries of experiments, the postbelief from one experiment typ-
ically becomes the prebelief to the next. The attacker might
even choose a prebelief bH that contradicts his true subjec-
tive probability distribution for the state, and this gives our
analysis additional power by allowing the attacker to con-
duct experiments to answer questions such as “What would
happen if I were to believe bH?”.

The system chooses σH (step 2(a)), the high projection
of the initial state, and this part of the state might remain

An experiment E = 〈S, bH , σH , σL〉 is conducted as fol-
lows.

1. The attacker chooses a prebelief bH about the high
state.

2. (a) The system picks a high state σH

(b) The attacker picks a low state σL.

3. The system executes the program S, which produces a
state σ′ ∈ Γ(δ′) as output, where δ′ = [[S]](σ̇L ⊗ σ̇H).
The attacker observes the low projection of the output
state: o = σ′ � L.

4. The attacker infers a postbelief: b′H = (([[S]](σ̇L ⊗
bH)|o)) � H

Figure 1. Experiment Protocol

constant from one experiment to the next or might vary. For
example, Unix passwords do not usually change frequently,
but the PINs on RSA SecurID tokens change each minute.
We conservatively assume that the attacker chooses all of
σL (step 2(b)), the low projection of the initial state, since
this gives additional power in controlling execution of the
program.3 The attacker’s choice of σL is likely to be influ-
enced by bH , but for generality, we do not require there be
such a strategy.

Program S is executed (step 3) only once in each exper-
iment; multiple executions are modeled by multiple experi-
ments. The meaning of S given input σ̇L ⊗ σ̇H is an output
distribution δ′:

δ′ = [[S]](σ̇L ⊗ σ̇H)

From δ′ the attacker makes an observation, which is a low
projection of an output state. Probabilistic programs may
yield many possible output states, but in a single execution
of the program, only one output state is actually produced.
So in a single experiment, the attacker is allowed only a sin-
gle observation. The choice of a state from a distribution is
modeled by sampling operator Γ, where Γ(δ) generates a
state σ (from the domain of δ) with probability δ(σ)/‖δ‖.
To emphasize the fact that the choice is made randomly, as-
signment of a sample is written σ ∈ Γ(δ), using ∈ instead
of =. The observation o resulting from δ′ is:

o ∈ Γ(δ′) � L

The formula the attacker uses for postbelief b′H (step 4)
involves two operations. The first is to use the semantics of
S along with prebelief bH as the distribution on high input.

3 More generally, both the system and the attacker might contribute
to σL. But since we are concerned only with confidentiality—not
integrity—of information, we do not need to distinguish which parts
are chosen by what agent.

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



probability
pH bH b′H1 b′H2

A 0.98 1 0
B 0.01 0 0.5
C 0.01 0 0.5

Table 1. Beliefs about pH

p g a δ′A δ′A|o1 δ′A|o2

A A 0 0 0 0
A A 1 0.98 1 0
B A 0 0.01 0 0.5
B A 1 0 0 0
C A 0 0.01 0 0.5
C A 1 0 0 0

. . . 0 0 0

Table 2. Distributions on PWC output

This “thought experiment” allows the attacker to generate
a prediction of the output distribution. We define prediction
δ′A to correlate the output state with the high input state:

δ′A = [[S]](σ̇L ⊗ bH)

The second operation is to incorporate any additional in-
ferences that can be made from the observation by condi-
tioning prediction δ′A on observation o. The result is pro-
jected to H to produce the attacker’s postbelief b′H :

b′H = (δ′A|o) � H

Here, conditioning operator | is a specialization of distribu-
tion conditioning operator δ|U . The specialization removes
all mass in distribution δ that is inconsistent with observa-
tion o, then normalizes the result:

δ|o � δ|{σ′ | σ′ � L = o}
= λσ . if (σ � L) = o then δ(σ)

(δ�L)(o) else 0

3.2. Password checking as an experiment

Adding confidentiality labels to the password checker of
Section 1 yields:

PWC : if pH = gL then aL := 1 else aL := 0

An analysis of PWC in terms of our experiment model al-
lows the informal reasoning in Section 1 to be made pre-
cise, as follows.

The attacker starts by choosing prebelief bH , perhaps
as specified in the column labeled bH of Table 1. Next,
the system chooses initial high projection σH , and the at-
tacker chooses initial low projection σL. In the first ex-
periment in Section 1, the password was A, so the system
chooses σH = (p �→ A). Similarly, the attacker chooses
σL = (g �→ A, a �→ 0). (The initial value of a is actu-
ally irrelevant, since it is never used by the program and
a is set along all control paths.) Next, the system executes
PWC . Output distribution δ′ is a point mass at the state
σ′ = (p �→ A, g �→ A, a �→ 1); the semantics in Sec-
tion 5 will validate this intuition. Since σ′ is the only state
that can be sampled from δ′, the attacker’s observation o1 is
σ′ � L = (g �→ A, a �→ 1).

In the final step of the protocol, the attacker infers a post-
belief. He conducts a thought experiment, predicting an out-
put distribution δ′A = [[PWC ]](σ̇L ⊗ bH), given in Table
2. The ellipsis in the final row of the table indicates that
all states not shown have frequency 0. This distribution is
intuitively correct: the attacker believes that he has a 98%
chance of being authenticated, whereas 1% of the time he
will fail to be authenticated because the password is B, and
another 1% because it is C. The attacker conditions pre-
diction δ′A on observation o1, obtaining δ′A|o1, also shown
in Table 2. Projecting to high yields the attacker’s postbe-
lief b′H1, shown in Table 1. This postbelief is what the infor-
mal reasoning in Section 1 suggested: the attacker is certain
that the password is A.

The second experiment in Section 1 can also be formal-
ized by an experiment. In it, bH and σL remain the same as
before, but σH becomes (p �→ C). Observation o2 is there-
fore the point mass at (g �→ A, a �→ 0). The prediction
δ′A remains unchanged, and conditioned on o2 it becomes
δ′A|o2, shown in Table 2. Projecting to high yields the new
postbelief b′H2 in Table 1. This postbelief again agrees with
the informal reasoning: the attacker believes that there is a
50% chance each for the password to be B or C.

3.3. Bayesian belief revision

The formula the attacker uses to infer a postbelief in step
4 is an application of Bayesian inference, which is a stan-
dard technique in applied statistics for making inferences
when uncertainty is made explicit through probability mod-
els [9]. Let belief revision operator B yield the postbelief
from an experiment E = 〈S, bH , σH , σL〉:

B(E) � (([[S]](σ̇L ⊗ bH)|o)) � H

where o ∈ Γ(δ′) � L
δ′ = [[S]](σ̇L ⊗ σ̇H)

Because it uses Γ, operator B produces values by sampling,
so we write b′H ∈ B(E). To select a particular b′H from B,

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



we provide observation o:

B(E , o) � (([[S]](σ̇L ⊗ bH)|o)) � H

The fundamental Bayesian method of updating a hypoth-
esis Hyp based on an observation obs is Bayes’ rule:

Pr(Hyp|obs) =
Pr(Hyp)Pr(obs |Hyp)

∑
Hyp′ Pr(Hyp′)Pr(obs |Hyp′)

In our model, the attacker’s hypothesis is about the values
of high states, so the domain of hypotheses is State � H .
Therefore Pr(Hyp), the probability the attacker ascribes to
a particular hypothesis σH , is modeled by bH(σH). The
probability Pr(obs |Hyp) the attacker ascribes to an obser-
vation given the assumed truth of a hypothesis is modeled
by the program semantics: the probability of an observa-
tion o given an assumed high input σH is ([[S]](σ̇L ⊗ σ̇H) �
L)(o). Given experiment E = 〈S, bH , σH , σL〉, instantiat-
ing Bayes rule on these probability models yields B(E , o),
which is Pr(σH |o):

B(E , o) =
bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)

∑
σ′

H
bH(σ′

H) · ([[S]](σ̇L ⊗ σ̇′
H) � L)(o)

With this instantiation, we can show that how an attacker
updates his belief according to our experiment protocol is
equivalent to Bayesian updating.

Theorem 1

B(E , o)(σH) = B(E , o)

Proof. In Appendix B. �

3.4. Mutable high state and nontermination

Section 3.1 invokes two simplifying assumptions about
program S: it never modifies high input, and it always ter-
minates. We now dispense with these mostly minor techni-
cal issues.

To eliminate the first assumption, note that if S were to
modify the high state, the attacker’s prediction δ′A would
correlate high outputs with low outputs. However, to calcu-
late a postbelief (in step 4), δ′A must correlate high inputs
with low outputs. So our experiment protocol requires the
high input state be preserved in δ′A. Informally, we can do
this by copying the high input state and requiring that the
copy be immutable. Thus, the copy is preserved in the fi-
nal output state, and the attacker can again establish a cor-
relation between high inputs and low outputs. Technical de-
tails are given in Appendix A.

To eliminate the second assumption, note that program
S must terminate for an attacker to obtain a low state as
an observation when executing S. There are two ways to

model the observation in the case of nontermination, de-
pending on whether the attacker can detect nontermination.
If the attacker has an oracle that decides nontermination,
then nontermination can be modeled in the standard deno-
tational style with a state ⊥ that represents the divergent
state. Details of this approach are given in Appendix A. An
attacker that cannot detect nontermination is more difficult
to model. At some point during the execution of the pro-
gram, he will stop waiting for the program to terminate and
declare that he has observed nontermination. However, he
may be incorrect in doing so—leading to beliefs about non-
termination and instruction timings. The interaction of these
beliefs with beliefs about high inputs is complex; we leave
this for future work.

4. Measuring information flow

The informal analysis of PWC in Section 1 suggests that
information flow corresponds to an improvement in the ac-
curacy of an attacker’s belief. Recall that the more accurate
belief b is with respect to high state σ̇H , the less the dis-
tance D(b� σ̇H). We use change in accuracy, as measured
by distance, to quantify information flow.

4.1. Information flow from an outcome

Given an experiment E = 〈S, bH , σH , σL〉, an outcome
is a pair 〈E , b′H〉 such that b′H ∈ B(E). The accuracy of
the attacker’s prebelief bH in outcome 〈E , b′H〉 is D(bH �

σ̇H); the accuracy of the attacker’s postbelief b′H in that out-
come is D(b′H � σ̇H). We define the amount of informa-
tion flow Q caused by 〈E , b′H〉 as the difference of these two
quantities:

Q(〈E , b′H〉) � D(bH � σ̇H) − D(b′H � σ̇H)

Thus the amount of information flow (in bits) in Q corre-
sponds to the improvement in the accuracy of the attacker’s
belief.

With an additional definition from information theory, a
more consequential characterization of Q is possible. Let
Iδ(F ) denote the information contained in event F drawn
from probability distribution δ:

Iδ(F ) � − lg Prδ(F )

Information is sometimes called “surprise” because I mea-
sures how surprising an event is; for example, when an event
that has probability 1 occurs, no information (i.e. 0 bits) is
conveyed because the occurrence is completely unsurpris-
ing.

For an attacker, the outcome of an experiment involves
two unknowns: the initial high state σH and the probabilis-
tic choices made by the program. Let δS = [[S]](σ̇L ⊗ σ̇H) �
L be the system’s distribution on low outputs, and δA =

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



[[S]](σ̇L ⊗ bH) � L be the attacker’s distribution on low out-
puts. IδA(o) measures the information contained in o about
both unknowns, but IδS (o) measures only the probabilistic
choices made by the program.4 For programs that make no
probabilistic choices, δA contains information about only
the initial high state, and δS is a point mass at some state σ
such that σ � L = o. So the amount of information IδS (o) is
0. For probabilistic programs, IδS (o) is generally not equal
to 0; subtracting it removes all the information contained
in IδA(o) that is solely about the outcomes of probabilis-
tic choices, leaving information about high inputs only.

The following theorem states that Q measures the infor-
mation about high input σH contained in observation o.

Theorem 2

Q(〈E , b′H〉) = IδA(o) − IδS (o)

Proof. In Appendix B. �

As an example, consider the experiments involv-
ing PWC in Section 3.2. The first experiment E1 has the
attacker correctly guess the password A, so:

E1 = 〈PWC , bH , (p �→ A), (g �→ A, a �→ 0)〉
where bH (and the other beliefs about to be used) is defined
in Table 1. Only one outcome, 〈E1, b

′
H1〉, is possible from

this experiment. Calculating Q(〈E1, b
′
H1〉) yields a flow of

0.0291 bits from the outcome. The small flow makes sense
because the outcome has only confirmed something the at-
tacker already believed to be almost certainly true. In exper-
iment E2 the attacker guesses incorrectly.

E2 = 〈PWC , bH , (p �→ C), (g �→ A, a �→ 0)〉
Again, only one outcome 〈E2, b

′
H2〉 is possible from this ex-

periment, and calculating Q(〈E2, b
′
H2〉) yields an informa-

tion flow of 5.6439 bits. This higher information flow makes
sense, because the attacker’s postbelief is much closer to
correctly identifying the high state. The attacker’s prebe-
lief bH ascribed a 0.02 probability to the event [p 
= A], and
the information of an event with probability 0.02 is 5.6439.
This suggests that Q is a reasonable measure for the infor-
mation about high input contained in the observation.

Another interpretation of the number produced by our
definition of Q is possible: the amount of information flow
Q is the improvement in expected inefficiency of the at-
tacker’s optimal code for the high input. This is because
relative entropy can be interpreted in terms of coding effi-
ciency (see Section 2.4). We have yet to fully investigate
this interpretation.

4 The technique used in Section 3.4 for modeling nontermination en-
sures that δA and δS are probability distributions. Thus, IδA

and IδS

are well-defined.

bH = 〈0.5, 0.5〉
o = (l �→ 1)

bH = 〈0.5, 0.5〉
o = (l �→ 0)

bH = 〈0.99, 0.01〉
o = (l �→ 1)

bH = 〈0.01, 0.99〉
o = (l �→ 0)

��

�

�

Less accurate More accurate

More certain

Less certain

III

III IV

Figure 2. Effect of FLIP on postbelief

4.2. Comparing accuracy and uncertainty

The information flow in experiment E2 might seem sur-
prisingly high. At most two bits are required to store pass-
word p in memory, so how can the program leak more than
five bits? In brief, this occurs because the attacker’s belief
is so erroneous that a large amount of information is re-
quired to correct it. This also illuminates the difference be-
tween measuring information flow based on uncertainty ver-
sus based on accuracy.

Consider how an uncertainty-based approach would an-
alyze the program, if the attacker’s belief were used as the
input distribution over high inputs. The attacker’s initial un-
certainty about p is H(bH) = 0.1614 bits, where H is the
information-theoretic measure of entropy, or uncertainty, in
a probability distribution δ.

H(δ) � −∑
σ δ(σ) · lg δ(σ)

Maximum entropy is achieved by uniform distributions
[14], so the maximal uncertainty about p is lg 3 ≈ 1.6 bits,
the same number of bits required to store p. In the sec-
ond experiment, the attacker’s final uncertainty about p is
H(bH2) = 1. The reduction in uncertainty is 0.1614− 1 =
−0.8386. An uncertainty-based analysis, such as Denning’s
[5], would interpret this negative quantity as an absence of
information flow. But this is clearly not the case—the at-
tacker’s belief has been guided closer to reality by the ex-
periment. The uncertainty-based analysis ignores reality by
measuring bH and bH2 against themselves only, instead of
against the high state σH .

Accuracy and uncertainty are orthogonal properties of
beliefs, as depicted in Figure 2. The figure shows the change
in an attacker’s accuracy and uncertainty when the program

FLIP : l := h 0.99� l := ¬h

is analyzed with experiment E = 〈FLIP , bH , (h �→
0), (l �→ 0)〉 and observation o is generated by the exper-

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



Quadrant h I II III IV
bH : 0 0.5 0.5 0.99 0.01

1 0.5 0.5 0.01 0.99
o (l �→ 0) (l �→ 1) (l �→ 1) (l �→ 0)
b′H : 0 0.99 0.01 0.5 0.5

1 0.01 0.99 0.5 0.5
Increase in accuracy +0.9855 −5.6439 −0.9855 +5.6439
Reduction in uncertainty +0.9192 +0.9192 −0.9192 −0.9192

Table 3. Analysis of FLIP

iment. The notation bH = 〈x, y〉 in Figure 2 means that
bH(h �→ 0) = x and bH(h �→ 1) = y.

Usually, FLIP sets l to be h, so the attacker will ex-
pect this to be the case. Executions in which this occurs will
cause his postbelief to be more accurate, but may cause his
uncertainty to either increase or decrease, depending on his
prebelief; when uncertainty increases, an uncertainty met-
ric would mistakenly say that no flow has occurred.

With probability 0.01, FLIP produces an execution that
fools the attacker and sets l to be ¬h, causing his belief
to become less accurate. The decrease in accuracy results in
misinformation, which is a negative information flow. When
the attacker’s prebelief is almost completely accurate, such
executions will make him more uncertain. But when the at-
tacker’s prebelief is uniform, executions that result in mis-
information will make him less uncertain; when uncertainty
decreases, an uncertainty metric would mistakenly say that
flow has occurred. Table 3 demonstrates this phenomenon
concretely. The quadrant labels refer to Figure 2. For each
quadrant, the attacker’s prebelief bH , observation o, and the
resulting postbelief b′H is given in the top half of the ta-
ble. In the bottom half, increase in accuracy is calculated
using the information flow metric Q(〈E , b′H〉), and reduc-
tion in uncertainty is calculated using the difference in en-
tropy H(bH) −H(b′H).

Finally, recall that when the attacker guessed a password
incorrectly in Section 1, his belief became more accurate
and more uncertain. Table 4 gives the exact changes in his
accuracy and uncertainty, using guess g = A and password
p = C.

In summary, uncertainty is inadequate as a metric for in-
formation flow if input distributions represent attacker be-
liefs. By Theorem 2, information flows when an attacker’s
belief becomes more accurate, but an uncertainty metric can
mistakenly measure a flow of zero or less. Inversely, misin-
formation flows when an attacker’s belief becomes less ac-
curate, but an uncertainty metric can mistakenly measure a
positive information flow. Hence, in the presence of beliefs,
accuracy is the correct metric for information flow.

p
bH : A 0.98

B 0.01
C 0.01

b′H : A 0
B 0.5
C 0.5

Increase in accuracy +5.6439
Reduction in uncertainty −0.8245

Table 4. Analysis of PWC

4.3. Expected flow for an experiment

Since an experiment on a probabilistic program S can
produce many outcomes, it is reasonable to assume that
quantitative information flow properties will discuss ex-
pected flow over those outcomes. So we define expected
flow QE over all outcomes from experiment E :

QE(E) � Eo∈δ′�L[Q(〈E ,B(E , o)〉)]
=

∑
o (δ′ � L)(o)
·Q(〈E , ([[S]](σ̇L ⊗ bH)|o) � H)〉)

where δ′ = [[S]](σ̇L ⊗ σ̇H) gives the distribution on out-
comes and Eδ[X ] is the expected value of an expression X
with respect to distribution δ.

Expected flow is useful in analyzing probabilistic pro-
grams. Consider a faulty password checker:

FPWC : if p = g then a := 1 else a := 0;
a := ¬a 0.1� skip

With probability 0.1, FPWC inverts the authentication flag.
Can this program be expected to confound attackers—does
FPWC leak less expected information than PWC ? This
question can be answered by comparing the expected flow
from FPWC to the flow of PWC . Table 5 gives informa-
tion flows from FPWC for experiments EF

1 and EF
2 , which

are identical to E1 and E2 from Section 4.1, except that they

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



E o Q(〈E ,B(E , o)〉) QE(E)
E1 (a �→ 1) 0.0291 0.0291

(a �→ 0) impossible
EF
1 (a �→ 1) 0.0258 0.0018

(a �→ 0) −0.2142
E2 (a �→ 1) impossible 5.6439

(a �→ 0) 5.6439
EF
2 (a �→ 1) −3.1844 2.3421

(a �→ 0) 2.9561

Table 5. Leakage of PWC and FPWC

execute FPWC instead of PWC . Observe that, for both
pairs of experiments, the expected flow of FPWC is less
than the flow of PWC . We have confirmed that the random
corruption of a makes it more difficult for the attacker to in-
crease the accuracy of his belief.

Outcomes 〈EF
1 , (a �→ 0)〉 and 〈EF

2 , (a �→ 1)〉 correspond
to an execution where the value of a is inverted. The flow
for these outcomes is negative, indicating that the program
is giving the attacker misinformation.

In general, calculating expected flow can require sum-
ming over all o ∈ StateL, which might be a countably in-
finite set. Thus, expected flow could be infeasible to cal-
culate either by hand or by machine. Fortunately, expected
flow can be conservatively approximated by conditioning
on a single distribution rather than conditioning on many
observations. Conditioning δ on δL has the effect of mak-
ing the low projection of δ identical to δL, while leaving the
high projection of δ unchanged.

δ|δL � λσ .
δ(σ)

(δ � L)(σ � L)
· δL(σ � L)

A bound on expected flow is then calculated as follows.

Theorem 3 Let:

E = 〈S, bH , σH , σL〉
δ′ = [[S]](σ̇L ⊗ σ̇H)

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

Then:
QE(E) ≤ Q(〈E , eH〉)

Proof. In Appendix B. �

4.4. Expected flow over all experiments

Uncertainty-based metrics typically consider the ex-
pected information flow over all experiments, rather
than the flow in a single experiment. An analysis, like

ours, based on single experiments allows a more expres-
sive language of security properties in which particular
inputs or experiments can be tested. Moreover, our anal-
ysis can be extended to calculate expected flow over all
experiments.

Rather than choosing particular high and low input states
σH and σL, the system and the attacker may more generally
choose distributions δH and δL over high and low states, re-
spectively. These distributions are sampled to produce the
initial input state. Taking the expectation in QE with re-
spect to σH , σL and o then yields the expected flow over all
experiments.

This extension also increases the expressive power of the
experiment model. A distribution over low inputs allows the
attacker to use a randomized guessing strategy. His distribu-
tion might also be a function of his belief, though we leave
investigation of such attacker strategies as future work. A
distribution over high inputs could be used, for example, to
determine the expected flow of the password checker when
users’ choice of passwords can be described by a distribu-
tion.

4.5. Maximum information flow

System designers are likely to want to limit the max-
imum possible information flow. So we characterize the
maximum amount of information flow that program S can
cause in a single outcome as the maximum amount of flow
from any outcome of any experiment E = 〈S, bH , σH , σL〉
on S:

Qmax(S) � maxE,b′H | b′H∈B(E) Q(〈E , b′H〉)

Consider applying Qmax(S) to PWC . Assuming that
bH satisfies the admissibility restriction in Section 2.4 and
that the attacker guesses an incorrect password yields that
PWC can leak at most − lg(ε · n−1

n ) bits per outcome,
where n is the number of possible passwords. If ε = 1, the
attacker is forced to have a uniform distribution over pass-
words, representing a lack of belief for any particular value
for the password. Additionally, if n = 2k for some k, then
we obtain that for k-bit passwords, PWC can leak at most
k− lg(2k −1) bits in a outcome; for k > 12 this is less than
0.0001 bits, supporting the intuition that password check-
ing leaks little information.

4.6. Repeated experiments

Nothing precludes repetition of experiments. The most
interesting case has the attacker return to step 2(b) of the
experiment protocol in Figure 1 after updating his belief in
step 4; that is, the system keeps the high input to the pro-
gram constant, and the attacker is allowed to check new low

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



Repetition # 1 2
bH : A 0.98 0

B 0.01 0.5
C 0.01 0.5

σL(g) A B
o(a) 0 0
b′H : A 0 0

B 0.5 0
C 0.5 1

Q(〈E , b′H〉) 5.6439 1.0

Table 6. Repeated experiments on PWC

inputs based on the results of previous experiments. Sup-
pose that experiment E2 from Section 4.1 is conducted and
then repeated with σL = (g �→ B). Then the attacker’s be-
lief about the password evolves as shown in Table 6.

Summing the information flow for each repetition yields
a total information flow of 6.6439. This total corresponds
to what Q would calculate for a single experiment, if that
experiment changed prebelief bH to postbelief b′H2, where
b′H2 is the attacker’s final postbelief in Table 6:

D(bH � σ̇H) − D(b′H2 � σ̇H) = 6.6439 − 0
= 6.6439

This example suggests a general theorem stating that the
postbelief from a series of experiments, where the postbe-
lief from one experiment becomes the prebelief to the next,
contains all the information learned during the series. Let
Ei = 〈S, bHi , σH , σLi〉 be the ith experiment in the series,
and let ri = 〈Ei, b

′
Hi

〉 be an outcome from Ei. Let r1, . . . , rn

be a series of n outcomes in which prebelief bHi in ex-
periment Ei is postbelief b′Hi−1

from outcome i − 1. Let
b′H0

= bH1 be the attacker’s prebelief for the entire series.

Theorem 4

D(bH1 � σ̇H) − D(b′Hn
� σ̇H) =

∑
i | 1≤i≤n Q(ri)

Proof. In Appendix B. �

5. Language semantics

The last piece required for our framework is a seman-
tics [[S]] in which programs are functions that map distri-
butions to distributions. Here we build such a semantics in
two stages. First, we build a simpler semantics that maps
states to distributions. Second, we lift the simpler seman-
tics so that it operates on distributions, as suggested by Sec-
tion 2.2.

Our first task then is to define the semantics [[S]] :
State → Dist. The semantics is given in Figure 3. We as-
sume some semantics [[E]] : State → Val that gives mean-
ing to expressions, and a semantics [[B]] : State → Bool
that gives meaning to Boolean expressions.

The statements skip, if, and while have essentially the
same denotations as in the standard deterministic case.5

State update σ[v �→ V ], where V ∈ Val, changes the value
of v to V in σ. The distribution update δ[v �→ E] in the de-
notation of assignment represents the result of substituting
the meaning of E for v in all the states of δ:

δ[v �→ E] � λσ . (
∑

σ′ | σ′[v �→[[E]]σ′]=σ δ(σ′))

The sequential composition of two programs, written
S1; S2, is defined using intermediate states. The frequency
of S1; S2, starting from σ, reaching a final state σ′′ is the
sum of the probabilities of all the ways that S1 can reach
some intermediate σ′ and then S2 from that σ′ can reach
σ′′. Note that ([[S1]]σ)(σ′) is the frequency that S1, begin-
ning in σ, terminates in σ′, because [[S1]]σ produces a dis-
tribution that, when applied to σ′, returns the frequency of
termination in σ′. Similarly, ([[S2]]σ′)(σ′′) is the frequency
that S2, beginning in σ′, terminates in σ′′.

The final program construct is probabilistic choice, S1 p�
S2, where 0 ≤ p ≤ 1. The semantics multiplies the proba-
bility of choosing a side Si with the frequency that Si pro-
duces a particular output state σ′. Since the same state σ′

might actually be produced by both sides of the choice, the
frequency of its occurrence is the sum of the frequency from
either side: p · ([[S1]]σ)(σ′)+(1−p) · ([[S2]]σ)(σ′). This for-
mula is simplified to the definition in Figure 3 using · and
+ as pointwise operators:

p · δ � λσ . p · δ(σ)
δ1 + δ2 � λσ . δ1(σ) + δ2(σ)

To show how to lift the semantics in Figure 3 and define
[[S]] : Dist → Dist, we use the same intuition as for the se-
quential operator above. There are many states σ′ in which
S could begin execution, and all of them could potentially
terminate in state σ. So to compute ([[S]]δ)(σ), we take a
weighted average over all input states σ′. The weights are
δ(σ′), which describes how likely σ′ is to be used as the in-
put state. With σ′ as input, S terminates in state σ with fre-
quency ([[S]]σ′)(σ). Thus we define [[S]]δ as:

[[S]]δ � λσ .
∑

σ′ δ(σ′) · ([[S]]σ′)(σ)
=

∑
σ δ(σ) · [[S]]σ

5 To ensure that the fixed point for while exists, we have to verify that
Dist is a complete partial order with a bottom element. To do so, we
have to extend the definition Dist to be State → [0, 1]. This makes
distributions correspond to subprobability measures, and it is easy to
check that the semantics always produces subprobability measures as
output. The LUB is at most λσ . 1, and the bottom element is λσ . 0.

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



[[skip]]σ = σ̇
[[v := E]]σ = σ̇[v �→ E]
[[S1; S2]]σ = λσ′′ .

∑
σ′ ([[S1]]σ)(σ′) · ([[S2]]σ′)(σ′′)

[[if b then S1 else S2]]σ = if [[B]]σ then [[S1]]σ else [[S2]]σ
[[while B do S]]σ = fixf : Dist → Dist. if [[B]]σ then f([[S]]σ) else σ̇

[[S1 p� S2]]σ = p · [[S1]]σ + (1 − p) · [[S2]]σ

Figure 3. Semantics of programs in states

[[skip]]δ = δ
[[v := E]]δ = δ[v �→ E]
[[S1; S2]]δ = [[S2]]([[S1]]δ)

[[if B then S1 else S2]]δ = [[S1]](δ |B) + [[S2]](δ | ¬B)
[[while B do S]]δ = fixf : Dist → Dist. f([[S]](δ |B)) + (δ | ¬B)

[[S1 p� S2]]δ = [[S1]]p · δ + [[S2]](1 − p) · δ

Figure 4. Semantics of programs in distributions

where the equality follows from η-reduction.
Applying this definition to the semantics in Figure 3

yields [[S]]δ, shown in Figure 4. This lifted semantics corre-
sponds directly to a semantics given by Kozen [15], which
interprets programs as continuous linear operators on mea-
sures. Our semantics uses an extension of the distribution
conditioning operator | to Boolean expressions. Whereas
distribution conditioning produces a normalized distribu-
tion, Boolean expression conditioning produces an unnor-
malized distribution:

δ|B � λσ . if [[B]]σ then δ(σ) else 0

By producing unnormalized distributions as part of the
meaning of if and while statements, we are tracking the fre-
quency with which each branch of the statement is chosen.

6. Related work

We believe our work is the first to address and show
the importance of attacker beliefs in quantifying informa-
tion flow. Perhaps the earliest published connection between
information theory and information flow is Denning [5],
which demonstrates the analysis of a few particular assign-
ment and if statements by using entropy to calculate leak-
age. Millen [20], using deterministic state machines, proves
that a system satisfies noninterference exactly when the mu-
tual information between certain inputs and outputs is zero.
He also proposes mutual information as a metric for infor-
mation flow, but does not show how to compute the amount
of flow for programs.

Wittbold and Johnson [26] introduce nondeducibility
on strategies, an extension of Sutherland’s nondeducibility
[22]. Wittbold and Johnson observe that if a program is run
multiple times and feedback between runs is allowed, then
information can be leaked by coding schemes across multi-
ple runs. A system that is nondeducible on strategies has no
noiseless communication channels between high input and
low output, even in the presence of feedback.

The flow model (FM) is a security property first given by
McLean [19] and later given a quantitative formalization by
Gray [11], who called it the Applied Flow Model (AFM).
The FM stipulates that the probability of a low output may
depend on previous low outputs, but not on previous high
outputs. Gray formalizes this in the context of probabilis-
tic state machines, and he relates noninterference to the rate
of maximum flow between high and low. Browne [1] devel-
ops a novel application of the idea behind the Turing test
to characterize information flow: a system passes Browne’s
Turing test exactly when for all finite lengths of time, the in-
formation flow over that time is zero. Halpern and O’Neill
[12] construct a framework for reasoning about secrecy that
generalizes many previous results on qualitative and proba-
bilistic, but not quantitative, security.

Volpano [23] gives a type system that can be used to
establish the security of password checking and one-way
functions such as MD5 and SHA1. Noninterference does
not allow such functions to be typed, so this type system is
an improvement over previous type systems. However, the
type system does not allow a general analysis of quantita-
tive information flow. Volpano and Smith [24] give another

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



type system that enforces relative secrecy, which requires
that well-typed programs cannot leak confidential data in
polynomial time.

Weber [25] defines n-limited security, which allows de-
classification at a rate that depends, in part, on the size n of
a buffer shared by the high and low projections of a state.
Lowe [16] defines the information flow quantity of a pro-
cess with two users H and L to be the number of behaviors
of H that L can distinguish. When there are n such distin-
guishable behaviors, H can use them to transmit lg n bits to
L. These both measure the size of channels rather than ac-
curacy of belief.

Di Pierro, Hankin, and Wiklicky [7] relax noninterfer-
ence to approximate noninterference, where “approximate”
is a quantified measure of the similarity of two processes in
a process algebra. Similarity is measured using the supre-
mum norm over the difference of the probability distribu-
tions the processes create on memory. They show how to in-
terpret this quantity as a probability on an attacker’s ability
to distinguish two processes from a finite number of tests,
in the sense of statistical hypothesis testing. Finally, the pa-
per explores how to build an abstract interpretation that al-
lows approximation of the confinement of a process. Their
more recent work [6] generalizes this to measuring approx-
imate confinement in probabilistic transition systems.

Clark, Hunt, and Malacaria [3] apply information the-
ory to the analysis of while-programs. They develop a static
analysis that provides bounds on the amount of information
that can be leaked by a program. The metric for informa-
tion leakage is based on conditional entropy; the analysis
consists of a dataflow analysis, which computes a use-def
graph, accompanied by a set of syntax-directed inference
rules, which calculate leakage bounds. In other work [2],
the same authors investigate other leakage metrics, settling
on conditional mutual information as an appropriate met-
ric for measuring flow in probabilistic languages; they do
not consider relative entropy. Mutual information is always
at least 0, so unlike relative entropy it cannot represent mis-
information.

McIver and Morgan [17] calculate the channel capacity
of a program using conditional entropy. They add demonic
nondeterminism as well as probabilistic choice to the lan-
guage of while-programs, and they show that the perfect
security (0 bits of leakage) of a program is determined by
the behavior of its deterministic refinements. They also con-
sider restricting the power of the demon making the nonde-
terministic choices, such that it can see all data, or just low
data, or no data.

Evfimievski, Gehrke, and Srikant [8] quantify privacy
breaches in data mining. In their framework, randomized
operators are applied to confidential data before the data is
released. A privacy breach occurs when release of the ran-
domized data causes a large change in an attacker’s prob-

ability distribution on a property of the confidential data.
They use Bayesian reasoning, based on observation of ran-
domized data, to update the attacker’s probability distri-
butions. Their distributions are similar to our beliefs, but
have a strong admissibility restriction: the attacker’s prebe-
lief must be the same distribution from which the system
generates the high input. They also show that relative en-
tropy can be used to bound the maximum privacy breach
for a randomized operator.

7. Conclusion

This paper presents a model for incorporating attacker
beliefs into analysis of quantitative information flow in pro-
grams. Our theory reveals that uncertainty, the traditional
metric for information flow, is inadequate: it cannot sat-
isfactorily explain even the simple example of password
checking. Accuracy is the appropriate metric for informa-
tion flow in the presence of attacker beliefs, and we have
shown how to use it to calculate exact, expected, and maxi-
mum information flow. A formal model of experiments we
give enables precise descriptions of attackers’ actions. We
have instantiated the model with a probabilistic semantics
and have given several examples of applying the model and
metric to the measurement of information flow.

Acknowledgments

Stephen Chong participated in an early discussion about
the distinction between attacker beliefs and reality. Sig-
mund Cherem, Stephen Chong, Jed Liu, Kevin O’Neill,
Nathaniel Nystrom, Riccardo Pucella, Lantian Zheng, and
the reviewers provided helpful feedback on the paper. Se-
bastian Hunt also provided insightful comments on this
work.

References

[1] R. Browne. The Turing test and non-information flow. In
S&P 1991, pages 375–385, Oakland, CA, 1991. IEEE.

[2] D. Clark, S. Hunt, and P. Malacaria. Quantified interference:
Information theory and information flow. Presented at Work-
shop on Issues in the Theory of Security (WITS’04), April
2004.

[3] D. Clark, S. Hunt, and P. Malacaria. Quantified interference
for a while language. Electronic Notes in Theoretical Com-
puter Science, 112:149–166, Jan 2005.

[4] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. John Wiley & Sons, 1991.

[5] D. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[6] A. Di Pierro, C. Hankin, and H. Wiklicky. Measuring the
confinement of probabilistic systems. To appear in Theoret-
ical Computer Science.

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



[7] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate
non-interference. Journal of Computer Security, 12(1):37–
81, 2004.

[8] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. In Proc. ACM
Symposium on Principles of Database Systems, pages 211–
222, San Diego, CA, 2003.

[9] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, 2004.

[10] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symposium on Security and Privacy,
pages 11–20, Apr. 1982.

[11] J. W. Gray, III. Toward a mathematical foundation for infor-
mation flow security. In S&P 1991, pages 21–35, Oakland,
CA, 1991. IEEE.

[12] J. Halpern and K. O’Neill. Secrecy in multiagent systems.
In CSFW 2002, pages 32–46, Cape Breton, Nova Scotia,
Canada, 2002. IEEE.

[13] J. Y. Halpern. Reasoning about Uncertainty. MIT Press,
Cambridge, Massachusetts, 2003.

[14] G. A. Jones and J. M. Jones. Information and Coding The-
ory. Springer, 2000.

[15] D. Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 22:328–350, 1981.

[16] G. Lowe. Quantifying information flow. In CSFW 2002,
pages 18–31, Cape Breton, Nova Scotia, Canada, 2002.
IEEE.

[17] A. McIver and C. Morgan. A probabilistic approach to in-
formation hiding. In Programming Methodology, chapter 20,
pages 441–460. Springer, 2003.

[18] A. McIver and C. Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Springer, 2004.

[19] J. McLean. Security models and information flow. In S&P
1990, pages 180–189, Oakland, CA, 1990. IEEE.

[20] J. Millen. Covert channel capacity. In S&P 1987, pages 60–
66, Oakland, CA, 1987. IEEE.

[21] L. H. Ramshaw. Formalizing the Analysis of Algorithms.
PhD thesis, Stanford University, 1979. Available as tech-
nical report, XEROX PARC, 1981.

[22] D. Sutherland. A model of information. In Proceedings of
the 9th National Computer Security Conference, pages 175–
183, Sep 1986.

[23] D. Volpano. Secure introduction of one-way functions. In
CSFW 2000, pages 246–254, Cambridge, UK, 2000. IEEE.

[24] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. In POPL 2000, pages 268–276, Boston, MA, 2000.
ACM.

[25] D. G. Weber. Quantitative hook-up security for covert chan-
nel analysis. In CSFW 1988, pages 58–71, Franconia, NH,
1988. IEEE.

[26] J. T. Wittbold and D. Johnson. Information flow in nonde-
terministic systems. In S&P 1990, pages 144–161, Oakland,
CA, 1990. IEEE.

A. Relaxing restrictions on programs

To allow mutable high inputs, as discussed in Section
3.4, let the notation b0

H mean the same distribution as bH ,
except that each state of its domain has a 0 as a super-
script. So, if bH ascribes probability p to the state σ, then
b0
H ascribes probability p to the state σ0. We assume that S

cannot modify states with a superscript 0. In the case that
states map variables to values, this could be achieved by
defining σ0 to be the same state as σ, but with the super-
script 0 attached to variables; for example, if σ(v) = 1 then
σ0(v0) = 1. Note that S cannot modify σ0 if did not origi-
nally contain any variables with superscripts.

Using this notation, the belief revision operator is ex-
tended to B!, which allows S to modify the high state in ex-
periment E = 〈S, bH , σH , σL〉.

B!(E) � (([[S]](σ̇L ⊗ bH ⊗ b0
H)|o)) � H0

where o ∈ Γ(δ′) � L
δ′ = [[S]](σ̇L ⊗ σ̇H)

In the first line of the definition, the high input state is
preserved by introducing the product with b0

H , and the at-
tacker’s postbelief about the input is recovered by restrict-
ing to H0, the high input state with the superscript 0.

To allow nonterminating programs, let State⊥ � State∪
{⊥}, and ⊥ � L � ⊥. Nontermination is now allowed as an
observation, leading to an extended belief revision operator
B!⊥:

B!⊥(E) � (out⊥(S, σ̇L ⊗ bH ⊗ b0
H)|o) � H0

where o ∈ Γ(δ′) � L
δ′ = out⊥(S, σ̇L ⊗ σ̇H)

Function out⊥(S, δ) produces a distribution that yields
the frequency that S terminates, or fails to terminate, on in-
put distribution δ:

out⊥(S, δ) � λσ : State⊥ . if σ = ⊥
then ‖δ‖ − ‖[[S]]δ‖
else ([[S]]δ)(σ)

If S does not terminate on some input states in δ, then out-
put distribution [[S]]δ will contain less mass than δ; other-
wise, ‖δ‖ will equal ‖[[S]]δ‖. Missing mass corresponds to
nontermination [21, 18], so out⊥ maps the missing mass to
⊥.

B. Proofs

Theorem 1 Let E = 〈S, bH , σH , σL〉.

B(E , o)(σH) = B(E , o)

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



Proof.

B(E , o)
= 〈 Definition of B 〉

bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)∑
σ′

H
bH(σ′

H) · ([[S]](σ̇L ⊗ σ̇′
H) � L)(o)

= 〈 Definition of δ � L, apply distribution to o 〉
bH(σH) · (∑σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))

∑
σ′

H
bH(σ′

H) · (∑σ | σ�L=o ([[S]](σ̇L ⊗ σ̇′
H)(σ))

= 〈 Lemma 1.1 〉
bH(σH) · (∑σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))

∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Distributivity, one-point rule 〉∑
σ | σ�L=o ∧ σ�H=σH

∑
σ′

H
bH (σH)·[[S]](σ̇L⊗σ̇H)(σ)

∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Lemma 1.1 〉∑
σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L ⊗ bH)(σ)
∑

σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)
= 〈 Distributivity 〉

∑
σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L⊗bH )(σ)∑
σ′ | σ′�L=o [[S]](σ̇L⊗bH )(σ′)

= 〈 Definition of δ � L 〉
∑

σ | σ�H=σH
(([[S]](σ̇L ⊗ bH))|o)(σ)

= 〈 Definition of δ � H , applying distribution to σH 〉
((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition of B(E , o) 〉
B(E , o)(σH)

�

Lemma 1.1 Let σ � L = o.

[[S]](σ̇L ⊗ bH)(σ) =
∑

σH
bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

Proof.

[[S]](σ̇L ⊗ bH)(σ)
= 〈 Definition of [[S]]δ 〉

∑
σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(σ)

= 〈 Definition of point mass 〉
∑

σ′ | σ′�L=σL
bH(σ′ � H) · ([[S]]σ′)(σ)

= 〈 Let σ = 〈σL, σH〉, nesting, one-point rule 〉
∑

σH
bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

�

Theorem 2 Let E = 〈S, bH , σH , σL〉.
Q(〈E , b′H〉) = IδA(o) − IδS (o)

Proof.

Q(〈E , b′H〉)
= 〈 Definition of Q 〉

D(bH � σ̇H) − D(b′H � σ̇H)
= 〈 Definitions of D and point mass 〉

− lg bH(σH) + lg b′H(σH)
= 〈 Lemma 2.1, properties of lg 〉

− lg PrδA(o) + lg PrδS (o)
= 〈 Definition of I 〉

IδA(o) − IδS (o)

�

Lemma 2.1

b′H(σH) = bH(σH) · δS(o)
δA(o)

Proof.

b′H(σH)
= 〈 Definition of B 〉

(([[S]](σ̇L ⊗ bH)|o) � H)(σH)
= 〈 Definition of δ � H 〉

∑
σ | σ�H=σH

([[S]](σ̇L ⊗ bH)|o)(σ)
= 〈 Definition of δ|o 〉

∑
σ | σ�H=σH ∧ σ�L=o

[[S]](σ̇L ⊗ bH)(σ)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 One-point rule: σ = 〈o, σH〉 〉
[[S]](σ̇L ⊗ bH)(〈o, σH〉)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 Definition of δA 〉
1

δA(o) · [[S]](σ̇L ⊗ bH)(〈o, σH〉)
= 〈 Definition of [[S]]δ 〉

1
δA(o) ·

∑
σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(ȯ ⊗ σ̇H)

= 〈 Definition of ⊗, point mass 〉
1

δA(o) ·
∑

σ′ | σ′�L=σL
bH(σ′ � H)

·([[S]](σ̇L ⊗ (σ̇′ � H)))(ȯ ⊗ σ̇H)
= 〈 High input is immutable 〉

1
δA(o) ·

∑
σ′ | σ′�L=σL ∧ σ′�H=σH

bH(σ′ � H)

·([[S]](σ̇L ⊗ (σ̇′ � H)))(ȯ ⊗ σ̇H)
= 〈 One-point rule: σ′ = 〈σL, σH〉 〉

1
δA(o) · bH(σH) · ([[S]](σ̇L ⊗ σ̇′

H))(ȯ ⊗ σ̇H)

= 〈 High input is immutable, Definition of δ � L 〉
1

δA(o) · bH(σH) · (([[S]](σ̇L ⊗ σ̇′
H)) � L)(o)

= 〈 Definition of δS 〉
bH(σH) · δS(o)

δA(o)

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 



Note that the immutability of high input can be dispensed
with using the technique of Section 3.4. �

Theorem 3 Let:

E = 〈S, bH , σH , σL〉
δ′ = [[S]](σ̇L ⊗ σ̇H)

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

Then:
QE(E) ≤ Q(〈E , eH〉)

Proof.

QE(E)
= 〈 Definition of QE 〉

Eo∈δ′�L[Q(〈E ,B(E , o)〉)]
= 〈 Definition of Q, let b′H = B(E , o)〉) 〉

Eo∈δ′�L[D(bH � σ̇H) − D(b′H � σ̇H)]
= 〈 Linearity of E 〉

D(bH � σ̇H) − Eo∈δ′�L[D(b′H � σ̇H)]
≤ 〈 Jensen’s inequality and convexity of D, see [4] 〉

D(bH � σ̇H) − D(Eo∈δ′�L[b′H ]� σ̇H)
= 〈 Lemma 3.1 〉

D(bH � σ̇H) − D(eH � σ̇H)
= 〈 Definition of Q 〉

Q(〈E , eH〉)
�

Lemma 3.1 Let E , δ′, eH be defined as in Theorem 3. Let
b′H = B(E , o) and assume the range of o is always δ′ � L.
Then:

Eo[b′H ] = eH

Proof. (by extensionality)

Eo[b′H ](σH)
= 〈 Definitions of E, b′H 〉

(
∑

o (δ′ � L)(o) · B(E , o)(σH)
= 〈 Definition of B(E , o) 〉

∑
o (δ′ � L)(o) · ((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition of δ � H , applying distribution to σH 〉
∑

o (δ′ � L)(o)
·(∑σ′ | σ′�H=σH

(([[S]](σ̇L ⊗ bH))|o)(σ′))
= 〈 Definition of δ|o, applying distribution to σ′ 〉

∑
o (δ′ � L)(o)

·(∑σ′ | σ′�H=σH ∧ σ′�L=o
([[S]](σ̇L ⊗ bH))(σ′)

([[S]](σ̇L ⊗ bH) � L)(o) )

= 〈 One-point rule 〉
∑

o (δ′ � L)(o) · ([[S]](σ̇L ⊗ bH))(〈o, σH 〉)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 Definition of δ � L, applied to o 〉
∑

o (δ′ � L)(o) · ([[S]](σ̇L ⊗ bH))(〈o, σH 〉)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Let σ = 〈o, σH〉, change of dummy: o := σ,

definition of ≈L 〉
∑

σ | σ�H=σH
(δ′ � L)(o)

· ([[S]](σ̇L ⊗ bH))(σ)∑
σ′ | σ′≈Lσ [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Definition of δ|δL, applied to σ 〉
∑

σ | σ�H=σH
([[S]](σ̇L ⊗ bH)|(δ′ � L))(σ)

= 〈 Definition of δ � H , applied to σH 〉
(([[S]](σ̇L ⊗ bH)|(δ′ � L)) � H)(σH)

= 〈 Definition of eH 〉
eH(σH)

�

Theorem 4

D(bH0 � σ̇H) − D(b′Hn
� σ̇H) =

∑
i Q(ri)

Proof.
∑

i | 1≤i≤n Q(ri)
= 〈 Definition of Q 〉

∑
i | 1≤i≤n D(bHi � σ̇H) − D(b′Hi

� σ̇H)
= 〈 Lemma 4.1 〉

D(bH1 � σ̇H) − D(b′Hn
� σ̇H)

�

Lemma 4.1 Assume for f and f ′ that ∀i | 1≤i≤n f(i) =
f ′(i − 1), n ≥ 2, and f(1) = f ′(0). Then:

(
∑

i | 1≤i≤n f(i) − f ′(i)) = f(1) − f ′(n)

Proof.
∑

i | 1≤i≤n f(i) − f ′(i)
= 〈 f(i) = f ′(i − 1) 〉

∑
i | 1≤i≤n f ′(i − 1) − f ′(i)

= 〈 Distributivity 〉
(
∑

i | 1≤i≤n f ′(i − 1)) − ∑
i | 1≤i≤n f ′(i)

= 〈 Change of dummy: i := i − 1 〉
(
∑

i | 0≤i≤n−1 f ′(i)) − ∑
i | 1≤i≤n f ′(i)

= 〈 Split off term, n ≥ 2 〉
f ′(0) + (

∑
i | 1≤i≤n−1 f ′(i))

−(
∑

i | 1≤i≤n−1 f ′(i)) − f ′(n)
= 〈 Arithmetic, f(1) = f ′(0) 〉

f(1) − f ′(n)

�

Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05) 

1063-6900/05 $20.00 © 2005 IEEE 


